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Abstract: The present study aimed to identify the errors made by pre-service elementary 

mathematics teachers while investigating the convergence of infinite series. A qualitative 

exploratory case study design was used with a total of 43 undergraduate students. Data were obtained 

from a test administered in a paper-and-pencil form consisting of seven open-ended questions. The 

data analysis was done using descriptive and content analysis techniques. Findings were presented 

as follows: inappropriate test selections; failure to check convergence criteria; incorrect use of a 

comparison test; limit comparison test error; re-test convergence test results; considering ∑ as a 

multiplicative function; misunderstanding of special series; considering that series has no character 

when the convergence test is inconclusive; confusing sequences with series; misunderstanding of 

the nth-term test; misinterpretation of convergence test results. Findings showed that students with 

insufficient procedural knowledge had difficulty in solving the given problem even if they 

understood it, whereas those with insufficient conceptual knowledge could not literally understand 

what they did even if they solved the problem. Therefore, the establishment of a moderate balance 

between procedural and conceptual knowledge in the learning of the convergence of series is 

essential in reducing the errors or learning difficulties for developing deep mathematical 

understanding. 
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1. Introduction  

In today’s developing world, mathematics in many areas is becoming increasingly important for 

individuals, communities, and nations to function across the globe. Because of the importance of 

mathematics in such a wide range of fields, the difficulties and misunderstandings of students studying 

mathematics, science, and engineering, especially in calculus courses, have been investigated and 

reported by several researchers and mathematics educators (Aspinwall & Miller, 2001; Davis & Vinner, 

1986; Martin, 2009; Martínez-Planell, Gonzalez, DiCristina & Acevedo, 2012; Monaghan, 2001; Orton, 

1983; Tall & Schwarzenberger, 1978). Some of the studies have shown that students taking calculus 

courses have difficulty in conceptual understanding because they have a very superficial and insufficient 

understanding of the basic concepts of mathematical analysis due to the rote-based learning instruction 

(Steen, 1998; White & Mitchelmore, 1996). The introduction to calculus begins with the concept of 

limit, but this concept is inherently difficult, and no matter how it is taught many students have several 

difficulties in understanding the definition of limit intuitively (Barnes, 1995). These difficulties mostly 

stem from the inability to understand the notion of infinity or a fairly complex definition of the limit 

conceptually (Cornu, 1991, Tall, 1992; Tall & Vinner, 1981). Many students also experience similar 

difficulties in understanding the convergence of an infinite series which is one of the important concepts 

of analysis (Akgün & Duru, 2007). These difficulties have been said to increase further along with the 

inadequacy in algebra (Brown, 1996).   

Sequences and series are the most fundamental topics in any analysis course and can serve as a basis for 

the other topics in calculus including limits, continuity, derivatives, and integrals. For example, the topic 

of series, which is one of the important subjects in the process of calculating the area under a curve, can 

also offer alternative ways to model some mathematical relations such as the distribution of drugs and 

populations. (González-Martín, Nardi, & Biza, 2011). On the other hand, Tall and Schwarzenberger 

(1978) argued that the subject of the series is one of the significant anomalies of the mathematics 

curriculum. Many students encountering infinite series for the first time cannot comprehend its 
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mathematical essence, cannot complete the simple procedures and solutions related to the subject, and 

consider it as one of the hardest topics in mathematics (Monaghan, 2001; Nardi, Biza and González-

Martín, 2008). The research showed that the most common learning difficulties in the series are the 

difficulties arising from the inability to distinguish the fundamental difference between sequences and 

series (Brown, 1996; Davis, 1982; Yazgan-Sağ & Argün, 2012). Lee (1993) mentioned that the meaning 

of partial sums could not be understood exactly and the sequence of partial sums could not be obtained 

explicitly from the given series. Moreover, the fact that an infinite series is an infinite sum of the terms 

of a sequence of numbers, or the limit of an infinite series is equal to the limit of a sequence of partial 

sums of a series has led to the idea that the concept of sequences is more central than the concept of 

series. This has caused the concept of series to be automatically pushed aside in the curriculum and 

hence in the textbooks. Even the most popular and widely used calculus textbooks do not explain the 

series much in relation to other mathematical concepts. They generally contain routine practices of 

convergence test formulae requiring only operational procedures. Studying the series only at the 

procedural level may result in the conceptual dimension being neglected as a result (Akgün, Işık, Tatar, 

İşleyen & Soylu, 2012).   

In a study by Alcock and Simpson (2009), after the definition of convergence of an infinite series was 

made in the classroom, students were asked to explain it with their own sentences. However, it was seen 

that students differed in their explanations when defining the convergence of a series and that most of 

them could not achieve a sufficient level of understanding about the definition. Similarly, in other 

studies, it was found that students were unable to understand what the convergence of a series means 

and showed an inadequate understanding of identifying whether or not a series was convergent (Brown, 

1996; Martínez-Planell, Gonzalez, DiCristina & Acevedo, 2012). The study conducted by Akbayır 

(2004) examined the errors made by the students in meeting some convergence criteria about the series. 

The errors encountered were stated as a lack of understanding of the notion of a general term of a series, 

a confusion of convergence criteria of series with one another, a preference of the D’Alembert ratio test 

in particular for checking the convergence of any given series, and an insufficient understanding of 

comparison test criteria. Furthermore, it has been revealed that some students have difficulty with the 

concept of infinity as well as accepting that a convergence test may be inconclusive (Champney, 2013; 

Nardi & Iannone, 2001; Sierpińska, 1987). Given the importance of infinite series in calculus, exploring 

various difficulties, especially ones not seen in previous research, faced by the students in determining 

the convergence of the series still remains an important issue for the effective teaching and learning of 

series. Accordingly, the present study attempts to explore and understand the errors that occurred when 

studying the character of the series. For this purpose, the following research question has guided this 

study: What are the errors that undergraduate students of an elementary mathematics teacher education 

program make while identifying the convergence or divergence of the infinite series? 

2. Theoretical Framework 

Conceptual and procedural knowledge are known to be two types of knowledge required for 

mathematics learning (Hiebert & Lefevre, 1986). Conceptual knowledge can be thought of not only as 

a knowledge of concepts but also as an understanding of concept knowledge along with mathematical 

processes, deep relations, and rich connections. (Kilpatrick, Swafford, & Findell, 2001; Star, 2005). 

Since conceptual knowledge involves interpreting the concepts and understanding the relationships 

between them, it is sometimes also called conceptual understanding. On the other hand, procedural 

knowledge is defined by two separate parts that make it up. The first part of the procedural knowledge 

involves symbols and language of mathematics, while the second part involves rules, operations, visual 

shapes, and algorithms used to solve mathematical problems (Hiebert & Lefevre, 1986). Star (2005) 

states that this definition includes only superficial relations, whereas procedural knowledge can in fact 

contain deeper and more comprehensive relations. In other words, there can be a wide variety of 

processes other than algorithms or rules, and the processes within each procedure can have different 

levels of complexity or relations. Thus, procedural understanding involves having an idea about the 

formal language or symbolic representations of mathematics and being able to use related processes 

effectively and accurately by making conscious choices. Thus, procedural knowledge is characterized 

not only as a knowledge of procedures but also as the ability to execute procedures and algorithms used 
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in problem-solving (Star, 2005, 2007). Moreover, Skemp (1978, 1987) refers to two forms of 

understanding in mathematics that he called relational understanding and instrumental understanding, 

which are basically similar to conceptual understanding and procedural understanding respectively. An 

individual with an instrumental understanding knows and effectively uses rules in mathematics but does 

not understand why these rules work. Relational understanding is explained as knowing what is done 

and why. Although Skemp (1978) recognizes that relational understanding is more important than 

instrumental understanding, it has been asserted that as there can be procedural knowledge within 

conceptual knowledge or conceptual knowledge within procedural knowledge, they cannot be separated 

by precise boundaries and that it is also not possible to talk about the superiority of one over the other 

(Carpenter, 1986). Baki (1998) emphasized the importance of using conceptual knowledge and 

procedural knowledge in a balanced way in mathematics education. Students cannot demonstrate the 

required mathematical competence if they are inadequate in any of the knowledge, or if they perform 

these two types of knowledge separately without relating them with one another (Hiebert and Lefevre, 

1986). Therefore, conceptual and procedural knowledge about series can play an important role in 

understanding the errors that emerged when identifying the characters of infinite series that is one of the 

challenging issues many students often struggle with. 

3. Method 

3. 1. Research Design 

Qualitative research in an exploratory vein is usually preferred for characterizing, evaluating, and 

interpreting the specific case when ‘what’ questions are being posed as it allows for rich descriptions 

and understanding of the phenomena under investigation (Merriam, 2009). This research study lends 

itself well to the use of qualitative exploratory case study design (Yin, 2014), where the case of interest 

is the errors made by undergraduate students of teaching mathematics while studying the convergence 

or divergence of infinite series.  

3. 2. Participants 

The study was carried out with a total of 43 undergraduate students (23 females and 20 males) enrolled 

in the third year of the elementary mathematics teacher education program at a public university in 

Turkey. The participants of the study were selected via the criteria sampling method that is one of the 

purposeful sampling methods (Patton, 2015). Having taken Analysis-I and Analysis-II courses 

beforehand and being registered for Analysis-III course had been taken as criteria to select the study 

group of this research. It was also assumed that the prerequisite knowledge needed for infinite series is 

available since the participants had already seen the fundamental issues of the calculus such as 

summation signs, trigonometric functions, limits, derivatives, and integrals in General Mathematics, 

Analysis-I, and Analysis-II courses. 

3. 3. Data Collection 

The data were obtained from a test administered in a paper-and-pencil form involving open-ended 

questions prepared to identify the character of the infinite series as convergent or divergent. The 

evaluation in this way not only provided the researcher with flexibility in time but also provided more 

systematic and comparable data from the participants. While preparing open-ended questions, common 

errors made by students were taken into consideration when determining the convergence of infinite 

series, such as the difficulties with the concept of infinity, a lack of understanding of the meaning of a 

general term of a series, misunderstanding of the criteria for the convergence tests of the series or the 

confusion of these criteria with each other. 

The test consisted of eight open-ended questions at the beginning. Two experts in Mathematics 

Education examined both whether the questions are valid in measuring the learning outcomes related to 

the convergence of infinite series and whether the questions are understood when they are read. After 

the necessary arrangements were made, all the details of each question aimed to detect different types 

of student errors were explained to these two experts and the final version of the test was formed by 

taking their opinions on the validity of each question in achieving this. There were seven open-ended 
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questions in the last form of the test (See Annex 1 for more details). One question that was thought to 

measure the same learning outcome and three questions aimed at identifying similar student errors were 

excluded from the test. For example, the ratio test is not appropriate for investigating the convergence 

of both series
21 n n  and 1 (1 )n n . Their convergence can be found by using either the 

integral test or limit comparison test. Hence, they were thought to measure the same learning outcome 

and one of them was excluded from the test. On the other hand, at the request of the experts, three 

questions related to the convergence of series with negative terms were also added to the test. The 

purpose of the study was explained to pre-service teachers before the test was applied. It was emphasized 

that answering the questions in a way that explicitly and clearly reveals their solutions is important for 

the purpose of the research. In addition, the researchers were present with the participants from the 

beginning to the end of the implementation of the test in order to intervene in any problems that may 

arise.   

3.4. Data Analysis 

The data analysis was performed using descriptive and content analysis techniques. The data 

summarized and interpreted in a descriptive way were analyzed in more detail through content analysis, 

enabling the emergence of the themes that were not noticeable with a descriptive approach (Corbin and 

Strauss, 2015). Accordingly, with the in-depth analysis made through the idea that the mental structure 

of each individual is important, it was examined whether there were any answers that point to the 

familiar errors as well as non-familiar errors in the solutions of the students. The participants were coded 

from P1 to P43 for easy reference. Their responses to open-ended questions were analyzed by the 

researchers systematically, and a code list was created by assigning a different code for each distinct 

error made by the prospective teachers. 

After the coding phase was completed, similar codes were combined under meaningful categories in 

accordance with the research purpose. For example, the category of ‘failure to check convergence 

criteria of tests’ was created by combining the codes obtained from the errors made by the students such 

as ‘direct application of convergence tests used in series with positive terms to series with negative 

terms’, ‘application of an integral test to alternate series’. Similarly, the category of ‘misunderstanding 

of special series’ was formed by merging the codes such as ‘thinking of a non-telescopic series as a 

telescopic series’, ‘thinking of a series that is not a p-series as p-series’. 

While presenting the findings, the most striking ones were tried to be quoted directly from the errors 

made by the participants in determining the character of the series, and the findings were interpreted 

based on these errors. At all these stages, the content of the data was constantly examined by considering 

the purpose of the research, and care was taken to ensure that the errors placed under the same category 

were as consistent and meaningful as possible (Merriam, 2009). Besides, in order to ensure that the 

findings of the research accurately reflect the errors made by prospective teachers, the codes and 

categories created were checked by an expert in the field of pure mathematics, and the consensus was 

achieved. Furthermore, one mathematics education researcher was asked to act as an external rater. This 

mathematics education researcher and the researchers double-checked codes and re-examined emerged 

categories. The comparison of the two coding outcomes showed a 93% agreement. The researchers 

resolved all disagreements and revised the code definitions until a full-agreement on the categories was 

reached and conferred the dependability and credibility of the data analysis by ensuring inter-coder 

reliability (Miles and Huberman, 1994). 

4. Findings 

A cross-case analysis of the data from 43 participants revealed eleven emergent categories for the errors 

pre-service mathematics teachers made while identifying the convergence or divergence of series. These 

categories were as following: (i) Inappropriate test selections for the convergence of series; (ii) Failure 

to check convergence criteria of tests; (iii) Incorrect use of a comparison test; (iv) Limit comparison test 

error; (v) Re-test convergence test results; (vi) Considering ∑ as a multiplicative function; (vii) 

Misunderstanding of special series; (viii) Considering that a series has no character when the 

convergence test is inconclusive; (ix) Confusing sequences with series; (x) Misunderstanding of the nth-
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term test; (xi) Misinterpretation of the convergence test results. The following sections provide the 

findings with respect to these emergent categories. 

4. 1. Inappropriate Test Selections for the Convergence of Series 

One of the errors made was to test the convergence of the series by using the test which was not 

appropriate for the given series. For example, one of the participants came up with a solution to the 

second question in the test as follows: 

 

Figure 1. Participant-18’s Solution to Question 2 

In Figure 1, the participant’s insistence on the Cauchy root test instead of the D’Alembert ratio test led 

the participant to the inaccurate inferences and caused him to find the divergent series to be mistakenly 

convergent. 

4. 2 Failure to Check Convergence Criteria of Tests 

Another error was that participants used convergence tests regardless of the characteristics that the series 

should have in the criteria of the convergence tests. For instance, the fourth question was answered by 

one of the participants as follows: 

 

Figure 2. Participant-5’s Solution to Question 4 

As seen in Figure 2, Participant-5 applied the Cauchy root test used in series with only positive terms to 

a series involving negative terms due to the expression  1 n in the general term of the series and 

casually stated that the series is convergent by interpreting the limit value of  
1

lim 1
n

n
n


 as 1. 

In Figure 3, another participant applied the integral test to the first question in the test and identified the 

series to be divergent as follows: 

 

Figure 3. Participant-43’s Solution to Question 1 

The participant’s application of the integral test to the given alternating series, which is indeed 

convergent, led to the misinterpretation of the character of the series. 
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4. 3. Incorrect Use of a Comparison Test  

The other error was to consider either the series whose nth term was smaller than the nth term of the 

divergent series as divergent or the series whose nth term was greater than the nth term of the convergent 

series as convergent. One of the participants, for example, responded to the sixth question as follows: 

 

Figure 4. Participant-28’s Solution to Question 6 

In Figure 4, the participant compared the terms of the given series with those of another series whose 

divergence is known and erroneously interpreted the series
21 n n  , which is smaller than the 

divergent series 1 n  , as divergent.  

4. 4. Limit Comparison Test Error 

This type of error was usually caused by the fact that the series selected to perform the limit comparison 

test did not become an appropriate series for performing the limit comparison test. For example, one of 

the participants answered the sixth question as following: 

 

Figure 5. Participant-12’s Solution to Question 6 

As shown in Figure 5, the participant compared the series 1 ( 1)n n  with the divergent series

1 n , and after finding the limit value as zero, he should have seen that the test was inconclusive, 

but he identified the series 1 ( 1)n n as convergent. 

4. 5. Re-test Convergence Test Results 

Another error made by the participants was that once applying one of the convergence tests, another 

convergence test was applied to the result obtained. For example, one of the participants responded to 

the second question as follows:  

 

Figure 6. Participant-21’s Solution to Question 2 
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In Figure 6, the participant first applied the D’Alembert ratio test to the series 3 !n nn n , and then he 

should have found the limit of the expression  3 1
n

n n  as 3 e  and should have indicated that the 

series was divergent. However, the participant concluded that the series was divergent by applying the 

Cauchy root test, another convergence test, to the expression  3 1
n

n n  he obtained after applying the 

ratio test to the series 3 !n nn n . 

4. 6. Considering ∑ as a Multiplicative Function 

The other error was that the sigma function was thought to be a multiplicative function. For instance, in 

Figure 7, the sixth question in the test was answered by one of the participants as follows: 

 

Figure 7. Participant-36’s Solution to Question 6 

After noticing that the ratio test did not respond to the series 1 ( 1)n n , the participant incorrectly 

wrote the series 1 ( 1)n n  in the multiplicative form 1 1 ( 1)n n    in order to examine 

the convergence of both series 1 n  and 1 ( 1)n  separately and expressed the character of 

the series 1 ( 1)n n as divergent.  

4. 7. Misunderstanding of Special Series  

In this type of error, some special series (p-series, telescopic series, etc.) were perceived as a special 

series even under any functional operation. For example, one participant responded to the sixth question 

as following: 

 

Figure 8. Participant-38’s Solution to Question 6 

As seen in Figure 8, the participant considered the divergent series 1 ( 1)n n  as a telescopic series 

and determined its character. However, she made her calculations using a method similar to the method 

performed in finding the convergence of the telescopic series 1 ( 1)n n  and stated that the series 

was convergent. 



120 Murat GENÇ & Mustafa AKINCI 

 

Acta Didactica Napocensia, ISSN 2065-1430 

 

Figure 9. Participant-34’s Solution to Question 7  

Similarly, in Figure 9, another participant erroneously described the absolute convergent series 

 
1

1 tan1
n

n n


  as convergent by regarding the convergent p-series of
3 21 1n n n  . 

4. 8. Considering that a Series has no Character When the Convergence Test is Inconclusive  

Another important error was that if the convergence test for a series is inconclusive, it is assumed that 

the series does not have any character. For instance, one of the participants answered the fifth question 

as follows: 

 

Figure 10. Participant-10’s Solution to Question 5. 

In Figure 10, the D’Alembert ratio test was applied to the divergent series  
1 11 10

n n   and it was 

stated that the test was inconclusive after seeing that the result was one, but it was then concluded that 

the given series did not have any character without the need to apply another convergence test. 

4. 9. Confusing Sequences with Series 

Many participants also made some serious mistakes in confusing the convergence of the sequence of 

partial sums with the convergence of the sequence of numbers and tried to use the facts concerning one 

another. For example, as shown in Figure 11, one of the participants expressed that the series 

   
2

! 2 !n n  was convergent after finding the limit of its general term, as in determining the 

convergence of sequences, and thought that the given series converged to zero. 

 

Figure 11. Participant-7’s Solution to Question 3 

Likewise, as seen in Figure 12, the same participant characterized the series 3 !n nn n as divergent by 

finding the limit of its general term infinite. 

 

Figure 12. Participant-7’s Solution to Question 2 
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4. 10. Misunderstanding of the nth-term Test 

The other error was that some participants considered the nth-term test as sufficient for the convergence 

of a series. They had the tendency of using the nth term test to check the convergence of the series 

instead of using it to determine the divergence of the given series. For example, in Figure 13, one of the 

participants responded to the sixth question as follows: 

 

Figure 13. Participant-21’s Solution to Question 6 

By applying the nth term test to the divergent series 1 ( 1)n n , the participant found the result to 

be zero, and erroneously stated the character of the series as convergent. However, when 0na  , the 

series
1 nn
a



 cannot always be said to converge. It is possible for a series to diverge when 0na  . 

4. 11. Misinterpretation of the Convergence Test Results 

Another error was the misinterpretation of the convergence test results as the sum of the given series. 

For example, as seen in Figure 14, one of the participants applied the Cauchy root test to the series 

 1 2nn n  and found the result 2e  in her solution for the fourth question. However, as seen in 

Figure 14, the participant considered this value as the sum of the given series, and mistakenly 

characterized the series as convergent. 

 

Figure 14. Participant-23’s Solution to Question 4 

5. Discussion and Conclusion   

In this study, it was attempted to explore the types of errors that elementary mathematics pre-service 

teachers make when examining the characters of the series. First of all, as Earls (2017) argued, the study 

revealed that students’ conceptual understanding of the concepts of function, limit, infinity, and 

sequence is essential for accurately determining the convergence of the series in all aspects. On the other 

hand, the study also yielded that even if conceptual learning is assumed to occur, it is not possible to 

accurately investigate the convergence of the series. As McCombs (2014) found, this study likewise 

showed that various errors were encountered in cases where students were unable to use symbolic 

representations, related rules, and algorithms effectively in some subjects such as trigonometry, 

summations, derivative, and algebra. Therefore, in addition to the level of students’ readiness or their 

lack of previous learning that prevent them from having a rich conceptual understanding (Hiebert and 
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Lefevre, 1986), some students’ failure to use procedural knowledge effectively can lead them to make 

several errors while investigating the convergence of the series. 

Another error made in this study was to confuse the convergence of the series with the convergence of 

the sequences. As done in the sequences, the students calculated the limit of the general term of the 

series when identifying the convergence of the series. As mentioned in previous studies (Earls, 2017; 

Lindaman, 2007; Tall and Schwarzenberger, 1978), this type of error can be due to the lack of ability of 

students to recognize the subtle difference between the convergence of a sequence of partial sums and 

the convergence of a sequence of numbers. The other error encountered was that some students assumed 

that the series had no character when the test applied to examine the convergence of the series did not 

respond. In other words, the students focused on the convergence test results they obtained and failed to 

understand that the series defined as the limit of the infinite sequence of partial sums should have 

actually been either convergent or divergent. That is, a series converges if its sequence of partial sums 

converges (i.e. its limit exists and is finite). Likewise, a series diverges if its sequence of partial sums 

diverges (i.e. its limit does not exist or is plus or minus infinity) (Thomas, Weir, Hass and Giordano, 

2016). Students’ failure to pay attention to this absolute distinction between a sequence and a series can 

be attributed to their inability to develop sufficient conceptual understanding of the definition of a series. 

Moreover, as illustrated by Martin (2009), in this study, some of the students considered the nth term 

test as a sufficient condition for the convergence of a series. However, the nth term test is a necessary 

condition but not a sufficient condition for a series to converge (i.e. if 
1 nn
a



 converges, then 

lim 0n
n

a


 ). In other words, the nth term test is a test for checking the divergence of a series (i.e. if 

lim 0n
n

a


 , the series diverges). Therefore, some students failed to understand that the necessary 

condition of the convergence of a series is used to demonstrate that a series diverges. As Laudien (1999) 

pointed out, the proposition that if a series converges, the limit of the general term of a series is zero 

was mistakenly interpreted as if the limit of the general term of a series tends to zero, the series is 

convergent. This misinterpretation led some students of this study to the thought that the series was 

convergent when they found the limit of the general term of the series to be zero. This kind of error can 

be explained by the lack of conceptual understanding as a result of the students’ inability to differentiate 

the nuanced difference between the conditional statement p q  and its contrapositive q p  .  

Additionally, as seen in previous research (Burcu-Dereli, 2017; Earls, 2017; Nardi and Iannone, 2001), 

this study showed that while determining the convergence of the series, some students preferred 

inappropriate series for applying the comparison test or limit comparison test. This error led students to 

label a convergent series as divergent or a divergent series as convergent. In addition to the selection of 

series not suitable for the convergence tests applied, it was also seen that some students made 

inappropriate test selections for investigating the convergence of the series. These inappropriate 

selections can result from students’ desire to apply the schemes and algorithms they have created in the 

learning of the convergence tests to the series they analyze. For example, if the algebraic expression that 

generates the general term of a series includes the nth power of any mathematical expression, it was 

seen that many of the students tended to apply the Cauchy root test. Students thought that this test was 

the most appropriate test to draw a direct conclusion about the convergence of the given series. The 

preference of examples or in-class practices, where each convergence test can be easily applied, can 

pave the way for the formation of these schemes and algorithms that lead students to create didactic 

barriers (Arslan and Kanbolat, 2016).  

The study also demonstrated that some students expressed the results received from convergence tests 

as the converged value of the series. Therefore, as in the study of Kung and Speer (2010), this study also 

showed that students could not accurately interpret the test results obtained. Even though procedures for 

applying the convergence tests were realized, students could not conceptually understand what they 

were testing in using convergence tests. The application of the convergence test chosen to determine the 

character of a series indeed depends on the students’ conceptual understanding as well as their 

procedural understanding. It is not possible to separate these two understandings from each other with 

definite boundaries, and there may be procedural knowledge in conceptual understanding and 
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conceptual knowledge in procedural understanding (Carpenter, 1986). Therefore, the failure to fully 

understand or correctly interpret the values received after applying the selected convergence tests to the 

given problems as a result of procedural understanding can reflect an indication of the students’ lack of 

conceptual understanding of convergence tests. 

In addition, the study indicated that while investigating the convergence of the series, some students 

thought that special series, which have specific features, can also be available under the image of any 

function. They made a generalization that telescopic series and p-series keep their features under even 

the functional structure. That is to say, the series
1

p
f

n

 
 
 

  that accepts the image of the general term 

of the p-series 
1

pn
  as its general term is also considered to be a p-series. The fact that some of the 

students’ attempts to determine the convergence of the series without fully understanding the telescopic 

series and p-series can make it impossible for them to establish the relationship between conceptual 

understanding and procedural understanding. Another error preventing the establishment of this 

relationship was that some students tried to use the series convergence tests without checking under 

which conditions they could be applied. This shows that rather than conceptually understanding the 

convergence tests of the series, as discussed in some studies, students generally focus on the procedural 

steps used in the application of the tests (Earls, 2017; Morrel, 1992). However, learning occurs when 

procedural knowledge and conceptual knowledge are dealt with alternately. Thus, based on the principle 

assumption that the development of the procedural or conceptual understanding affects the development 

of the other (Hiebert and Wearne, 1986), it is very important to relate both understandings with one 

another to internalize the related learning (Rittle-Johnson and Schneider, 2015).  

In sum, considering that conceptual knowledge refers to a full understanding of mathematical concepts, 

it is not possible for students who cannot realize the conceptual understanding to see the comprehensive 

relationships in different problem situations while determining the convergence of infinite series. The 

failure to realize this understanding also brings with it learning difficulties. Since conceptual 

understanding strengthens the relational structure in learning, it can be thought that it creates effective 

and deep learning about the series by allowing students to establish relationships between their 

mathematical knowledge (Gelman and Williams, 1998). Hence, the role of conceptual understanding in 

preventing errors or overcoming learning difficulties experienced while investigating the convergence 

of the infinite series cannot be underestimated. Another important point here is to make sure that 

conceptual and procedural understanding are not independent of each other but rather supporting each 

other in order to overcome the learning difficulties. In other words, students with insufficient procedural 

knowledge have difficulty in solving the given problem even if they understand it, whereas those with 

insufficient conceptual knowledge cannot fully understand what they do even if they solve the problem. 

Even though conceptual understanding is a goal that students must strive for, it cannot be guaranteed. 

We must sometimes allow students to make progress without fully understanding the concepts. 

Therefore, the establishment of a moderate balance between the procedural and conceptual knowledge 

in the learning of the convergence of series is also essential in reducing the errors or learning difficulties 

in this subject. Otherwise, the students cannot achieve robust and deep mathematical understanding in 

the related learning area if they are inadequate in either of these two types of knowledge or if they 

perform the two without relating to each other (Hiebert and Lefevre, 1986). Even though it is essential 

for students to realize conceptual and procedural understanding without preferring one another in 

identifying the characters of the infinite series, the question of how to deal with them in harmony still 

remains one of the controversial issues of mathematics education.  
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Annex 1 

Aşağıda verilen serilerin yakınsak mı yoksa ıraksak mı olduklarını belirleyiniz. Lütfen cevaplarınızı 

detaylı bir şekilde açıklayınız. 

(Determine if the series given below is convergent or divergent. Please explain your answers in detail.) 

1. ∑ (−1)𝑛+1 2𝑛+1

𝑛(𝑛+1)
∞
𝑛=1   

 

2. ∑
3n n!

nn
∞
n=1  

 

3.  ∑
(n!)2

(2n)!
∞
n=1  

 

4. ∑
1−n

n 2n
∞
n=1  

 

5. ∑  
(−1)n+1

√10
n+1

∞
n=1  

 

6. ∑  
1

√n(n+1)
∞
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7. ∑ (−1)n−1𝑡𝑔 (
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n√n
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