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Introduction

In recent years, data science and machine learning have 
been used to make sense of various forms of educational 
data. Educational data science can enhance our understand-
ing of learning and teaching; give insights to teachers, stu-
dents, and administrators about learning happening in the 
classroom; and lead to the creation of data-driven adaptive 
learning systems. However, I claim that machine learning 
and data science have more to offer than a set of techniques 
that can be applied to educational data. Theoretical concepts 
and principles in machine learning can provide broader 
insights to education research. In particular, in this article, I 
show that the bias-variance tradeoff from machine learning 
can provide a new lens with which to view prominent educa-
tional debates.

The field of education is filled with seemingly perennial 
debates that have important implications on the nature of 
education research and practice. These debates span episte-
mology (e.g., positivism vs. constructivism), ontology (e.g., 
cognitive vs. situative theories of learning), methodology 
(e.g., quantitative vs. qualitative), and pedagogy (e.g., direct 
instruction vs. discovery learning). Interestingly, many 
researchers have contended that these debates are often pre-
mised on false dichotomies and admit that a moderate posi-
tion is more warranted (Alfieri et al., 2011; A. L. Brown & 
Campione, 1994; Cobb, 2007; Doroudi et al., 2020; Greeno, 
2015; Johnson & Onwuegbuzie, 2004; Kersh & Wittrock, 
1962; Shaffer, 2017; Shaffer & Serlin, 2004; Tobias & Duffy, 
2009), yet these debates persist and many researchers still 
seem to favor one side over the other, resulting in somewhat 

isolated research communities that speak past each other (if 
they speak to each other at all; Jacobson et al., 2016).

In this article, I show that the bias-variance tradeoff can 
be formally generalized to help explain the nature of these 
debates in the education literature. I first introduce the bias-
variance tradeoff and how it is used in statistics and machine 
learning. I then describe a formal generalization of the bias-
variance decomposition and map this generalized version to 
debates around theories of learning, methodology, and peda-
gogy, while also showing how these tradeoffs are rooted in 
similar debates in the history of artificial intelligence (AI). 
While the first two sections that introduce and formalize the 
bias-variance tradeoff are somewhat technical, later sections 
of the article primarily make descriptive claims and use rep-
resentative quotations from prominent researchers in these 
debates. As such, the article aims to be accessible to and of 
interest to both quantitative and qualitative education 
researchers. We will then look towards how data scientists 
and machine learning researchers have productively navi-
gated the bias-variance tradeoff, in order to find several 
insights on how to navigate the corresponding educational 
debates. I finally discuss how the bias-variance tradeoff can 
help us understand overarching themes across these debates, 
including how debates around epistemology in education 
research could explain why these debates are ongoing, 
despite pragmatic attempts to overcome them.

By mapping the bias-variance tradeoff to these educa-
tional debates, I hope to accomplish several goals. First, it 
can help us understand the relationships between various 
educational debates (e.g., on learning theories, methodology, 
pedagogy, and epistemology) as well as debates in other 
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fields (e.g., machine learning, AI, and linguistics). Second, it 
provides a novel way to formally rationalize the comparative 
advantages of both sides in each debate, rather than using 
strawman arguments. Third, it can help us understand sur-
prising connections between different approaches that may 
seem unrelated at first glance. For example, it can help us 
explain the connection between situativist and constructivist 
theories, as well as the connection between these theories 
and neural networks. On a more meta level, this articel 
shows how a quantitative technique (the bias-variance trad-
eoff) can give insights on qualitative methods. Finally, 
related to the previous point, it can help us see connections 
between pragmatic techniques for navigating the bias-vari-
ance tradeoff in data science and analogous techniques for 
productively navigating these educational debates. In short, 
the purpose of this article is not to resolve these perennial 
debates in education but rather to provide a framework with 
which we can better understand them and hopefully carry 
more meaningful conversations going forward.

The Bias-Variance Tradeoff

The bias-variance tradeoff was first formally introduced 
by Geman et al. (1992). It refers to the fact that when trying 
to make a statistical prediction (e.g., estimating a parameter 
of a distribution or fitting a function), there is a tradeoff 
between the accuracy of the prediction and its precision, or 
equivalently between its bias (opposite of accuracy) and 
variance (opposite of precision). Many education research-
ers may be familiar with the concepts of bias and variance in 
terms of validity and reliability in measurement. In this sec-
tion, I will first informally explain the notion of bias and 
variance using targets, and then explain the notion more pre-
cisely as it has been used in the machine learning literature. 
This section and the one that follows provide the necessary 
technical background in a way that is meant to be accessible 
to education researchers but not explicitly tied to concerns in 
education research. However, these sections make way for a 
more informed discussion of how these ideas extend to 
education.

Suppose a process randomly generates points on a target 
(e.g., an archer shooting arrows at the target) as shown in 
Figure 1a. The bias of the process is how far the points are 
from the center of the target on average, as depicted by the 
blue solid line, and the variance of the process is a measure 
of how far the points are to the centroid of the points on aver-
age, as depicted by the black dotted lines. Precisely, the vari-
ance can be estimated by taking the mean of the squared 
distances from each point to the centroid of the points (the 
dotted lines shown in Figure 1a). Figure 2 shows examples 
of low bias and low variance, high bias and low variance, 
low bias and high variance, and both high bias and high vari-
ance. Now suppose an archer has only one shot at the target 
and wants to be as close to the center as possible. One way 
to measure how far the archer’s shot will likely be from the 

center is the mean squared error, which is the average dis-
tance from a point to the center of the target, which can be 
estimated as the mean of the squared distances between all 
the points and the center of the target as shown in Figure 1b. 
The mean squared error increases as the bias or variance 
increases. In fact, a well-known result is that the mean 
squared error decomposes into a bias and variance term:

Mean Squared Error  Bias  Variance2= + .

In the context of machine learning, the goal is to estimate 
a function that minimizes the mean squared error distance 
between the estimated function and the true function. To fit 
a function, an algorithm searches for a best fitting function 
(or estimator) in a function class. A function class is a set of 
functions that usually have the same underlying form but 
must be instantiated with particular parameters. For exam-
ple, the class of linear estimators using a particular set of 
features (fit via linear regression) is one function class. The 
bias of a function class represents how different the best fit-
ting model in the function class is from the target function. 
For example, if we wanted to predict y  where y x x= 3.5 2 −  
using a linear estimator, we could never fit the curve per-
fectly, and thus, the function class would have some bias. On 
the other hand, if we were to use a function class of quadratic 
estimators (i.e., all functions of the form y ax bx c= 2 + + ), 
then we could fit the target perfectly, and so the function 
class would have no bias. Variance represents the amount of 
variability in functions of the function class, or in other 
words is a measure of the complexity or size of the function 
class. The function class of quadratic estimators has higher 
variance than linear estimators because quadratic functions 
are capable of modeling more complex patterns; in addition 
to being able to model all lines, they can also approximate 
“U”-shaped functions. The function class of all polynomials 
has much higher variance. Therefore, using a function class 
of all polynomials to fit y x x= 3.5 2 −  will naturally have 
higher mean squared error than using the function class of 
quadratic estimators, even though both have zero bias.

Thus, to effectively use machine learning one tries to use 
a function class that balances the bias-variance tradeoff. 
Ideally, we would use the smallest function class that can 
capture the target function. However, given that we do not 
know the form of the target function ahead of time, this is 
not always possible.1

We will now formally express the notion of bias and vari-
ance. Suppose we are trying to predict some target function 
f m: → . Let y f= ( )x , where x = ( , , , )1 2x x xm . We 

use a data set D yi i i
n

D={( , )} =1x   to fit an estimator f  of 
the target f using some statistical algorithm, which (possi-
bly implicitly) searches over some function class   to find 
the best f  in the function class. For any x∈m , the bias of 
the predictor’s function class is the difference between the 
expected value of the predictor at x  and the expected value 
of the target at x  (which we will assume is not random):
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
D
f f[ ( )] ( ) x x− .

The variance of the predictor’s function class (for a given 
x) is the expected difference between the value of the pre-
dictor estimated on a randomly sampled data set and the 
expected value of the predictor,

  
D D
f f[( ( ) [ ( )]) ]2 x x− .

A standard measure for the error in a prediction is the 
mean squared error,


D
f f[( ( ) ( )) ]2 x x− .

We can now formally express the bias-variance decom-
position of the mean squared error2:

Theorem 1 (Bias-Variance Decomposition). Under the 
setting described above, the mean squared error decom-
poses into a bias term and variance term as follows:

  
D D
f f f[( ( ( )) ] = ( [ ( )]2� �
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x x x−

Mean SquaredError
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2
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x x
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� ������ ������

� �  

aariance
� �������� ��������

.

The bias-variance decomposition gives us a sense of why 
there is a bias-variance tradeoff. For two function classes 
that have the same prediction error, if one function class is 
more biased than the other, then we know the other must 
have higher variance. Naturally, many good machine learn-
ing techniques tend to be more susceptible to either bias or 
variance. Figure 3 shows how bias, variance, and mean 
squared error tend to change as a a function of model com-
plexity.3 Increasing model complexity could correspond to 

increasing the number of features in a linear regression, 
increasing the highest degree in a polynomial regression, or 
increasing the number of layers in a neural network. As the 
complexity increases, the bias tends to decrease but the vari-
ance tends to increase. There is typically a degree of com-
plexity where the mean squared error is minimized by 
effectively balancing bias and variance. Many techniques 
have been proposed to navigate this bias-variance tradeoff. 
We will discuss some of these techniques at the end of this 
article, in the context of navigating tradeoffs that exist in 
education.

The Generalized Bias-Variance Decomposition

Notice that in the target diagrams, the source of bias and 
variance is due to the random mechanism by which the 
points were generated. This randomness could be due to 
random fluctuations in a (novice) archer’s aim. In the case 
of machine learning, this randomness comes from the data 
used to estimate the function. Notice that in the archer’s 
case there are no data present. While in the machine learn-
ing literature, the bias-variance tradeoff is often repre-
sented as being about overfitting or underfitting to data, a 
key insight of this article is that the bias-variance tradeoff 
is not really about data but rather a property of any ran-
dom mechanism that tries to approximate some target. This 
can be shown more precisely by noting that the proof of the 
bias-variance decomposition is agnostic to the source of 
randomness; the decomposition holds regardless of the 
probability distribution the expectations are taken over. In 
the case of machine learning, this may be due to a data set 
used to fit a function, but in other cases, like that of an 
archer or that of a teacher (as discussed in the next section), 
the randomness could be due to an archer’s aim or the cha-
otic stochasticity of a typical classroom environment, 

Figure 1.  A depiction of the bias-variance tradeoff using targets. If these points are thought of as arrows, then the goal would be for 
the points to be near the center of the target. (a) To the extent which the points are far from the center, they suffer from bias (solid blue 
line) and/or variance (dashed black lines). (b) The bias and variance combine to form mean squared error (dotted purple lines).
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respectively. This leads us to a generalization of the bias-
variance decomposition:

Theorem 2 (Generalized Bias-Variance Decomposi
tion). Suppose our goal is to approximate some target: 
T m n: → . Let   be a stochastic mechanism (i.e., a 
partially random process) that randomly chooses a function 
T m n
 : →  from a function class   (i.e., T  ). Then 
we have the following for all x∈m :

  [( ( ) ( )) ] = ( [ ( )]2T T T� �
� ������ ������

x x x− −
Mean SquaredError

TT

T T

( ))

[( ( ) [ ( )]) ]

2

2

x

x x

Bias Squared
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� ������ ������

� �

+

−  
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� ������� �������
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A proof of the theorem is given in Appendix A. The only 
real difference between Theorem 1 and Theorem 2 is that the 
stochasticity of the mechanism   is not necessarily due to 
probability distributions over data sets, that is, T  need not 
be learned from data. Table 1 shows how the various vari-
ables in this generalized bias-variance tradeoff (Theorem 2) 

map onto the specific bias-variance tradeoff in machine 
learning (Theorem 1).4

The Bias-Variance Tradeoff in Education

We can now analyze how the bias-variance tradeoff 
applies to many educational debates. In what follows, we 
will discuss several prominent educational debates, focusing 
primarily on debates around learning theory and pedagogy 
(but also bringing up connections to other related debates). 
In each section, I first give a summary of the debates and 
then examine how the generalized bias-variance decomposi-
tion can help characterize the different positions in the 
debates. I rely heavily on historical examples from the his-
tory of AI and the learning sciences and give illustrative 
quotes from researchers on either side of the debates. In 
doing so, I establish historical precedence for these bias-
variance tradeoffs, even though I am the first, to my knowl-
edge, to explicitly connect the tradeoff to these debates.

Figure 2.  A depiction of varying combinations of bias and variance: (a) low bias and low variance, (b) high bias and low variance, 
(c) low bias and high variance, and (d) high bias and high variance.
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I note that a lot of nuance can be lost when these debates 
are dichotomized. Just as machine learning approaches have 
varying levels of bias and variance, positions on these debates 
are not always on one extreme in a dichotomy. However, by 
treating approaches as being relatively “high bias” and “high 
variance” (as is often done in machine learning), I hope to 
show how the bias-variance tradeoff can bring insights to 
these debates. Table 2 shows a set of dichotomies that arise in 
the ensuing discussion and that exhibit such tradeoffs.

Theories of Learning: Cognitivism Versus Situativism/
Constructivism

Over the past few decades, there have been several 
debates around the nature of learning. One prominent debate 

has been between cognitivists and situativists, as epitomized 
by the discourse between Anderson et al. (1996, 1997) and 
Greeno (1997). Cognitivists, or information-processing psy-
chologists, posit that learning happens in the individual’s 
mind and that we can develop precise theories of cognition 
and learning, including computational architectures and 
simulatable models. Situative theorists, on the other hand, 
claim that cognition happens in a particular sociocultural 
context and is thus context-dependent (J. S. Brown et  al., 
1989; Lave & Wenger, 1991). As such, situative theories 
typically do not employ precise computational models to 
predict learning; rather they rely extensively on qualitative 
techniques such as ethnography and ethnomethodology 
(Greeno, 1997).

Another related debate on the nature of learning is 
between cognitivists and (radical) constructivists. Radical 
constructivism is rooted in Piaget’s genetic epistemology, 
and claims that every individual necessarily constructs their 
own reality as they learn, and there is no way of knowing if 
that reality corresponds to an external reality (von 
Glasersfeld, 1991). Constructivism and situativism may 
seem unrelated at first glance, but the same information-
processing psychologists found themselves engaging in sim-
ilar debates with both groups. Indeed, according to Anderson 
et al. (1998),

The alliance between situated learning and radical constructivism is 
somewhat peculiar, as situated learning emphasizes that knowledge 
is maintained in the external, social world; constructivism argues 
that knowledge resides in an individual’s internal state, perhaps 

Figure 3.  A depiction of how bias, variance, and mean 
squared error change as a function of model complexity. While 
a bias-variance tradeoff is present, there is usually an optimal 
point of model complexity that minimizes mean squared error by 
effectively balancing bias and variance. Note that the plots shown 
here are completely hypothetical and do not correspond to any 
real data or algorithms.

Table 1
Generalized Bias-Variance Decomposition Applied to Machine 
Learning

Machine learning

Target T Function f
Approximator T Estimator f

Mechanism  Machine learning algorithm
Source of randomness Data set D yi i i

n={( , )} =1x ,  where 
( , )xi i Dy   for i n=1, ,

Table 2
Dichotomies Discussed or Mentioned in This Article That Exhibit 
a Sort of Bias-Variance Tradeoff

Bias Variance

(Opposite of) accuracy (Opposite of) precision
(Opposite of) validity (Opposite of) reliability
Underfitting Overfitting
Theory-driven Data-driven
Top-down Bottom-up
Logical Statistical
Symbolic Connectionist
Neat Scruffy
Cognitivism Situativism
Cognitivism Constructivism
Quantitative Qualitative
Controlled experiments Design experiments
Reductionism Holism
Elemental Systemic
Direct instruction Discovery learning
Positivism Constructivism / interpretivism

Note. Many of these phenomena are related/overlapping, but they are not 
synonymous.
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unknowable to anyone else. However, both schools share the general 
philosophical position that knowledge cannot be decomposed or 
decontextualized for purposes of either research or instruction.  
(p. 235)

Sometimes, the debate between cognitive and situative 
theories is recast as being about unit of analysis—cognitiv-
ists focusing on the individual and situativists focusing on 
social groups and communities of individuals. In this sense, 
constructivism, which also focuses on individual cognition, 
can be recast as a flavor of cognitivism (Derry, 1996). 
However, this can obscure the nature of these debates. The 
bias-variance tradeoff can help demonstrate why situativists 
and constructivists (even if they differ in their unit of analy-
sis) often find themselves agreeing, and on the opposite side 
of cognitivists.

Table 3 shows how the generalized bias-variance 
decomposition can be mapped to these debates around 
learning. The target is the “true” scientific theory of learn-
ing, and our goal, as learning scientists, is to find a theory 
of learning that can approximate the true theory. (Some 
learning scientists may deny that there is such a “true” the-
ory of learning or whether our goal is really to approximate 
such a theory. Indeed, these epistemological differences 
play an important role in the educational debates we are 
discussing here, and we will revisit them later in the 
Discussion section later.) The development of a theory 
requires collecting data from human subjects and, through 
various kinds of data analysis, creating models of how peo-
ple learn. Cognitivists develop precise computational mod-
els that can be simulated and fit to data—much like machine 
learning models. Situativists and constructivists, on the 
other hand, tend to rely on qualitative methods and case 
studies to construct qualitative models and theories about 
how people learn.

Situative theories developed in reaction to the cognitive 
tradition, with many early situative researchers originally 
being cognitivists. These researchers were disheartened with 
cognitive theories, because they could not describe the rich 
kinds of learning that happen in authentic environments 
(outside of labs and even formal schooling environments). 

In other words, they found cognitive theories to be biased. 
On the other hand, cognitive theorists found the situative 
perspective to be too imprecise, informal, and not generaliz-
able, or in other words, high variance. Indeed, according to 
Anderson et al. (1997),

We have sometimes declined to use situated language (what Patel, 
1992, called “situa-babel”) because we do not find it a precise 
vehicle for what we want to say. In reading the literature of situated 
learning, we often experience difficulty in finding consistent and 
objective definitions of key terms. (pp. 18–19)

Moreover, in a critique of information-processing psy-
chology from a constructivist perspective, Cobb (1990) 
noted the presence of a bias-variance tradeoff5:

It can be argued that there is a trade-off between accounting for the 
subjective experience of doing mathematics and the precision 
inherent in expressing models in the syntax of computer formalisms 
. . . [constructivism] gives greater weight to mathematical experience 
and [cognitivism] greater weight to precision. (p. 68)

If learning really is context-dependent, then how can the 
result of an ethnographic study in a very specific context 
generalize? Any specific study might “overfit” to a particu-
lar situation, but perhaps on average, situative theories are 
more accurate (less biased) because they describe learning in 
more complete terms. For example, situativist accounts are 
more likely to account for the social aspects of learning or 
nuances that appear only when the rich classroom context or 
authentic informal learning context is taken into account. On 
the other hand, information-processing theories are often 
developed by studying adults in lab settings, where the 
nuances that appear in authentic learning settings are mini-
mized. Appendix B gives quotations to illustrate why con-
structivists and qualitative researchers view the high-variance 
nature of their theories essential.

To make the application of the bias-variance tradeoff here 
more concrete, suppose for the sake of argument that we are 
trying to learn a function f to predict some learning event y. 
For a cognitivist, the inputs of this function could be a vari-
ety of variables such as the student’s knowledge, working 
memory, perception, cognitive load, and so on; we can call 
these individual variables as they represent learning in the 
individual’s head. A situativist might also include variables 
such as the context in which the learning takes place, factors 
pertaining to other individuals involved in the learning situ-
ation, and so on. According to Greeno (1997, 1998), cogni-
tivists make a “factoring assumption,” whereby they assume 
that cognition can be nearly decomposed into individual fac-
tors (such as the inputs mentioned above) that are largely 
independent of one another. For Greeno, an important over-
sight of this factoring assumption is that the context does not 
affect the role that the other variables play. In other words, 
the factoring assumption assumes the function can be 
decomposed as follows:

Table 3
Generalized Bias-Variance Decomposition Applied to the Debate 
on Educational Learning Theories

Educational learning theories

Target T True scientific theory of learning
Approximator T Proposed learning theory
Mechanism  Interpretation and collection of data
Source of Randomness Data collected from human subjects 

(e.g., through controlled experiment, 
think-aloud protocol, or ethnographic 
study)
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y = ( )

(

f

g

individualvariables, context variables

individualvari

≈
aables context variables) ( )+ h ,

and in many cases, h ( ) = 0context variables  (i.e., context 
may be ignored). However, for Greeno and other situativists, 
such a decomposition is not possible in many cases as vari-
ables pertaining to the individual will interact with variables 
pertaining to the environment, including other people in the 
environment. The difference here can be now be viewed in 
terms of linear regression. A regression with no interaction 
terms is lower variance (but often higher bias, assuming 
interactions do exist) than a regression that includes interac-
tion terms. The more interactions, the higher the variance. 
Of course, interactions can be modeled in more complex 
ways. For example, in an extreme case, the dependency of 
f  on the individual variables could change drastically as 

the context variables change (e.g., a student’s ability to uti-
lize some piece of mathematical knowledge may be highly 
dependent on whether the student is at school, at home, in 
the kitchen, in the marketplace, etc.). The factoring assump-
tion also plays a role in constructivist critiques of cognitiv-
ism (Shepard, 1991); see Appendix C for a concrete 
example of how it could account for the bias-variance trad-
eoff in this debate.

The bias-variance tradeoff described here can also explain 
debates in methodology that appear in education research, 
and the social sciences more generally (i.e., quantitative vs. 
qualitative, reductionistic vs. holistic, and controlled experi-
ments vs. design experiments); the connection to these 
debates is briefly described in Appendix D.

Analogues to Bias-Variance Tradeoffs in Artificial Intelli-
gence.  The bias-variance tradeoff in learning theories can be 
better understood by noticing that it actually has historical 
roots in similar tradeoffs that have appeared in the history of 
AI. The cognitive perspective is rooted in the tradition of sym-
bolic and rule-based approaches that were popular in the early 
days of AI research. Rule-based AI is often seen as being 
biased because it is theory-driven, in contrast to more data-
driven approaches to AI, such as machine learning, especially 
connectionist neural networks.6 On the other hand, neural net-
works and other black box machine learning algorithms have 
higher variance because they are more susceptible to overfit-
ting to particular data. While connectionism seemingly has 
little to do with educational theories of learning, parallels have 
been drawn between connectionism, situativism, and construc-
tivism (Quartz, 1999; Vera & Simon, 1993; Winograd, 2006); 
indeed, neural networks could help do away with the factoring 
assumption mentioned earlier. For example, diSessa (1993) 
proposed an influential constructivist theory of how students 
develop intuitive conceptions in fields such as physics through 
the activation of networks of p-prims (“phenomenological 
primitives”). While this model was developed by diSessa and 

utilized by later researchers using deep qualitative interviews 
of students, diSessa (1993) also initially sketched a connec-
tionist architecture for how p-prims might form networks that 
could result in conceptual change (though such a connectionist 
architecture was never implemented to my knowledge). In 
this sense, the bias-variance tradeoff between educational 
theories of learning is not so far removed from the associated 
tradeoff between theory-driven and data-driven approaches in 
AI and machine learning.7

However, in the history of AI, another distinction of 
approaches was made by Schank (1983) that is more useful 
for our purposes: the distinction between “neats” and “scruff-
ies.” According to Kolodner (2002),

“Neats” . . . were taking a careful, experimental, and (to us 
“scruffies”) slow route toward getting small results that would 
hopefully add up to a coherent big picture. “Scruffies,” on the other 
hand, were taking a more intuitive and holistic and (to the “neats”) 
far messier approach, using modeling and observational methods to 
get at the big picture, hoping that it will provide guidance on which 
smaller details to focus on. While neats focused on the way isolated 
components of cognition worked, scruffies hoped to uncover the 
interactions between those components. (p. 139)

It should be clear where the bias-variance tradeoff lies in 
these approaches. Kolodner (2002) pointed out that Herbert 
Simon, Allen Newell, and John Anderson were prototypical 
neats, while Seymour Papert, Marvin Minsky, and Roger 
Schank were prototypical scruffies. Many of these names 
should be recognizable. Interestingly, all of these researchers 
not only were AI and cognitive science researchers but also 
played an important role in defining theories that would 
affect education research. Simon, Newell, and Anderson 
were three of the pioneers of information-processing psy-
chology. Papert was a student of Piaget (one of the founders 
of constructivism), and he and Minsky developed an 
approach to AI and education research that drew heavily on 
constructivist ideas. Papert later founded constructionism, a 
learning theory that built on Piaget’s constructivism (Papert, 
1988). Schank, who coined the term learning sciences and 
effectively founded the field (Schank, 2016), took a similar 
approach to Papert and Minsky in his AI research (Brockman, 
1996) and education research. Similar tradeoffs can be seen 
in other areas of cognitive science. For example, in linguis-
tics, Noam Chomsky can be regarded as a neat whose 
Universal Grammar is acknowledged as being a high-bias 
(low-variance) theory (Lappin & Shieber, 2007; Norvig, 
2017). Indeed, Chomsky engaged in debates with both 
Piaget and Schank, and more recently, researchers have used 
higher variance machine learning models and computational 
learning theory to challenge his theory (Lappin & Shieber, 
2007). Thus, the existence of a bias-variance tradeoff in 
learning theories is not a coincidence but rather an offshoot 
of similar tradeoffs in AI, which gave rise to the field of 
machine learning, where the tradeoff was later formalized.
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Pedagogy: Direct Instruction Versus Discovery Learning

The debate around direct instruction versus discovery 
learning has surfaced in various ways throughout the history 
of education (Bruner, 1961; Ray, 1961; Winch, 1913), and is 
still a topic of controversy in education research (Kirschner 
et  al., 2006; Munter et  al., 2015; Tobias & Duffy, 2009). 
Direct instruction refers to directly and explicitly teaching 
students what you want them to learn. Discovery learning 
suggests that students should be left to discover and con-
struct knowledge for themselves with limited intervention 
from teachers. In many ways, direct instruction is rooted in 
cognitive theories and discovery learning is rooted in con-
structivist theories of learning (Kirschner et al., 2006), and 
as such, this debate parallels the debate around learning the-
ories; the bias-variance tradeoff can help us see this relation-
ship from another angle.

Table 4 shows a mapping of the generalized bias-variance 
decomposition to this debate on pedagogy. Here the goal is 
to come up with the best educational experience for each 
student (i.e., a function that maps educational experiences to 
students). The instructor must choose an instructional inter-
vention, and that intervention will in turn determine the pre-
cise educational experience that each student receives. 
Notice that the process by which the intervention results in 
an educational experience for each student is assumed to be 
stochastic because it depends on how the intervention actu-
ally pans out, how receptive the student is to the interven-
tion, various unrelated distractions that might come up in the 
classroom, and so on. 8 For example, the teacher may start 
with some lesson plan, but if a student appears to be strug-
gling, the teacher may change the lesson or instructional 
technique as needed. On the other hand, the teacher may 
decide to give students time to research an open-ended proj-
ect, therefore giving the students much control over their 
educational experiences, resulting in varied experiences 
depending on each student’s level of motivation, prior 
knowledge, metacognitive skills, and so on. Notice that the 

source of randomness here is very different from random-
ness in the data used to create a theory or fit a machine learn-
ing model. That is, here the instructor is not using randomly 
generated data to construct an instructional strategy. Rather, 
the instructor can predetermine their instructional strategy 
ahead of time, but the result of that strategy is not completely 
in the instructor’s hands.

The bias in an instructional strategy is the average degree 
to which the educational experience that a student receives is 
suboptimal. The variance in an instructional strategy is the 
variance in educational experiences that a student might 
receive as a result of that strategy. Direct instruction falls on 
the bias side of the spectrum because students are directly 
taught what the instructor or other experts believe the stu-
dents need to know, which may not actually be what each 
student would benefit from most. For example, Spiro et al. 
(1988) explicitly pointed out several “reductive biases” that 
could result from direct instruction in ill-structured domains, 
whereby students oversimplify the complexities and nuances 
of the domain.

On the other hand, discovery learning lies on the variance 
side of the spectrum, as (in its most extreme form) it sug-
gests leaving students to discover the best educational expe-
rience for themselves. As such, there is a lot of variation in 
the possible educational experiences that students end up 
receiving. Proponents of direct instruction would cite this as 
a limitation of discovery learning; students might end up 
reaching a dead end in their discovery process or construct 
misconceptions. Proponents of discovery learning find direct 
instruction to be overly focused on direct knowledge acqui-
sition and performance-based metrics in well-defined 
domains but insufficient to account for richer notions of 
learning such as learning in ill-defined domains (Spiro et al., 
1988), preparing for future learning (Schwartz et al., 2009), 
or becoming a participant in a community of practice (Lave 
& Wenger, 1991). These other forms of learning naturally 
require varied educational experiences to support the variety 
of situations in which students might have to use (or recon-
struct) their knowledge in the future.

Papert (1987b) explicitly discussed how high variance is 
necessary in order to allow for different students to receive 
the right educational experience for them (in the context of 
children learning mathematics through the Logo program-
ming language):

Whenever children are exposed to this sort of thing, a certain 
number of children seem to get caught by discovering zero. Others 
get excited about other things.

The fact that not every child discovers zero this way reflects an 
essential property of the learning process. No two people follow the 
same path of learnings, discoveries, and revelations. You learn in the 
deepest way when something happens that makes you fall in love 
with a particular piece of knowledge. (p. 82)

Table 4
Generalized Bias-Variance Decomposition Applied to the 
Pedagogical Debate on Direct Instruction Versus Discovery 
Learning

Pedagogy

Target T Optimal educational experience for each 
student

Approximator T Educational experience that each student 
actually receives

Mechanism  Instructional intervention
Source of randomness Stochasticity in what students do 

over the course of the instructional 
intervention



The Bias-Variance Tradeoff

9

Navigating the Bias-Variance Tradeoff

While the bias-variance tradeoff seems to imply that by 
reducing bias one has to increase variance or vice versa, such 
a tradeoff is not necessarily an equal exchange of bias and 
variance, meaning there could be ways to find an “optimal” 
amount of bias and variance, as depicted by the minimum of 
the mean squared error plot in Figure 3. In the machine learn-
ing literature, there are many proposed techniques for effec-
tively navigating the bias-variance tradeoff in order to 
minimize mean squared error. Indeed, throughout the history 
of AI, researchers have advocated for combining symbolic or 
logical AI approaches with (high variance) statistical AI 
(Bach et al., 2017; Domingos et al., 2006; Hu et al., 2016; 
Minsky, 1991). For example, in an article called “Logical 
Versus Analogical or Symbolic Versus Connectionist or Neat 
Versus Scruffy,” Minsky (1991) argued that

neither purely connectionist nor purely symbolic systems seem to be 
able to support the sorts of intellectual performances we take for 
granted even in young children. . . . I’ll argue that the solution lies 
somewhere between these two extremes, and our problem will be to 
find out how to build a suitable bridge. (p. 37)

We now turn to some concrete techniques for effectively 
navigating the bias-variance tradeoff to minimize mean 
squared error in the educational debates we have discussed.

Increasing the Amount of “Data”

As mentioned before, as the amount of data increases, the 
variance of a machine learning function class decreases. 
Thus, as the amount of data increases, higher variance tech-
niques become more effective. As the amount of data goes to 
infinity, then the best function class is one that has zero bias, 
no matter what the variance is (since it will diminish). This 
can also be seen in terms of reliability and validity in social 
sciences research. It is okay to have a high-validity, low-
reliability survey if the number of survey respondents is very 
large. One consequence of this is that one should pick a 
method with the right amount of variance for the amount of 
data one has. Another implication is that if one wants to use 
a high-variance method (e.g., because it has less bias than 
other methods), one should collect more data to minimize 
overfitting. Of course, collecting more data is not always 
easy; for example, conducting ethnographic studies of many 
learning situations can be quite costly, which can limit one’s 
ability to create a generalizable theory of situated learning 
(if that is one’s goal).

But how does “more data mean less variance” give us 
insights into debates around pedagogy, where data are not 
present? We can think of data as a limited resource that regu-
lates the degree of stochasticity in machine learning algo-
rithms. An analogous resource in the case of debates around 
pedagogy is instructional time. Much of the argument against 
discovery learning is around efficiency. While it would be 

great if students could rederive all scientific laws, who has 
the time to do that? It took centuries the first time around! 
Direct instruction is efficient, and if time is limited, it can 
lead to more quickly disseminating knowledge to students. 
But if one has more instructional time available, then per-
haps some of that time could be spent on discovery activities 
where students can develop more robust understandings. 
Indeed, in Mehta and Fine’s (2019) detailed study of poten-
tially promising American high schools, the authors found 
that most schools and teachers were not able to provide 
deeper learning opportunities to their students due to the 
need to cover a lot of instructional material, which is done 
more efficiently via lecture; however, one progressive proj-
ect-based learning school was able to effectively engage stu-
dents in sustained deeper learning by largely avoiding the 
demands of traditional standards.

Raw instructional time is not the only resource of interest; 
sometimes a more relevant variable is the number of instruc-
tional activities of interest. Spiro et al. (1991) argued that for 
ill-structured domains where there is “case-to-case irregular-
ity” students need to see a variety of cases in order to have 
robust knowledge of that domain. Not only does direct 
instruction not suffice due to its proneness to “oversimplifi-
cation” and other “reductive biases,” but the more examples 
students see, the more likely they are to generalize better. 
For example, medical students would need to encounter sev-
eral cases of different patients with similar conditions due to 
the nuances that appear across cases; simply reading books 
about medical conditions is not enough. But if instructional 
time is limited, teaching generic principles via direct instruc-
tion might be more effective than having students work with 
one or two cases, as they might “overfit” their understanding 
to those particular cases. Therefore, discovery learning is 
useful in this case only if a student can see sufficiently many 
cases in order to obtain a generalizable understanding of the 
ill-structured domain.

Regularization

In machine learning, regularization is one of the most 
common techniques to mitigate variance (at the expense of 
adding some bias). Rather than simply trying to only mini-
mize mean squared error, one adds a regularization parame-
ter that constrains the complexity of the function class. In 
particular, the objective of a machine learning algorithm 
might be as follows:

f y D

f y f


 

∈ ∈
∑ − +


min .

( , )

2( ( ) ) * ( )
x

x λ Complexity

The term on the left is the empirical mean squared error 
on the data set. If one just minimizes that quantity, one risks 
overfitting (especially with a high-variance function class) 
to the particular data set. The left-hand term is some measure 
of the complexity of f  and λ  is a regularization parameter. 
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The higher λ  is, the more a function is penalized for being 
too complex. This effectively reduces the size or complexity 
of a function class by penalizing functions that might overfit 
to data. Regularization could add a small amount of bias but 
with the hopes of greatly decreasing variance.

Analogously, in teaching, discovery learning can be made 
more effective by adding in a small amount of guidance, 
which may prevent the student from getting lost in their dis-
covery process at the expense of biasing the student towards 
the teacher’s “right answer.” This guidance could bias stu-
dents away from their optimal educational experience but 
may typically lead to a more productive experience than let-
ting students figure everything out on their own. Indeed, 
researchers on both sides of the direct instruction versus dis-
covery learning debate have realized that the optimal form 
of instruction is somewhere in the middle, often referred to 
as guided discovery learning (A. L. Brown & Campione, 
1994; Gagné & Brown, 1961; Kersh & Wittrock, 1962; 
Tobias & Duffy, 2009). Like a regularization parameter, a 
“guidance parameter” can regulate how much a student 
should struggle before receiving guidance. A small amount 
of struggle and failure could be productive, but letting stu-
dents drown in the deep end of discovery is not. The ques-
tion then becomes how much guidance is optimal. In 
machine learning, to find the optimal regularization param-
eter, one can use a technique known as cross-validation; 
there is no clear analogue to cross-validation in the instruc-
tional setting, but a similar procedure would simply be to try 
different amounts of guidance to learn over time how much 
guidance seems to be optimal. Of course, the optimal amount 
of guidance might vary from student to student and from one 
instructional situation to another. Perhaps, in some cases it is 
best for a good teacher to rely on their intuition (which is not 
altogether uncommon in setting regularization parameters 
either).

Model Ensembles

Model ensemble learning techniques, such as bagging, 
boosting, and stacking, combine multiple models to reduce 
the bias and/or variance of the individual models when mak-
ing predictions. For example, stacking or stacked general-
ization can take multiple models as input and then use a 
meta-algorithm (e.g., linear regression) to assign a weight to 
each subalgorithm to make a final prediction that could cor-
rect for biases in the input models (Breiman, 1996; Wolpert, 
1992).

The main takeaway for our purposes is that by combining 
multiple models/theories, we can perhaps mitigate the biases 
or variance in the individual models. For example, by look-
ing to various studies of situated learning or learning in con-
structivist classrooms, we can look for overarching trends 
and patterns that appear across the studies. Such trends are 
likely to not overfit to particular situations but rather could 

give us insights that might generalize well across situations. 
At the same time, these insights might avoid biases in cogni-
tive models that disregard richness and social dynamics of 
authentic learning environments.

To see how model ensembles can help mitigate bias, we 
can take inspiration from Papert and Minsky’s approach to 
AI. In an early report on their state of AI research, Minsky 
and Papert (1971) discussed their use of microworlds in con-
trast to rigid symbolic approaches to AI (like that of Simon, 
Newell, and Anderson):

We are dependent on having simple but highly developed models of 
many phenomena. Each model—or “micro-world” as we shall call 
it—is very schematic . . . we talk about a fairyland in which things 
are so simplified that almost every statement about them would be 
literally false if asserted about the real world. Nevertheless, we feel 
they are so important that we plan to assign a large portion of our 
effort to developing a collection of these micro-worlds and finding 
how to embed their suggestive and predictive powers in larger 
systems without being misled by their incompatibility with literal 
truth.

In other words, they were comfortable with using a col-
lection of models that were admittedly very biased, because 
perhaps by integrating these biased models together they 
could create less biased systems (possibly at the expense of 
being higher variance). Papert (1980, 1987a) extended this 
AI notion of microworlds to “slices of reality” that children 
can interact with (e.g., on a computer) when learning. Each 
of these microworlds allow students to discover and explore 
but with bounds that constrain the space of discovery, bounds 
that bias the world potentially into being very incomplete 
and inaccurate conceptions of reality. But to Papert this did 
not matter; it is by discovering reality through multiple 
(biased) microworlds, that a learner could develop robust 
understanding of the macroworld (see Appendix B for a 
brief exposition of microworlds in Papert’s educational 
theory).

This is similar to Spiro et al.’s (1988) suggestion of need-
ing multiple cases to learn about an ill-structured domain. In 
fact, (Spiro et al., 1991) advocated for the need to be able “to 
construct from those different conceptual and case represen-
tations a knowledge ensemble tailored to the needs of the 
understanding or problem-solving situation at hand” (p. 24). 
While each case is biased and not wholly representative of 
the domain at large, by examining many different cases, a 
learner can develop more robust knowledge about the 
domain. While these ideas suggest high-level parallels 
between ensemble learning and approaches to discovery 
learning, perhaps more formal connections can be made to 
existing ensemble learning techniques.

Discussion

Here we discuss two other important differences that cut 
across the various bias-variance tradeoffs that we have 
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previously discussed. Namely, we look at (1) the distinction 
between predictive (or descriptive) power and prescriptive 
power and (2) how these bias-variance tradeoffs relate to 
debates around epistemology, which can help explain why 
these debates linger to this day.

Predictive Power Versus Prescriptive Power

Another difference that can arise between techniques that 
tend to have more bias versus techniques that tend to have 
more variance is that the former are often more conservative 
(often relying on existing theories), which in turn is better at 
predicting things as they are. On the other hand, higher vari-
ance approaches tend to explore a broader space of potential 
solutions, which while prone to overfitting could lead to pre-
scribing new solutions.

This point was made clear by Papert (1980) when con-
trasting Minsky’s and his approach to AI and education 
research with that of other AI researchers like Newell and 
Simon. He saw a key difference in their approach being 
“seeing ideas from computer science not only as instru-
ments of explanation of how learning and thinking in fact 
do work, but also as instruments of change that might alter, 
and possibly improve, the way people learn and think”  
(pp. 208–209).

To contextualize this claim, let us first examine Simon 
and Newell’s (1971) approach to AI. Their interest was in 
developing AI programs for problem-solving that that were 
aligned with how humans solve problems, which in turn 
would also lead to their cognitivist theory of information-
processing psychology. In fact, their approach was to 
develop programs intentionally limited by human capabili-
ties (see Appendix B). This is in stark contrast to modern 
machine learning approaches that are primarily data-driven 
and allow for computational techniques that humans very 
likely do not use (at least not consciously) when solving 
problems. This allows for developing programs that can 
detect patterns in high-dimensional data that people can sim-
ply not do. More recently, deep learning has demonstrated 
the ability to create AI that can exhibit superhuman perfor-
mance. Recent deep learning agents such as DeepMind’s 
AlphaGo (an agent that can beat experts at the ancient game 
of Go; Silver et al., 2016) and AlphaStar (an agent that has 
beaten experts at the popular computer game StarCraft II; 
Vinyals et al., 2019) not only beat humans but also do so by 
exhibiting new strategies to playing these games that humans 
can study and possibly learn from (Chan, 2017).

Similarly, Papert and Minsky were interested in finding 
ways to change how people learn altogether. That is, while 
Simon, Newell, and other cognitivist researchers were inter-
ested in more efficiently teaching students by understanding 
how the mind works; Papert and Minsky were interested in 
finding ways to fundamentally alter and improve how peo-
ple learn by understanding how the mind could work.

For example, while a firm student and proponent of 
Piaget, Papert saw his mentor’s theory of developmental 
stages as being a predictive theory, but not a prescriptive 
theory. According to Papert (1987b), “One might say that 
the formal stage arrived so late precisely because there were 
no computers” (p. 93). Taking a more discovery-oriented 
approach, Papert (1980, 1987b) believed that by using 
microworlds, children could reach the formal operational 
stage before researchers like Piaget had ever observed pre-
viously. Thus high-variance approaches do not find them-
selves confined by existing theories, and hence can find 
solutions outside of the scope of such theories, which may 
have a biased way of looking at things as they are. However, 
it is important to note that Papert’s starting point was 
Piagetian theory; it is merely by tweaking the theory that he 
was able to escape it. This points again to the need for tech-
niques that can combine the best worlds, for example, by 
taking the predictive power of existing theories as a starting 
point to establish powerful prescriptive theories and instruc-
tional techniques.

Epistemology Debates

If the solution is to combine aspects from both sides of a 
debate (e.g., cognitivist and situativist theories, or discovery 
and direct instruction), and researchers realize that moderate 
positions are better than the extremes, then why do these 
debates persist? It may seem as though pragmatic consider-
ations should determine the optimal mix of different posi-
tions (and the optimal amount of bias and variance), but I 
claim that these debates linger on, at least in part, due to 
different philosophical worldviews and epistemologies.

Advocates of cognitive theories, quantitative methodolo-
gies, and direct instruction tend to have realist and positivist 
(or postpositivist) beliefs about the nature of knowledge, 
learning, and the world. That is, they believe there is a “true” 
theory out there and empirical observations can help us 
approximate, or even discover, that truth. On the other hand, 
advocates for situative theories, qualitative methods, and 
discovery learning tend to hold constructivist9 and interpre-
tivist epistemologies, positing that each person’s under-
standing of the world is a mental construction and does not 
necessarily correspond to an external reality (which does not 
mean they necessarily deny the existence of such a reality; 
von Glasersfeld, 1991).

A positivist researcher is likely to believe their theory is 
correct or at least an approximation of reality, and thus may 
not readily admit that it is biased. For similar reasons, real-
ists are also more likely to be fond of teaching an “essential” 
standardized curriculum to all students, not viewing their 
curriculum as biased by their understandings of reality. 
Constructivist researchers, on the other hand, are comfort-
able admitting that they and their colleagues will each have 
different theories of learning based on their experiences, 
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none of which are correct but all of which might give insights 
onto reality; constructivists accept that their theories are 
naturally high variance. Moreover, constructivist teachers 
believe that their students will construct different under-
standings, and thus higher variance instructional strategies 
are necessary to suit individual differences; thus, construc-
tivist educators will yield some of their authority in the 
classroom to students as they construct the subject matter for 
themselves (Munter et al., 2015; von Glasersfeld, 1991).

Speaking in terms of the target diagrams, an epistemo-
logically constructivist researcher or educator may think that 
(1) there is no target (objective reality) to begin with or (2) it 
is a movable target that will vary from researcher to 
researcher, from context to context, or from student to stu-
dent. The goal may not be to pinpoint one true universal 
theory of learning or to adopt one universally applicable 
teaching practice, but to find the approach that best fits the 
problem here and now. When viewed in the context of gen-
eralization however; this results in high variance.

Many social scientists have argued that these epistemo-
logical differences can amount to an incommensurability in 
different research paradigms (Lincoln et al., 2017), adopting 
the concept from Thomas Kuhn’s (1962) depiction para-
digms in the natural sciences. However, some have argued 
that incommensurable (even as initially intended by Kuhn) 
does not imply that different paradigms cannot be meaning-
fully compared in order to arrive at a richer understanding of 
the various perspectives (Bernstein, 1983; Cobb, 2007; 
Donmoyer, 2006). Indeed, a recent trend appears to be that 
many education researchers are explicitly choosing to adopt 
pragmatism (in the tradition of John Dewey, Charles Sanders 
Peirce, and William James) as their epistemological stance to 
move away from age-old epistemological debates that might 
hinder the progress of doing good education research (Cobb, 
2007; Doroudi et  al., 2020; Taber, 2010). Perhaps because 
constructivists are accepting of the limitations to their 
approach (i.e., that it is high variance), they tend to be more 
pragmatic and are willing to draw from competing approaches 
to navigate the bias-variance tradeoff (Cobb, 2007; Danish & 
Gresalfi, 2018; Derry, 1996; Greeno, 1998; Sfard, 1998; 
Shaffer, 2017). On the other hand, if a realist/positivist 
researcher or teacher denies that their approach is biased, 
then they may not see the need to draw from researchers who 
adopt alternative epistemologies (Anderson et al., 1997).

It is important to note that these different epistemologies 
are not necessary aspects of the bias-variance tradeoffs. For 
example, in machine learning, many researchers will tend to 
adopt a positivist or empiricist approach when choosing to 
find the model that best fits the data, regardless of where the 
approach lies on the bias-variance tradeoff. This could also 
explain why the use of neural networks (in a traditional 
machine learning fashion) does not have a closer historical 
correspondence to the research approach of constructivists 
or situativists; they do not align epistemologically.

Conclusion

I have shown how the bias-variance tradeoff in machine 
learning can be formally generalized to provide insights into 
age-old educational debates. While this framework does not 
resolve these debates, it can justify why the different posi-
tions are all trying to do something meaningful (in terms of 
“minimizing mean squared error”). It can also help explain 
relationships between concepts that may seem unrelated at 
first glance. For example, while situativist and constructivist 
theories sometimes have different units of analysis, they are 
aligned by their position on the bias-variance tradeoff. 
Similarly, due to their high-variance nature, neural networks 
can be seen as being related to situativist and constructivist 
theories, although that connection is limited due to episte-
mological differences.

Moreover, by looking toward concrete data science and 
machine learning techniques to navigate the bias-variance 
tradeoff, we can discover analogous ways of tackling similar 
tradeoffs in education. Many of these ways of navigating the 
tradeoffs have been proposed throughout the history of AI 
and the learning sciences, but sometimes only in passing in 
isolated articles, rather than being presented systematically. 
By situating these debates onto the bias-variance tradeoff, 
we can systematically identify solutions that have been pro-
posed in the past as well as offer new solutions by looking to 
the machine learning literature. This article simply begins to 
illustrate how certain concepts such as the bias-variance 
tradeoff, overfitting, regularization, and model ensembles 
relate to approaches in education research, with the hopes of 
inspiring researchers to find ways to concretely and produc-
tively apply these concepts to educational problems. Perhaps 
by working together, machine learning researchers and edu-
cation researchers can find new ways to utilize the science of 
data to productively advance the science of teaching and 
learning in ways that move past seemingly never-ending 
paradigmatic differences.

Appendix A

Proof of Generalized Bias-Variance Decomposition

Theorem 2 (Generalized Bias-Variance Decomposi
tion). Suppose our goal is to approximate some target: 
T m n: → . Let   be a stochastic mechanism (i.e., a 
partially random process) that randomly chooses a function 
T m n
 : →  from a function class   (i.e., T  ). Then 
we have the following for all x∈m :
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Proof. By adding and subtracting [ ( )]T x  we have the 
following:
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Rearranging terms, we get the following:
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By distributing the square, the right-hand side can be 
written as follows:


 




 



( [ ( )] ( )) ( ( ) [ ( )]) )

2( [ ( )] ( ))(

2 2T T T T

T T

  



x x x x

x x

− + −

+ − TT T ( ) [ ( )]x x−












.

By the linearity of expectation, the right-hand side can be 
written as follows:

   

 
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


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Notice that [ ( )] ( )T T x x−  is not a random variable. 
Thus, the right-hand side can be re-written as follows:

( [ ( )] ( )) [( ( ) [ ( )]) ]
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Finally, notice that   [( ( ) [ ( )])] = 0T T x x− . This 
gives us the desired decomposition:

  [( ( ) ( )) ] = ( [ ( )] ( ))2 2T T T T� �
� ������ �����

x x x x− −
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��
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+

−  [( ( ) [ ( )]) ]2T Tx x
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.

Appendix B

Representative Quotations

The Necessity of Variance in Qualitative Research.  Papert 
(1987b), a constructivist, explicitly mentioned advantages of 
deep qualitative studies of small samples in order to have a 
develop a less biased understanding of how people learn:

One of our students at MIT, Robert Lawler, wrote a Ph.D. thesis 
years ago based on his observation of a six-year-old child. Over a 
period of six months, he observed this child almost continuously, 
never missing as much as a half hour.10 . . . When people study the 
learning process, they usually study a hundred children for several 
hours each, and Lawler showed very conclusively . . . that you 
lose a lot of very important information that way. By being around 
all the time, he saw things with this child that he certainly would 
never have caught from occasional samplings in the laboratory. 
(p. 90)

In the broader context of using “thick description” in 
qualitative research, Geertz (1973) made a similar claim 
about the importance of accepting variance in coming up 
with a scientific theory that generalizes:

It is, in fact, by its power to draw general propositions out of 
particular phenomena that a scientific theory—indeed, science 
itself—is to be judged. If we want to discover what man amounts to, 
we can only find it in what men are: and what men are, above all 
other things, is various. It is in understanding that variousness—its 
range, its nature, its basis, and its implications—that we shall come 
to construct a concept of human nature that, more than a statistical 
shadow and less than a primitivist dream, has both substance and 
truth. (p. 58)

Model Ensembles and Microworlds.  Analogous to his use 
of microworlds in AI, Papert (1987a) saw microworlds as 
things children naturally construct in their heads, to make 
sense of the world around them:

Probably in all important learning, an essential and central 
mechanism is to confine yourself to a little piece of reality that is 
simple enough to understand. It’s by looking at little slices of reality 
at a time that you learn to understand the greater complexities of the 
whole world, the macroworld. (p. 81)

Although children construct microworlds on their own, 
Papert believed the process could be greatly facilitated by 
giving them physical or digital microworlds to work with. 
He and his colleagues created such microworlds in the Logo 
programming language (and its variants). According to 
Papert (1980), students can learn better by interacting with 
different kinds of microworlds to overcome the particular 
biases of any one microworld:

So, we design microworlds that exemplify not only the “correct” 
Newtonian ideas, but many others as well: the historically and 
psychologically important Aristotelian ones, the more complex 
Einsteinian ones, and even a “generalized law-of-motion world” 
that acts as a framework for an infinite variety of laws of motion that 
individuals can invent for themselves. Thus learners can progress 
from Aristotle to Newton and even to Einstein via as many 
intermediate worlds as they wish. (p. 125)

Having a firm understanding of gravity might be difficult 
if we have only experienced one kind of gravity (−9.8 m s/ 2) 
our entire lives. By experiencing different kinds of gravity—
or being able to manipulate gravity and see the effects for 
ourselves—we can perhaps begin to form a more accurate 
concept of it. Papert (1980) explained why it might be useful 
to construct “incorrect” microworlds by recalling examples 
of this that are developmentally important:

This is an effective way to learn, paralleling the way in which each 
of us once did some of our most effective learning. Piaget has 
demonstrated that children learn fundamental mathematical ideas 
by first building their own, very much different (for example, 
preconservationist) mathematics. And children learn language by 
first learning their own (“baby-talk”) dialects. So, when we think of 
microworlds as incubators for powerful ideas, we are trying to draw 
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upon this effective strategy: We allow learners to learn the “official” 
physics by allowing them the freedom to invent many that will work 
in as many invented worlds. (pp. 126–127)

Predictive Power Versus Presecriptive Power.  An illustra-
tive example that contrasts Simon and Newell’s approach 
from both Papert and Minsky’s, as well as modern-day AI 
(especially deep learning), is given in one of their early pub-
lications on their strategy toward developing AI programs. 
According to Simon and Newell (1971), one of the steps of 
this strategy was as follows:

Discover and define a program, written in the language of 
information processes, that is capable of solving some class of 
problems that humans find difficult. Use whatever evidence is 
available to incorporate in the program processes that resemble 
those used by humans. (Do not admit processes, like very rapid 
arithmetic, that humans are known to be incapable of). (p. 146, 
emphasis added)

While Papert and Minsky were also interested in learning 
how humans (especially children) think and learn, they did 
not shy away from the possibility that the status quo could be 
fundamentally changed. Their focus on children as com-
pared to Simon and Newell’s focus on adults is also illustra-
tive. Papert and Minsky were interested in development, 
while Simon and Newell were primarily interested in perfor-
mance (seeing learning and development as more of an 
afterthought). According to Newell and Simon (1972),

If performance is not well understood, it is somewhat premature to 
study learning. Nevertheless, we pay a price for the omission of 
learning, for we might otherwise draw inferences about the 
performance system from the fact that the system must be capable of 
modification through learning. It is our judgment that in the present 
state of the art, the study of performance must be give precedence, 
even if the strategy is not costless. Both learning and development 
must then be incorporated in integral ways in the more complete and 
successful theory of human information processing that will emerge 
at a later stage in the development of our science (p. 8).

Their later strategy for accounting for learning via pro-
duction systems (Simon & Newell, 1971)—akin to expert 
systems in AI—was indeed a simple (high-bias) way to 
account for what Papert, Minsky, Schank, and others would 
see as a much more complex process.

Appendix C

The Factoring Assumption and Knowledge Decomposition

According to Anderson et al. (1998) and Anderson et al. 
(1999), a common critique of constructivism and situativism 
against cognitivism is that the latter assumes knowledge can 
be (nearly) decomposed into independent components. This 
hypothesis of knowledge decomposition is still prevalent  
to this day and underpins cognitive psychology based 
approaches to intelligent tutoring systems (Aleven & 
Koedinger, 2013; Koedinger et  al., 2013). The knowledge 

decomposition hypothesis can be viewed as a specific case 
of the factoring assumption (Greeno, 1997). Suppose KC i  
represents the student’s knowledge of knowledge compo-
nent i  (e.g., as a number or a vector). Then the factoring 
assumption here implies that

y f f f

f
n

n n

= ( , , , ) ( ) ( )

( )
1 2 1 1 2 2KC KC KC KC KC

KC

 ≈ + + +

.

However, a constructivist would say that knowledge is 
highly dependent on prior knowledge and how that knowl-
edge is organized in an individual’s head. According to 
Shepard (1991),

Because we know that learning requires reorganizing and 
restructuring as one learns, a more organic conception is needed. In 
contrast to linear hierarchies, researchers now more often depict 
knowledge acquisition by using semantic networks that show 
connections in many directions. (p. 7)

More sophisticated machine learning models such as neural 
networks could (in theory) capture complex interdependencies 
between bits of knowledge at the expense of increasing vari-
ance; I explore this connection further in the section “Analogues 
to Bias-Variance Tradeoffs in Artificial Intelligence.”

Appendix D

Methodology Debates

The preceding discussion hints at how the bias-variance 
tradeoff can be extended to debates around methodology, such 
as quantitative versus qualitative11  (Johnson & Onwuegbuzie, 
2004) and reductionistic versus holistic (or elemental vs. sys-
temic; Nathan & Sawyer, 2014; Salomon, 1991) methodolo-
gies. In a sense, methodology can be thought of as analogous 
to algorithms in machine learning. For example, linear esti-
mators form a high-bias, low-variance function class, and lin-
ear regression is the algorithm used to discover best-fitting 
linear estimators. Similarly, neural networks form a high-vari-
ance, low-bias function class, and back propagation is an 
algorithm used to fit neural networks.

However, notice that one difference with machine learn-
ing is that in education theory development, researchers who 
use different methods will often be examining different 
sources of data. For example, data from a randomized con-
trol trial, data from problem-solving sessions in a lab study, 
log data from an intelligent tutoring system, and ethno-
graphic data from informal learning environments are all 
different from one another. In classical machine learning, 
typically an algorithm is chosen to fit a function to already 
collected data; the choice becomes what method to use to 
analyze those data, and some methods have higher bias or 
variance than others. In constructing learning theories, 
researchers must first choose what kind of data to collect (or 
study, if using previously collected observational data), 
which in turn often helps determine the most meaningful 
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methods to analyze the data. Thus, as noted in Table 3, the 
mechanism   that eventually determines the proposed 
theory is not only the choice of how to interpret the data but 
also the choice of what data to collect.

Another particular debate around methodology that 
exhibits a bias-variance tradeoff is around controlled experi-
mentation versus design experiments (Cobb et al., 2003) or 
design-based research (Barab & Squire, 2004). The former 
tries to find out “what works” under neat controlled condi-
tions, while the latter tries to design systems that can support 
learning by taking the environmental context into account, 
namely, understanding “‘how, when, and why’ it works” 
(Cobb et al., 2003). Since the environment is messy and high 
variance, design-based research approaches are necessarily 
iterative (Cobb et al., 2003). Winograd (2006) noted that this 
iterative nature is shared between how neural networks work 
in AI and design research in human-computer interaction, 
and contrasted these approaches with symbolic cognitivist 
approaches in both AI and human-computer interaction. 

Similarly, in education, cognitivists tend to advocate for 
experimental studies of what works (Anderson et al., 1998; 
Koedinger et  al., 2013) while constructivist and situativist 
researchers tend to advocate for design-based research 
(Barab & Squire, 2004; Cobb et al., 2003; Papert, 1987a). 
However, it is important to note that many researchers prag-
matically advocate for a mix of both approaches, which 
could involve conducting experimental studies of designed 
artifacts that do not try to control for all aspects of rich, 
classroom environments (Koedinger et al., 2013; Pea, 1987).
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Notes

1. Technically, the smallest function class is to just use the class 
of a single function—the function that you are trying to predict 
(e.g., y =3.5x2 − x) but of course—that requires already knowing 
the target function! A more realistic small function class in this case 
would be the class of all quadratic functions.

2. Note that here we are defining bias, variance, and mean 
squared error for a particular point x. One is often interested in the 
average bias, variance, and mean squared error of a function class, 
which can be obtained by averaging over all x. This averaging does 
not effect the decomposition, so we do not include it for simplicity.

3. Readers with some background in machine learning might be 
interested to know that recent work has shown that the “classical 
U-shaped” curve shown in Figure 3 appears to not always hold, such 
as when neural networks improve in accuracy even as the number of 
parameters increases. This is because, counterintuitively, seemingly 
more complex functions could impose some structure (or “inductive 
bias”) on the prediction task (Neyshabur et al., 2014), which could 
result in a decrease in the variance (Dwivedi et al., 2020). This does 
not violate the bias-variance tradeoff per se but indicates that there is 
nuance to what constitutes a good measure of “model complexity.”

4. Note that this theorem could be further generalized to apply 
to not just functions—for example, in the case of an archer shoot-
ing at the target, the archer always aims for the bullseye, so a more 
appropriate is T = (0, 0). In this case T ∈ R2 is just the Cartesian 
coordinate of where the arrow lands. However, since all of the 
examples we are considering can be mapped onto functions, we 
will restrict ourselves to functions.

5. Cobb (1990) actually used the terms weak program and 
strong program in cognitive science, where weak and strong refer 
to how strongly the two programs rely on the use of computational 
metaphors in describing cognition; for our purposes, these terms 
are analogous to constructivism and cognitivism.

6. The terms theory-driven and data-driven are being used 
loosely here and actually AI approaches should be seen as lying 
somewhere on a spectrum. Theory-driven approaches also use 
some kind of data (e.g., rule-based systems developed based on 
cognitive task analyses of human subjects), and some machine 
learning algorithms can be used in more theory-driven ways (e.g., 
how linear regression is typically used in statistics and the social 
sciences, including education research). Indeed, even strong pro-
ponents of rule-based and symbolic AI would not necessarily shy 
away from using theoretically motivated statistical techniques in 
their work; Newell and Rosenbloom’s (1981) power law of practice 
is a prime example of this.

7. This tradeoff can also be seen in the context of learner model-
ing. The knowledge decomposition hypothesis coming from infor-
mation-processing psychology (Anderson et al., 1998; Koedinger 
et  al., 2013) has been highly influential, resulting in a variety of 
predictive models that are commonly used in intelligent tutor-
ing systems and educational data mining research (e.g., Bayesian 
knowledge tracing, additive factors model, performance factors 
model). Indeed, these models resulted from the work of Anderson, 
Newell, and other cognitivists. Recently, researchers have shown 
that deep neural networks can provide a way to automatically dis-
cover complex interdependencies among knowledge components, 
using models such as deep knowledge tracing (Piech et al., 2015). 
However, such connectionist models have not been motivated by 
situativist or constructivist theories. Moreover, recent research has 
shown that while deep knowledge tracing can have higher predic-
tive accuracy that other models, it does not actually detect mean-
ingful interrelationships between skills (perhaps because of the 
high variance and limited amounts of data; Montero et al., 2018).

8. More precisely, an instructional intervention can be thought 
of as a policy in a Markov decision process, where at each time 
step, the instructor’s action changes the state of the classroom, and 
the goal is to reach a state that results in a good educational experi-
ence for each student.

9. Note that constructivism is both a learning theory, as discussed 
above, and an epistemological position, due to the nature of the theory.
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10.	 It was his own daughter.
11.	 One point of confusion might be that qualitative methods 

are known to have researcher “bias,’’ since the researcher interacts 
with participants. Here such “bias” could possibly be thought of as 
variance, because researcher biases might vary from researcher to 
researcher. If several researchers with different backgrounds and 
agendas perform similar ethnographic studies, their biases might 
“cancel out” in a sense. This is not to deny that there may be sys-
tematic biases in qualitative research however; some qualitative 
research can certainly be quite biased and high variance. On the 
other hand, quantitative methods are said to be biased here, because 
they ignore the richness of the phenomena they are studying, a rich-
ness that qualitative methods can provide. The assumption here is 
that, at least in the views of qualitative researchers (like construc-
tivists and situativists), such oversimplifications of the phenomena 
under study are more disconcerting than any systematic biases that 
may arise in qualitative research.
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