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Abstract 

In the literature related to higher education, the concept of dropout has been approached from several 
perspectives and, over the years, its definition has been influenced by the use of diversified semantic 
interpretations. In a general higher education environment dropout can be broadly characterized as the act of a 
student engaged in a course leaving the educational institution without finishing the course. This paper describes 
the proposal of the architecture of a computational system, PDE (Predicting Dropout Events), based on machine 
learning (ML) algorithms and specifically designed for predicting dropout events in a higher level educational 
environment. PDE‟s main subsystem implements a group of instance-based learning (IBL) algorithms which, 
taking into account a particular university-course environment, and based on log files containing descriptions of 
previous dropouts events, is capable to predict when a student already engaged in the course, is prone to dropout, 
so preventive measures could be quickly implemented. 
Keywords: machine learning based systems, relevant feature selection, instance-based learning, dropout at 
undergraduate level 
1. Introduction 

In educational environments related to traditional learning or e-learning, the dropout problem has been recurrent 
for many years already and, so far, it has shown to be a difficult problem to be solved, even when both, the 
administrative staff and the educational staff are heavily engaged in its solution. The difficulties to successfully 
address the problem are mainly due to its many dimensions, such as: the need for correctly detecting the relevant 
variables involved in the process and how they relate to each other; the volatility of many of the variables 
involved; the influences of the social environment that embeds the educational environment; the influences of 
the internal social environment, that is an inherent part of the educational system, etc. 
The most popular and influential among the earlier proposals of higher education dropout models are those 
described by Bean (1980, 1985), by Bean and Metzner (1985), by Pascarella (1980), by Pascarella and Chapman 
(1980), by Tinto and Cullen (1973) and by Tinto (1975, 1997). In the literature related to higher education, 
however, the process of dropout has been approached from several slightly different perspectives and, over the 
years, the definition of dropout has been adapted to conform to the growing number of influential new factors 
and changes occurring in higher level educational environments. 
As a consequence of the constant growing dynamism of higher educational environments, dropout processes 
have also acquired a highly dynamic structural nature, in opposition to the static structural nature assumed by the 
earlier dropout modelling proposals, such as those characterized as earlier proposals. Some of the earlier models, 
however, have underdone upgrading trying to to keep pace with changes and have been used by the higher 
education community for both, experiments as well as guidelines for analyzing and avoiding dropout events, 
such as those described by Belloc and Maruotti and Petrella (2010), by Chrysikos and Ahmed and Ward (2017), 
by Dekker and Pechenizkiy and Vleeshouwers (2009), by Durso and Cunha (2018), by Murray (2014), by Smith 
and Naylor (2001), by Tinto (1997), by Vergidis and Panagiotakopoulos (2002), by Willging and Johnson (2004) 
and by Kerby (2015). 
The dropout process‟s dynamic is particularly related to both, the number and the nature of the subprocesses that 
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it encompasses, as well as the number and type of the variables involved in the process. The interrelationships 
between subprocesses and the variables they share also play an important role in the whole dropout process. 
Usually variables, subprocesses and interrelationships are highly volatile over time, reflecting the dynamics of 
current educational environments. 
In such scenario, the only way of monitoring the dynamics of dropout processes, aiming at preventing them, is 
through a computational system capable to detect patterns of student‟s behavior that may lead to a dropout 
decision. The system should be reactive enough to detect „symptoms‟ of eventual dropout events, as earlier as 
possible, within a frame of time suitable for accommodating the implementation of preventive measures.  
This paper describes the proposal of one of such systems and for that, it is organized as follows. In Section 2 
some of the most influential dropout models available in the literature are briefly reviewed, with the aim to 
provide the theoretical grounds that supported part of the proposal described in this paper. Considering the main 
focus of this paper is on the proposal of a machine-learning (ML) based computational system for dropout 
prediction, Section 3 presents the main technicalities related to a family of five algorithms, characterized as 
Instance-based learning (IBL), as proposed by Aha, Kibler, & Albert (1991); Aha (2013) and two other IBL 
algorithms, by Gates (1972) and by Hart (1968), which composes the core of such system. The section also 
highlights algorithms that can contribute for preparing the raw educational data available, by removing 
inconsistences, noise and eventually, irrelevant attributes, a phase known as data pre-processing. In Section 4 the 
specification of the dropout prediction system PDE is presented and discussed, with the suggestion of possible 
software architecture for implementing it. Section 5 summarizes the main ideas described in the paper and the 
motivations for the computational system proposed, stressing the need for a careful choice of the set of variables 
that support the decision of dropout or persistence, the relevance of having the collected data used for ML 
learning, free from the common problems found in raw data, as well as the importance of having a clear 
definition of all the involved processes based on these variables. 
2. Earlier Modelling of Higher Education Dropout 

The model for university dropout process, known as Model of the Dropout Process (MDP), was proposed by 
Spady (1970, 1971). Besides being considered one of the first of such models, its relevance is also credited to the 
fact that is considered to be one of the first dropout‟s modelling that took into account sociological variables, 
believed to be intrinsically involved in the process. 
The MDP models the dropout event as a temporal process based on information from two subjacent intertwined 
subprocesses, the academic and the social, since both co-exist in higher-level institutions. As pointed out by 
Nicoletti (2019), in his both papers Spady presents a very detailed discussion about the variety of issues as well 
as the many variables involved in dropout processes, and provides, as support for his analysis and comments, 
results found in a large number of empirical and theoretical works in the literature. 
The MDP model can be approached as a temporal sequence of nine interrelated modules. When the final module 
in the sequence is reached, the process ends, meaning that the dropout decision had been made by the student. 
Spady‟s model represents the decision for dropout as an iterative process, throughout the period the student is 
engaged in the educational institution. The first module in the sequence, the Family Background, provides 
information about the student‟s background. The two following modules are the Academic Potential and the 
Normative Congruence. Usually the Academic Potential module gathers data related to well-known tangible 
academic variables, such as previous (to entering university) academic marks and honors. 
Spady (1971) defines Normative Congruence as “... the concept of normative congruence refers to the general 
degree of compatibility between the dispositions, interests, attitudes, and expectations of the student and the set 
of behaviors, expectations, and demands to which he may be exposed as the result of interaction with a variety of 
individuals in the college environment. To the extent that these expectations and influences are highly consistent 
within a given college context, it is presumed that students whose attributes enable them to accommodate 
themselves readily to these influences will experience less strain in their general interaction with others, be they 
fellow students, faculty members or administrators.” As commented by Spady (1970, p. 78), a problematic 
aspect of his model is related to the meaning and operationalization of the Normative Congruence module, 
considering the critical role it plays in the model. As Spady points out “It represents not only all of the student 
goals, orientations, interests, and personality dispositions discussed earlier, but the consequences of the 
interaction between these attributes and various subsystems of the college environment as well.” 
The concept of Normative Congruence is specific to the MDP and involves variables difficult to be characterized 
and, consequently, to be measured (Nicoletti, 2019). Both, the Academic Potential and the Normative 
Congruence modules influence some of the modules as follows. The Academic Potential influences the Grade 
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Performance and the Intellectual Development modules, while the Normative Congruence, besides influencing 
the Academic Potential and the Grade Performance, also influences two others in the sequence, the Friendship 
Support as well as the Social Integration modules, respectively. 
The Friendship Support module also influences the Grade Performance and the Intellectual Development 
modules as well as the Social Integration module. Besides being influenced by information provided by the 
Friendship Support module, the Social Integration module is influenced by three other previous modules namely, 
Normative Congruence, Grade Performance and Intellectual Development. By being fed with information from 
the four modules and by evaluating the degree of the student‟s social integration into both subsystems i.e., the 
social and the academic, the Social Integration module stresses the important role played by the student‟s social 
integration, in the MDP model. According to Spady the Satisfaction module‟s output can be considered the 
outcome of the MDP model or, then, as information to be passed on to the Institutional Commitment module, 
which combines both, student‟s satisfaction with the course and his/her commitment to the educational 
institution, to support his/her decision for dropout or not. 
The way the dropout process has been diagrammatically represented, when the flow of information reaches the 
Institutional Commitment module, if the dropout decision has not been reached yet, the process iterates back to 
the Normative Congruence module and repeats itself from there. Aljohani (2016) commented that only after the 
release of the Spady‟s model, the research related to university dropout problem started to take into account the 
student-institution interaction as one of the many relevant information involved in the process. 
The work by Tinto and Cullen (1973) describes the results of a survey commissioned by the U.S. Office of 
Education, by presenting a theoretical synthesis of research works on dropouts in higher education at the time. 
The third part the survey describes the proposal of a basic theoretical model aimed at explaining dropout as an 
interactive process involving both, student and educational institution. 
In a general approach the Tinto‟s original model resembles the Spady‟s model, taking into account that both 
focus on similar groups of variables that are considered relevant to the dropout decision. Since its proposal the 
Tinto‟s model has become very popular and has been employed in several works with the intent of detecting 
dropout events before they happen. In (Tinto, 1975) the original Tinto‟s model was reviewed and modified, but 
still maintaining the original sequence of modules, although with smaller granularity and also, introducing 
External Communities modules, as the providers of variable values related to external influences on dropout 
processes. In (Tinto, 1997) new refinements were introduced and particularly, the temporal aspect of the model 
was emphasized by the presence of a time line. 
As pointed out by Nicoletti (2019), “… the Goal commitment (module in Tinto‟s model) is a very complex issue 
and, definitely, is a multidimensional variable, composed by several other variables, each possibly having a 
multitude of values. Possibly, a few existing variables it involves can even not be known to be relevant to the 
process. As it can be inferred from the model, independently of the process followed to assign to Goal 
commitment a value, the mechanism in charge of calculating this value considers only three groups of variables 
i.e., those in module Family Background, those in module Individual Attributes and those in module Pre-College 
Schooling.” Tinto‟s model is still largely used by educational institutions as a way of organizing and directing 
both, the study and the analysis of the dropout problem in situ, aiming at solving it. 
Pascarella (1980) and Pascarella & Chapman (1980) propose a theoretical dropout model where student-faculty 
informal contacts play a relevant role on the persistence/dropout process. The model‟s structure has five modules 
known as: Student Background Characteristics, Institutional Factors, Informal Contact with Faculty, Other 
College Experiences and Educational Outcomes. Some of the interactions between modules are bi-directional, 
such as those between the Institutional Factors and the Student Background Characteristics modules. Particularly 
three modules, Informal Contact with Faculty, Other College Experiences and Educational Outcomes, provide 
each other information in a circular way, via three bi-directional connections. As pointed out by (Nicoletti (2019), 
“in spite of the emphasis on the student-faculty informal contact, the model also takes into consideration the vast 
amount of information that lies underneath the academic life of a student, as some of the previous models do (e.g. 
Spady‟s model and Tinto‟s model).”  
A pragmatic aspect attached to the Pascarella‟s model refers to the group of variables associated to each of the 
five modules of the model, as shown in Table 1. As pointed out by Nicoletti (2019), “A relevant and difficult 
aspect to consider in relation to the Pascarella‟s model (and, in an extent, to several theoretical dropout models) 
is how to determine at which level the variables in Table 1 contribute to the decision of dropout and, also, how to 
define them so they can be tangible variables and, still, represent the semantics of their names.” Also, several of 
them can be approached as a composition of single variables. 
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Table 1. Variables involved in the five main modules of Pascarella´s model. 
Module Variables 
Student Backgroud 
Charactreristics 

 Family Background 
 Aptitudes 
 Aspirations 
 Personality Orientations, Goals, Values, Interests 
 Secondary School Achievements & Experiences 
 Expectations of College 
 Openness to Change 

Institutional Factor  Faculty Culture (e.g. professional interests, values, orientations) 
 Organizational Structure 
 Institutional Image 
Administrative Policies & Decisions 
 Institutional Size 
 Admissions Standards 
 Academic Standards 

Informal Contact with Faculty  Context 
 Exposure 
 Focus 
 Impact 

Other College Experiences  Peer Culture 
 Classroom 
 Extracurricular 
 Leisure Activities 

Educational Outcomes  Academic Performance 
 Intellectual Development 
 Personal Development 
 Educational/Career Aspirations 
 College Satisfaction 
 Institutional Integration  

 
A literature review in the research area related to modeling the dropout problem in undergraduate courses, as 
commented in (Nicoletti 2019), can be systematically approached considering the high number of research works 
in this particular area, classified into four large groups, depending on their main goal being related with: 

1) empirical validation of some of the earlier dropout models briefly reviewed in Section 2, such as those 
described by Chrysikos and Ahmed and Ward (2017) and by Durso and Cunha (2018). In this group of work 
can also be included case studies supported by earlier models as well as ad hoc models such as works by 
Dekker and Pechenizkiy and Vleeshouwers (2009), by Belloc and Maruotti and Petrella (2010), by Gordon 
(2016), by Wiseman and Gonzales and Salyer (2004), by Paura and Arhipova (2014) and by Giannakos et al. 
(2017). 
2) new proposals of dropout models that combine early models with some ad hoc relevant characteristics of 
particular learning environments, such as the model by Kerby (2015), that combines three earlier models, and 
the model proposed by Rovai (2003). 
3) detecting variables and factors that are relevant for predicting dropout/persevere, taking into consideration 
the available data (Giannakos et al., 2017; Murray, 2014; Pidgeon, Rowe, Stapleton, Magyar, & Lo, 2014; 
Willging & Johnson, 2004; Xenos, Pierrakeas, & Pintelas, 2002; Nicoletti, Reali, Dias, & Abib, 2012).  
4) revision works (Aljohani, 2016; Demetriou & Schmitz-Seiborski, 2011). 

Models of student persistence (Ethington, 1990) or student dropout processes have been a recurrent issue in the 
literature related to higher-level educational institutions. Besides the briefly described earlier models, new 
proposals can be found in the literature, which usually combine aspects of the previous models, such as those 
described in (Kerby, 2015) and (Rovai, 2003). For the proposal of the PDE‟s system, several issues related with 
the previously reviewed models have been considered, as well as algorithms from two important subareas of 
Artificial Intelligence namely, Machine Learning (ML) and Feature Selection (FS), which are the focus of the 
following two sections, respectively. 
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3. Instance-Based Learning Algorithms and Preprocessing Educational Data 

The vast majority of ML algorithms adopt the inductive approach i.e., they implement a process that, based on a 
given set of data instances (training set) induces, via a generalization process, a description (such as a neural 
network, a decision tree, a set of decision rules, a set of data points, flow graphs, etc.) of the concept(s) 
embedded in the data, which is known as the expression of the concept. 
In what follows relevant concepts and algorithms employed in the proposal of the PDE‟s computational system 
are briefly reviewed, with the intent to provide the necessary grounds for the understanding of the system and 
ease its implementation. Section 3.1 has its focus on instance-based algorithms and presents a brief description 
of several IBL algorithms which can be considered to be part of the PDE‟s learning module, individually or 
implemented as an ensemble of IBL-based classifiers. Section 3.2 has its focus on preprocessing the educational 
data available aiming to remove eventual problems commonly found in raw data.  
3.1 Instance-based Learning 
Instances in training sets are usually described by vectors of attribute values and, depending on the situation, an 
associated class indicating the concept the instance represents. The class of each training instance is usually 
determined by a human expert. When the class is used by the inductive process implemented by a ML algorithm, 
the algorithm is a supervised algorithm and, usually, the expression induced by the algorithm is referred to as a 
classifier. 
ML supervised algorithms usually have two phases: (1) the training phase where, given a training set of instances, 
the algorithm generalizes it into a general expression and (2) the testing (classification) phase, where the induced 
expression of the concept is used for classifying new data instances of unknown class. 
Supervised algorithms characterized as Instance-Based Learning (IBL) (Cover & Hart, 1967; Hart, 1968; Gates, 
1972; Aha, Kibler, & Albert, 1991; Aha, 2013) are of particular interest in this work, since they can be easily 
implemented and frequently have good predicting results. Usually in their training phase IBL algorithms simply 
store the training instances. The generalization process which commonly happens in the training phase for most 
ML algorithms is postponed until a new instance, of unknown class, needs to be classified. The concept 
representation adopted by IBL algorithms i.e., that of assuming the given set of data instances as the expression 
of the concept, is the simplest form of representation, since the learning process consists simply in "memorizing" 
the training set. 
An advantage of this type of learning is that, instead of implementing a commonly elaborated mechanism for 
generalizing the concept that takes into account the entire training set available, it conducts the generalization 
process in the classification phase, by estimating the concept locally, for each new instance to be classified. One 
of the disadvantages of IBL algorithms is the computational cost of classifying new instances, when the training 
set is bulky and, also, data instances are described by a high number of attributes, since the entire processing 
required takes place in the classification phase and demands the calculation of the proximity between the new 
instance and each of the stored instances. 
Usually for calculating the proximity between two instances in a d-dimensional Euclidean space, the Euclidean 
distance formula is employed. As pointed out by Marshland (2009), for calculating the Euclidean distance 
between two instances in a d-dimensional Euclidean space, d subtractions and d exponentiations with exponent 2 
must be performed. The calculation of the square root in the Euclidean distance formula can be avoided, since 
the goal is to measure proximity between the two instances and not the exact distance between them. Such 
calculations are of order O(N), where N represents the number of stored instances. 
The Nearest Neighbor (NN) (Cover & Hart, 1967) is a successful IBL algorithm which has also inspired the 
proposal of many others. The NN usually employs a distance function to determine the highest degree of 
similarity between the new instance to be classified and each one of the stored instances, assuming similarity as 
the inverse of the distance between the two instances. When such instance is selected, the new instance inherits 
its class. Figure 1 shows the pseudocode of the NN algorithm based on the description found in (Gates, 1972), 
where a set of N data instances, described by M-dimensional vectors, each of them associated with one out of S 
classes, is the input to the algorithm. The NN can be extended into a version known as k-NN which, instead of 
searching for the closest instance to the instance of unknown class, searches for the k closest instances. 
Algorithms IB1, IB2, IB3, IB4 and IB5 (Aha, Kibler, & Albert, 1991; Aha, 2013) were proposed with the intent 
of experiencing with the limits of IBL algorithms. IB1 is a version of the NN that stores the whole training set in 
an incremental way and, also, keeps performance records associated with each stored training instance. IB2 
focuses on reducing the number of stored instances while tries to maintain the predictive power unchanged; the 
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IB2 can be considered a variant of the Condensed Nearest Neighbor (CNN), proposed by Hart (1968). IB3 is a 
variant of the IB1 proposed with the intent to explore the effects of noisy data on classification results and, also, 
as an attempt to reduce the sensitivity of the IB2 algorithm to noisy data. IB4 is a variant of IB3 that seeks to 
circumvent its sensitivity to irrelevant attributes in the description of data instances, and the IB5 is a variant that 
tries to explore the sensitivity of an IBL algorithm to the introduction of new attributes into the instances‟ 
description. 
 

 
 

 

 

 

 
 
 
 

 

Figure 1. High level pseudocode of the Nearest Neighbor (NN) (Cover & Hart, 1967) 
 
The CNN algorithm was proposed by Hart (1968) with two goals: to reduce the set of instances to be stored such 
that the remaining instances would still be able to maintain a good predictability for the new instances to be 
classified. The CNN still classifies a new instance by taking into account the class of the instance in the stored 
set that is the closest to the new instance. Gates (1972) comments that a possible decrease in CNN efficiency 
(due to reduced volume of stored instances) may be compensated by the smaller storage space required by the 
algorithm, as well as by the shorter classification time required, considering it searches for the „similar‟ instances 
to the one to be classified in a much smaller set of instances.  
The Reduced Nearest Neighbor (RNN) algorithm was proposed by Gates (1972) as a refinement of the CNN, 
which still maintains the same goal i.e., to reduce the set of instances to be stored. The RNN has, as its first step, 
the execution of the CNN algorithm having as input the original set of instances. In the second step of the RNN, 
the reduced set returned by the CNN is further processed aiming at a new reduction. The algorithm known as 
Selective Nearest Neighbor (SNN), proposed by Ritter, Wooddruff, Lowry, & Isenhour (1975), searches for a 
selective subset of the original set of instances that satisfies the following conditions: (1) it must be consistent (2) 
all instances of the original set must be nearer to a selective neighbor of the same class than to any instance of 
the other class and (3) it must be the smallest possible subset. As pointed out by the authors, the condition (2) is 
the main difference between SNN and CNN, considering that condition (2) for the CNN can be stated as: all 
instances of the original set must be nearer to a condensed neighbor of the same class than to any condensed 
neighbor of the other class. 
IBL algorithms are in general very sensitive to a few aspects involved in the learning task that may interfere in 
the learning itself, such as the lack of representativeness of some of the attributes that describe the training 
instances (superfluous or redundant), the presence of outliers in the training set, the presence of noisy or missing 
attribute values in the descriptions of instances and, particularly, the distance function chosen for measuring 
similarity between data instances. As broadly accepted, however, in a ML based environment the use of any 
learning algorithm is approached combined with the previous use of a data preprocessing process, in charge of 
dealing with some of the problems related to raw data.  
3.2 Collecting and Preprocessing the DataI 
In ML applications based on real data, such as educational data, the volume of the training set can be substantial, 
considering both dimensions of the set i.e., vertical, related to the number of data instances, and horizontal , 
related to the number of attributes that describe the data instances. 
High numbers in either dimension can be the source of problems for ML algorithms. So, when data sets are 
vertically extensive, usually sampling techniques are used for reducing their number of instances. When they are 

Training algorithm: 
 store training set with N training instances,  
   TSNN = {(x1, 1), (x2, 2), ..., (xN, N)}, 
   where: 
    (1) xi (1  i  N) is a M dimensional vector of attribute values: 
                     xi = (xi1, xi2, ..., xiM) 
    (2) i  {1, 2, ..., S}, is the correct class of xi (1  i  N). 
 
Classification algorithm: 
     given an instance xq to be classified, the decision rule implemented 
     by the algorithm decides that xq has class j if 
                 d(x, xj)  d(x, xi)            1  i  N 
     where d is a M-dimensional distance metric. 
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horizontally extensive, algorithms for the selection of relevant attributes can be employed. Since the PDE system 
proposal (Section 4) considers an ensemble of IBL algorithms, where some of them have been designed for 
vertical reduction, sampling has not been considered in the PDE proposal. 
Many factors affect the success of ML algorithms. Without doubt the quality of the training instances is the most 
relevant of all. If the available data are suitable for ML, the task of generalizing the concept can become easier 
and can be achieved with a lower computational cost involved, when irrelevant or redundant attributes that 
describe the data instances are removed in a preprocessing phase, prior to automatic learning. 
In the context of ML, the problem of selecting subsets of attributes i.e., the selection of attributes that play an 
important role in characterizing the concept to be learned, has received a lot of attention from the scientific 
community, particularly since the 1990s. Given a training set that is usually described as a set of instances, each 
represented as a vector of attribute-value pairs and an associated class (the latter not always present), an attribute 
selection algorithm, usually employed in a phase prior to training, seeks to identify attributes that are irrelevant 
or redundant for the description of the concept represented by the training set. 
It can be found in the literature several algorithms that aim at reducing the number of attributes (features) that are 
irrelevant or redundant, in a given set of data instances. Usually such attributes tend to interfere negatively in 
data processing processes, particularly those with focus on automatic learning. A ML system fed with data 
described by redundant or irrelevant attributes, most likely will induce expressions involving such attributes, 
which will probably result in inaccurate generalizations. 
Feature selection (FS) algorithms can be helpful for selecting attributes that are relevant for describing the 
concept embedded in the data set. FS algorithms can be organized in many different ways. One way is by taking 
into account the evaluation strategy of a selected subset, which measures the effectiveness of the chosen subset. 
According to this strategy (John, Kohavi, & Pfleger, 1994), algorithms can be organized in three groups, namely: 
(1) filters: based on the general characteristics of the training set, selecting some features and exclude others; 
features are filtered independent of the induction algorithm chosen; (2) wrappers: involves the use of a ML 
algorithm to estimate the quality of subsets of attributes and (3) built-in: characterized by the feature selection 
process be an inherent part of the inductive learning algorithm of choice.  
Currently, the filter approach is far the most popular due to the increasing number of applications that deal with 
high volumes of data, for which, the wrapper approach is not feasible; this fact has motivated the use of filter 
algorithms when defining the PDE‟s software structure. 
Among the several filter algorithms available in the literature, the PDE‟s approach considers: (1) the Relief 
algorithm (Kira & Rendell, 1992), with its variants, Relief-A, Relief-B, Relief-C, Relief-D, Relief-E and 
Relief-F (Kononenko, 1994); (2) the Focus algorithm (Almuallim & Dietterich, 1991) with emphasis on the 
Focus-2 variants (Almuallim & Dietterich, 1994), C-Focus (Arauzo, Benitez, & Castro, 2003) and C-Focus-3 
(Nicoletti & Santoro, 2008). Such algorithms can be of help for removing irrelevant attributes i.e., attributes that 
do not contribute for characterizing the class associated with instances.  
Besides the use of feature selection algorithms, it is also important that the available data input to the PDE 
system do not have typos, missing attribute values, out-of-range values and contradictory data instances. So, not 
only the data representation used should be representative of the concept to be learnt, but also the quality of the 
data instances should be assured i.e., instances described by the same attribute values and belonging to different 
classes (in this case, dropout and persevere) should be treated separately, associating to them a weight defined by 
their frequency in the data. The associate weight of such instances can then be used during the classification 
process as a way to choose one, between the classes. However in many situations the best way to deal with 
contradictory instances is to remove them from the data set. 
4. The Predicting Dropout Events (PDE) Computational System Proposal 

The brief survey of models described and the several research work cited in Section 2 can be used as an initial 
approach to identify relevant aspects of the dropout problem, mainly those related to data i.e., the relevant 
variables that have impact on the dropout decision, their range of values and their many interrelations, aiming at 
the design/implementation of the computational system for predicting dropout. 
As pointed out by Nicoletti (2019) in relation to computational systems implementing theoretical dropout models 
available in the literature, “In a very simplified description such systems simulate the dropout/persevere process 
experienced by the student by implementing an algorithm which, based on the values of a set of input variables, 
calculates the values of the many other variables that define the other modules of the model to, finally, come to 
the final decision of dropout or persevere”. As reported in the same reference, “Predictive models are strongly 
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dependent on reliable, representative and relevant (to the prediction process) data. […] several dropout models 
tend to have a loose and general specification of both, the involved variables and the processes that use these 
variables […].Taking that into account, models are useful as general guidelines for investigating the 
dropout/persevere process that happens in an educational institution but hardly can be effective for supporting 
the development of computational systems that implement them.” 
As previously stated, the PDE computational system proposal, focus of this article, and described in this section 
aims at monitoring students‟ progress throughout their university academic years, with the intent of detecting, as 
soon as possible, potential cases of dropout decision, still within a period of time for implementing preventive 
measures, so to avoid that such decision will be taken. The PDE can be approached as a computational 
environment having three main subsystems, each in charge of one of the three main tasks: (1) Preprocessing the 
data of interest and (2) Using IBL algorithms for learning classifiers and (3) Monitoring/Predicting student 
candidates prone to undergo dropout events. Figure 2 presents a simplified flowchart of the software architecture 
of the PDE system. For the purpose of collecting relevant and reliable data associated with the several aspects of 
the academic-social student life that contribute to the persevere/dropout decision, it is mandatory, first: 

(a) to define the relevant variables/parameters involved in that decision,  
(b) to establish the interval of possible values associated to each identified variable/parameter, 
(c) to select the main processes the identified variables/parameters (a) are used,  
(d) to determine the possible interrelations between the selected processes. 

Such definitions and specifications can be conducted by those involved in the course itself i.e., experienced 
lecturers and experienced academic staff. This is a difficult task to be conducted, since it is particular to each 
undergraduate course, as well as dependent of the knowledge area the course encompasses; such definitions and 
specifications can be highly volatile, considering the constant changes that happen in curricular grids of most 
courses. Also, for an IBL learning subsystem be feasible and reliable, data instances should be collected over a 
period of time not shorter than the regular duration of the course. 
With focus on a particular higher education course, the PDE system proposal assumes that a set of data instances 
of interest, representing past records of students that attended such course, is available. Such records are assumed 
to be described by the same set of attributes; however, when dropouts happen, that may not be the case. Also, 
each student´s record should inform the final result obtained by the student in question i.e., failed, succeeded or 
evaded. The gathering of such set of records is not an easy task to be accomplished, considering it involves many 
decisions at both levels, administrative and software and, also, considering that some information in these 
records may be subjected to confidentiality issues. There is also the time factor to be taken into account, 
remembering that such records over the years may not have been described by the same set of attributes. 
Decisions must be taken aiming at equalizing them in relation to their descriptions. 
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Figure 2. PDE system and its three subsystems: Preprocessing, Learning and Monitoring/Predicting Dropout 

 
The Preprocessing subsystem is in charge of preparing the collected raw educational data to be used by the 
Monitoring/Predicting subsystem. The Preprocessing subsystem should provide options for the execution of the 
several tasks described in Section 3.2, including feature selection, related to „preparing‟ the data for further use 
by the other two subsystems. The Learning subsystem implements IBL algorithms for inducing classifiers and 
the Monitoring/Predicting subsystem uses the induced classifiers for monitoring and detecting possible dropout 
events. The Monitoring/Predicting subsystem, in a simplistic description, simulates the dropout/persevere 
process that a student X, who is „known‟ (i.e., described) to the subsystem as a vector of attribute values may go 
through. To do that, the subsystem uses the knowledge induced by the Learning subsystem. 
When the Monitoring/Predicting subsystem is in a predicting mode, the vector of attribute values that represents 
student X is compared with other vectors representing records of students who succeed, failed or dropout in the 
classifiers induced by the Learning subsystem, aiming at finding the instance most „similar‟ to the one that 
represents student X. If Y is such an instance, X is assumed to adopt Y‟s decision, be it of success, failure or 
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dropout. Note that instead of using only one IBL classifier from the pool (such as the NN, for example), a 
committee of various classifiers can be used and the final decision can be reached by the committee by using a 
frequency-based approach. 
5. Discussion and Final Remarks 

This paper has its focus on the description of a proposal for a general architecture of a computational system 
based on the combination of relevant CS-related knowledge mainly from Programming, Software Engineering 
and Artificial Intelligence (AI), aiming at predicting dropout events in higher-level education. The proposal can 
be useful in a CS-related teaching environment, for the development of students‟ skills in the three major areas 
involved and, specifically, in the two subareas of AI, Machine Learning and Knowledge Representation. The 
contents of this article can also be of help for promoting students‟ experience in software development in the 
context of instance-based learning, by means of investigating slightly different algorithms for implementing 
instance-based learning and, also, strategies for combining them in an ensemble. 
The machine learning based system proposal can also be approached as the general design of a computational 
system for predicting dropout events not only in higher but also in primary and secondary educational 
environments (Sansone, 2019; Chung & Sunbok, 2018). As such, when implemented, it can contribute to an 
earlier detection of possible dropout events and trigger preventive strategies for avoiding that to happen. The 
proposal can also be helpful for the whole educational environment, independent of the course and could be 
adapted for other types of educational environments, such as e-learning. 
As stressed throughout the paper, it cannot be forgotten that the outcome of a predictive computational system 
able to detect dropout/persevere events will be reliable if the system reflects real situations and, also, it is based 
on a group of variables and parameters that effectively contribute to characterize and predict an event of dropout, 
in time to be dealt with before it happens. 
The fact of using IBL algorithms for predicting dropout events, instead of algorithms that generalize the 
expression of the concept in the training phase, can be quite a convenient choice for this type of computational 
application, since the process such algorithms implement are easily understood by the vast majority of their main 
users (i.e., administrative staff) and it is easily implementable. As pointed out by Nicoletti (2019), “It is also 
mandatory to have all the available information about each relevant variable i.e., how it is used, the nature of its 
associated value (permanent or transient), its range of values and its degree of relevance related to each process 
that uses it. It should also be considered that many of the variables involved in the dropout/persevere decision 
process are very volatile in the sense that their current values may suddenly change as the result of some 
unpredicted instability and, as consequence, their corresponding degree of relevance in the process may change 
as well.” 
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