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Introduction
That the function concept is fundamentally important to mathematics can be accepted as a 
commonly shared opinion. As stated by Selden and Selden in Harel and Dubinsky (1992, p. 1), 
‘the function concept, having evolved with mathematics, now plays a central and unifying role’. 
And, more recently, ‘[t]he concept of function is central to students’ ability to describe 
relationships  of change between variables, explain parameter changes, and interpret and 
analyze  graphs’ (Son & Hu, 2015, p. 4). O’Shea, Breen and Jaworski (2016, p. 279) reiterate 
that  ‘[f]unctions are central to present day mathematics’ and elaborate that ‘going beyond 
calculus, functions are widely used in the comparison of abstract mathematical structures’.

Despite the high value attached to an adequate understanding of functions and the function 
concept, a full and nuanced comprehension is not common among undergraduate students 
(Carlson, Jacobs, Coe, Larsen & Hsu, 2002, p. 353) or secondary school students (Sajka, 2003, 
p.  229). Doorman et al. (2012, p. 1243), in working with secondary school students, confirm 
the  difficulty in learning the function concept and in particular state that ‘[f]unctions have 
different  faces, and to make students perceive these as faces of the same mathematical concept 
is  a  pedagogical challenge’. This challenge is ongoing despite more than 50 years of research, 
producing ‘a vast literature on teaching and learning the function concept’ (Dubinsky & Wilson, 
2013, p. 84). That it remains such a challenge can partly be understood in the light of the 
difficulties evident in the history of the development of the function concept. The concept is said 
to be an epistemological obstacle (Sierpinska, 1992, p. 28) as the difficulties associated with 
it  have  been prevalent and persistent over a long time and are still commonly observed. 
The other reason could be attributed to what Dubinsky and Wilson (2013, p. 86) highlight as the 
little attention that has been paid to research that applies theoretical analyses (which is plentiful) 
to develop ‘pedagogical strategies for helping students overcome these difficulties’. Simply put: 
(1)  the concept of function is a difficult concept and (2) we have not been getting sufficiently 
practical in designing appropriate interventions, instructional treatments and didactical designs.

Some work has been done in getting practical, but, seemingly, more is needed. Ayers, Davis, 
Dubinsky and Lewin (1988) and Breidenbach, Dubinsky, Hawks and Nichols (1992) 
considered  the  use of simple programming environments to provide practical activities in 
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creating  and using  functions. Tall, McGowen and 
DeMarois  (2000) considered the use of the ‘function 
box/machine’ as a strong cognitive root to anchor the 
different ideas connected with the function concept. Reed 
(2007) researched the effect of having students actively 
engage with the history of the concept of function. Salgado 
and Trigueros (2015) based their design and activities on 
models and modelling. 

This article reports on an intervention, the Image 
Functions  Intervention (IFI). The IFI explores digital 
images  considered as functions. The intervention was 
firstly  theoretically evaluated and secondly used with a 
small group (n = 27) of undergraduate students, followed 
by qualitative analysis. One aspect where this intervention 
differed from the implementations mentioned earlier was 
in that participants were meant to use the intervention in a 
self-directed manner. This was achieved by making use of 
e-learning authoring software in conjunction with a learning 
management system, making it possible for a participant to 
complete the IFI at their own pace. Therefore, participants 
could use  the IFI with no lecturer involved. The need for 
such a self-directed intervention arose firstly from time 
constraints with respect to direct contact time with students 
and secondly from the advantage of not needing teachers or 
lecturers to first become acquainted with the underlying 
ideas and content of the intervention.

With the function concept in mind, Akkoç and Tall (2005, 
p. 7) point out that even in the face of a specific design, the 
outcome might not be achieved. They discuss a course that 
was designed to make the function concept foundational 
and an organising principle, but instead ‘many students 
focus on the individual properties of each representation 
without connecting them together’. In order to increase the 
probability of a design being successful, it should be based 
on research and theory. Salgado and Trigueros (2015) 
provide a good example of such a design informed by the 
Action-Process-Object-Schema (APOS) theory. Their design 
makes use of models and modelling. They first motivated 
their use of modelling by referring to research showing how 
modelling can raise motivation and interest, assist in 
identifying specific learning difficulties and facilitate 
learning and concept construction. Thereafter a genetic 
decomposition (defined in the theoretical framework 
section) was constructed from which activities could be 
designed.

In light of the understanding of what reasonable design 
implies, this article will use a theoretical evaluation guided 
by the APOS theory, supplemented by the literature on the 
learning of the function concept, to determine if it would be 
reasonable to expect that the IFI could improve 
understanding of the function concept. The following 
research question was formulated:

Can the IFI be considered theoretically sound and viable with respect 
to the learning of the function concept?

The research question was addressed in two parts.

Part 1 dealt with a theoretical evaluation of the IFI. Keeping 
in line with the methodology of the APOS theory, the 
current literature as well the researcher’s own experience 
were incorporated to create a genetic decomposition 
(defined  in  the theoretical framework section) of the 
function concept (Dubinsky, 2000, p. 2; Maharaj, 2010, 
p.  42). This genetic decomposition (GD) proposed the 
appropriate mental structures at the action, process and 
object levels that a student could potentially need in 
learning the function concept. This GD was used as a guide 
to evaluate the soundness of the IFI. The activities of the 
IFI were required to link with the function-related mental 
structures proposed in the GD. Furthermore, it was 
examined if and  how the IFI’s activities were addressing 
the common  conceptual difficulties (Dubinsky & Wilson, 
2013,  pp.  85–86) associated with the function concept, 
such  as ‘what constitutes a function’ and ‘confusion 
between univalence and injectivity’.

Part 2 dealt with a first attempt at testing the viability of 
the IFI. The IFI was implemented within a classroom 
setting with 27 participants. Participants then completed a 
short questionnaire to gather some qualitative data on 
their experience of the IFI. The analysis of this data looked 
for indications whether the IFI could have value by 
broadening the participants’ thinking with respect to 
the function concept.

This article has the following structure. Following this 
introduction will be a section providing the theory of 
image  functions, thus indicating how photographs or 
digital  images can be considered as representing functions. 
That will be followed by a literature review which 
will  firstly  discuss the conceptual difficulties associated 
with the function concept in the context of secondary school 
and undergraduate level mathematics. Secondly, the 
literature review will discuss the APOS theoretical 
framework. It will end with the genetic decomposition of 
the  function concept  that was set up for this study. 
The  literature review  section is followed by a section that 
explains the details and workings of the IFI and then also 
proceeds to evaluate the soundness of the IFI from a 
theoretical perspective. This then concludes part 1 of 
addressing the research question. Part 2 follows and 
addresses the first implementation of the IFI and the 
qualitative analysis that  was used as an initial viability 
check.  Finally, the last section will bring together part 1 
and part 2 and draw some conclusions. 

Theory of image functions
Consider the photographs or digital images in Figure 1. In 
Figure 1a, the photograph of the horse consists of a finite 
number of pixels, or picture elements. This is easy to see in 
the zoomed image in Figure 1b where we can distinguish 
individual elements of the eye of the horse. To each position 
in the image, a unique colour, Figure 1a, or shade of grey, 
Figure 1b, is assigned. Therefore, we can interpret these 
images as functions.
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Defining the image function
An image function, f(x,y), is a function with both x and y 
being positive integers (Gonzalez & Woods, 2017). Any 
combination of such an x and y will form an ordered 
pair  that will denote the position of a particular pixel in 
the image. Corresponding to each ordered pair is a unique 
colour. Typically, the different colours are represented 
using the RGB (red, green, blue) colour space. Any 
specific  output of an image function is then an ordered 
triple providing the specific combination of red, green and 
blue. Typically, a scale of 256 different shades of red are 
used and the same for green and blue (Gonzalez & Woods, 
2017). If we then let the first shade be represented by 0, the 
last shade would then be represented by 255. Using these 
typical values, 2563 combinations of red green, and blue are 
possible. For example, the triple (255,0,0) will be bright red 
as it contains the full complement of red and zero 
contributions of green and blue. (255,255,0) is bright 
yellow,  (0,255,0) is bright green and (57,229,212) would 
be called turquoise by some.

If we only consider the possible outputs where the three 
components of each triple are equal, we end up with what is 
commonly referred to as a greyscale image, where 
outputs  are  shades of grey. For example, (0,0,0) is black, 
(255,255,255) would be white and (30,30,30) would be a 
dark grey. The image in Figure 1(b) is an example of a 
greyscale image. As the three values in each triple will be 
equal, the outputs for greyscale images each consist of a 
single number that represents the light intensity at a 
particular pixel.

An example: Consider Figure 1b, the greyscale image of the 
horse’s eye.

Domain: This image has exactly 51 rows and 91 columns. The 
domain of this image function, is the set of ordered pairs: 

{ }( ) ≤ ≤ ≤ ≤ ∈ ∈+ + +x y x  y  x Z y Z Z, |1 51, 1 91, , .  is the set of 
positive integers.

Range: The word range can refer to two different concepts, 
namely the codomain and the image of the function, so care 
should be taken in using it. The codomain for a greyscale 
image is easily specified as the set s Z s{ | 0 255}∈ ≤ ≤+ . This is 
then the set of shades of grey from which any greyscale image 
could be ‘choosing’. When the term range is referring to the 
image of the function, it will consist of all shades of 
grey  actually present in the particular ’picture’. Here then 
the  image of the function and the picture-image of the 
function are the same set. The picture set would 
normally  have  repeated values or colours and would thus 
be a different multiset from the function image.

Consider more aspects of image functions.

Surjectivity and injectivity of image functions
An image function would seldom be surjective. With 
colour  images using the RGB colour space, we have a total 
of 2563 = 16 777 216 unique elements in the codomain and 
most often many of these colours would not be present in 
the  image. Being closer to surjective is normally desirable 
when it comes to images, as this would generally mean the 
image has higher contrast. Greyscale images typically have 
(only) 256 unique elements in the codomain; thus, being 
surjective has a much higher probability than in the case of 
colour images. It is clear that most images would not be 
injective either because it is highly probable that different 
pixels have exactly the same colour or shade of grey.

Existence of the inverse function
As for all functions, the inverse will exist if the function is 
injective. In the previous paragraph, we saw that it is 
highly improbable for an image function to be injective and 
consequently it is highly improbable for the inverse to exist. 
With the high resolution of modern cameras, it is quite 
common for digital images to consist of millions of pixels. 
For greyscale images of such high resolution, it would then 
be impossible to have an inverse, as greyscale images only 

FIGURE 1: (a) Photograph of a horse. (b) Zooming in on the horse’s eye, viewed as a greyscale image.
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have 256 output options available. Even for colour 
images  with 16  777  216 possible output options, it will 
still  happen often that at least two pixels will have the 
same  colour. Therefore, the probability of the inverse 
existing is small.

Continuity
Consider any point (x0,y0) in the domain of our image f(x,y). 
Then we can show that:

) )( (=
) )( (→

f x y f x ylim , ,
x y x y, , 0 0

0 0

Therefore, the image is continuous on its domain.

Proof: Let ∈ > 0. Let 0 < δ < 1. If ) )( (− + − < δ <10

2

0

2
x x y y  

then f(x,y)  =  f(x0,y0) because the domain of f is a subset of 

Z × Z. Therefore, ∈( ) ( )− = <f x, y f x , y .00 0  As the limit exists 

at any point in  the domain and the limit is equal to the 
function value at that point, the function is continuous at 
any point in its domain.

Differentiability
A digital image is not differentiable at any point, yet a discrete 
derivative in the form of a difference quotient plays  an 
important role in image processing. Applications where 
sudden changes such as steps, ramps, edges, lines or isolated 
dots need to be identified or accentuated often rely in part on 
some discrete implementation of a derivative. From calculus, 
we know that the derivative of a  constant is 0, which 
translates to the important requirement of derivative-based 
filters to give back a small  or even zero response in a 
homogeneous region of an image. See for example Gonzalez 
and Woods (2017) for  more on the implementation of 
derivative filters and,  for  example, Shrivakshan and 
Chandrasekar (2012) for more on edge detection techniques 
through the use of derivative filters.

Literature review
In this section, the focus will firstly be on the conceptual 
difficulties associated with the function concept as 
reported  on in the literature. Secondly, the theoretical 
framework for this study will convey a background on the 
APOS  theory and also portray the preliminary GD of 
the  function concept. All these aspects are needed to 
guide  the  evaluation of the activities of the newly 
designed IFI.

Conceptual difficulties of the function concept
The concept or notion of a function is in its essence 
quite abstract but is often understood at a level where much 
of the abstract nature is not truly comprehended or might 
even be entirely lost. A student might for example directly 
equate the function concept to the existence of a formula 
(Dubinsky & Wilson, 2013; Sierpinska, 1992; Vinner & 

Dreyfus, 1989). One of the prominent indications of a lack 
of  depth in the understanding of the function concept is 
the  restrictiveness applied to what constitutes a function. 
If  a  student starts to fixate on particular types or 
certain  representations, they lose much of the richness of 
the function concept.

Being able to recognise a certain formula or graph as 
(representing) a function is of course a necessary skill, but 
not sufficient in providing the student with the correct 
concept aspects and cognitive reasoning to be able to grasp 
and utilise higher mathematical concepts. For example, 
something as immediate as the inverse of a function, 
concepts such as limits, derivatives and not forgetting 
ideas  that are even more abstract, such as topological 
homeomorphism and category theory, remain out of reach. 
Thompson (1994, p. 39) argues that a fundamental 
difficulty  is students’ lack of connections between the 
various representations of the same function. What is it 
that is being represented? Thompson names this ‘something’ 
the ‘core concept of function’, that which is left unchanged 
when moving between the different representations. 

What it boils down to is that students sit with an inadequate 
or erroneous function concept image. According to Tall and 
Vinner (1981, p. 151), the concept image constitutes the ‘total 
cognitive structure that is associated with the concept’. This 
entails all definitions, properties, ideas, theorems and 
examples that a student has grouped under the heading of 
function over their mathematical career so to speak. Although 
a student may know the formal definition of a function, when 
exposed to a problem, the full concept image will be utilised 
to solve the problem. Doorman et al. (2012, p. 1245) also 
consider the concept image important and had as one of their 
specific goals the overcoming of a ‘too-limited’ function 
concept image. They investigated a new learning arrangement 
incorporating a computer tool to foster the transition from an 
operational to a structural view of functions. Within the 
particular setting, they report some success in overcoming 
difficulties with integrating operational and structural 
aspects and providing an explorative environment with 
respect to the aspects of covariation (Doorman et al., 2012, 
p. 1262).

As the function concept is fundamental, yet misunderstood, 
the suggestion is that students should be introduced to the 
idea in such a manner that the resulting concept image will 
be as rich and accurate as possible. It is in these respects that 
the exploration of digital images considered as functions, or 
image functions for short, could be particularly useful.

Much research has been done in confirming the difficulty with 
the understanding of the function concept and addressing this 
difficulty. Recent research includes that of Chimhande, 
Naidoo and Stols (2017), which confirms that the difficulty is 
prevalent at school level. They showed that the mental 
constructions were typically at the action level of 
understanding, which is the lowest level according to 
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the APOS theory (Arnon et al., 2014). Doorman et al. (2012) 
explored the use of computer tools in aiding the transition to 
a structural view of function, that is, the object level of 
understanding. Makonye (2014) also provides a theoretical 
analysis focusing on the use of multiple representations to 
foster a nuanced concept image through approaches where 
the function concept is kept embedded in students’ reality as 
far as possible. Other research focuses on specific aspects of 
the function concept and not on functions in general. Bansilal, 
Brijlall and Trigueros (2017) explored pre-service teachers’ 
understanding of injections and surjections through an APOS 
study. They found that most participants were at the action 
level. Maharaj, Brijlall and Govender (2008) explored the use 
of instructional design worksheets in advancing pre-service 
mathematics students’ understanding of the concept of 
continuity of single-valued functions. They found most 
participants were able to construct internal processes to make 
sense of continuity.

This article discusses a new pedagogy. This refers to the 
new  approach reported on in this article, which used the 
field  of digital image processing to gather ‘mathematics 
for teaching’ (Hoover, Mosvold, Ball & Lai, 2016, p. 4). The 
specialised mathematical knowledge concerning image 
functions was used in a novel approach to the problematic 
teaching and learning of the function concept. 

Theoretical framework
Working with constructivist ideas, essentially that 
learning  is built upon previous learning, Dubinsky and 
McDonald (2001), as well as others before them such as 
Breidenbach et  al. (1992), formulated the APOS 
framework (Arnon et al., 2014) for modelling the learning 
of mathematical concepts. Using the APOS framework, 
the development of the function concept can be modelled 
where the conceptualisation passes through stages in a 
non-linear way, generally starting with actions (A), then 
processes (P), objects (O) and finally mental schemas (S). 
The non-linear here refers to the notion that the 
learning  does  not exclude the possibility of moving 
along  different paths between the stages. For example, 
when busy conceptualising the function concept at 
the  process stage, it might be useful or necessary to 
rethink and  expand on one’s conceptualisation at the 
action level.

At the action stage of understanding, an external stimulus 
such as an expression or an equation is needed to proceed, 
and the student cannot yet work with the concept entirely 
in the mind. In terms of image functions, we shall see in 
activity 1 of the IFI that explicit instructions are given to 
create a new image, one pixel at a time, by shading cells in a 
grid. At the process stage, the student can manage to 
construct the concept in the mind and also think about the 
underlying actions that make up the process, without 
actually performing any of these actions. In terms of image 
functions, the function as a process is realised when one can 

imagine how the possibly millions of pixels all get their 
respective colours (values) at the same moment when the 
photograph is taken. The number of pixels determines the 
domain, and which colours they potentially can get 
determines the codomain. When the student is at the object 
stage, the process has been encapsulated. The student is 
then able to think about other actions and processes that 
might be performed on this object. The student has then 
gone from an operational view to a structural view. In terms 
of image functions, the object level makes it possible to 
think about transformations, like contrast stretching, that 
can be applied to images. Images can be mentally 
grouped  according to certain criteria and as such form 
sets of functions. At the schema stage, a student will be able 
to move freely between considering and using the concept 
as an action, process or object (Arnon et al., 2014, p. 30; 
Asiala et al., 1996, pp. 7–8). When considering which 
transformations would potentially enhance an image, the 
thinking is mainly at the object level, but when it comes 
to  planning and performing the transformation, the 
thinking must be at the process and action levels.

The APOS theory can help us understand how the learning 
takes place by explaining what we see when participants 
are trying to ‘construct their understanding of a 
mathematical concept’ (Dubinsky & McDonald, 2001, p. 1). 
The proposed mental structures needed for learning a 
mathematical concept are captured in what the APOS 
theory  refers to as the GD. This GD is the theoretical 
blueprint against which the intervention of this article, 
the IFI, was measured.

The genetic decomposition of the function concept 
Genes are the building blocks of life and so to determine a 
GD of a mathematical concept is to break down the learning 
of the concept into its imagined building blocks. The word 
imagined is used here as, in following the APOS theory, the 
breakdown is, among other things, dependent on the 
researcher’s own knowledge (Dubinsky, 2000, p. 2; Maharaj, 
2010, p. 42). The researcher would use personal experience, 
completed research and observations to imagine and create 
a set of necessary mental structures and mechanisms at the 
action, process and object level. These structures and 
mechanisms are what someone who is learning the concept 
could need and use along the path of conceptual 
understanding (Arnon et al., 2014). Having the mental 
structures available makes it possible to judge at which 
level of conceptualisation a particular person is, with 
respect to a specific mathematical concept.

Keeping to the analogy of building, if the GD describes 
the  progressive structures of the mathematical concept 
(the  building), then the support needed to reach these 
structures would be described as the scaffolding. Part 1 of 
addressing the research question of this article deals with the 
evaluation of the intervention, that is, to ensure that 
the  intervention is appropriate and sound. It must be 
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appropriate and sound on two fronts: (1) addressing 
the  mathematical content in line with the GD and (2) 
as  scaffolding to support the student’s ‘construction 
of  knowledge and skill’ (Bakker, Smit & Wegerif, 2015, 
p. 1048).

From Arnon et al. (2014, p. 27) we get the formal definition:

A genetic decomposition is a hypothetical model that describes 
the mental structures and mechanisms that a student might need 
to construct in order to learn a specific mathematical concept.

Necessarily we then need to define what a mental structure 
is. Again, from Arnon et al. (2014, p. 26):

A mental structure is any relatively stable structure (something 
constructed in one’s mind) that an individual uses to make sense 
of mathematical situations.

The GD given in Table 1 is based on the decomposition 
given in Arnon et al. (2014, p. 29). Extensions and expansions 

are based on the researcher’s own experience complemented 
by current literature on the topic.

The GD given in Table 1 conveys the mental structures of 
the  function concept at the action, process, object and 
schema levels. Furthermore, it also describes the mechanisms 
of progression, namely Interiorisation, Encapsulation and 
Activity. In the APOS theory, these mechanisms are the 
proposed means by which one can transition from one 
level to the next level of conceptualisation (Arnon et al., 2014, 
p. 16). Based on a literature review, Table 2 provides further 
criteria that can indicate when and when not a student’s 
understanding of the function concept can be considered at 
the action, process or object stage of conceptualisation. 
Alongside the GD of Table 1, these indicators were also 
used in the theoretical evaluation of the soundness of the IFI. 
In Table 2, reference is made to the activities of the IFI that are 
linked to the particular conceptual indicators given in 
brackets, for example A2 or P3. Details can be found as part 

TABLE 2: Indicators and counter-indicators of APOS level attainment with respect to the function concept.
General definition Conceptual indicators of the level Counter-indicators of the level

Action
A student at the Action level is restricted to transforming 
mathematical objects by using external prompts such as 
formulas or expressions. Steps or instructions are needed 
(Asiala et al., 1996; Dubinsky & Wilson, 2013).
IFI activities:
Activity 1 – Follow explicit instructions to shade cells in a 
grid on paper and answer reflective questions. (A1, A3)

A1 Able to substitute numbers into an expression and 
calculate (Breidenbach et al., 1992).
A2 Able to compose functions given by simple formulas 
(Breidenbach et al., 1992).
A3 Can recall the definition of a function (Breidenbach 
et al., 1992).

Before the action stage, a student is said to exhibit a 
pre-function response to questions such as: ‘What is a 
function?’ (Breidenbach et al., 1992). No useful conveying 
of function ideas is present.

Process
A student at the Process level constructs the function 
mentally and can realise the complete transformation of 
elements from the domain to elements of the range. 
No external prompts are needed (Arnon et al., 2014; 
Dubinsky & Wilson, 2013).

IFI activities:
Activity 2 – Experiment with different output values for 
the image function using the software Paint. (P2)
Activity 3 – Reflect on how a camera creates a photograph 
and also consider the uniqueness property, being 
injective, being surjective and the existence of an inverse. 
(P1, P2, P3, P4)

P1 Understands general composition of functions and 
reversal of functions (Dubinsky & Wilson, 2013).
P2 Can provide a definition of a function that includes 
mention of the inputs, outputs and a rule 
(Arnon et al., 2014).
P3 Can realise which steps of the process can be swapped 
or even left out for particular cases.
P4 Able to determine whether a function has an inverse as 
the reversal of a process (Arnon et al., 2014).

•	 Difficulty interpreting a situation as a function unless a 
formula is given (Asiala et al., 1996).

•	 Function composition is too difficult in atypical 
situations, for example in the absence of formulas or 
with piece-wise defined functions (Breidenbach et al., 
1992).

•	 Commonly not using the definition when confronted 
with problems (Tall & Vinner, 1981).

Object
Through transforming the process by actions and other 
processes, the process is encapsulated to become an 
object. The dynamic process becomes a static entity 
(Arnon et al., 2014; Asiala et al., 1996; Dubinsky & 
Wilson, 2013).
IFI activities:
Activity 4 – Explore function composition in order to 
enhance the contrast of images. (O1,O2)

O1 Able to think about and convey the global properties of 
a particular function or a type of function, for example 
periodic, smooth, or constant, monotonic.
O2 Able to form sets of functions, perform operations on 
functions and even ‘construct a function that is a limit of 
a sequence of functions’ (Arnon et al., 2014).

•	 Cannot easily move between different representations 
of the function.

•	 Considers a piece-wise defined function as consisting of 
multiple functions.

•	 Struggles to create a function example that is 
connected with some real-life situation (Chimhande 
et al., 2017, p. 5).

TABLE 1: Preliminary genetic decomposition of the function concept.
Concept Description

Action Take an element of one set and apply an explicit rule, typically an (algebraic) expression, to determine a unique value belonging to another set.
From Action to Process: 
Interiorisation

Repeating this action, especially with sets with different kinds of elements, starts the interiorisation by helping the student to reflect on the action 
and to see the pattern of choosing from one set, the domain, then doing something and then obtaining something else. Special emphasis must be 
placed on getting the student to consciously think about the chosen and the determined ‘somethings’ as belonging to specific sets. This is necessary, 
as from the researcher’s own experience, students at the action level will be satisfied once they ‘get the answer’, and not reflect further on the 
situation. This also fits with the action level as someone at this level needs external stimuli (Arnon et al., 2014, p. 30; Asiala et al., 1996, pp. 7–8) to 
conceive of a function and consequently also needs this external stimuli to start reflecting on the concept.

Process A dynamic transformation of inputs in the domain to outputs in the range without any explicit calculations needed.
From Process to Object: 
Encapsulation

When conceiving of the function as a process, it can become necessary to think about applying an action or even a different process to this function. 
The function as process needs to be made static. The process (the function) needs to be captured and seen in its totality. Doing this encapsulates the 
function to become the function conceived of as an object (Arnon et al., 2014, p. 30; Asiala et al., 1996, p. 8).

Object Identify the word function as a noun. A noun has properties that can be listed. The noun is described by adjectives. A function could be, for example, 
rapidly changing, smooth, constant, etc. Furthermore, being able to think of the function process in its totality and imagine and construct actions and 
processes that can transform this totality (Bansilal et al., 2017, p. 24).

From Object to Schema: 
Activity

‘A schema is only constructed when it is functioning, and it only functions through experience: then that which is essential is not the schema as 
structure in itself but the structuring activity that gives rise to schemas’ (Piaget 1975/1985, as quoted in Arnon et al., 2014, p. 110).

Schema A dynamic mental framework, which a person might not be consciously aware of, that describes the function concept as simultaneously existing as 
an action, a process and an object and that links and relates these different underlying mental structures. A person evokes their schema when 
confronted with a problem involving the topic of functions. Specific examples of functions such as rational or trigonometric functions along with their 
properties and relations will also be included in the schema.
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of the individual discussion of each IFI activity in the 
next  section. Table 2 provides indicators only up to the 
object level to align with the content and intentions of the IFI.

As was discussed in the introduction, what follows now is a 
two-part approach. In the first part, the IFI will be introduced 
and evaluated to see if it is theoretically sound. The second 
part will report on the first implementation of the IFI and the 
subsequent gathering and analysis of qualitative data with 
the purpose of looking for any indications that the IFI might 
be viable with respect to the learning of the function concept.

Part 1: The Image Functions 
Intervention and its theoretical 
evaluation
The IFI was created using e-learning authoring software 
which delivered it as a package that could be uploaded into 
the learning management system (LMS) used by the local 
higher education institution. This allows a student to 
complete the IFI on a computer at their own pace without 
any lecturer involvement.

As a general context, the IFI deals with finding a missing 
student of which one recent photograph was available on the 
student’s Facebook page. This photograph, however, was 
taken in low light conditions and as a result needs some 
processing before it will be helpful in finding the missing 
student. This theme runs like a story throughout the 
intervention. This theme was chosen as students are familiar 
with the context, they can easily understand the contingency 
relationships involving the variables that are present and 
they are generally interested in the type of context (Donovan 
& Bradsford, 2005, p. 359; Eggleton, 1992). Besides this 
storyline, the IFI conveys the theory of image functions as 
was discussed in the previous section. The theory is 
interwoven with reflective questions and specific activities. 
These activities are meant to keep in line with the following 
three principles: 

•	 Activities directly link with the mental structures 
determined in the GD of the function concept given in 
Table 1 and the conceptualisation indicators in Table 2 
(Salgado & Trigueros, 2015, p. 107).

•	 Activities address the categories of conceptual 
understanding. Dubinsky and Wilson (2013, pp. 85–86) 
grouped the most common conceptual difficulties 
associated with the function concept, as they had found 
in literature, into categories. 

•	 Activities form an experiential base for the aspects of 
the function concept to be studied (Dubinsky & Wilson, 
2013, p. 90).

The principles given above will be used as the criteria for the 
theoretical evaluation of the IFI. Each of the IFI’s four 
activities will be discussed and evaluated with respect to the 
first of the three design principles given above. The sub-
section following this one will evaluate the IFI with respect to 
the other two principles.

Activity 1 
Description: The student is asked to draw an 8 × 8 grid on 
paper as in Figure 2a. The student must then take a pencil 
and shade the blocks at positions B2, B3, C1, D1, D5, D6, D8, 
E1, E4, F2 and F3. Accurate shading leads to the result 
given in Figure 2b.

Students are asked to reflect on the activity by letting them 
provide answers to questions pertaining to uniqueness 
aspects of functions and asking questions to let them think 
about the choices that can be made with respect to input 
and output.

Questions asked as a part of this activity:

•	 Now that you have created your image, would you say 
that the colour at any specific position in your image is 
unique?

•	 If you choose a position in the image, what will you find 
there?

•	 Are you free to choose any position in the image?
•	 Once you’ve chosen a position in the image, can you then 

also choose which colour will appear there?
•	 So is it true that the colour is dependent on the position?

To keep the activity and the IFI interactive, students are 
required by the software to first answer the questions before 
being able to proceed. The question formats vary between 
multiple choice and typing an answer. From this activity, 
there is a natural flow in letting the student discover that a 
photograph or digital image can be interpreted as a 
mathematical function.

Connecting to the GD and the conceptualisation indicators (CIs): 
This activity aims to connect the repeated action of assigning 
a shade of grey to a specific position in the grid to a function 
value that is assigned to specific input. This activity is 
therefore aimed at helping students to construct the function 
concept as an action, which is the first stage of understanding 
according to the APOS theory. By repeating the shading 
action, an attempt is made at facilitating the interiorisation 
mechanism as was described in the GD. The instructions of 
this activity connect with the external prompts (see the CIs) 
or explicit steps needed by a student whose understanding 
is at the action level. The reflective questions of this activity 

FIGURE 2: (a) An empty 8 × 8 grid. (b) Result obtained at the successful 
completion of Activity 1.
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connect with the CI criteria that the student will know the 
definition of a function and will as such be led to discover 
that an image can be interpreted as representing a function.

Activity 2 
Description: Students visualise some function outputs by 
using the colour editor in the commonly available software 
Paint. Students are prompted to try different combinations of 
red, green and blue and they can then see what those 
combinations look like. This is an easy-to-use experiential 
playground where students are asked to try out for example 
negative values or non-integer values or values larger than 
the maximum used in the colour scheme and then observe 
what the software does to these inputs. The software 
automatically adjusts an inappropriate input in a default 
manner. If a negative value is typed, the value is changed to 
the absolute value. If a number larger than 255 is typed, it is 
automatically changed to 255. If a non-integer is typed, it is 
changed to the last digit that was typed. 

Connecting to the GD and the CIs: This activity allows students 
to engage with the idea of the range of an image function 
practically. At a later stage, students must also think about 
the domain by realising that the image only has a finite 
number of rows and columns. The concept of the domain of 
a function is thus a quite practical ‘thing’ with respect to 
image functions. This activity connects to the GD mechanism 
of interiorisation to assist in going from an action 
understanding to a process understanding. Furthermore, it 
connects to the CIs by attempting to broaden the student’s 
understanding of the definition of a function, by emphasising 
the necessity of the domain and range. This is necessary for 
a process understanding of the function concept.

Activity 3
Description: Students are brought back to the image function 
formed in Activity 1, but now both the rows and columns are 
depicted by positive integers as in Figure 3.

Reflective questions are used in this activity to 
assist  students  in constructing the function concept as a 
process:

•	 Does the choice of the first block you coloured or the 
sequence in which you coloured the blocks make any 
difference to the final image? 

•	 What is the difference between how you formed this 
image and how an image would be formed by your cell 
phone’s camera?

•	 Does your camera also take one input at a time and ‘fill’ 
in the colour for that position?

After a student completes these questions, a description is 
given comparing the point-by-point, successive way in 
which they shaded each individual block to what will 
happen inside a camera. Inside the camera all the ‘blocks’ 
get shaded simultaneously. The function is then a process 
of  taking the entire domain at once and filling it with the 
range. Students are again led to think about the specifics of 
the domain and the range:

•	 Thinking about the inputs
ßß Does f(2,3) make sense?
ßß Does f(2,3.561) make sense?
ßß What conclusions can be drawn about the set of 

allowable inputs?
ßß What do we call the set of inputs for a function?

•	 Thinking about the outputs:
ßß In a grayscale image can the value at any position 

possibly be described as ‘blue’?
ßß In a colour image, can the value at any position 

possibly be described as ‘dark grey’?
They are also led to think about the uniqueness property and 
the aspects of being injective and surjective:

•	 For the image function in Figure 4, the codomain is {red, 
purple, green, blue, black, pink, orange, white, yellow}.
ßß What is the range of this image function?
ßß Is this image onto?
ßß Is this image one-to-one? 

Finally, thinking about the inverse process is also introduced 
here, for example questions such as:

•	 Yellow is a colour that is present in this image (Figure 4). 
If you now make yellow the input, what will be the 
output?

•	 Do you think the image function shown will have an 
inverse?

Connecting to the GD and the CIs: As described in the CIs, at 
the process level a student should be able to mentally 
construct the function as the complete transformation of 
the domain to the range. This idea is captured in how the 
camera captures all of the pixels’ values simultaneously. 
This activity also explicitly deals with the aspects of the 
reversal of the function process and the existence of an 
inverse and confronts students with a fuller grasp of the 
definition of a function while at the same time having no 
formula. Having a function without a formula was also 
addressed in Activity 1, but as it is one of the common FIGURE 3: The function regarded as a process.
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conceptual difficulties associated with the function 
concept (Dubinsky & Wilson, 2013, p. 85), it is valuable to 
address it again. 

Activity 4
Description: With this activity, the aim is to assist students 
in constructing the function concept as an object. The story 
in which the intervention is set is brought to a peak here. 
The student sees how the knowledge of image functions, 
together with simple contrast stretching, is used to enhance 
the photograph discussed at the start of the intervention. It 
is enhanced to such a degree that sufficient information can 
be gathered from the image to assist in identifying the 
place where the photograph was taken. The contrast 
stretching seen in this activity is achieved through function 
composition.

As an introduction, the activity lets the student explore 
contrast stretching with pen and paper. The student is 
asked to draw the 5 × 4 grid as pictured in Figure 5a.

The number of vertical lines, v, in each cell (pixel) can be 
considered the colour of that cell. Figure 5a is then an image 
function, say f(x,y). The student is then asked to draw a 
second 5 × 4 empty grid and then fill in its values by 
applying the function g(v) = 4v – 4 on the original image of 
Figure 5a. A new image function h(x,y)  is thus created 
through function composition. We obtain Figure 5b through 

the function composition )() )( (=h x, y g f x, y . For example,

)() ) ) )( ( ( (= = = − =1 2 1 2 2 4 2 4 4h , g f , g . This composition 
stretches the contrast to such an extent that we can now 
see the number 5 or the letter S present in the image. The 5 
(or S) was of course already present in the original image, 
but it was difficult to distinguish it from its background. 
It  was difficult to distinguish due to the low contrast of 
the original image.

Once the introductory contrast stretching is completed, the 
student is brought back to the photograph associated with 
the missing person’s case. This photograph is seen here in 
Figure 6a.

Students are initially asked to describe in their own words 
what is wrong with the photograph, or consequently the 
(image) function in Figure 6a. How can a function be ‘wrong’, 
or for that matter be described? As an object, the function 
acquires global properties such as having low contrast, 
therefore a small average difference between adjacent pixels 
across its domain.

This activity lets a student realise that a low-contrast image 
can be improved by regarding it as one single thing – an 
object – that can be transformed by another function. 
Function composition is used to transform the original 
image function, f(x,y), into a new and improved image 
function g(f(x,y)).

)(=new g oldobject object �

Connecting to the GD and the CIs: If we carefully design the 
transformation function, g, we can obtain the desired 
results and again describe the new function as a whole. 
A  function then becomes a noun and a noun can be 
described by adjectives. We might say that the new function 
is beautiful, it is clear, it has high dynamic range, it is 
smooth or, as was planned for the image of the intervention, 
it has improved contrast as can be seen in Figure 6b. This 
ability of seeing the function as a whole and not as 
something that you do, but rather something that can be 
acted on, is described in the GD at the object level. The 
function composition used in this activity fulfils the role of 
a process acting on the function process. This is described 
as encapsulation in the GD and is also a requirement in the 
CIs. Through acting on the function as object and reflecting 
on properties of the function such as contrast or brightness, 
a student could start to realise that image functions are a 
type of function, similar to how exponential or trigonometric 

FIGURE 4: Will this function be injective?
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or linear functions are different types of functions. This 
connects to the CI of being able to think about and convey 
the global properties of a type of function. Furthermore, a 
student can be led to grasp that different photographs of for 
example the same scene or person form a set of image 
functions. Mentally constructing a set with functions as its 
elements is a further indicator from Table 2 of being at the 
object  level  of  conceptualisation with respect to the 
function concept.

Expanded theoretical evaluation of the Image 
Functions Intervention with respect to the first 
principle
The IFI follows the APOS general trajectory in the sense 
that information and in particular the activities are ordered 
to first let students retouch on the function concept as an 
action, then move on to a process and then finally to the 
function as an object. However, this trajectory is not the 
only possible path through the levels. As was discussed in 
the theoretical framework, in general the learning can pass 
through the APOS stages in a non-linear way (Arnon et al., 
2014). In the discussion of the four activities before, it was 
already indicated how the activities aim to guide the 
student to construct the desired mental constructs that 
emerged in the GD and link to the CIs indicators of Table 2. 
To expand on the previous evaluation, we now track the 
GD while taking into  account the IFI’s underlying path 
through the APOS stages: action, process and finally object.

Action
At the action level, a student is expected to take an 
element  from the domain and find its corresponding 
value  from the range. This is what is required 
in  Activity  1.  Repeating the actions (Asiala et al., 
1996:7; Dubinksy & McDonald, 2001:3) together with 
encouraged  reflection about the actions and the involved 
sets (expanded  on in Activity 2) triggers the necessary 
interiorisation mechanism to lead the student to a process 
understanding of function.

Process
At the process level, a student must now be able to 
capture the creation of the image of the function mentally 
(in the sense of the range) as a whole. Possibly infinitely 
many function evaluations can be imagined taking place 
simultaneously in the mind. Dubinsky and McDonald 
(2001, p. 3) describe that at the process conception, the 
individual can think about infinitely repeating the same 
kind of action, as no external stimuli – such as following 
the steps of a formula – are still needed. Activity 3 assists 
here by juxtaposing the point-by-point creation of a 
photograph by individual actions with the actual 
chemical  or electric process that is going on inside a 
camera  to form the photograph all at once. Inside the 
camera, the entire film or sensor is illuminated and so all 
pixels get their values at the same time.

FIGURE 6: (a) Low contrast image. (b) Increased contrast after function composition.
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The action of one ‘element of light’ reaching one point on the 
film or sensor to make one specific colour at that point or 
pixel can be imagined to be repeated simultaneously for all 
the millions of pixels in the eventual photograph. 

Object
At the object level, a student must now be able to grasp a 
function as one static entity. Activity 4 aids the encapsulation 
of the former dynamic transformation process to a ‘thing’, to 
become a noun with associated adjectives and properties. 
The encapsulation of functions at the process level by 
performing actions or other processes on these functions is 
reported to be key to transitioning to the object level of 
understanding (Asiala et al., 1996). Yet, this type of 
encapsulation is missing from experience when it comes to 
functions (Asiala et al., 1996, p. 8). In the IFI, this is exactly 
the type of encapsulation emphasised by means of the 
function composition in Activity 4. Actions and processes 
are applied to the image function in order to achieve the 
specified goals.

As the intention with the intervention was only to look to 
improve understanding up until the object level, the schema 
level is not discussed in this analysis of the intervention.

Evaluating the Image Functions Intervention 
with respect to the second and third principles
In keeping to the second and third design principles, the 
IFI  has to form a basin wherein the conceptual difficulties 
and other required concept aspects associated with the 
function concept can be explored in a familiar context. In the 
IFI, that context is created using photographs. To see if the IFI 
is compliant, we will look in turn at the most commonly 
occurring function concept difficulties (Dubinsky & Wilson, 
2013, pp. 85–86) and other function aspects: 

What constitutes a function?
Using image functions encourages the realisation that a 
formula is not necessary to have a function. Vinner and 
Dreyfus (1989) categorised students’ definitions of a 
function into six categories: Correspondence, Dependence 
Relation, Rule, Operation, Formula and Representation. 
Ultimately all six of these categories can be valuable 
viewpoints when dealing with various functions, function 
properties and applications. However, if a student focuses 
too much on the idea of a formula or an equation for a 
function, the construct could easily be cemented in their 
thinking that only formulas, or rules or correspondences 
having known formulas or equations, can be considered as 
functions. This kind of restrictiveness is quite common 
(Breidenbach et al., 1992; Dubinsky & Wilson, 2013; 
Sierpinska, 1992; Vinner & Dreyfus, 1989). From the start of 
the intervention, the student is put in a state of disequilibrium 
by introducing an everyday thing, such as a photograph, as 
a function. This state of disequilibrium, in the style of Piaget 
(Wadsworth, 1978, p. 80), is necessary here as the student’s 
concept image of functions has been formed and re-enforced 

over a number of years already. Therefore, by throwing the 
student off balance, room is created for the restructuring of 
the concept image. It is the suggestion of this article that the 
IFI’s reintroduction to functions via image functions can 
challenge the fixation and restricted thinking in terms of 
formulas and equations. This is necessary to develop 
beyond the action level.

Students also often focus on the symbols representing the 
variables, instead of the quantities they are representing. In 
the IFI, working with the image functions is done without the 
need for symbols. Familiar or intuitively understood 
terminology such as row, column and grey level are used. 

Vinner and Dreyfus (1989, p. 361) also showed that any 
seemingly irregular behaviour such as discontinuity, a split 
domain or ‘[t]he idea that the graph of a function has to have 
a stable character’ are erroneous ideas that students often use 
to disqualify some rules or graphs as functions. The IFI, by 
working with image functions, again has the advantage over 
using linear functions, for example in that images change 
character easily across the two-dimensional domain. This is 
even more apparent when the object conception of function 
has been reached after Activity 4. Therefore, students will not 
be left with the idea that a function needs to act ‘nicely’ in any 
way to be considered a function. In contrast, Carlson and 
Oehrtmann (2005, p. 2) mention the case of students thinking 
that constant functions are not functions ‘because they do not 
vary’. Also see Bakar and Tall (1991). Confrey and Smith 
(1991) refer to the constant function as an example of a 
‘monster’ function and confirm that students exclude it as a 
function because they expect a function to ‘covary’. In 
working with the IFI’s activities, it occurs naturally that 
portions of the image will have the colour or grey level stay 
constant over smaller or even large areas. A student can thus 
discover intuitively that an image function and, by extension, 
all other functions are allowed to display seemingly non-
regular behaviour over certain portions of their domains.

Univalence and injectivity
In working with the image functions of the IFI, the often-
problematic univalence property is made practical and 
simultaneously important. In addition, the confusion that is 
often seen (Harel & Dubinsky, 1992) between the univalence 
property and the function being injective is addressed in a 
tangible way. In terms of image functions, it is evident that at 
any specific input (pixel) the photo has only one output 
(colour) and as such exhibits the univalence property. 
Furthermore, if we determine that for the particular photo, the 
colour at any pixel does not occur at any other pixel, we have 
determined that the photo or image function is one-to-one, 
thus injective. Reflections to evoke these realisations 
with students are delivered through Activity 3 of the IFI.

Multiple representations
The activities of the IFI provide opportunities to ask new 
questions about multiple representations of functions. The 
multiple representations idea garners plenty of attention in 
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textbooks as well as research (Carlson & Oehrtman, 2005; 
Confrey & Smith, 1991; Stewart, 2015, p. 10). However, 
according to Thompson (1994, p. 39), students still miss that 
which stays unchanged between these representations: the 
‘core concept’. How would one represent an image 
function  differently than by means of the photograph? 
Setting up a table that states explicitly the colour that belongs 
at each position can illuminate the fact that the representation 
itself is not the function. Students can be led to realise that 
similar to an equation or a graph, the purpose of a table or 
the photograph is to tell us the output that belongs to any 
specific input. Why do we then have or use multiple 
representations? We only use them if they help  us to 
understand or analyse the function. A blind person could get 
no value from a graph of a function, but could there maybe 
be a way to listen to a function? Could an audio representation 
be created, and would it be helpful?

In validating the design from a theoretical viewpoint, we are 
moving the intervention towards a correct organisation of the 
knowledge to optimise deep understanding. This is key in 
developing sufficient expertise to solve problems that flow 
directly from the topics involved as well as related problems 
(Donovan & Bransford, 2005, p. 16). Naturally, the theoretical 
validation will need to be followed by empirical study to 
provide practical validation. This is the content of research 
currently in progress.

For this article, qualitative data were gathered by means of a 
questionnaire, but not to validate the GD as is typical in the 
APOS theory (Arnon et al., 2014; Dubinsky, 1991). Rather, the 
purpose was to investigate the viability of the IFI. The next 
section reports on the first implementation of the IFI and the 
consequent use of a questionnaire and the qualitative data 
analysis. 

Part 2: A first attempt at 
determining the Image Functions 
Intervention’s viability
This section deals with the first practical implementation of 
the IFI. It forms part 2 of addressing the research question as 
was given at the end of the introduction of this article. Part 
2 investigated the viability of the IFI by looking for 
indications that the IFI could have value through broadening 
the participants’ thinking with respect to the function 
concept. Achieving this objective would give us proof of 
principle, that is, determining if the IFI is sensible and 
worthwhile to investigate further. Proof of principle, 
together with qualitative analyses indicating what the 
content of an intervention should entail, assists in 
determining the need and validation for further testing 
(Pressley, Graham, & Harris, 2006, p. 7). A questionnaire 
was used to gather qualitative data on the participants’ 
experience of the IFI. A qualitative method was used here to 
allow the exploration of participants’ perceptions and allow 
for unexpected feedback on the IFI.

Sampling and data collection
The IFI was implemented in a classroom setting with a 
group of 27 students in a first-year Calculus course. This is 
not the intended method by which the intervention will be 
implemented, as it was designed to be a self-directed mini 
module where a participant follows their own pace and can 
actively engage with the various activities of the 
intervention. However, to gauge the initial reaction of 
participants to the material and activities, it was decided 
that a classroom setting, together with a questionnaire at 
the end, would be sufficient and still enable us to achieve 
the objective of a proof of principle. 

This group was chosen for convenience but fulfilled the 
minimum criteria of having prior knowledge of the function 
concept. From casual observation, the group had male and 
female members and these members were from at least three 
different ethnic backgrounds.

The questionnaire was handed out to all 27 participants 
and  it was made clear that participation was voluntary 
and  would be anonymous. No personally identifying 
information was asked, as this was not deemed 
necessary  for  a proof of principle endeavour, thus simply 
testing if the IFI could be viable. The questionnaire 
consisted  of three grammatically closed, but conceptually 
open, questions (Worley, 2015, p. 19) as this still allowed any 
elaboration the participant might wish to provide.

Data analysis
The method of content analysis with emergent coding was 
used (Maree, 2016, p. 111). The responses to the three 
questions were searched for any indications relating to the 
objective of the questionnaire. After reading the responses a 
few times, four themes were identified:

What constitutes a function?
Students commonly struggle with misconceptions with 
regard to what can and what cannot be regarded as a function 
(Dubinsky & Wilson, 2013, pp. 85–86). More discussion on 
this topic was given as part of the theoretical evaluation of 
the IFI in Part 1. 

Functions are connected to real life
From reading through the participant responses, it seems 
that many were almost surprised to find functions being 
used in such an everyday type of topic as photographs. 
This theme does not represent an improved understanding 
of the function concept but can possibly assist in making 
the  topic interesting to participants. This interest can 
increase their motivation, which is key to effective 
learning  (Eggleton, 1992, p. 1). Connecting the function 
concept knowledge to everyday experience also assists 
later retrieval and application (Donovan & Bradsford, 
2005, p. 364).
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Domain and range
This theme relates to the understanding that a function 
requires a set of allowed inputs and, associated to each 
input, a unique output. The outputs form a set as well. From 
the GD, we saw that clear understanding of domain and 
range are required to construct the function concept at the 
action level and to interiorise the actions to start constructing 
at the process level.

Function inverses
At the process level, being able to reverse the function 
and form the inverse function is required (Breidenbach 
et al., 1992).

Each response given to the three questions was read and 
reread in order to judge if it contained any indication that the 
participant experienced a broadened understanding of the 
function concept. The indication was then classified as 
belonging to one of the four themes.

Validity
It was not the intention of the questionnaire to deliver a 
generalisable result. The questionnaire was part of the effort 
to establish a proof of principle. Proof of principle can be 
interpreted as looking for proof that the IFI can have value, 
at least in some settings with some participants. To increase 
the credibility of the qualitative data analysis, colleagues 
were asked to independently verify themes, occurrences 
and results.

Results of the qualitative data analysis
In the data analysis section, four themes were discussed that 
emerged from repeated reading of the participants’ responses. 
The responses were then analysed individually within the 
structure provided by the four themes. 

This was done while keeping in mind that we were looking 
for indications that the participant experienced a broadened 
understanding of the function concept. In the analysis to 
follow, these three questions (Q) were asked:

•	 Q1: Having completed the IFI, have you realised or learnt 
something in particular of the function concept?

•	 Q2: Is there an aspect of the function concept that is now 
clearer to you?

•	 Q3: Is there some aspect of the function concept that you 
might have thought about in some way before, but now 
realise that you were wrong about in some sense? 

Theme 1: What constitutes a function?
The analysis illustrates that participants are showing an 
expansion of their ‘concept image’ (Tall & Vinner, 1981, 
p.  151) related to what can also be considered a function. 
Consider the following responses:

‘Yes, I realised functions have a broader meaning and that it 
forms a big part of our technological lives.’ (Participant 1, 
answering Q1,)

‘Yes, that all images are also functions.’ (Participant 13, answering 
Q1,)

‘Yes a function can be determined in different ways.’ (Participant 
21, answering Q1,)

‘Yes, that not all functions are graphed on cartesian planes.’ 
(Participant 18, answering Q3,)

Theme 2: Functions are connected to real life
Again we see participants’ concept images expanded. Here it 
relates to a realisation that functions can be useful and 
specifically useful outside of mathematics itself. Some 
participants realise that functions can be part of their lived 
experiences. Consider the following representative responses:

`Yes, it can be used for various purposes.’ (Participant 2, 
answering Q1)

`Functions can be used for a lot of purposes out side of maths 
[sic].’ (Participant 5, answering Q1)
`Yes, I understand that math is used everywhere.’ (Participant 6, 
answering Q1)

`Yes, how unclear images been processed to have clear pictures 
about something and I did not know that how functions are used 
in life.’ (Participant 22, answering Q1)

`Yes. I didn’t know functions can relate to real life experiences 
and applies to images and is involved in biometric scanners.’ 
(Participant 19, answering Q3)

`Yes, I have learned that functions can be used for more than 
calculating or predicting change.’ (Participant 25, answering Q3)

Theme 3: Domain and range
A few participants gave some indication of increased 
understanding of the aspects of input and output. Clarity on 
input and output, as relating to domain and range, would 
assist in transitioning from an action level to a process level of 
function conceptualisation. Consider the following responses:

`Yes there is a input and a output.’ (Participant 4, answering Q1)

`Yes, there is an input and output.’ (Participant 9, answering Q1)

`Inputs and outputs of a function.’ (Participant 3, answering Q2)

Theme 4: Function inverses
Some participants reported to have gained increased clarity 
on the aspect of function inverses. To understand the function 
concept at the process level, one needs to be able to reverse 
the actions of the function and then progress to formulating 
the inverse function or deciding if the inverse function 
will exist. The following responses are representative:

`Yes, the differentiation between inverse functions.’ (Participant 
13, answering Q2)

`The derivatives or inverse of functions.’ (Participant 15, 
answering Q2)

`Yes, inverse of a function.’ (Participant 3, answering Q3)

Discussion and conclusions
In this article, our objective was to determine if the IFI could 
be considered a sound and viable tool with respect to the 
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learning of the function concept. This objective was addressed 
in two parts.

The first part was a theoretical evaluation of the IFI. This 
evaluation strongly depended on a GD of the function 
concept. Not only can a GD serve as the basis for designing 
a learning intervention, it also serves to make the consequent 
analysis more reliable (Arnon et al., 2014, p. 38). Through 
empirical study, the success of the APOS theory has been 
shown through using the GD not only to describe the mental 
constructions of participants but also  to design ‘effective 
instruction’ (Weller et al., 2003). The required GD was 
determined, showing the necessary mental structures at the 
action, process, object and schema levels. Connecting with 
the GD, indicators were set up (see Table 2) which could be 
used to judge the conceptual levels of a participant. 
Consequently, the activities of the IFI were shown to keep 
true to the GD and the indicators of Table 2. This was done 
by describing each activity and explicitly making 
connections between aspects of each activity and the 
requirements in the GD and the indicators of Table 2. 
Important to note is that the IFI provides opportunities for 
encapsulation of processes through the function composition 
used in its contrast stretching activities. In the APOS theory, 
encapsulation is the mechanism by which conceptualisation 
evolves from the process to the object level (Arnon et al., 
2014). Asiala et al. (1996) reported that this type of 
encapsulation, namely the encapsulation of functions 
conceived of at the process level, is necessary to transition 
to the object level of function conception. Asiala et al. 
further reported that this type of encapsulation is mostly 
lacking in our experience with functions. Besides adhering 
to the GD and providing encapsulation opportunities, the 
IFI was also shown to create opportunities to address some 
prominent conceptual difficulties associated with the 
function concept, specifically ‘what constitutes a function’, 
‘univalence and injectivity’ and ‘multiple representations’. 
From the theoretical evaluation, it was concluded that the 
IFI is theoretically sound with respect to the design 
principles used in this study.

Part 2 of addressing the research question entailed the 
implementation of the IFI in a classroom setting, with 
subsequent qualitative analysis of a questionnaire given to 
participants. The aim was to determine if the IFI could be 
viable by looking for indications that participants experienced 
any broadening of their thinking with respect to functions, 
thus broadening their concept images. The IFI was put to the 
test in a classroom setting with 27 first-year Calculus students. 
From the results of the analysis, we saw that at least some 
participants reported gaining new insight on inputs and 
outputs of functions and the inverses of functions. 
Furthermore, it seems safe to conclude that for at least some 
participants, their ideas  concerning what constitutes a 
function have been broadened. However, actual improved 
understanding of  the function concept cannot be 
independently verified  as it can be based only on the 
participants’ own reporting. This is partly the fault of the 

questions of the  questionnaire. They were intended to be 
sufficiently inviting to lead participants to provide rich 
responses from which true improved understanding could 
be judged. This did not happen to a sufficient extent. 
Seemingly, the questions were formulated to be too closed-
ended. On a positive note, we can conclude from the results 
that the IFI has the potential to enrich the concept image (Tall 
& Vinner, 1981, p. 151). The concept image is closely related 
to the schema level of the APOS theory in the sense that it is 
the construct one will utilise when confronted with solving 
an actual problem (Dubinsky & McDonald, 2001, p. 3). 
Concluding that the concept image of participants can be 
enriched is based on the many instances of participants 
making a new connection between functions and everyday 
or real life and losing some of the restrictiveness regarding 
what constitutes a function. This enriched concept image 
gives us sufficient reason to claim proof of principle, thus 
concluding that the IFI is viable. 

The theoretical evaluation of the IFI, together with the proof 
of principle that was obtained, led to the conclusion that 
there is sufficient indication that the use of the IFI can have 
merit and is therefore worthwhile to explore further. 
Subsequent qualitative and quantitative research will aim to 
independently verify not only if the GD is a true predictor of 
the mental constructions of participants, but also if the IFI 
can actually manage to improve participants’ understanding 
of the function concept.

Acknowledgements 
Competing interests 
I declare that no competing interests exist.

Authors’ contributions 
I declare that I am the sole author of this article.

Ethical consideration 
Ethical clearance for the research conveyed in this article was 
obtained via the university general/human research ethics 
committee (GHREC), reference number UFS-HSD2019/​
0006/1505.

Funding information 
This research received no specific grant from any funding 
agency in the public, commercial or not-for-profit sectors.

Data availability statement 
The data that support the findings of this study are available 
from the corresponding author, upon reasonable request.

Disclaimer 
The views and opinions expressed in this article are those of 
the author and do not necessarily reflect the official policy or 
position of any affiliated agency of the author.

http://www.pythagoras.org.za�


Page 15 of 15 Original Research

http://www.pythagoras.org.za Open Access

References
Akkoç, H., & Tall, D. (2005). A mismatch between curriculum design and student 

learning: The case of the function concept. In D. Hewitt & A. Noyes (Eds.), 
Proceedings of the sixth British Congress of Mathematics Education (pp. 1–8), 
University of Warwick, 30 March–02 April 2005.

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Fuentes, S.R., Trigueros, M., & Weller, K. 
(2014). APOS theory: A framework for research and curriculum development in 
mathematics education. New York, NY: Springer.

Asiala, M., Brown, A., De Vries, D.J., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A 
framework for research and curriculum development in undergraduate 
mathematics education in J. Kaput, A.H. Schoenfeld & E. Dubinsky (Eds.), Research 
in Collegiate Mathematics Education II, CBMS issues in mathematics education 
(vol. 6, pp. 1–32). Providence, RI: American Mathematical Society.

Ayers, T., Davis, G., Dubinsky, E., & Lewin, P. (1988). Computer experiences in learning 
composition of functions. Journal for Research in Mathematics Education, 19(3), 
246–259. https://doi.org/10.2307/749068

Bakar, M., & Tall, D. (1991). Students’ mental prototypes for functions and graphs. 
International Journal of Mathematical Education in Science and Technology, 23(1), 
39–50. https://doi.org/10.1080/0020739920230105

Bakker, A., Smit, J., & Wegerif, R. (2015). Scaffolding and dialogic teaching in 
mathematics education: Introduction and review. ZDM Mathematics Education, 
47(7), 1047–1065. https://doi.org/10.1007/s11858-015-0738-8

Bansilal, S., Brijlall, D., & Trigueros, M. (2017). An APOS study on pre-service teachers’ 
understanding of injections and surjections. The Journal of Mathematical 
Behavior, 48, 22–37. https://doi.org/10.1016/j.jmathb.2017.08.002

Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the 
process conception of function. Educational Studies in Mathematics, 23(3), 
247–285. https://doi.org/10.1007/BF02309532

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational 
reasoning while modeling dynamic events: A framework and a study. Journal for 
Research in Mathematics Education, 33(5), 352–378. https://doi.org/10.2307/​
4149958

Carlson, M., & Oehrtman, M. (2005). Key aspects of knowing and learning the concept 
of function. Retrieved from http://www.maa.org/t_and_l/sampler/rs_9.html

Chimhande, T., Naidoo, A., & Stols, G. (2017). An analysis of grade 11 learners’ levels 
of understanding of functions in terms of APOS theory. Africa Education Review, 
14(3–4), 1–19. https://doi.org/10.1080/18146627.2016.1224562

Confrey, J., & Smith, E. (1991). A framework for functions: Prototypes, multiple 
representations and transformations. North American Chapter of the International 
Group for the Psychology of Mathematics Education, Proceedings of the Annual 
Meeting, Blacksburg, VA, 13 October 1991 (pp. 57–63).

Donovan, M.S., & Bransford, J.D. (Eds.). (2005). How students learn: Mathematics in 
the classroom. National Research Council Committee on How people learn. A 
targeted report for teachers, Division of behavioral and social sciences education. 
Washington, DC: The National Academies Press.

Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and 
the development of the function concept: From repeated calculations to 
functional thinking. International Journal of Science and Mathematics Education, 
10, 1243–1267. https://doi.org/10.1007/s10763-012-9329-0

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D.O. 
Tall (Ed.), Advanced mathematical thinking (pp. 95–123). Dordrecht: Kluwer.

Dubinsky, E. (2000). Using a theory of learning in college mathematics courses. In R.P. 
Burn (Ed.) Teaching and learning undergraduate mathematics (TALUM) Newsletter, 
12. Leicester: The Mathematical Association (UK).

Dubinsky, E., & McDonald, M.A. (2001). APOS: A constructivist theory of learning in 
undergraduate mathematics education research. In D. Holton (Ed.). The teaching 
and learning of mathematics at university level (pp. 275–282). Dordrecht: Kluwer 
Academic Publishers.

Dubinsky, E., & Wilson, R.T. (2013). High school students’ understanding of the 
function concept. The Journal of Mathematical Behavior, 32(1), 83–101. https://
doi.org/10.1016/j.jmathb.2012.12.001

Eggleton, P. (1992). Motivation: A key to effective teaching. The Mathematics 
Educator, 3(2), 12 pages.

Gonzalez, R.C., & Woods, R.E. (2017). Digital image processing (4th edn.). New York, 
NY: Pearson.

Harel, G., & Dubinsky, E. (1992). The concept of function: Aspects of epistemology and 
pedagogy. Washington, DC: Mathematical Association of America.

Hoover, M., Mosvold, R., Ball, D.L., & Lai, Y. (2016). Making progress on mathematical 
knowledge for teaching. The Mathematics Enthusiast, 13(1), 3–34.

Maharaj, A. (2010). An APOS analysis of students’ understanding of the concept of a 
limit of a function. Pythagoras, 71, 41–52. https://doi.org/10.4102/pythagoras.
v0i71.6

Maharajh, N., Brijlall, D., & Govender, N. (2008). Preservice mathematics students’ 
notions of the concept definition of continuity in calculus through collaborative 
instructional design worksheets. African Journal of Research in Mathematics, 
Science and Technology Education, 12(suppl. 1), 93–106. https://doi.org/10.1080
/10288457.2008.10740644

Makonye, J.P. (2014). Teaching functions using a realistic mathematics education 
approach: A theoretical perspective. International Journal of Science Education, 
7(3), 653–662. https://doi.org/10.1080/09751122.2014.11890228

Maree, K. (2016). First steps in research (2nd edn.) Pretoria: Van Schaik Publishers.

O’Shea, A., Breen, S., & Jaworski, B. (2016). The development of a function concept 
inventory. International Journal of Research in Undergraduate Mathematics 
Education, 2, 279–296. https://doi.org/10.1007/s40753-016-0030-5

Pressley, M., Graham, S., & Harris, K. (2006). The state of educational intervention 
research as viewed through the lens of literacy intervention. British Journal of 
Educational Psychology, 76(1), 1–19. https://doi.org/10.1348/000709905X66035

Reed, B. (2007). The effects of studying the history of the concept of function on 
student understanding of the concept. Unpublished Doctoral Dissertation. Kent, 
OH: Kent State University.

Sajka, M. (2003). A secondary school student’s understanding of the concept of 
function: A case study. Educational Studies in Mathematics, 53(3), 229–254. 
https://doi.org/10.1023/A:1026033415747

Salgado, H., & Trigueros, M. (2015). Teaching eigenvalues and eigenvectors using 
models and APOS theory. The Journal of Mathematical Behavior, 39, 100–20. 
https://doi.org/10.1016/j.jmathb.2015.06.005

Shrivakshan, G.T., & Chandrasekar, A. (2012). A comparison of various edge detection 
techniques used in image processing, International Journal of Computer Science 
Issues, 9(1), 269–276.

Sierpinska, A. (1992). On understanding the notion of function. In G. Harel & 
E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy 
(pp. 25–58). Washington, DC: The Mathematical Association of America.

Son, J., & Hu, Q. (2015). The initial treatment of the concept of function in the selected 
secondary school mathematics textbooks in the US and China, International 
Journal of Mathematical Education in Science and Technology, 47(4), 505–530. 
https://doi.org/10.1080/0020739X.2015.1088084

Stewart, J. (2015). Single variable calculus (8th edn.). Boston, MA: Cengage Learning.

Tall, D., McGowen, M., & DeMarois, P. (2000). The function machine as a cognitive 
root for the function concept. Paper presented at the Annual Meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics 
Education (22nd, pp. 247–254, Tucson, AZ, October 7–10, 2000).

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics 
with particular reference to limits and continuity. Educational Studies in 
Mathematics, 12, 151–169. https://doi.org/10.1007/BF00305619

Thompson, P.W. (1994). Students, functions, and the undergraduate curriculum. In E. 
Dubinsky, A.H. Schoenfeld, & J.J. Kaput (Eds.), Research in collegiate mathematics 
education (pp. 21–44). Providence, RI: American Mathematical Society.

Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. 
Journal for Research in Mathematics Education, 20(4), 356–366. https://doi.
org/10.2307/749441

Wadsworth, B.J. (1978). Piaget for the classroom teacher. New York, NY: Longman Inc.

Weller, K., Clark, J.M., Dubinsky, E., Loch, S., McDonald, M.A., & Merkovsky, R. (2003). 
Student performance and attitudes in courses based on APOS theory and the ACE 
teaching cycle, in A. Selden, E. Dubinsky, G. Harel & F. Hitt (Eds.), Research in 
Collegiate Mathematics Education V, CBMS issues in mathematics education (vol. 
12, pp. 97–131). Providence, RI: American Mathematical Society.

Worley, P. (2015). Open thinking, closed questioning: Two kinds of open and closed 
question, Journal of Philosophy in Schools, 2(2), 17–29. https://doi.org/10.21913/
JPS.v2i2.1269

http://www.pythagoras.org.za�
https://doi.org/10.2307/749068�
https://doi.org/10.1080/0020739920230105�
https://doi.org/10.1007/s11858-015-0738-8�
https://doi.org/10.1016/j.jmathb.2017.08.002�
https://doi.org/10.1007/BF02309532�
https://doi.org/10.2307/4149958�
https://doi.org/10.2307/4149958�
http://www.maa.org/t_and_l/sampler/rs_9.html�
https://doi.org/10.1080/18146627.2016.1224562�
https://doi.org/10.1007/s10763-012-9329-0�
https://doi.org/10.1016/j.jmathb.2012.12.001�
https://doi.org/10.1016/j.jmathb.2012.12.001�
https://doi.org/10.4102/pythagoras.v0i71.6�
https://doi.org/10.4102/pythagoras.v0i71.6�
https://doi.org/10.1080/10288457.2008.10740644�
https://doi.org/10.1080/10288457.2008.10740644�
https://doi.org/10.1080/09751122.2014.11890228�
https://doi.org/10.1007/s40753-016-0030-5�
https://doi.org/10.1348/000709905X66035�
https://doi.org/10.1023/A:1026033415747�
https://doi.org/10.1016/j.jmathb.2015.06.005�
https://doi.org/10.1080/0020739X.2015.1088084�
https://doi.org/10.1007/BF00305619�
https://doi.org/10.2307/749441�
https://doi.org/10.2307/749441�
https://doi.org/10.21913/JPS.v2i2.1269�
https://doi.org/10.21913/JPS.v2i2.1269�

