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Abstract: Not enough effort has been invested in developing reliable and valid assessment instruments to 
measure students’ development of reasoning competences in mathematics. Previously developed tests rely 
mostly on standardized multiple-choice assessments, which primarily focus on procedural knowledge and rote 
learning and not on how students argue for and justify their results. This study reports on the process of 
developing a test to assess students’ reasoning competence in primary school classes and on the statistical 
results of a verification study. The test is based on item response theory (Rasch model) and was used in a large-
scale mathematics intervention project about inquiry-based teaching. The data was collected from 5,516 primary 
school students in Denmark. Data analysis indicates the test has satisfactory validity and reliability, but the test 
was still unable to measure statistically significant progress at the intervention schools. 
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Introduction 
 
Despite the importance of reasoning in school mathematics (Ball & Bass, 2003; Hanna & Jahnke, 1996), 
research shows that many students at all school levels face serious difficulties with reasoning and proving 
(EMS, 2011; Harel & Sowder, 1998). Consequently, children enter upper grades ill-equipped to develop their 
justifications and proofs (Knuth, 2002). Multiple factors may have contributed to the fact that reasoning and 
proof have received a marginal role in primary and lower secondary school mathematics teaching (G. J. 
Stylianides & Stylianides, 2017).  
 
However, one particular hindrance could be that, if the way we assess students is focused only on procedural 
knowledge and not on reasoning competences, there is a risk that tests can obstruct the development of more 
complex mathematical competences by distorting the focus in teaching away from a competence orientation. As 
Biggs (2011, p. 197) argued, assessment determines what and how students learn more than a curriculum does. 
Even in achievement tests in which the primary recipients are people at some distance who require an 
assessment of an overall effect, rather than detailed information on individual students, assessments can have a 
powerful influence on teaching and learning: ‘we simply want to stress that accountability tests, by virtue of 
their place in a complex social system, exercise an important influence on the curriculum of the school’ 
(Resnick & Resnick, 1992, p. 49). As a consequence, achievement tests need to be closely aligned with the 
target knowledge of the curriculum, but, although reasoning is well-known in mathematical teaching practice 
and has been the focal point of many studies (Lithner, 2008; Reid & Knipping, 2010; A. J. Stylianides & Harel, 
2018), there is limited research on how to assess students’ competence with reasoning in mathematics 
education. 
 
This paper introduces a newly developed large-scale achievement test that uses a Rasch model and is intended to 
measure students’ development of competence in mathematics. To determine the best way of conducting 
assessment in a particular case and context, it is necessary to consider the properties of possible tools in relation 
to the purposes and intended uses of the assessment results. Obvious important desirable properties of any 
assessment are its reliability and its validity for the intended purpose (Johnson & Christensen, 2014), which will 
be the focus in this paper. 
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Theoretical Background 
 
Developing a test that can measure reasoning competence requires both a study of how others have tried to 
measure it in the past and consideration of how to make the test valid and reliable. In the following, these two 
considerations will be elaborated. 
 
 
Testing Reasoning in Mathematics Education 
 
In both of the two major international large-scale assessments – the Trends in International Mathematics and 
Science Study (TIMSS) and the Programme for International Student Assessment (PISA) – we have seen some 
effort to measure reasoning competence, but, in general, the testing of competences in mathematics education is 
not a widespread nor well-documented area. Niss, Bruder, Planas, Turner, and Villa-Ochoa (2016) argued that 
assessment of students’ mathematical competences needs to become a priority in educational research from both 
holistic and atomistic perspectives, where a holistic perspective considers complexes of intertwined 
competences in the enactment of mathematics and ‘an atomistic perspective zooms in on the assessment of the 
individual competency in contexts stripped, as much as possible, of the presence of other competences’ (Niss et 
al., 2016, p. 624). 
 
Through a literature review of assessment in mathematics (Larsen, 2017), created with a focus on developing 
such a test, different aspects of measuring reasoning in mathematics were found. Logan and Lowrie (2013) 
focused on testing students’ spatial reasoning in mathematics. In Nunes, Bryant, Evans, and Barros (2015), a 
framework for prescribing and assessing the inductive mathematics reasoning of primary school students was 
formulated and validated. The major constructs incorporated in this framework were students’ cognitive abilities 
for finding similarities and/or dissimilarities among the attributes and relationships of mathematical concepts. 
Nunes et al. (2007) focused on reasoning in logic, while Goetz, Preckel, Pekrun, and Hall (2007) examined 
reasoning in connection to another aspect – test-related experiences of enjoyment, anger, anxiety, and boredom 
and how they relate to students’ abstract reasoning ability. 
 
Overall, we see that the term reasoning is broadly used in mathematics education and is connected to many 
different areas, such as logic, spatial, and cognitive abilities. Reasoning in mathematics is therefore not a unified 
concept, which makes an assessment of this competence a challenge. Yackel and Hanna (2003) argued that the 
reason for disagreement on the definition is, in fact, an implicit assumption of universal agreement on its 
meaning, yet there are many different conceptualizations of mathematical reasoning in the literature. 
 
Brousseau and Gibel (2005) defined mathematical reasoning as a relationship between two elements: a 
condition or observed facts and a consequence. Duval (2007) described mathematical reasoning as ‘a logical 
linking of propositions’ (p. 140) that may change the epistemic value of a claim. G. J. Stylianides (2008) viewed 
mathematical reasoning as containing a broader concept; besides providing arguments (non-proof and proofs), it 
also encompasses investigating patterns and making conjectures. In Shaughnessy, Barrett, Billstein, 
Kranendonk, and Peck (2004), the National Council of Teachers of Mathematics (NCTM) described reasoning 
in mathematics as a cycle of exploration, conjecture, and justification. This is in line with G. J. Stylianides 
(2008), who focused on mathematical reasoning as a process of making inquiries to formulate a generalisation 
or conjecture and determine its truth value by developing arguments, where argument is understood to mean a 
connected sequence of assertions. In a Danish context, the definition of reasoning competence in the primary 
school mathematics curriculum is often based on the competence report (Niss & Jensen, 2002), which, among 
other factors, is very specific about students being able to distinguish proof from other kinds of argumentation 
and makes a clear distinction between ‘carrying out’ argumentations and ‘following’ the argumentations 
developed by others (e.g., other students or textbooks). In the present paper, the definition of reasoning that will 
be tested in the developed testis a composite of definitions from the NCTM, the competence report (Niss & 
Jensen, 2002), and G. J. Stylianides (2008). This will be described in more detail in the Methods section. 
 
 
Reliability and Validity in Tests 
 
The term validity refers to whether or not a test measures what it claims to measure. On a test with high validity, 
the items will be closely linked to the test’s intended purpose. In 1955, Cronbach and Meehl wrote the classic 
article, Construct Validity in Psychological Tests, in which they divided test validity into three types: content, 
construct, and criterion-oriented. For many years, the discussion has been about these different types of validity, 
but, in this paper, the validity issue will be focused more on obtaining evidence for unitary validity (Johnson & 
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Christensen, 2014), which includes all three types of validity but in which the central question is whether all the 
accumulated evidence supports the intended interpretation of test scores for the proposed purpose. 
 
The intention in this study is therefore to present and discuss whether the collected evidence supports the 
argument that the test can be seen as valid. Johnson and Christensen (2014) argued that, in this sense, complete 
validation is never fully attained – it is not a question of no validity versus complete validity. Validation should 
be viewed as a never-ending process, but, at the same time, the more validity evidence one has, the more 
confidence one can place in one’s interpretations. 
 
The other aim in the development of this test is for it to provide reliable or trustworthy data. If a test provides 
reliable scores, the scores will be similar on every occasion, which is related to generalization from the results 
(Black, 1998). In summary, the aims of this study are to develop a test that, among other things, can measure 
reasoning competence in primary school classes and to examine the quality of that test. 
 
 
Methods 
 
The methods section starts with at short description of the setting of the assessment. A description then follows 
of how the development process was divided into three different phases: design, development, and testing. The 
three phases are briefly reviewed, followed by information on how they relate to each other. The text then 
describes phase 1, which, in addition to a description of the definition of reasoning, also includes an example of 
an item from the test. In phase 2, the pilot study and the measurement model are described, including intercoder 
reliability, and, in phase 3, elaboration and consideration of content validity are described. 
 
 
The Origin of and Reasons for Developing a Competence Test 
 
This study is embedded in a large-scale, three-year, design-based, randomized-controlled-trial research and 
development programme in Denmark, called ‘Kvalitet i Dansk og Matematik’ (Quality in Danish and 
Mathematics; KiDM). The overall aim of KiDM is to make teaching in years 4 and 5 of Danish primary school 
more inquiry-based, and it includes the development of inquiry-based teaching activities for a four-month 
mathematics teaching plan implemented in 45 Danish schools (intervention schools). To assess students’ 
development of mathematical competences related to inquiry-based teaching, an achievement test, with a strong 
focus on mathematical competences, was essential to measure the difference between the 45 interventions 
schools and 37 control schools. A test was therefore developed specifically to measure whether students 
developed specific competences in mathematics. These competences included those of problem-solving/-posing, 
modeling, and reasoning. 
 
In this study, we will focus on whether this test is valid and reliable in connection to the part of the test 
connected to reasoning competence. The intent in the test is to use a Rasch model analysis, which is a 
psychometric technique that can improve the precision with which researchers construct instruments, monitor 
instrument quality, and compute respondents’ performances (Wilson & Gochyyev, 2013). Rasch analysis allows 
researchers to construct alternative forms of  measurement instrument because it does not treat a test scale as 
linear, with the raw scores of different respondents simply ‘added up’ to compare their levels of achievement. 
Rasch analysis instead allows researchers to use respondents’ scores to express their performance on a scale that 
accounts for the unequal difficulties across the test items. It is also a tool for finding items that measure the 
same phenomenon. 
 
 
Designing, Developing, and Testing the Test 
 
In this section, the development of the item design and the coding processes will be elaborated, together with the 
verification. The development was done in an iterative process comprising three different phases before the test 
was finally applied in three randomized controlled trials as part of KiDM.  

Phase 1: Designing the test: The components in the test (content and design) were based on theory 
identified in the established literature in collaboration between the authors of this paper, two associate 
professors from two different mathematics teacher education colleges, and one professor in 
mathematics education. 
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Phase 2: Developing the test: Teachers from a primary school class and their supervisor in mathematics 
tested the test in their classroom, and interviews with three of their students were conducted. Think-
alouds were also conducted with one student from year 5 and one student from year 4. 
Phase 3: Testing the test: The test was piloted in 14 classes, with a focus on items appropriate to the 
intended pupils; the coding procedures were further developed, and the test administration was itself 
tested. 
The three phases were not neatly divided because the various tests and trials required some corrections 
to the test, including the difficulty of the items, and the development of the coding process during the 
pilot test required changes to the content and the formulations, which needed consideration of the 
design and content, as will be described later. 
 

Phase 1: Designing the test. In order for the test to measure the content of reasoning competence, which is 
aligned with the definition of reasoning competence in KiDM, it was decided that the definition should be 
process-oriented but also have a broad approach. Therefore, definitions from the NCTM, the competence report 
(Niss & Jensen, 2002), and G. J. Stylianides (2008) were all included. In Table 1, the three different broad 
definitions from the Introduction section are included in the left column to allow comparison of the definitions, 
and, in the right column is listed what is intended to be measured by different items in the test (only the final 
included items are listed). 
  

Table 1. Content of Items Included in the Final KiDM Test 
 Standards from 

NCTM 
Niss & Jensen 
 (2002) 

G. J. 
Stylianides 
(2008) 

The KiDM test  Items with this 
focus (item 
number)* 

A Make and 
investigate 
mathematical 
conjectures 

 Making 
conjectures 

Can the students make 
inquiries to formulate 
assumptions/conjectures 
in mathematics? 

1, 9, 10, 14, 15, 
17, 18, 19, 26  

B   Investigating 
patterns and 
making 
generalizations 

Can the students make 
inquiries to formulate 
generalizations in 
mathematics? 

13, 18 

C Develop 
mathematical 
arguments and 
proofs 

To devise informal and 
formal reasoning (on 
the basis of intuition), 
including transforming 
heuristic reasoning into 
actual (valid) proof 

Providing 
support to 
mathematical 
claims; 
providing non-
proof 
argumentations 
and providing 
proofs 

Can the students develop 
argumentations in 
mathematics? 
(proof/non-proof) 
 

1, 9, 17 

D Evaluate 
mathematical 
arguments and 
proofs 

To understand and 
judge a mathematical 
argumentation 
propounded by others 

 Can the students 
understand and judge 
argumentations in 
mathematics? 
(proof/non-proof) 

15, 19, 29  

E Use various types 
of reasoning and 
methods of proof; 
select and use 
various types of 
reasoning and 
methods of proof 

To devise and 
implement informal 
and formal reasoning 
(on the basis of 
intuition), including 
transforming heuristic 
reasoning into actual 
(valid) proof 

Providing 
support to 
mathematical 
claims; 
providing non-
proof 
argumentations 
and providing 
proofs 

Can the students select 
and use various types of 
reasoning? 
 

28, 29 

F Select and use 
various types of 
reasoning and 
methods of proof 

To know and 
understand what a 
mathematical proof is 
and how it is different 
from other 
argumentations 

 Can the students 
distinguish between 
different kinds of 
arguments – rationales, 
empirical arguments, and 
deductive arguments? 

Items with this 
content have 
been removed 
because they 
were found too 
difficult for the 
students in 
years 4 and 5 

*Note: the remaining items focus on modeling competence or problem-solving/-posing competence. 
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The items are the substance of the test and have been developed with inspiration both from the research, such as 
A. J. Stylianides (2007), and from published TIMSS and PISA items as both tests explicitly state that they 
measure mathematical reasoning and, moreover, TIMSS is aimed at the same age range as our population. The 
items included in the test are a mixture of multiple-choice and closed-constructed response questions as well as 
open-constructed problems that include, for example, making argumentation for one’s own conjecture or 
justifying one’s choice of which argumentation is correct in different problems. This specific mix was chosen 
because we wanted to use different types of item to accommodate different approaches to those items, but also 
because open items are very costly in the coding process and, therefore, it was not possible to have only open-
constructed items. Multiple-choice items and closed-constructed items, in contrast, can be automatically scored 
by computer and are, therefore, almost cost-free.  
 
The open-constructed items were, in the KiDM project, manually scored by three (two in the last trial) 
preservice teachers. The open-constructed items include a mixture of dichotomous and polytomous questions; 
the dichotomous questions can only be coded 0 or 1 (incorrect or correct), while the polytomous questions have 
up to four different scoring categories. In Figure 1, an open-constructed item (item 9) from the KiDM test is 
presented that explores the similarities and differences between relationships in statistics in a close-to-reality 
task. In this task, the student must show, in connection to A and C in Table 1, that he or she is able to make 
inquiries to formulate a conjecture and develop argumentation to verify his or her conjecture. 
  
 

 
Figure 1. Test Item 9: Comparing Temperatures in Two Different Weeks 

 
In order to differentiate the quality of students’ answers to the different open-ended items, coding taxonomies 
were developed for each. These coding taxonomies (schemes) were based on a theoretical progression described 
in the literature; however, the concept of argumentation has very different definitions in the literature, and, to 
explain item 9’s coding scheme, we first look at theoretical descriptions of different approaches to taxonomies. 
Arguments are often divided into non-proof arguments and deductive proof arguments (Reid & Knipping, 
2010). A deductive argument is one that, if valid, has a conclusion that is entailed by its premises. In other 
words, the truth of the conclusion is a logical consequence of the premises and, if the premises are true, the 
conclusion must also be true. It would be self-contradictory to assert the premises and deny the conclusion, 
because the negation of the conclusion is contradictory to the truth of the premises. Therefore, deductive 
arguments may be either valid or invalid (Reid & Knipping, 2010). 
 
G. J. Stylianides (2008) distinguished between two kinds of non-proof argument: empirical arguments and 
rationales. An argument counts as a rationale if it does not make explicit reference to some key accepted truths 
that it relies on or if it relies on statements that do not belong to the set of accepted truths of a community. Harel 
and Sowder (1998) introduced the concept of proof schemes, which classify what constitutes ascertaining and 
persuading for a person (or community). The taxonomy of proof schemes consists of three classes: external 
conviction, empirical conviction, and deductive conviction. Within the external conviction class of proof 
schemes, to prove depends on an authority, such as a teacher or a book. It could also be based strictly on the 
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appearance of the arguments or on symbol manipulations. Proving, within the empirical proof scheme class, is 
marked by reliance on either evidence from examples or direct measurement of quantities, substitutions of 
specific numbers, or perceptions. The third, deductive proof scheme class consists of two subcategories, each 
consistent with different proof schemes: the transformational proof scheme and the axiomatic proof scheme. 
In Table 2, the created theoretical taxonomy of items about ‘inquiry to make a conjecture’ and ‘developing 
argumentation’ (such as item 9 in Figure 1) is presented, based on theories from Harel and Sowder (1998) and 
G. J. Stylianides (2008). The scale is ordinal. 
 
At Location I, students are only able to develop a conjecture, and there are no arguments at all. At Location II, 
the conjecture is explicit, but the argument is only a rationale (G. J. Stylianides, 2008) or from an external 
conviction proof scheme (Harel & Sowder, 1998). Location III includes students who can support a developed 
conjecture with an empirical argument. Locations IV and V indicate students who can make a conjecture, draw 
implications by linking pieces of information from aspects of the problem, and make arguments from one side 
(Location IV) or more than one side (Location V). This resembles what Harel and Sowder (1998) called a 
deductive proof scheme. In the design phase, the research group’s main focus was on whether each textual 
passage and its associated items adhered to a theoretical model, but, in the development and testing phases, the 
main focus was on whether the students’ responses were associated with these theories. 

 
Table 2. A Theoretical Model of the Taxonomy of Reasoning in Mathematics for Item 9 

Location Taxonomy developed from theory Coding scheme for item 9 Codes for 
item 9  

V Develop/follow/critique 
assumptions/claims/statements with two-
sided comparative deductive/mathematical 
arguments. 
Draw implications by linking pieces of 
information from separate aspects of the 
problem and make a chain of 
argumentation using 
deduction/mathematical concepts. 

  

IV Develop/follow/critique 
assumptions/claims/statements supported 
with one-sided mathematical/deductive 
arguments. 
Draw implications by linking information 
from the problem with argument(s). 

‘The mean is a good way of 
comparing the temperature, and 
the mean is higher in January than 
in December because, in 
December, the mean is 3 and in 
January it is 4. We can say that it 
is warmer in January.’ 

3 

III Develop/follow/critique 
assumptions/claims/statements supported 
with empirical argument. 
Draw implications from reasoning steps 
within one aspect of the problem that 
involves empirical entities. 

‘In January, it’s a little warmer. 
The highest temperature is 10 and 
the lowest is 1.’ 
‘Monday difference = 6, Tuesday 
difference = 1, Wednesday 
difference = 0, Thursday 
difference = 3, Friday difference 
= 1, Saturday difference = 4, 
Sunday difference = 2. Warmest 
in January.’ 

2 

II Develop/critique an 
assumption/claim/statement supported 
without a sufficient argument. 
Draw implications with only a simple 
rationale or external conviction arguments. 

‘December is snowy, so it is 
colder, and in January there is no 
snow.’ 

1 

I Only an assumption/claim/statement 
without argument. 
Draw implications without any 
argumentation. 

‘December was the coldest week.’ 
(no arguments – only an 
assumption) 
‘January is warmer.’ 

1 

0 No claim or assumption in connection to 
the question – off track. 

Blank  0 
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Phase 2: Developing the test. The coding guides were developed in an iterative process within the research 
group (the authors of this paper together with an associate professor) and teachers. Trainee teachers participated 
as raters in this process, and, to be sure of intercoder reliability, they double-coded 20% of all items in both the 
pilot study and the three trials in the KiDM project, to fine-tune the categories, all of which needed to be 
exhaustive. There was 82% consistency between the double-coded items in the KiDM project. Agreement 
between the scores awarded for TIMSS in 2011 and 2015 ranged, on average, from 92% in science to 98% in 
mathematics among the year 4 students (Foy et al., 2016), but it is important to note that most TIMSS items are 
dichotomic, while the current test has polytomous items with up to four different codes, and so the intercoder 
reliability will inevitably be lower. 
 
The number of test items was relatively small because it was not possible to include many different open-ended 
items due to it taking a long time for students in years 4 and 5 to answer such questions, for which they had to 
write their arguments. For ethical reasons, no more items were developed, as the assignment would then be too 
extensive for these 9-to-11-year-old children to complete. The person separation index would therefore be low 
in the test and could have been increased by expanding the number of items. 
 
The primary function of the measurement model is to bridge from the empirically found scores to the 
theoretically constructed model (Wilson & Gochyyev, 2013). The measurement model chosen in this test is the 
Rasch model. Georg Rasch (1960) introduced a probabilistic model for item response, which gives the 
probability p of scoring a given category k for item i, with difficulty δik and the ability of the respondent θ; m is 
the maximum score for the item. Here is the partial credit model: 

 𝑝 𝑥𝑛𝑖 = k =
𝑒𝑘(𝜃𝑛−𝛿𝑖k )

1 +   𝑒𝑘(𝜃𝑛−𝛿𝑖k )m
k=1

 

 
Rasch analysis allows us, for example, to compare the difficulty of mathematical reasoning problems while also 
locating the degree to which individual students have mastered the necessary skill set. This location of reasoning 
competence and students on the same unidimensional scale allows a fine-grained analysis of which aspects of 
the reasoning process being analyzed makes one problem more difficult than another. The analysis was done 
using the RUMM2030 software (Andrich, 2009). 
 
In Figure 2, we see how the probabilities of the different scores (0, 1, 2, 3) develop as a function of the students’ 
ability on item 9 (from Figure 1). When we use a Rasch model as a measuring model, it is important to 
acknowledge that the answer at a higher location must not only differ from the answer at a lower location, but 
also be better in a significant way – it must be regarded as superior to the answer at a lower level because, in the 
Rasch model, we regard students who give an answer at a higher level as showing more ability than those who 
do not (Bond & Fox, 2015). 
 

 
Figure 2. The Probability Curves for Item 9 

 
Based on the students’ responses from the pilot test, each item was analyzed using the Rasch model to calibrate 
the measurement tool, with the aim of eliminating obvious misfits from the test; six items were thus removed 
after the pilot test. 



International Journal on Social and Education Sciences (IJonSES) 

27 

Phase 3: Content validity after the pilot test. To make sure the items were measuring the specific competence 
(content validity), two things were done. Together with a mathematical researcher, the first author of this paper 
worked through all the answers from the pilot schools to determine the extent to which the theoretical purposes 
were revealed in the students’ responses. This means that all the different types of student response were 
evaluated, and it was determined whether these responses were indicative of the student showing reasoning 
competence; whether the answers were more about being able to, for example, multiply; or whether they were 
non-rational guesses that did not show mathematical reasoning. 
 
Furthermore, think-alouds were conducted with two students in which the students’ responses were audio 
recorded and afterwards analyzed to ensure both that the items met the requirement of being understandable to 
the students’ age groups and that the students’ responses were desirable answers within the intended content 
areas. This was to verify that the students, in the process of answering the items, did mathematical reasoning – 
for example, whether they considered different arguments for their solutions or whether their answers were 
developed by a using simple skill algorithm or rote learning. As a result, many formulations of the items were 
changed, and more items were added in the different mathematical areas. 
 
A good measurement process in education will provide for the estimation of just one ability at a time and will 
not intentionally or unintentionally confuse two or more human attributes into one measure. This is, however, 
difficult in close-to-reality items. For example, one item might rely on language comprehension to understand a 
context, while another might focus too much on students’ ability to interpret a complex geometrical drawing or 
algebraic reduction. The resulting score would then be uninterpretable, to the extent that these other abilities are 
manifested in the students’ responses. The important thing for us was that these aspects not overwhelm the role 
of the desired attributes. In the competence test, it was therefore decided that each of the items should contribute 
in a meaningful way to the construction of a mathematical competence and that each mathematical competence 
should have content from all areas – algebra, geometry, and statistics. Some competences had several items 
from each area. 
 
 
Results 
 
Construct Validity in the KiDM Test 
 
To validate the construct of the KiDM test, we first conducted four important tests: a monotonicity test, a test 
for unidimensionality, a test for response dependence, and a measurement of differential item functioning (DIF). 
The analyses were performed using the test data collected at the baseline (in all three trials). To investigate 
whether items met the requirement of monotonicity, two different conditions were examined. Monotonicity 
concerns whether the likelihood of a student responding correctly to an item increases the better the student is. 
First, we graphically inspected the empirical curve of each item, which shows the proportion of correct 
responses for student groups, broken down by their skill level and matched with the theoretically expected 
difficulty of the task. We also inspected the fit-residual statistics (as well as the chi-squared test), which tells 
how large the deviations are between an item on the empirical and theoretical curves. From a trade-off between 
the graphical inspection and the fit residual, four were excluded from the scale because the deviations between 
the empirical and theoretical curves were too large. 
 
We also investigated whether the items fit to the dimension (a unidimensionality test) and did not 
overdiscriminate or underdiscriminate. With residuals smaller than −2.5, we found 11 items that 
overdiscriminated, while there were 22 items that underdiscriminated, with residuals larger than 2.5. For 
students with low ability, an item with a large discrimination would be the most difficult, but the same item 
would be the easiest for a person with high ability. Other items would overtake the difficulty of the high-
discriminating item for the high-ability students, and the item difficulty would depend on the sample of students. 
We therefore deleted the 10 most extreme items. 
 
To investigate whether there was response independence between the individual items, we looked at the residual 
correlations between each item pair. A residual correlation indicates whether the answer to a task affects the 
probability of responding correctly to another task. One item pair had a residual correlation above 0.3 and was 
eliminated from the test; this was a sign of a breach of the requirement for local independence between the 
items. The eliminated item was selected from a closer examination of which of the two items in the item pair 
had the highest residual correlation with other items. 
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Finally, to ensure that particular groups were not prejudiced, the DIF was tested. This involves controlling for 
respondents’ overall ability and identifying whether an item favors one group of respondents over another. 
Some groups might perform differently overall, but it is not desirable that students from one group find it harder 
or easier to answer an item correctly than students of equal ability from another group. We checked for the DIF 
according to grade level and whether the students attended an intervention school or a control school at the time 
the student took the test. 
 
As assumed, we found no significant differences caused by the students’ belonging to the intervention or control 
group, because the schools were randomly selected, although we found some unproblematic differences in the 
grade level. Figure 3 shows that year 5 students (horizontal lines) had some advantages over year 4 students 
(sloping lines) because they were taught mathematics during their additional year of schooling. This did not, 
however, pose any DIF issues. We also saw some similarly unproblematic differences between the three trials: 
Trial 2 of the competence test had the highest mean (−.571), while the mean for Trial 1 was −.744 and the mean 
for Trial 3 was −.915. This is unsurprising, as Trial 2 took place in the spring, so the classes in that trial had 
attended school half a year longer than the classes in Trials 1 and 3. 
 

 
Figure 3. Person–item Threshold in the Competence Test in School Years 4 and 5 

 
 
Validating through Item Maps 
 
By using the Rasch model to analyze the test answers, it was also possible to use an item difficulty map (Van 
Wyke & Andrich, 2006) (see Figure 4). This map shows the relationship between items and students, taking 
advantage of the fact that persons and items are measured on the same scale. The logit scale, which is the 
measurement unit common to both person ability and item difficulty, is displayed down the middle of the map. 
Because the logit scale is an interval-level measurement scale, equal distances at any point on the vertical scale 
represent equal amounts of cognitive development. 
 
On the item map, the distance of the step from the bottom of the path represents its difficulty – items closer to 
the bottom are easier, those further up are more difficult. To the left, the students are indicated by small crosses. 
In Figure 4, one cross indicates 27 students. Students closer to the bottom have less ability than students at the 
top. SU is an abbreviation for the Danish word Scorede Undersøgende-opgave, which can be translated into 
scored inquiry-based items. 
 
An item map can help researchers identify the strengths and weaknesses of an instrument, such as if some test 
items are measuring the same part of the variable or if there are areas of the tested variable that are missing from 
the test due to a lack of items with different levels of difficulty. In developing this test, our aim was to place 
enough stepping-stones along the path between little development and much development to represent all the 
points useful for our testing purposes; to do that, we needed to collect observations from enough suitable 
persons, but we also needed to have enough items. 
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Figure 4. Item Map for the Items in the Competence Test 

 
In the item map in Figure 4, we see that there are some gaps in the items along the vertical line, which may 
indicate that we lack some items with a specific level of difficulty. We can also use this item map to study the 
validity of the test by exploring whether there is consistency between the theoretically developed levels and the 
empirically developed item map. The idea of the item map is that each student will progress along the steps as 
far as their ability allows – a student will master the steps until the steps become too difficult. How far any 
student moves along the pathway will be our estimate of the student’s ability development. We must, however, 
remember that the Rasch model is probabilistic and therefore does not mean the students will correctly answer 
all the items up to the point at which they are placed and incorrectly answer all the items above it. Rather, the 
item map suggests that a person has a more than 50% probability of responding correctly to tasks below their 
skill level and a less than 50% probability for tasks above their skill level. The expected outcome will therefore 
be different from the actual outcome. 
 
Such comparisons facilitate an assessment of construct validity by providing evidence that the instrument is 
measuring in a way that matches what theory would predict. In Figure 5, the item map from Figure 4 has been 
coded, which is shown with different colors. The items that do not have a specific focus on reasoning 
competence have been removed. The black boxes with white numbers are items for which the students made 
correct assumptions and claims but without any argumentation (Locations I and II in Table 2), and the grey 
boxes with black numbers are items for which the students made argumentations for their assumptions or for 
critiques (Locations III, IV, and V in Table 2). Figure 5 clearly shows that it is more difficult to produce 
arguments than to simply present assumptions or elicit claims in the test items. 
 
The item at the top, SU9.3, is shown to be the most difficult item. In this item, code 3 (from Table 2) is where 
the students had the chance to show they could draw implications by linking pieces of information from separate 
aspects of the problem to make arguments (Location V). In the beginning of the test-development phase (phase 
2), more items in the test were possible to be answered in this way, but there simply were not enough students 
answering correctly at this difficulty level for this coding to be retained in the model, so we had to remove these 
codes from a few items and rethink the code boundaries or combine some codes. This might simply indicate that 
this is a very difficult way to reason for students in school years 4 and 5. 
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Figure 5. Item Map with Codes Indicating Argumentation 

 
In Figure 6, a new coding has been made: the grey boxes with black numbers are complex items and the black 
boxes are non-complex items. A complex item is defined here as one in which the students need to calculate 
more than one result before being able to make an argument or claim. In the Figure, we see that most of the 
complex items are at the top. 
 

 
Figure 6. Item Map with Codes Indicating Complexity of Items 
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Discussion of Validation 
 
During the analysis, we coded for other aspects in the item map as well. For example, we coded items in which 
the students developed their own claims compared to items in which the students only had to understand 
existing claims. This coding, however, only showed that one was not significantly harder than the other, but we 
observed that some items can probably be solved using different methods and that this may call for the 
activation of the competences in different combinations or at different levels, which may have changed the item 
map in another direction. It is therefore recognized that some degree of dissimilarity in the outcomes is 
inevitable. 
 
These kinds of comparison help to facilitate an assessment of validity by providing evidence that the instrument 
is measuring in a way that matches what the theory would predict. To test students’ ability in mathematical 
reasoning and to be aware of how it grows and becomes more sophisticated over time is interesting for multiple 
reasons. It is interesting for the students to be aware of where they are heading, but it is also important for 
researchers in the development of curricula, teaching materials, and tests and other evaluation tools. 
 
 
Testing Mathematical Competences in the KiDM Project 
 
The final number of items after calibrating the test was 23, of which 13 were focused on reasoning. This number 
may be considered large when one contemplates that open-ended items require students to write a short passage, 
but in the context of the Rasch model's requirements, the number is relatively small. After collecting baseline 
and endline data in the control and intervention schools in all three trials, the final results of the KiDM test 
indicate that it is not possible to measure any positive effect in student mathematical competences in the 
intervention schools compared to the control schools, with a statistical significance level of 0.05. This means 
that we cannot rule out that the differences between the intervention and control group levels of mathematical 
competence were coincidental. 
 
There may be several reasons for this. The intervention, over a relatively short period, may not trigger any 
significant changes for the students at the intervention schools compared to the control schools, who may also 
have been taught competences in mathematics. Another issue is that, even though there were many students 
included in the trial, the randomization was carried out at school level – cluster-corrected standard errors were 
used, taking into account that students who attended the same school were not independently drawn, but the 
students were clustered in schools. The number of intervention schools was 38, with 45 control schools, which 
is a relatively small number and may also have had an effect on the possibilities for finding a significant result. 
However, we can identify two reasons why the test may not have worked as desired. Firstly, the fitting of the 
items to the construct meant that a relatively high percentage of the items were removed, resulting in relatively 
few items (23) that fitted the model; this relatively small number of items would affect the results. Secondly, 
many of the items were located at the difficult end of the scale, compared to the students, which means that 
many students did not respond correctly to any of the items. 
 
 
Conclusion and Implications 
 
We have shown that there is some consistency between our empirically developed item map and the 
theoretically developed map, but we also found some limitations. One disadvantage of the data is that, in this 
test, the items are separate components – it is unclear whether they can ever add up to higher-order thinking in 
which knowledge and skills can be detached from their contexts or their practice and use. Is it at all possible to 
measure a skill component in one setting that is learned or applied in another? This means that, perhaps, we 
cannot validly assess a competence in a context very different from the context in which it is practiced or used 
(Resnick & Resnick, 1992); the test might have been improved if this had been even more in focus during 
development. 
 
Moreover, we also see some limitations in connection with students who have difficulty writing. Although the 
tasks could be read out by a computer, the year 4 students especially may have had trouble arguing their answers 
in writing. Here, it could have been interesting for the students to be able to draw their answers, which, 
unfortunately, was not possible in our setting. Finally, a measure of concurrent validity is missing, and it could 
have been interesting to compare the students’ scores in this test to their scores in the national test, to see if the 
scores were predictive; however, this was also not possible in our setting. 
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The item maps are very interesting from a mathematical educational research perspective, because they can 
inform the discussion about what students find easier or more difficult using empirical findings and not just 
expert opinion. Many different codings could be made; for example, are items with context or without context 
more difficult? Do illustrative pictures make an item easier? However, to do studies like this, we need to be very 
aware of how the items are developed, to ensure that these aspects can be measured. 
 
In conclusion, this paper presents a serious attempt to answer how an achievement test to measure reasoning 
competence in mathematics can be designed, developed, and tested, and the KiDM test is a serious suggestion 
for a more open-ended test that measures mathematical competence. Our purpose in this paper is to encourage 
mathematical education researchers to not only criticize achievement tests, but also to focus on how we can 
develop new alternatives to measuring other competences or to improve already developed tests, given that 
testing seems to be here to stay. 
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