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In the past 15 years, we have seen an increased 
emphasis on the use of randomized trials (RTs), 
particularly cluster randomized trials (CRTs), to 
test the efficacy of educational interventions 
(Spybrook et al., 2016). In a CRT, entire clusters, 
most often schools, are randomly assigned to con-
dition. The most prominent funder of CRTs to 
assess the efficacy of educational interventions is 
the Institute of Education Sciences (IES), the 
research branch of the U.S. Department of 
Education. Since its inception in 2002, IES has 
played a leadership role in shaping education pol-
icy and practice around the use of RTs and CRTs 
to assess the efficacy of educational programs 
(Cook & Foray, 2007). As the leading funder of 

education research, IES has funded more than 
250 efficacy studies, many of which are CRTs. 
Although there certainly are other federal funders 
of CRTs aside from IES, for example, the 
National Science Foundation (NSF) and the 
Office of Investment and Innovation (OII), IES 
has undoubtedly played a leadership role in the 
movement toward the use of CRTs to test educa-
tional interventions and as such is featured prom-
inently in this article.

IES was established by the Education Science 
Reform Act of 2002. The mission of IES is to 
build a body of rigorous evidence to inform edu-
cation policy and practice (http://ies.ed.gov). In 
the early years, this meant that IES focused on 
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answering the what works question. For exam-
ple, what math curriculum is most effective for 
improving math achievement? What reading pro-
fessional development program is most effective 
for improving reading achievement? IES priori-
tized efficacy studies that included RTs, most 
often CRTs, to answer this question. Although 
answering the what works question is still a pri-
mary goal of efficacy trials, over time we have 
seen the goals expand to questions about for 
whom and under what conditions. These types of 
questions are critical in that they help provide a 
more comprehensive picture about the types of 
students and schools that the programs are most 
impactful. For example, a new math program 
may be more effective for girls than boys or 
small schools rather than large schools. This is 
important information for school administrators 
as they consider whether or not an intervention 
will work in their schools and for their students. 
These questions are also central to the mission of 
IES to improve outcomes for all students.

Changes in the IES Request for Applications

As the goals of efficacy studies have evolved, 
so have the methodological expectations for the 
design of these studies. Although there are many 
important methodological components to the 
design of a rigorous efficacy study, we limit the 
scope of this article to one component, the statis-
tical power to detect effects, specifically main 
effects and moderator effects. The main effect 
corresponds to the what works question, whereas 
the moderator effects correspond to the for whom 
and the under what conditions question. To docu-
ment the changes in the methodological expecta-
tions around statistical power for main effects 
and moderator effects, we reviewed the IES 
requests for applications (RFA) from 2002 to 
2017. Specifically, we focused on the guidelines 
for efficacy studies including the methodological 
requirements described in two relevant sections 
of the RFA, the section on statistical power and 
the section on the description of moderating vari-
ables. In the early RFAs, the language in the sec-
tion on statistical power specified that a power 
analysis for the main effect of treatment was nec-
essary. However, the details about what to 
include in the power analysis were limited. The 
study of moderating variables was encouraged in 

the section describing moderating variables. 
However, there was no mention of including a 
power analysis for moderator effects.

Over time, the requirements for the level of 
detail corresponding to the power analyses for 
the main effect of treatment were strengthened. 
For example, the RFA in the field year 2007 
(Institute of Education Sciences, 2006) includes 
language stating that applicants must provide 
details related to the power analyses for the main 
effect of treatment and must justify the expected 
effect size. Furthermore, applicants planning a 
CRT should consider the total number of schools 
as well as the number of individuals per school 
and other relevant design parameters for CRTs. 
Spybrook and Raudenbush (2009) and Spybrook 
et  al. (2016) examined the statistical power of 
studies to detect the main effect of treatment in 
IES-funded CRTs. The findings from these stud-
ies suggest that the precision of IES-funded stud-
ies has increased over time.

The requirements for the description of plans 
to assess moderating variables changed very lit-
tle between 2002 and 2012. The RFA for the field 
year 2012 (Institute of Education Sciences, 2011) 
represents the first RFA to mention statistical 
power as it relates to moderating variables. In the 
section on the description of the moderating vari-
ables, the RFA stated,

The Institute expects efficacy studies to examine 
relevant moderating factors. . . . The Institute 
recognizes that many efficacy studies are not powered 
to test the effects of a wide-range of moderators and 
so expects applicants to focus on a small set of well-
justified ones.

Notably, in the section on the power analysis, the 
RFA did not explicitly ask for a power analysis 
for moderators.

The next key change related to methodological 
expectations around moderator effects occurred 
in the field year 2017 (Institute of Education 
Sciences, 2016). The RFA stated that the analysis 
of moderators is not required but rather that it 
makes for a stronger application in the section on 
the description of the moderators in the RFA. 
However, in the section on power, the RFA asks 
applicants to provide detailed power analyses for 
moderation, even if the moderator questions are 
considered exploratory. This represents a clear 
shift in the expectations for those designing 
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studies from including one power analysis for the 
main effect of treatment to also including power 
analyses for important moderator effects.

This shift toward including power analyses 
for moderator effects in efficacy trials represents 
unchartered territory for many researchers plan-
ning CRTs to test the efficacy of educational 
interventions. From 2002 to 2017, the focus was 
on designing CRTs to detect the main effect of 
treatment of a reasonable magnitude. During this 
time, several design principles emerged related 
to power for the main effect of treatment in CRTs. 
For instance, from a sample size perspective, it is 
now well known that the total number of schools 
is the key driver for increasing the power to 
detect the main effect of treatment in a CRT (e.g., 
Hedges & Rhoads, 2009; Raudenbush, 1997; 
Schochet, 2008). We also know that the smaller 
the intraclass correlation coefficient (ICC), or 
percentage of variance in the outcome that is 
between schools, the greater the power to detect 
main effects. Likewise, the inclusion of covari-
ates that are strongly related to the outcome can 
increase the power to detect main effects. The 
empirical literature also suggests that educational 
interventions designed to improve achievement 
often yield effect sizes of approximately .20 to 
.30 standard deviation units, and hence powering 
a study to detect an effect of this magnitude is 
important (Hill et  al., 2008). However, these 
same types of design principles and empirical 
analyses do not exist for power analyses for mod-
erator effects in CRTs. But, given the changes in 
the RFA, it is important to start to investigate the 
design principles and the power of CRTs to detect 
moderator effects.

In this article, we examine the power to detect 
main effects and moderator effects for a sample 
of CRTs funded by IES. We intentionally select 
CRTs funded after 2012 when the RFA was mod-
ified to include more attention on moderator 
analyses. These studies represent CRTs that are 
typical in size and fall within budgetary con-
straints. We begin by asking the question:

1.	 What is the minimum detectable effect 
size (MDES) or the smallest effect size 
each study is designed to detect with a 
power of .80 (addressing the what works 
question)?

Given the emphasis on designing studies to 
detect treatment effects in the range of .20 to .30, 
and our use of planned sample sizes, we antici-
pate this will be the range for the MDES. Then 
we ask the following:

2.	 What is the minimum detectable effect 
size difference (MDESD) or the smallest 
differential effect size each study is 
designed to detect with a power for .80 for
(a)	 Individual-level moderator effects 

(MDESDIND; typically addressing 
the for whom question);

(b)	 Cluster-level moderator effects 
(MDESDCL; typically addressing the 
under what conditions question)?

Currently, no set of empirical benchmarks 
exist for the magnitude of moderator effects like 
the empirical benchmarks we rely on for main 
effects. Hence, we begin by simply determining 
the magnitude of the moderator effects studies 
are powered to detect and comparing it with the 
magnitude of the main effect studies are powered 
to detect. By considering the MDESDs and the 
MDES for the same set of studies, we are also 
able to examine where the design principles 
underlying power for main effects and moderator 
effects are consistent and where they diverge.

Our focus is specifically on design principles 
related to sample sizes. We focus on sample sizes 
for several reasons. First, the sample size is often 
something that is more under the control of the 
researcher than other design parameters. Second, 
our dataset includes studies with varying sample 
sizes at all levels which allows us to empirically 
examine the role of sample sizes. Third, we do not 
vary other design parameters across studies—that 
is, we use the same range for the ICC(s) and 
percentage of variance in the outcome that is 
explained by covariate(s). We use estimates for 
these design parameters based on recent empiri-
cal work, a practice which is common among 
researchers planning CRTs.

It is important to keep in mind that the CRTs 
in this sample were not required to be powered to 
detect moderator effects of a particular magni-
tude. Rather, these studies are being used to rep-
resent the typical size of efficacy trials funded by 
IES. The findings from this study will help the 
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field assess the potential for current CRTs and 
future CRTs that are similar in size and scope to 
answer questions about what works, for whom, 
and under what conditions. The findings will 
also help inform dialogues between funders and 
researchers about the feasibility of designing 
CRTs to sufficiently address all three types of 
questions. Note that this is a nontechnical presen-
tation of statistical power and design implica-
tions and we refer readers to relevant literature 
throughout for a detailed discussion of the tech-
nical details behind the power calculations.

The article is organized as follows. We begin 
with a description of the sample of studies we 
used for the empirical analyses. Then we pro-
vide a brief overview of how we calculated the 
MDES, MDESDIND for an individual-level mod-
erator, and MDESDCL for a cluster-level moder-
ator. We present the findings for the studies and 
elucidate the role of sample sizes at different 
levels in power for main effects and moderator 
effects. We also consider the magnitude of the 
main effects and moderator effects the studies 
are designed to detect in light of what is known 
about effect sizes in education. Finally, we sum-
marize the findings and consider the next steps 
in the quest to answer what works, for whom, 
and under what conditions.

Sample Description

The sample for this study included IES-funded 
efficacy trials between 2013 and 2018. We inten-
tionally selected a starting point after 2012, 1 year 
after moderators started to be emphasized in the 
RFA. We identified the studies through the IES 
website (https://ies.ed.gov/funding/grantsearch/
index.asp). There are four centers within IES: the 
National Center for Education Research (NCER), 
the National Center for Special Education 
Research (NCSER), the National Center for 
Education Evaluation and Regional Assistance 
(NCEE), and the National Center for Education 
Statistics (NCES). NCER funds the largest num-
ber of efficacy studies of the four IES centers and 
hence is the focus of this study. We searched 
funded grants to identify all of the efficacy studies 
funded by NCER between 2013 and 2018, a total 
of 75 studies (https://ies.ed.gov/funding/grant 
search/). For each efficacy study, we obtained 
the structured abstract. The structured abstract 

includes key information about each study related 
to Research Design and Methods, Key Measures, 
Data Analytic Strategy, Setting, and so on. The 
grantee is responsible for completing the struc-
tured abstracts at the time a study is funded, and 
hence the information in the structured abstract is 
based on the planned study. We selected a sub-
sample to narrow down the sample to studies that 
were comparable.

Our inclusion criteria included the following: 
First, the study targeted students in grades pre-
K–12 and academic achievement was one of the 
primary outcome variables. This removed two 
postsecondary studies and two additional stud-
ies that did not focus on academic outcomes. 
The design parameters, for example, ICC(s) and 
percentage of variance in the outcome that is 
explained by covariate(s), for planning studies 
focused on improving academic outcomes for 
grades pre-K–12 are often quite different from 
those focused on planning postsecondary studies 
or pre-K–12 studies focused on improving social–
emotional or other types of outcomes (Bloom 
et al., 2007; Dong, Reinke, et al., 2016; Hedges & 
Hedberg, 2007, 2013; Westine et  al., 2013). 
Hence, as we wanted to hold the range of design 
parameters constant across studies to isolate the 
effect of the varying sample sizes, it made sense 
to remove these studies. Furthermore, effect sizes 
are context specific and the magnitude of an 
effect in an academic domain in pre-K–12 may 
have a different meaning than that in a social–
emotional or other domain or at the postsecond-
ary level (Hill et al., 2008). Thus, for consistency 
and to enable comparisons across studies, we 
focused only on studies for pre-K–12 with aca-
demic achievement as a primary outcome.

Second, we restricted the sample to nested 
two- and three-level CRTs only. That is, we did 
not include multisite CRTs, for example, designs 
in which students are nested within schools and 
schools are randomly assigned to condition 
within multiple districts. To date, the literature 
and tools for calculating power for moderator 
effects in CRTs are limited. This study draws 
heavily on two papers that provide power calcu-
lations for moderator effects in two- and three-
level CRTs (Dong et al., 2018; Spybrook et al., 
2016). There is also a tool, PowerUp!-Moderator 
(Dong, Kelcey, et al., 2016), which allows users 
to conduct power calculations for moderator 

https://ies.ed.gov/funding/grantsearch/index.asp
https://ies.ed.gov/funding/grantsearch/index.asp
https://ies.ed.gov/funding/grantsearch/
https://ies.ed.gov/funding/grantsearch/
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effects for two- and three-level CRTs. However, 
the literature and tools for multisite CRTs are not 
as developed. Bloom and Spybrook (2017) exam-
ine power for moderator effects in multisite 
CRTs. However, they only consider site-level 
moderators. That is, they do not consider indi-
vidual-level moderators or cluster-level modera-
tors. Furthermore, PowerUp!-Moderator (Dong, 
Kelcey, et al., 2016) does not yet include options 
for calculating moderator effects for multisite 
CRTs. Given that we are demonstrating power 
calculations, we wanted to focus on designs with 
the literature and tools currently available for 
users planning CRTs and wanting to employ 
power calculations for moderator effects. As 
such, we removed 28 multisite CRTs.

Third, the study had to be an original study and 
not a follow-up of a prior CRT. Follow-up studies 
are intended to assess the longer-term outcomes 
of an intervention and often do not tend to include 
a CRT. Five follow-up studies were removed. 
Finally, one study was removed because sample 
sizes were not available via the structured abstract. 
Of the 75 studies originally identified as Cohort 2, 
37 are included in this study. See Appendix for a 
list of the studies in the sample.

The topics, grade levels, and design classifica-
tions (discussed in the next section) for the 37 
studies are identified in Table 1. From Table 1, we 
can see that Social, Behavioral, and Developmental 
interventions were the most common in this sam-
ple. The remaining topic areas were very similar 
in terms of the number of studies in the sample. 
Table 1 also revealed that the majority of the stud-
ies targeted students in elementary schools fol-
lowed by pre-K.

Design Classification

The MDES and MDESD calculations differ 
slightly depending on whether the study is a two- 
or a three-level CRT. Hence, it is critical to first 
classify the study design. In a two- or three-level 
CRT, random assignment occurs at the top level. 
The difference in these two designs occurs in the 
total number of levels, 2 or 3. In more concrete 
terms, a two-level CRT may include students 
nested within schools in which schools are the 
unit of random assignment. Students represent 
Level 1 and schools represent Level 2, the top 
level and unit of randomization. A three-level 

CRT may include students nested within teachers 
nested within schools in which schools are again 
the unit of random assignment. Students repre-
sent Level 1, teachers represent Level 2, and 
schools represent Level 3, the top level and unit 
of randomization.

We classified the designs for the 37 studies in 
this sample. In addition, we identified the spe-
cific levels in each study. The design classifica-
tions are shown in Table 1. Approximately 73% 
(n = 27) of the studies were two-level CRTs. Of 
the two-level CRTs, the majority were designs in 
which students were nested within teachers or 
classrooms (n = 17). For the purposes of this 
article, we use the term teacher rather than class-
room. If a teacher had more than one section, we 
refer to those as class sections. For these 27 stud-
ies, schools were not explicitly mentioned in the 
structured abstracts. Hence, it may be the case 
that multiple teachers were within one school or 
that there was only one teacher within each 
school. Without further information about the 
number of schools and distribution of teachers 
within schools, it was safest to assume one teacher 
per school. This provides more conservative esti-
mates of the MDES and MDESD as the power to 
detect effects will often increase if there is some 
type of blocking of teachers within schools. Ten 
two-level CRTs included a nesting structure 
within students nested within schools. In these 
cases, the teacher level was not explicitly men-
tioned in the study abstract. Approximately 27% 
(n = 10) of the studies were three-level CRTs. 
These 10 studies followed the nesting structure 
of students nested within teachers nested within 
schools.

Sample Sizes

For each study, we determined the sample 
sizes at each level based on the structured 
abstract. The structured abstracts are written by 
the grantee after the study is funded, and hence 
the sample sizes reflect planned sample sizes. 
This is aligned with the purpose of this study 
which is to examine the MDES and MDESDs at 
the planning phase. In the few cases in which 
more than one treatment was randomly assigned, 
we calculated the total number of clusters for a 
two-group comparison. For example, consider 
a study with 80 schools and four conditions, 
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including three treatment conditions and one 
comparison condition. Assuming there were 20 
schools per condition, we conducted the MDES 
and MDESD calculations using a total of 40 
schools, 20 per each of the two conditions. In the 
cases where recruitment occurred across multi-
ple years, we used the total sample size across 
years for the calculations.

The sample sizes for each of the 37 studies are 
provided in Table 2. In addition, the target grade 
for each study is also identified. The average 
number of schools in the three-level CRTs was 
58 (median = 63). Similarly, the average number 
of schools in the two-level CRTs which random-
ized at the school level was 57 (median = 52). 
The average number of teachers in the two-level 
CRTs which randomized at the teacher level was 
130 (median = 105). A closer look at Table 2 
reveals that the majority of the two-level CRTs 

which randomized at the teacher level were 
pre-K studies. Pre-K classrooms are not neces-
sarily housed within larger schools which may be 
partly why there were so many pre-K studies 
which randomized at the teacher level. It is also 
interesting to note that the studies with a small 
number of students either per teacher or per 
school, for example, 10 or fewer students per 
teacher or per school, tended to be pre-K studies. 
Those that were not pre-K studies but still had a 
small number of students per teacher or per school 
either served a special population or had special 
individualized testing circumstances that likely 
required one-on-one testing which is resource 
intensive.

Method

Next, we describe the MDES and MDESD 
calculations for a two- and a three-level CRT. 
Table 3 provides all of the formulas. More details 
and derivations for the formulas can be found in 
Bloom (2005), Spybrook et al. (2016), and Dong 
et al. (2018).

MDES (Addressing the What Works Question)

We begin with the MDES for the two-level 
CRT. As we can see from Table 3, to calculate the 
MDES, we need to know the total number of 
clusters, J, the approximate number of individu-
als per cluster, n, and the proportion of clusters 
randomly assigned to condition, P. For each 
study, we determined the sample sizes from the 
information obtained in the structured abstract. 
Across all studies, we assumed equal allocation 
of clusters to condition, or a 50–50 split. This 
assumption represents the ideal case and yields 
the smallest MDES. As a design moves away 
from the balanced case, the precision will 
decrease. However, it is important to be aware 
that small deviations, such as a 60–40 split, will 
not result in major changes to the MDES.

From Table 3, we can also see that the MDES 
depends on an estimate of the proportion of vari-
ance between clusters, ICC, and an estimate of 
the proportion of variance explained by covari-
ates, RL1

2  and RL2
2 . These values are not included 

in the online structured abstracts. However, in the 
past decade, we have seen an emerging empiri-
cal database of design parameters necessary for 

Table 1

Topic, Grade Level, and Design Classification for 
Studies in the Sample

No. of studies 
(percent of total)

Topic
  Math and Science 7 (19)
  Social, Behavioral, and 

Developmental
13 (35)

  Literacy, Reading, and Writing 4 (11)
  Teacher Quality and 

Professional Development
7 (19)

  Othera 6 (16)
Grade level
  Pre-K 11 (30)
  Elementary 18 (49)
  Middle school 6 (16)
  High school 2 (5)
Two-level CRT
  Students nested within 

teachers
17 (46)

  Students nested within schools 10 (27)
Three-level CRT
  Students nested within 

teachers nested within schools
10 (27)

Note. CRT = cluster randomized trial.
aOther topics include English Learners, Educational Technol-
ogy, Early Learning Programs, and State and Local Evalu-
ations.
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Table 2

Sample Sizes and Grade Level for Each Study in the Sample

Three-level CRT 
(Study ID)

Total no. 
of schools

Avg. no. of teachers 
per school

Avg. no. of students 
per teacher Target grade

  1 72 3 10 Pre-K
  2 30 20 23 Middle
  3 66 4 52 Middle
  4 32 8 25 Elementary
  5 30 16 65 Elementary
  6 56 3 25 Elementary
  7a 60 7 6 Elementary
  8a 66 6 20 Elementary
  9a 70 5 3 Elementary
10a 100 2 4 Elementary

Two-Level CRT 
(Study ID)

Total no. of  
schools

No. of students per 
school Target grade

11 20 24 Elementary
12 30 21 Elementary
13 52 673 Elementary
14 56 20 Elementary
15 81 60 Elementary
16 85 200 Elementary
17a 40 18 Middle
18a 50 10 Middle
19a 52 10 High
20 103 100 High

Two-Level CRT 
(Study ID)

Total no. of 
teachers

No. of students per 
teacher Target grade

21 60 8 Pre-K
22 60 8 Pre-K
23 64 19 Pre-K
24 100 8 Pre-K
25 100 10 Pre-K
26 120 10 Pre-K
27 120 10 Pre-K
28 120 18 Pre-K
29 140 8 Pre-K
30 220 5 Pre-K
31 84 26 Elementary
32a 110 25 Elementary
33 160 19 Elementary
34 440 10 Elementary
35 130 40 Elementary
36 55 20 Middle
37 100 25 Middle

Note. CRT = cluster randomized trial.
aStudies represent those included a special population, for example, English Language Learners, students with severe social 
anxiety, social skill challenges, disruptive behaviors, or special individualized testing circumstances.
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planning CRTs, particularly for CRTs focused on 
academic achievement. This set of empirical esti-
mates is often used for planning CRTs and, as 
such, we used the empirical literature to estimate 
the ICC, RL1

2 , and RL2
2 .

The empirical literature suggests that design 
parameters vary by context, where context 
includes factors such as grade level, subject area, 
and types of schools. To account for this varia-
tion, we use a range of values to estimate the 
design parameters. Note that the upper and lower 
bounds we use for the empirical estimates of the 
design parameters capture the typical variations 
across grade level, subject areas, types of schools, 
and so on when the outcome is academic achieve-
ment. We estimate the design parameters for the 
two-level CRTs from the empirical studies which 
nest students within schools.

Although 17 of our studies actually have 
teacher as Level 2, recall that we assumed one 
teacher per school. As such, school and teacher 
are confounded and estimates of design parame-
ters from data with students nested within schools 
are reasonable. The estimates we used for the 
ICC, RL1

2 , and RL2
2  are based on the range of 

estimates found in the empirical literature and 
are provided in Table 4 (e.g., Bloom et al., 2007; 
Brandon et al., 2013; Hedges & Hedberg, 2007, 
2013; Jacob et al., 2010; Spybrook et al., 2016; 
Westine et al., 2013; Zhu et al., 2012). In our cal-
culations, we assume one covariate at each level. 
We could include multiple covariates at each 
level. However, each additional covariate at 
Level 2 results in the loss of one additional 
degree of freedom. Given that the pretest is a 

common and powerful covariate in CRTs focused 
on academic achievement and that, after the pre-
test is included, additional covariates do not tend 
to explain much more variation, we assume that 
the covariate is a pretest and do not include other 
covariates.

Looking to the right in Table 3, we see the 
MDES for a three-level CRT. The MDES looks 
very similar to the two-level CRT. The key dif-
ference is that now there are three sample sizes, 
two ICCs, and potentially three R2 values. As in 
the case of the two-level CRT, we used the struc-
tured abstract to determine the relevant sample 
sizes for each study and assumed a balanced 
design. We turned to the empirical literature to 
estimate the ICCs and R2 values (e.g., Bloom 
et  al., 2007; Hedges & Hedberg, 2007, 2013; 
Jacob et al., 2010; Westine et al., 2013). Although 
there is quite a substantial literature base of 
empirical estimates of ICCs for two-level studies 
with students nested within schools, there is 
much less available for three-level studies with 
students nested within teachers nested within 
schools.

To our knowledge, there are three studies that 
estimate design parameters for students nested 
within teachers nested within schools (Jacob 
et  al., 2010; Nye et  al., 2004; Xu & Nichols, 
2010). For reading and math outcomes, these 
studies tended to report approximately 5% to 
10% of the variation in the outcome at the teacher 
level and large portions of teacher- and school-
level variance explained by pretests. We use this 
to guide our estimates of the ICC ranges as shown 
in Table 4.

Table 4

Design Parameters Used in Calculating MDES, MDESDIND, and MDESDCL for Two- and Three-Level CRTs

Two-level CRT Three-level CRT

  ICC RL12 RL22 ICC3 ICC2 RL12 RL22 RL32

MDES .15, .25 .20, .50 .50, .80 .10, .15 .07, .10 .20, .50 .20, .50 .50, .80
MDESDIND .15, .25 .20, .50 — .10, .15 .07, .10 .20, .50 — —
MDESDCL* — — — .10, .15 .07, .10 .20, .50 .20, .50 —
MDESDCL .15, .25 .20, .50 .50, .80 .10, .15 .07, .10 .20, .50 .20, .50 .50, .80

Note. MDESDCL in Row 3 for the three-level CRT corresponds to the teacher-level moderator and MDESCL in Row 4 for the 
three-level CRT corresponds to the school-level moderator. Estimates are based on Bloom et al. (2007), Brandon et al. (2013), 
Hedges and Hedberg (2007, 2013), Jacob et al. (2010), Online Variance Almanac (n.d.), Spybrook et al. (2016), Westine et al. 
(2013), and Zhu et al. (2012). MDES = minimum detectable effect size; CRT = cluster randomized trials; ICC = intraclass 
correlation.



364

MDESDIND (Addressing the for Whom 
Question)

Similar to the MDES, the MDESDIND calcula-
tions differ depending on the design. We begin 
with the two-level CRT. For illustrative purposes, 
we assume a binary individual-level moderator, 
such as gender. From Table 3, we can see several 
differences in the MDESDIND formula compared 
with the MDES formula. For example, the Level 
2 variance and the percent of variance explained 
at Level 2 do not factor into the MDESDIND cal-
culations. This is because in the case of an indi-
vidual-level moderator, such as gender, in a 
two-level design, the differences in boys and girls 
are within clusters and thus the school effects can-
cel out (Spybrook et  al., 2016). This is critical 
because, as discussed earlier, research over the 
past 15 years has established that the ICC plays a 
big role in the MDES calculations. That is, the 
larger the ICC, the larger the MDES (e.g., Hedges 
& Rhoads, 2009; Raudenbush, 1997; Schochet, 
2008). Furthermore, as the school effects cancel 
out, the total sample size, n × J, becomes the 
critical sample size, whereas the MDES is largely 
driven by the total number of clusters. Another 
important difference is that, in addition to P, the 
proportion of clusters assigned to condition, we 
need to also specify Q, the proportion of individu-
als in each moderator subgroup. Throughout our 
calculations, we assume an equal proportion of 
individuals in each subgroup which again repre-
sents the ideal case. For moderators such as gen-
der, this may be a realistic assumption. For other 
moderators, such as free or reduced price lunch 
status, this may not be appropriate and we caution 
researchers to consider this carefully. Similar to 
the allocation of clusters to condition, the more 
imbalanced the design, the larger the MDESDIND. 
The empirical estimates of the relevant design 
parameters for MDESDIND are shown in Table 4. 
Although inclusion of the moderator may explain 
some additional variance at the level of the mod-
erator, we use the same range of estimates of RL1

2  
as a conservative lower bound. We do not esti-
mate RL2

2  as this does not enter the calculations 
and the ICC is necessary only because the Level 1 
variance contributes to the calculations of 
MDESDIND.

MDESDIND for the three-level CRT follows 
the same pattern as we saw in the case of the 
two-level CRT. That is, the between-school and 

between-teacher effects cancel out so the vari-
ance components at these levels do not contrib-
ute to the variance of the moderator effect and 
the total sample size becomes the key driver of 
MDESDIND. Again, we assume an equal propor-
tion of schools assigned to each condition and 
an equal proportion of individuals in each sub-
group. As shown in Table 4, the relevant design 
parameters for MDESDIND for the three-level 
CRT are consistent with those used to estimate 
the MDES.

MDESDCL (Addressing the Under What 
Conditions Question)

As in the case of an individual-level modera-
tor, we assume a binary cluster-level moderator. 
In the two-level CRTs, we have both schools and 
teachers as clusters. As such, the moderator 
might be something like school type (urban or 
rural) if the cluster is school or teacher experi-
ence (new vs. veteran) if the cluster is teacher. As 
the cluster may represent schools or teachers, we 
simply refer to it as the cluster for the two-level 
CRT knowing that it may represent a school- or a 
teacher-level moderator.

In Table 3, we provide the formula for 
MDESDCL for the two-level CRT in the second 
row of the MDESDCL values for consistency 
with the three-level CRT because the moderator 
in this case is at the top level. The equation for 
MDESDCL looks very similar to that of the 
MDES for a two-level CRT. As such, similar to 
MDES, the total number of clusters will be the 
key driver of MDESDCL. There is also the addi-
tion of the Q term. Assuming an equal proportion 
of clusters assigned to condition and an equal 
proportion of clusters in each cluster-level mod-
erator subgroup, this suggests that, holding all 
else constant, MDESDCL will be larger than the 
MDES. Table 4 shows the same empirical esti-
mates used for MDESDCL. As in the case of 
MDESDIND, we use the same range of estimates 
for the R2 values and the ICC noting that the 
inclusion of the moderator may explain some 
additional variance at Level 2 and as such we are 
estimating a conservative lower bound.

In a three-level CRT, there are two levels of clus-
tering. In our studies, teachers are at Level 2, whereas 
schools are at Level 3. We calculate MDESDCL  
for moderators at both levels and denote them  
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MDESDTCHR(3LCRT) and MDESDSCHL(3LCRT), respec
tively. We begin by looking at MDESDSCHL(3LCRT) 
in Table 3. This equation looks very similar to 
that of the MDES for a three-level CRT with the 
addition of the Q term. As such, it will function 
similar to the MDES where the total number of 
schools will be the key sample size. However, 
MDESDTCHR(3LCRT) looks slightly different than 
the MDES and MDESDSCHL(3LCRT). Although it 
also has a Q term, Q in this case represents the 
proportion of teachers in the moderator sub-
group. Furthermore, the between-school vari-
ance cancels out, similar to the case of the 
individual-level moderator. As such, the between-
school variance does not contribute to the calcu-
lations and the total number of teachers becomes 
the critical sample size. Table 4 shows the same 
empirical estimates used for MDESDTCHR(3LCRT) 
and MDESDSCHL(3LCRT). As in the case of 
MDESDIND, we use the same range of estimates 
for the relevant R2 values and the ICC noting that 
the inclusion of the moderator may explain some 
additional variance and as such we are estimating 
a slightly conservative lower bound.

Results

We begin with the results for the MDES. 
Then we present the findings for MDESDIND for 
the individual-level moderators. Next, we con-
sider cluster-level moderators. We present the 
findings for the MDESD for a school-level mod-
erator followed by the findings for a teacher-
level moderator. The MDES and MDESD are 
graphed together to facilitate comparisons. 
Furthermore, Study ID in all of the figures 
matches Study ID in Table 2.

MDES (Addressing the What Works Question)

The MDES for each of the 37 studies is shown 
by the striped bars in Figure 1. A range of the 
MDES is graphed for each study because a range 
of design parameters was used for all the calcula-
tions to account for the variability in design 
parameters. The mean of the midpoint of the 
MDES across studies is .21 (SD = .06). As we 
expected, this finding is consistent with bench-
marks for meaningful effect sizes in intervention 
studies focused on improving academic out-
comes suggested by Hill et al. (2008).

Hill et  al. (2008) examined 61 randomized 
studies and found average effect sizes ranging 
from .27 to .51 for interventions designed to 
improve achievement outcomes from elementary 
through high school grades. Furthermore, they 
examined 76 meta-analyses of educational inter-
ventions and found average effect sizes ranging 
between .20 and .30. In general, they suggested 
that studies should be designed to detect effect 
sizes for the mean effect of treatment in the 
range of .20 to .30. It is interesting to note that 
the IES RFA does not specify the MDES for a 
study. Rather, the RFA specifies that one should 
conduct a power analysis and provide a strong 
rationale for the appropriateness of the magni-
tude of the main effect the study is powered to 
detect. The findings in Figure 1 suggest that 
most studies are designed with power to detect 
main effects in a reasonable range based on 
empirical benchmarks.

MDESDIND (Addressing the for Whom 
Question)

Now that we know that most studies are 
designed to detect a main effect of a reasonable 
magnitude, the next question is what is the mag-
nitude of individual moderator effects that these 
same studies are powered to detect. Regardless 
of whether a study is a two- or a three-level CRT, 
MDESDIND can be calculated. The results of 
MDESDIND for all 37 studies are displayed by the 
solid bars in Figure 1.

In general, the range for MDESDIND is smaller 
than that of the MDES because as discussed earlier 
the school effects cancel out. As such, the power 
calculations are simplified. For example, the vari-
ance explained at Level 2, RL2

2 , which introduces 
additional variance into the MDES calculations 
does not factor into the MDESDIND calculations. 
The mean for MDESDIND is .19 (SD = .10). Recall 
the mean of the MDES is .21. Although the means 
are similar, from Figure 1 it is clear that there are 
some cases in which MDESDIND is smaller than 
the MDES and others where it is larger than the 
MDES. So the question is what is driving these 
differences.

Let us consider Studies 13 and 21. From 
Figure 1, we can see that the range of the MDES 
for Studies 13 and 21 was approximately .14 to 
.28 and .21 to .33, respectively. The range of 
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MDESDIND for Studies 13 and 21 was approxi-
mately .03 to .05 and .33 to .39, respectively. So 
although the range for the MDES for the two 
studies was not that different, the range for 
MDESDIND was very different. As they both 
were based on the same estimates of the design 
parameters, we know that the differences are a 
function of the sample sizes. From Table 2, we 
can obtain the sample sizes for both studies. 
Study 13 was a two-level CRT with approxi-
mately 673 students per school and a total of 52 
schools. Study 21 was a two-level CRT with 
approximately eight students per teacher and a 
total of 60 teachers. The two studies have a simi-
lar number of total clusters, 52 and 60, respec-
tively. As the MDES is driven by the total number 
of clusters, it makes sense that the range of the 
MDES is similar for the two studies. However, 
they are very different in terms of the number of 
students per cluster, 673 and 8, respectively. 
MDESDIND is driven by the total number of 
students and thus Study 13, with a total of 673 × 
52 = 34,996 students relative to Study 21, with a 
total of 8 × 60 = 480 students, has the capacity 
to detect much smaller individual-level modera-
tor effects.

From Table 2, we can see that the studies with 
smaller numbers of students per cluster tend to be 
the pre-K studies, Studies 21 to 30, and in some 
cases studies that randomized teachers, Studies 
31 to 37. Studies with large numbers of total stu-
dents tend to be elementary, middle, and high 
school studies that randomize schools, Studies 1 
to 20. These include two-level CRTs with stu-
dents nested within schools, Studies 11 to 20, or 
three-level CRTs with students nested within 
teachers nested within schools, Studies 1 to 10. 

Note that for a three-level CRT the total number 
of students is the number of students per teacher 
multiplied by the number of teachers per school 
multiplied by the total number of schools. Figure 
1 reflects the importance of large numbers of 
individuals per cluster in decreasing MDESDIND 
relative to the MDES as Studies 1 to 20, or stud-
ies which randomize schools, reveal cases where 
MDESDIND is smaller than the MDES.

It is also important to consider the magnitude 
of the moderator effects these studies are 
designed to detect. Given the lack of empirical 
benchmarks, we consider the magnitude of the 
moderator effect relative to the magnitude of the 
main effect. In the case of a binary moderator, the 
moderator effect represents a differential effect 
between two groups. Based on prior research 
from psychology, we anticipate that moderator 
effects will be smaller than the main effect 
(Aguinis et al., 2005). Hence, the studies which 
have a smaller MDESDIND than MDES, such as 
Study 13, will tend to be in a stronger position to 
detect individual-level moderator effects. As dis-
cussed above, this tends to be elementary, middle, 
and high school studies that randomize schools. 
Studies of pre-K interventions with small num-
bers of individuals per cluster are likely to not be 
able to detect reasonable individual-level mod-
erator effects.

MDESDCL (Addressing the Under What 
Conditions Question)

We begin by examining the capacity of stud-
ies to detect school-level moderators. Hence, 
the studies that randomize at the school level, 
the two-level CRTs with schools at Level 2 and 

Figure 1.  Minimum detectable effect size (MDES) and minimum detectable effect size difference (MDESD) 
for individual-level moderators for all studies.
Note. The MDES is represented by striped bars and appears to the left of Study ID. The MDESD is represented by solid bars and 
appears to the right of Study ID. The MDES and MDESD are ranges based on the assumptions in Table 2 for the sample sizes 
and Table 4 for the design parameters.



367

the three-level CRTs in the sample are relevant. 
This includes a total of 20 studies. The findings 
are presented alongside the MDES for each 
study in Figure 2. The mean of MDESDSCHL is 
.48 (SD = .15).

Clearly, the magnitude of MDESDSCHL is 
quite a bit larger than that of the MDES. For 
example, consider Study 5, a study targeting ele-
mentary schools with a total of 30 schools, 16 
teachers per school, and 65 students per teacher. 
The MDES ranges from .15 to .30. However, 
MDESDSCHL ranges from .35 to .66. This is 
because just like the MDES, MDESDSCHL is 
driven by the total number of schools. In the case 
of a binary moderator with equal allocation of 
schools to condition and equal numbers of 
schools per moderator subgroup, it is similar to a 
study that compares four groups rather than two 
groups and hence the magnitude of MDESDSCHL 
is approximately twice that of the MDES 
(Spybrook et  al., 2016). Furthermore, the total 
number of schools is the key sample size unlike 
the case of MDESDIND where the number of stu-
dents per school was extremely helpful in detect-
ing smaller individual-level moderator effects.

Just like in the case of an individual-level 
moderator, the cluster-level moderator represents 
a differential treatment effect. Again, the lack of 
benchmarks for the magnitude of moderator 
effects makes it challenging to interpret these 
findings. However, if we assume that moderator 
effects will be smaller than the main effects, this 
suggests that current studies are not well 

positioned to detect meaningful school-level 
moderator effects. Even if we assume that clus-
ter-level moderator effects may be similar to 
main effects, the findings in Figure 2 reveal that 
studies are not powered to detect moderator 
effects of similar magnitudes.

Next, we consider the teacher-level modera-
tor. We begin with two-level CRTs that have 
teachers at Level 2 (n = 17). In these studies, 
teachers represent the top level. Hence, the cal-
culations are identical to those performed for a 
two-level CRT with schools at the top level. We 
separate them out here because substantively it 
is different to think about teacher-level moder-
ators, for example, teacher experience, than 
school-level moderators, for example, school 
type.

The findings are shown in Figure 3. The mean 
MDESDTCHR(2LCRT) value is .37 (SD = .10). From 
Figure 3, we can see that MDESDTCHR(2LCRT) is 
larger than the MDES. Again, this is because, 
just like in the case of the two-level CRT with 
schools at the top level, the MDESD is driven by 
the total number of clusters, or teachers in this 
case. With regard to the magnitude of the teacher-
level moderator effect when teachers are at the 
top level, the fact that it is quite a bit higher than 
the main effect as can be seen in Figure 3 sug-
gests that these studies may not have the capacity 
to detect meaningful teacher-level moderator 
effects.

We also consider the capacity of studies to 
detect teacher-level moderator effects in 

Figure 2.  Minimum detectable effect size (MDES) and minimum detectable effect size difference (MDESD) 
for a school-level moderator for the three-level CRTs and two-level CRTs with schools as the top level in the 
sample.
Note. The MDES is represented by striped bars and appears to the left of Study ID. The MDESD is represented by solid bars and 
appears to the right of Study ID. The MDES and MDESD are ranges based on the assumptions in Table 2 for the sample sizes 
and Table 4 for the design parameters. The upper bound for Study 11 for the MDESD is truncated at 1.0.
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three-level CRTs. In this case, the moderator is at 
the middle level, one level lower than the level of 
randomization. As shown in Table 3, the magni-
tude of MDESDTCHR(3LCRT) in the three-level CRT 
is driven by the total number of teachers, which is 
the number of teachers per school multiplied by 
the total number of schools.

The MDES and MDESDTCHR(3LCRT) values are 
shown in Figure 4. The mean MDESDTCHR(3LCRT) 
value is .21 (SD = .07). From Figure 4, we can 
see that in some cases MDESDTCHR(3LCRT) is 
smaller than the MDES. For example, in Study 2, 
there are 20 teachers per each of 30 schools. 
Hence, the calculations are based on a sample size 
of 20 × 30 = 600 teachers and MDESDTCHR(3LCRT) 
ranges from approximately .11 to .15.

In the case of a three-level CRT with teachers 
at Level 2, studies with large numbers of teachers 
per school may be able to detect smaller teacher-
level moderator effects than main effects. From 
Table 2, we see one middle school study and one 
elementary study with 20 and 16 teachers, 
respectively. In terms of the magnitude of the 
teacher-level moderator effects the studies are 
able to detect, from Figure 4 we can see that sev-
eral of the studies may be able to detect modera-
tor effects that are smaller than .20, the typical 
magnitude we desire to detect for main effects. 
Again, without empirical benchmarks to guide 
these interpretations, it is hard to anticipate if 
these are reasonable; however, we do observe 

that they are smaller than what is deemed to be 
reasonable for main effects.

Conclusion

The findings from this article suggest that 
recently funded IES efficacy trials are designed 
to detect main effects of treatment of approxi-
mately .20 standard deviation units. Given the 
recent empirical literature which suggests that 
boosting academic achievement by .20 standard 
deviation units is a practically significant effect, 
we would expect studies to be designed to meet 
this threshold. As such, our results concur with 
other studies that IES-funded CRTs are well posi-
tioned to answer the what works question 
(Spybrook et  al., 2016). The push toward also 
understanding for whom and under what circum-
stances an intervention is effective suggests the 
importance of assessing the capacity of studies to 
provide rigorous evidence of the effects of indi-
vidual-, teacher-, and school-level moderators. 
The findings from this study shed light on these 
questions.

We begin with the for whom question. Overall, 
some studies were well positioned to detect stu-
dent-level moderator effects that were less than 
.20, and in some cases as small as .03 to .05. 
Studies that were well positioned to detect 
smaller student-level moderator effects were 
those that randomized elementary, middle, or 
high schools and included larger numbers of 

Figure 3.  Minimum detectable effect size (MDES) and minimum detectable effect size difference (MDESD) 
for a teacher-level moderator for the two-level CRTs with teachers as the top level in the sample.
Note. The MDES is represented by striped bars and appears to the left of Study ID. The MDESD is represented by solid bars and 
appears to the right of Study ID. The MDES and MDESD are ranges based on the assumptions in Table 2 for the sample sizes 
and Table 4 for the design parameters.
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students per school. This is a direct result of 
design principles for powering CRTs to detect 
student-level moderator effects. That is, although 
the number of clusters drives the magnitude of 
the main effects studies are designed to detect, 
the total number of individuals, number of clus-
ters times the number of individuals per cluster, 
drives the magnitude of the student-level moder-
ator effects studies are designed to detect. Hence, 
if a study is seeking to answer not only what 
works but also for whom, larger numbers of stu-
dents per school will be helpful in answering the 
for whom question. This is important as increas-
ing the number of students per school may not be 
very costly, particularly in elementary, middle, 
or high schools which often use standardized 
assessment as the key academic outcome.

However, some studies were only able to 
detect student-level moderators that were larger 
than .20, which is not likely to be seen in practice. 
These were pre-K studies or studies with special 
populations. Often, these studies are limited in the 
number of individuals per cluster. Or they rely on 
individual administration of tests, in which case it 
may be very costly to include more students.

The question of under what circumstances a 
treatment is effective, or questions related to 

school-level moderators, will be challenging to 
answer for current studies. The studies were all 
designed to detect school-level moderator effects 
larger than the main effects, which is not likely 
to be seen in practice. This is because, from a 
design perspective, the total number of clusters 
drives the power for both main effects and 
school-level moderator effects. Typically, there 
are enough schools in a study to be powered to 
detect a reasonable main effect, but recruiting 
additional schools to increase the capacity of a 
study to detect a school-level moderator can be 
very costly and likely outside of the budget for 
one study.

Questions related to teacher-level moderators are 
slightly more complicated as they depend partly on 
whether teachers are the unit of assignment. If they 
are, as in the case of a two-level CRT with students 
nested within teachers, the magnitude of teacher-
level moderators these studies were designed to 
detect was approximately .40, which is quite large 
and not likely to be seen in practice. From the design 
perspective, much like school-level moderator 
effects in a school randomized study, the number of 
teachers drives the power for the main effect and the 
teacher-level moderator. However, in the case in 
which teachers represent a level below the unit of 

Figure 4.  Minimum detectable effect size (MDES) and minimum detectable effect size difference (MDESD) 
for a teacher-level moderator for the three-level CRTs in the sample.
Note. The MDES is represented by striped bars and appears to the left of Study ID. The MDESD is represented by solid bars and 
appears to the right of Study ID. The MDES and MDESD are ranges based on the assumptions in Table 2 for the sample sizes 
and Table 4 for the design parameters.
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assignment, for example, a three-level CRT with 
students nested within teachers nested within 
schools, studies with large numbers of teachers per 
school, some studies were able to detect moderator 
effects smaller than the main effects. From a design 
perspective, this is because teachers are at a level 
lower than the unit of randomization and hence the 
total number of teachers, the number of schools 
times the number of teachers, is the critical sample 
size. In practice, for large school-wide interventions 
where schools are randomized and there are many 
teachers per school, increasing the number of teach-
ers may be a relatively inexpensive strategy to 
increase the capacity to detect teacher-level modera-
tor effects. However, for studies that target particular 
grades within schools and hence are limited to the 
number of teachers in a specific grade, this may not 
be possible.

Limitations

There are several limitations to this study. 
First, it is important to keep in mind that these 
studies were designed to have adequate power to 
detect the main effect of treatment. This translates 
to many studies having power to detect an effect 
size of .20 standard deviation units. However, 
these studies were not required to be adequately 
powered to detect meaningful moderator effects. 
Hence, these studies are being used to represent 
typical IES studies to demonstrate likely levels of 
power to detect moderator effects.

Second, the sample sizes used in this study 
were obtained from online structured abstracts.1 
Structured abstracts are submitted after a study is 
funded. However, studies may change after the 
initial funding period and this may include 
changes to the design and sample sizes. Spybrook 
et  al. (2013) examined changes in sample size 
and precision between the planning phase and 
the implementation phase of a set of early CRTs 
funded by IES and found that, in the majority of 
studies, changes in sample sizes between phases 
did not lead to major changes in the precision of 
the study. However, any changes that may have 
occurred in the sample size in this sample of 
studies are not accounted for in these analyses.

Third, some structured abstracts provided 
more information than others. In cases in which 
designs or sample sizes were not clear, we used 
our knowledge of research design to classify 

studies to the best of our ability. However, our 
assessments may not be consistent with the origi-
nal intent of the authors.

Fourth, we used the empirical literature to 
estimate design parameters. Individual studies 
may have used different estimates of design 
parameters specific for their study and hence the 
use of the empirical literature may lead to an 
overestimate or underestimate of the MDES and 
MDESDs. Fifth, we assume equal allocation of 
teachers or schools to condition, and equal allo-
cation of students, teacher, or schools to different 
moderator subgroups. Deviations away from this 
will lessen the power to detect main effects and 
moderator effects. Finally, we did not include 
multisite CRTs in our sample as the methodologi-
cal work related to the power calculations for 
moderator effects in multisite CRTs lags behind 
that of two- and three-level CRTs. Given the lim-
itations in this study, the findings are not meant 
to be definitive in nature. Rather, they are meant 
to help the field start to understand the likely 
capacity of typical size CRTs funded by IES to 
help answer questions about what works, for 
whom, and under what conditions.

Looking Forward

Moving beyond the what works question and 
considering questions about for whom and under 
what conditions an intervention is effective is 
critical in meeting the mission of IES to improve 
education outcomes for all students. These are 
important questions that will help policymakers 
and school personnel make better decisions about 
which interventions to adopt. We applaud IES for 
pushing researchers to answer these critical ques-
tions. However, we believe that it is important to 
also consider whether one study, given the typi-
cal resource allotment, can achieve all of these 
goals. Although we show that there may be 
potential for studies conducted in elementary, 
middle, and high schools to detect meaningful 
moderators at the student or teacher level, we 
also show that this is not likely in pre-K studies 
or studies of special populations where the num-
ber of students per teacher or school may be 
small. Furthermore, regardless of target grade, it 
is more challenging to design studies with the 
capacity to detect meaningful effects of school-
level moderators.
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Given some of the potential challenges asso-
ciated with powering studies to detect effects of 
school-level moderators, perhaps IES might 
encourage greater collaboration across studies 
during the design phase of studies. For example, 
they might encourage or incentivize the collec-
tion of a set of common moderator variables and 
outcomes across studies. This would facilitate 
tests of moderator effects of similar outcomes 
across several studies where pooling across stud-
ies may lead to greater power to detect important 
moderator effects. On a larger scale, common 
moderator variables and outcomes would also 
lead to stronger meta-analyses of the effects of 
various interventions. Working together, particu-
larly in the design phase of studies, will likely 
help us move closer to building a body of evi-
dence on which to base education policy and 
practice, a central goal of IES.

More support for methodological work related 
to power for moderator effects is also critical. 
Over the past several years, we have started to 
see more work dedicated to power for moderator 
effects in CRTs (e.g., Bloom & Spybrook, 2017; 
Dong et  al., 2018; Spybrook et  al., 2016). For 

example, researchers are considering strategies 
to improve power to detect moderator effects that 
involve things such as selecting schools that are 
more heterogeneous on the moderator of interest 
to maximize the magnitude of the effect and 
hence the likelihood of detecting the effect 
(Zhang et al., 2019). This work extends beyond 
binary moderators to consider continuous mod-
erators and the potential differences in power 
across the two types of moderators. In addition, 
work on power for moderator effects in multisite 
CRTs is underway. We have also started to see a 
new set of user-friendly software available to 
conduct these calculations. PowerUp!-Moderator 
(Dong, Kelcey, et  al., 2016) is available in an 
excel platform and as PowerUpR Shiny applica-
tion (poweruprshiny.shinyapps.io/v104/). Both 
of these interfaces are accessible and intended 
for substantive researchers and methodologists 
conducting power calculations. We anticipate 
that the availability of user-friendly tools will 
ultimately lead to a steady increase in power 
analyses for planning CRTs to answer questions 
about what works, for whom, and under what 
conditions.

Appendix

List of Studies in the Sample

Principal investigator Project title

Babinski, L. Efficacy of the DCCS Program: ESL and Classroom Teachers Working Together With 
Students and Families

Bailey, C. Promoting School Readiness Through Emotional Intelligence: An Efficacy Trial of 
Preschool RULER

Bradshaw, C. Testing the Efficacy of Double Check: A Cultural Proficiency Professional 
Development Model in Middle Schools

Bradshaw, C Evaluating Maryland State Policies to Improve School Climate
Bradshaw, C. Testing the Efficacy of a Developmentally Informed Coping Power Program in Middle 

Schools
Brown, J. Testing the Integration of an Empirically-Supported Teacher Consultation Model and a 

Social-Emotional Learning and Literacy Intervention in Urban Elementary Schools
Bruns, E. Efficacy of a Brief Intervention Strategy for School Mental Health Clinicians
Crawford, A. Examining the Cost-effectiveness of Continuous Improvement Models for Preschool 

Teachers: Balancing PD Structures to Match Teacher Need
Davenport, J. Improving Children’s Understanding of Mathematical Equivalence: An Efficacy Study
Downer, J. Examining the Efficacy of RULER on School Climate, Teacher Well-Being, 

Classroom Climate, and Student Outcomes
Dynarski, S. Dual-Credit Courses and the Road to College: Experimental Evidence From Tennessee
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Principal investigator Project title

Feng, M. Efficacy of ASSISTments Online Homework Support for Middle School Mathematics 
Learning: A Replication Study

Freiberg, J. Consistency Management & Cooperative Discipline (CMCD): An Efficacy Trial With 
Students in Third and Fourth Grade Urban Schools

Gray, S. Efficacy of the TELL Curriculum for Preschool Children Who Are Economically 
Disadvantaged

Greenwood, C. The Effects of Promoting Engaging Early Literacy Interactions in Preschool 
Environments: Literacy 3D

Gunn, B. An Investigation of Direct Instruction Spoken English for At-Risk English Learners
Harris, C. Efficacy Study of an Integrated Science and Literacy Curriculum for Young Learners
Herman, K. Evaluation of a Classroom Management Training Program for Middle School 

Teachers
Howard, E. An Efficacy Trial of the HighScope Preschool Curriculum (HSPC)
Justice, L. Causal Effects of the Kindergarten Transition Intervention
Landry, S. Internet Implementation of Empirically-Supported Interventions That Can Be 

Remotely Delivered in Authentic Preschool Programs for Mothers and Teachers: 
Evaluation of Direct Child and Teacher Outcomes

Landry, S. Scalable Approaches for Preparing Early Childhood Teachers: Identifying Costs and 
Effectiveness of Evidence Based Approaches to Coaching

Lewis, C. Improvement of Elementary Fractions Instruction: Randomized Controlled Trial Using 
Lesson Study With a Fractions Resource Kit

Lorch, E. Efficacy of a Narrative Comprehension Intervention for Elementary School Children 
At-Risk for Attention-Deficit Hyperactivity Disorder

Mashburn, A. Efficacy of MindUP on Pre-Kindergarteners’ Development of Social-Emotional 
Learning Competencies and Academic Skills

Moeller, B. Math for All: Assessing the Efficacy of a Professional Development Program for 
Elementary School Teachers

Nugent, G. Testing the Efficacy of INSIGHTS for Promoting Positive Learning Environments and 
Academic Achievement in Nebraska: A Replication Study

Redmond, C Testing the Efficacy of Embedded Social Skills Within a Universal Classroom 
Management Program: Well-Managed Schools

Rosanbalm, M. Effects of the Incredible Years Dinosaur Classroom Prevention Program on Preschool 
Children’s Executive Functioning and Academic Achievement

Roschelle, J. Efficacy of an Integrated Digital Elementary School Mathematics Curriculum
Schneider, S. Word Learning Strategies: A Program for Upper-Elementary Readers
Schneider, S. Efficacy Study of Adventures Aboard the S.S.GRIN: Social, Emotional, and Academic 

Skills
Sorby, S. Enhancing Middle School Mathematics Achievement Through Spatial Skills 

Instruction
Swanson, E. Examining the Efficacy of Differential Levels of Professional Development for 

Teaching Content Area Reading Strategies
Upshur, C. Kidsteps II: Promoting School Readiness Through Social-Emotional Skill Building in 

Preschool
Wayne, W. My Science Tutor: Improving Science Learning Through Tutorial Dialogs (MyST)
Wendt, A. Evaluation of We Have Skills, A Multimedia Classroom Level Social Skills Program 

for Elementary Students
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Note

1. In two studies, we were not able to determine the 
sample sizes from the structured abstract but were able 
to find them in associated publications.
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