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Policymakers and educational leaders around 
the country are grappling with how to support 
mathematics teachers in shifting the focus of 
their teaching from the demonstration of algo-
rithms for solving routine problems to the devel-
opment of students’ conceptual understanding. 
This shift has been fueled by a state-led move-
ment to prepare all of America’s students to grad-
uate from high school college- and career-ready, 
a movement associated with the National 
Governors Association’s release of the Common 
Core State Standards—Mathematics (CCSM-M). 
When coupled with aligned assessments, these 

standards place demands on teachers to use more 
cognitively challenging instructional tasks and to 
orchestrate productive classroom discussions 
that surface and build on students’ thinking and 
reasoning, all in service of building students’ 
conceptual understanding of mathematical ideas. 
This kind of teaching is a significant change in 
practice for many elementary- and middle-grade 
teachers (Hiebert, 2003; Stein & Meikle, 2017).

In response to the ambitious goals for instruc-
tional change promoted by the new standards for 
mathematical practice, states and districts have 
sought to refine or elaborate their instructional 
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guidance infrastructures. Although traditional 
policy approaches to teaching improvement have 
focused on the introduction of new curricula and 
aligned professional development, there is a 
growing consensus in the educational field that 
these strategies alone are insufficient to produce 
the instructional change necessary to ensure that 
all students can meet ambitious standards. 
Consequently, many schools and districts have 
created instructional coaching roles to comple-
ment more traditional professional development 
efforts as the focus on college and career readi-
ness has taken hold in the field (Desimone & 
Pak, 2016; Domina et al., 2015). Although roles 
vary in implementation, typically instructional 
coaches are charged with creating intensive, job-
embedded learning opportunities for teachers 
through strategies such as offering ongoing 
workshops, leading professional learning com-
munities, and working one-on-one with teachers 
to “coach” their preparation for and execution of 
lessons.

The creation of instructional coaching posi-
tions has the potential to be a high-leverage dis-
trict strategy for supporting substantive changes 
in teaching practice. Prior research suggests that, 
when well designed, coaching initiatives can 
produce measurable gains in teaching improve-
ment and student achievement (Allen et al., 2011; 
Biancarosa et  al., 2010; Blazar & Kraft, 2015; 
Bryk et  al., 2015; Campbell & Malkus, 2011; 
Foster & Noyce, 2004; Kraft et  al., 2018; 
Matsumura et al.,2010, 2012, 2013; Neuman & 
Cunningham, 2009; Powell et al., 2010; Sailors 
& Price, 2010). Specific to mathematics instruc-
tion, Campbell and Malkus’s (2011) randomized-
controlled trial found that coaches positively 
affected elementary student mathematics 
achievement (Grades 3–5), particularly after 
coaches gained experience and skill through 
extensive professional development.

However, the investment in coaching nation-
wide has likely not yielded its full potential 
(Russell et  al., 2017). Research suggests that 
coaching programs have variable outcomes due 
in part to implementation challenges such as 
insufficient coach training, guidance, and sup-
port (Gallucci et  al., 2010; Kraft et  al., 2018; 
Matsumura et  al., 2009). For example, coaches 
are routinely selected for their teaching excel-
lence but may know little about the practice of 

coaching. Despite the promising results from 
some coaching studies, far less is known about 
the specific features of coaching programs, 
including high-leverage coaching practices that 
can support teaching for mathematical under-
standing. Coaches take on a variety of roles that, 
theoretically, could support improvements in 
teachers’ instruction: providing regular profes-
sional development sessions, leading grade-
level meetings, one-on-one coaching, developing 
teachers’ content knowledge, and so on. More
over, within each of these roles, various prac-
tices could be embedded. Few studies have 
sought to explore how specific coaching prac-
tices are associated with changes in teachers’ 
instruction.

To address this gap in the field’s understand-
ing of coaching as an intervention for driving 
teaching improvement, our collaborative project 
team, including researchers, professionals who 
design and implement professional development 
for educators, a state education agency, and a net-
work of mathematics coaches, iteratively refined 
a model for mathematics instructional coaching. 
The model aimed to be a resource for state and 
local leaders as they develop coaching programs 
to support instructional improvement at scale. 
Utilizing a design-based implementation research 
(DBIR) approach, organized by improvement 
cycles, we carefully documented the practices 
coaches employed in their one-on-one work with 
teachers and identified practices associated with 
improved teaching. In subsequent improvement 
cycles, coaches received training in the high-
leverage coaching practices that emerged from 
our improvement research.

In this article, we identify a high-leverage 
coaching practice—deep and specific conversa-
tions about mathematics content, pedagogy, and 
student thinking occurring in prelesson planning 
conferences—and explore whether coaches 
improved the uptake of this practice over time. In 
addition, we explore the extent to which teachers 
who participated in these prelesson planning 
conferences improved their capacity for support-
ing students’ mathematical reasoning and prob-
lem-solving, and whether improvements in 
coaching predicted growth in teaching. In so 
doing we contribute to the field’s understanding 
of the relationship between coaching practice 
and teaching improvement, which can in turn 



Mathematics Coaching for Conceptual Understanding

441

provide guidance to states and districts develop-
ing instructional coaching initiatives.

Literature Review and Conceptual 
Framework

Teaching for Mathematical Understanding

College- and career-readiness focused stan-
dards require that teachers teach for mathematical 
understanding. Prior research has demonstrated 
that classrooms in which students productively 
struggle to complete tasks that are just beyond 
their reach, and in which explicit attention is paid 
to underlying concepts and ideas, are associated 
with students’ development of conceptual under-
standing (Hiebert & Grouws, 2007). Support for 
this association comes from mathematics edu-
cation research (Boaler & Staples, 2008; Hiebert 
& Grouws, 2007; Otten & Soria, 2014; Stein & 
Lane, 1996; Stigler & Hiebert, 2004) and from 
cognitive science (e.g., DeCaro & Rittle-
Johnson, 2012; Kapur, 2014; Schwartz & 
Martin, 2004).

Mathematics education research also sug-
gests a set of practices that teachers who effec-
tively use a student-centered, discussion-based 
approach engage in when they plan for and enact 
high-quality lessons (Stein et  al., 2008). These 
include anticipating possible student thinking 
pathways (Smith et al., 2008), designing finely 
tuned goals regarding what students will know 
and understand (Hiebert et al., 2018), setting up 
challenging tasks (Jackson et al., 2013), encour-
aging students to use multiple perspectives/strat-
egies and explain their responses or solution 
strategies (Tarr et al., 2008), and promoting stu-
dent engagement with each other’s ideas during 
whole class discussions (Franke et  al., 2015; 
Webb et al., 2014). Similar practices were found 
to be conducive to effective student-centered 
instruction in cognitive science research, for 
example, using complex mathematical problems 
and asking students to generate multiple solu-
tions (Kapur, 2012, 2014) and connecting stu-
dent thinking to canonical solutions (Schwartz 
& Martin, 2004).

All of this suggests that we know the features 
of instruction that—if well executed in the class-
room—should lead to improved development of 
conceptual understanding among students. As 
such, these features become practices on which 

coaches might focus as they support the improve-
ment of mathematics teaching.

Coaching Teachers to Teach for Conceptual 
Understanding

We situate our research and design work 
within one-on-one coaching that assists teachers 
as they plan a lesson, teach the lesson, and then 
reflect on it during a postlesson debrief. As just 
noted, we have relatively strong evidence point-
ing to specific features of instruction that enhance 
students’ conceptual understanding of mathe-
matics. Getting teachers to learn these practices 
and supporting them as they refine their skills 
represents a significant challenge for schools, 
districts, and ultimately state departments of edu-
cation. Workshop-based, short-term trainings are 
the most common form of teacher professional 
development in the United States. (Darling-
Hammond et al., 2009; Gravani, 2007; Webster-
Wright, 2009). When well designed, these kinds 
of training sessions have value for increasing 
teacher knowledge, which is important for 
improving teaching practice. However, changing 
instructional practice is more complex than sim-
ply increasing teacher knowledge, and thus short 
term and episodic workshops are likely insuffi-
cient to produce substantive changes in teaching 
(Kennedy, 2016; Opfer & Pedder, 2011). In fact, 
research on professional development programs 
suggests it has highly variable results, with most 
programs showing limited effects on teaching 
practice (Hill, 2009; Kennedy, 2016). In response 
to these findings, researchers and reformers have 
identified suspected principles of more effective 
professional development opportunities for 
teachers, calling for learning opportunities to be 
intensive, ongoing, job-embedded, active, and 
content specific (Desimone, 2009; Desimone & 
Garet, 2015; Garet et  al., 2001). Instructional 
coaching programs may be a way to embed such 
learning opportunities for teachers in schools and 
systems.

Research supports this assertion, producing 
evidence that instructional coaching can con-
tribute to substantive change in teaching and 
improvement in student learning outcomes (cf., 
a meta-analysis on coaching by Kraft et  al. 
[2018] and Campbell and Malkus’s [2011] 
experimental study). Some quasi-experimental 
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and observational studies provide further prom-
ising evidence that coaching programs, when 
well designed, can be a promising intervention 
worthy of scale (Foster & Noyce, 2004; Garet 
et al., 2011; Killion, 2012; Mangin & Dunsmore, 
2014; Neufeld & Roper, 2003; Polly, 2012). 
However, the research on coaching also shows 
that effects on teaching and student learning are 
variable. Blazar and Kraft’s (2015) experimen-
tal evaluation of a coaching program found that 
coaches varied significantly in their effective-
ness at improving teachers’ instructional prac-
tice; while the overall effect of coaching was 
nearly a full standard deviation in the study’s 
measure of teaching practice, individual coaches 
ranged from significant positive effects to nega-
tive effects.

Two implementation challenges have emerged 
as potential explanations for these variable 
results. First, coaches often get insufficient train-
ing, guidance, and support to enact their roles in 
ways that contribute to teacher professional 
learning and instructional change (Gallucci et al., 
2010; Kraft et al., 2018; Matsumura et al., 2009). 
Such support is important; although coaches are 
often selected because they are good teachers of 
mathematics to students, they may know little 
about how to support teachers as learners. 
Second, what constitutes “coaching” varies sig-
nificantly, as does coaching effectiveness. For 
example, the amount of time teachers work with 
coaches varies considerably across coaching 
intervention studies, though the effects of coach-
ing dosage are not always significant (Kraft 
et al., 2018). Coaching effectiveness also varies, 
and may be, in part, associated with the number 
of teachers that coaches work with at one time 
(Atteberry & Bryk, 2011). The focus of coaching 
varies, ranging from content-specific teaching 
practices to general instructional practice to 
behavior management (Blazar & Kraft, 2015). 
All of this suggests there is a need for research-
based coaching models that more explicitly grap-
ple with the challenges of coaching program 
implementation (Kraft et al., 2018).

Conceptual Grounding for the Tennessee (TN) 
Math Coaching Approach

Although there are a number of coaching 
models being promoted in education, the core 

features are not often well explicated or are 
ambiguous (Gallucci et al., 2010). For example, 
Poglinco and colleagues (2003) describe the 
coaching model in the America’s Choice com-
prehensive school reform model as a form of 
technical coaching used to transfer new teaching 
practices into teachers’ regular repertoires. 
However, findings from their study of the enact-
ment of the coach role suggest role expectations 
were ambiguous, leading to variation in the prac-
tices employed by coaches.

To better understand how coaching contrib-
utes to teacher development, it is critical that the 
field articulates and identifies coaching prac-
tices. There is some small scale, qualitative 
research that has investigated coaching practices. 
For example, Gibbons and Cobb’s (2016) inves-
tigation of one coach’s practice identified five 
aspects of coach’s planning practices when work-
ing one-on-one with teachers trying to promote 
ambitious instructional practices. Other studies 
have explicated important insights about how 
coaches build relationships and rapport with 
teachers that enable learning (Killion, 2008). 
However, these qualitative studies have not tradi-
tionally linked observations about coaching prac-
tices with analysis of teaching.

Given the field does not know much about 
what coaching practices contribute to teaching 
improvement, our research and development 
activities were grounded in broader findings 
about teaching development and the mechanisms 
whereby coaching might support improved 
teaching practice. Our model is distinctive in its 
focus on one-on-one coaching that targets plan-
ning, enacting, and reflecting on a specific les-
son, as well as its focus on core disciplinary 
teaching practices. In other words, it specifically 
focuses on building teacher capacity to enact rig-
orous mathematics tasks that provide opportuni-
ties for student reasoning about mathematics 
concepts.

Our initial specification of key coaching prac-
tices drew on prior research that emphasizes the 
importance of planning for rigorous instruction 
(Lewis, 2002; Lewis & Tsuchida, 1997; Stein 
et  al., 2008). Teaching for conceptual under-
standing requires that teachers select, adapt, or 
create instructional tasks that will challenge stu-
dents to think, reason, problem solve and apply 
previously learned skills to novel situations. 
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These kinds of tasks are challenging for teachers 
to learn to enact well because they follow a 
much-less predictable route than do conventional 
lessons (Stein et al., 1996). Teachers must be pre-
pared to deal with the wide range of student strat-
egies and responses that typically occur, to make 
sense of them, and gently coax them toward the 
goals of the lesson (e.g., Lampert, 2001).

Lesson planning in which teachers set goals, 
select tasks aligned with those goals, anticipate 
student responses and contributions, and identify 
how to make productive use of them makes such 
teaching more manageable, focused, and produc-
tive (Smith et al., 2008; Stein et al., 2008). It does 
so by helping teachers to plan in advance for the 
improvisational aspects of responding to students 
while at the same time guiding the class toward 
the goals of the lesson (cf. Fennema & Franke, 
1992; Gravemeijer, 2004).

Prior research suggests teachers’ uptake of 
this kind of planning may be facilitated in col-
laborative settings such as professional learning 
communities and one-on-one coaching. For 
example, in the lesson study routine, teachers 
engage in substantive collaborative planning 
which includes considering long-term goals for 
student learning, studying existing instructional 
materials, planning a “research lesson” (includ-
ing anticipated student contributions), teaching 
and observing the lesson, and collaboratively 
analyzing data from it (Fernandez & Yoshida, 
2004; Lewis, 2002; Lewis & Tsuchida, 1997, 
1998). Beyond the context of lesson planning 
exclusively, Coburn and colleagues (Coburn 
et al., 2012; Coburn & Russell, 2008) identified 
teachers engaged in high “depth” conversations 
as those that took up substantive issues related 
to teaching and learning. These examples pro-
vided inspiration as we conceptualized the way 
teachers’ interactions with coaches could con-
tribute to their capacity to teach for conceptual 
understanding.

Drawing on mathematics instructional re- 
search, we conceptualize deep and specific 
coaching conversations as those that focus on 
the interactions between teachers, students, 
and mathematics, (not solely, for example, on 
what the teacher will do). Using the instruc-
tional triangle (Cohen et al., 2003), coaching is 
framed by the view that opportunities for stu-
dent learning are constituted not by any one of 

these components alone, but rather by their 
interaction. As such, we posit that coaching 
sessions should support teachers in attending 
to the interaction of pedagogy, student think-
ing, and the mathematics as they plan lessons.

All of the above has led us to hypothesize sev-
eral suspected principles of effective coaching 
conversations about the teaching of mathematics: 
Such conversations are deep in substance (as 
opposed to focusing on superficial features), spe-
cific in regards to what they target, and, finally, 
they occur in the context of the instructional tri-
angle. Adherence to these principles during pre-
lesson planning conferences constitutes a key 
coaching practice in our model: deep and spe-
cific conversations about mathematics, peda-
gogy, and student learning (the instructional 
triangle).

Present Study

The purpose of the present study is to exam-
ine whether there is evidence that coaches and 
teachers who participated in the TN Math 
Coaching Project improved their coaching and 
teaching in ways that align with the TN + 
Institute for Learning (IFL) Math Coaching 
Model’s core principles. Understanding how the 
specific features of coaching specified in the TN 
+ IFL Math Coaching Model contribute to 
teaching improvement provides the kind of con-
crete, empirically grounded guidance for instruc-
tional leaders in school and districts who are 
designing and supporting instructional coaching 
initiatives. Specifically, we explored whether 
coaches improved in their capacity to have deep 
and specific prelesson planning conversations 
with teachers and whether teachers improved 
their capacity to provide opportunities for stu-
dents to reason about mathematics. While the 
data and analyses are primarily descriptive, we 
explored the extent to which growth in coaching 
predicted growth in teaching, as an indicator of 
the model’s promise of efficacy. The following 
research questions guided the study:

Research Question 1 (RQ1): To what extent 
did coaches trained in the TN + IFL Math 
Coaching Model improve the depth and 
specificity of prelesson planning conversa-
tions with teachers over time? (1a) To what 
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extent is there variation in the growth of 
the depth and specificity of prelesson plan-
ning conversations across coach–teacher 
pairs over time?

Research Question 2 (RQ2): To what extent 
did teachers coached by coaches trained in 
the TN + IFL Math Coaching Model 
improve students’ opportunities to engage 
in conceptual thinking over time? (2a) To 
what extent is there variation in students’ 
opportunities to engage in conceptual 
thinking over time?

Research Question 3 (RQ3): Are the depth 
and specificity of the teachers’ prelesson 
coaching conversations with their coach 
related to growth in their teaching?

We hypothesized that improvements in the depth 
and specificity of the prelesson planning conver-
sations that occurred between teachers and 
coaches prior to teaching events would contrib-
ute to improvement in the enactment of lessons. 
Specifically, by guiding teachers in deep and spe-
cific conversations about what mathematics their 
students should learn in the upcoming lesson and 
how teachers might scaffold students’ learning of 
that mathematics, coaches will equip teachers 
with the knowledge and skills to not only select 
rigorous, high-level tasks, but also to maintain 
the high-level of thinking, reasoning, and prob-
lem-solving that high-level tasks are designed to 
elicit and support.

Project Context

The TN Math Coaching Project, funded by the 
Institute of Education Sciences, is a partnership 
between the Tennessee Department of Education 
(TDOE) and the University of Pittsburgh aimed 
at improving the in-service training of Grades 
3–8 mathematics teachers as a route to improv-
ing the math achievement of all Tennessee stu-
dents. University of Pittsburgh researchers from 
the Learning Research & Development Center 
(LRDC) partnered with scholar practitioners 
from the IFL, an outreach division of LRDC that 
provides professional development grounded in 
research-based practices. Our work had two pri-
mary goals. First, we tested and iteratively 
refined a model for mathematics instructional 

coaching that is designed to be a resource for 
schools and districts throughout the state as they 
support the transition to teaching that is aligned 
with rigorous, college-and-career ready mathe-
matics standards. Second, we sought to catalyze 
a network of highly trained coaches that can 
serve as instructional leaders throughout the 
state.

Our work to test and refine a model for math-
ematics instructional coaching employed a DBIR 
approach (Penuel et al., 2011). DBIR is an appro-
priate method for organizing research–practice 
partnerships aimed at addressing complex prob-
lems of practice. It is rooted in problems of prac-
tice experienced by practitioners and policy 
actors and employs a research-based approach to 
design and test interventions using systematic 
data collection and analysis strategies. Our col-
laborative work initially started with the TDOE 
identifying a problem of policy practice: advanc-
ing the state’s mathematics instructional 
improvement goals related to ensuring all teach-
ers were teaching for conceptual understanding, 
drawing on the policy levers available to a state 
agency. We drew on prior research and practice-
based knowledge that our IFL colleagues 
acquired through their professional development 
work with coaches to specify key coaching prac-
tices and a method for training coaches to enact 
these practices.

Through five iterative cycles, we trained 
coaches to enact specific practices, documented 
the enactment of the practices with two “partner 
teachers” per coach, analyzed data to understand 
the enactment of practices, and then refined 
training and guidance to coaches for the next 
cycle. At the end of each school year, after the 
third and fifth coaching cycles, we also explored 
trends in coaching and teaching practice and how 
they were related. In the following sections, we 
provide more detail about our sample, data col-
lection procedures, and analytic approach.

Participants

Our sample of 32 coaches was selected 
through a competitive process. Our partners from 
the state department of education distributed an 
announcement about our coaching project to all 
school districts and in a number of educator 
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forums throughout the state. Interested coaches 
submitted a written application, which included a 
statement of interest in the project, a statement of 
experience and effectiveness as a coach, and a 
performance task in which applicants identified a 
high level mathematical task and learning goals 
for a lesson with a given focus and anticipated 
how students might solve the task and ways a 
teacher could support students’ conceptual 
understanding. We received 62 complete applica-
tions. Applicants then participated in a perfor-
mance-based oral interview conducted by our 
IFL colleagues, which included analysis of two 
written scenarios of mathematics instruction and 
role-playing a coaching interaction related to 
each scenario.

We utilized a rubric to score coach perfor-
mance on the written and oral portions of the 
application process. The rubric had five dimen-
sions: belief that all students and teachers can 
learn and improve; evidence of content knowl-
edge; attention to student thinking and reasoning; 
coach disposition as a learner; and communica-
tion effectiveness. In the end, we selected 32 
coaches that represented variation in prior expe-
rience and training, coaching context (e.g., urban, 
suburban, or rural), and the construction of for-
mal coaching roles (e.g., school-based vs. dis-
trict-based). All coaches were in full-time 
instructional coaching positions; in other words, 
they did not have teaching responsibilities. 
Coaches were paid an annual stipend of US$3,000 
to compensate them for time spent in extra-duty 
responsibilities related to gathering and transfer-
ring data on coaching and teaching to the research 
team. Specifically, coaches videotaped their 
coaching conferences and teacher lessons associ-
ated with coaching cycles and managed the 
transfer process. In addition, they received a tab-
let computer for use in videotaping conferences 
and lessons that they kept at the conclusion of the 
study and were reimbursed for travel costs asso-
ciated with attending network meetings. At the 
end of the first year of the project, two coaches 
decided not to continue into Year 2. One coach 
retired and the other found that disorder in her 
coaching context did not enable her to devote the 
time necessary to one-on-one coaching. We con-
tacted two additional coaches from the original 
applicant pool and invited them to join in Year 2.

Our original 32 coaches were asked to iden-
tify two “partner teachers” that would engage in 
intensive coaching cycles and participate in data 
collection for the study. Coaches were instructed 
to select partner teachers that were willing to par-
ticipate, had room for teaching improvement, 
and taught students in Grades 3 through 8. After 
analyzing teaching practice across the first year, 
we found that 31% of partner teachers entered 
the project with relatively strong teaching prac-
tices and maintained a high level of teaching 
quality throughout the year. To learn more about 
teaching improvement, we asked each coach to 
invite one of their two partner teachers to remain 
in the study that had the greater need for teaching 
development and to invite one new teacher to 
join the project who had need for teaching 
improvement. In some cases, coaches were not 
able to replace a teacher or had to replace both of 
their Year 1 partner teachers due to specific cir-
cumstances (e.g., no other available teachers in 
the target grades in small elementary schools). In 
total, our sample includes 103 partner teachers: 
41 partner teachers who participated in Year 1 
only, 38 who participated in Year 2 only, and 24 
who participated in both Years 1 and 2. Partner 
teachers were paid for engagement in data  
collection activities, such as US$20 to US$50 
(depending on time required) for the completion 
of surveys on experiences with coaching and 
their teaching practice.

Data Collection and Measures

Coaches were trained in the TN + IFL Math 
Coaching Model during three 2-day face-to-face 
sessions per year with monthly webinars for dis-
cussion and reflection in between. The vast 
majority of coaches attended all six face-to-face 
workshops, totaling approximately 48 hours of 
training spread across 2 years. Twelve 1-hour 
webinars were offered, but attendance was less 
consistent in these session. Consequently, most 
coaches received approximately 55 hours of 
training across two school years.

The face-to-face workshops and webinars were 
conducted as full group sessions, with opportuni-
ties for small group engagement, and included 
activities aimed at building coaches understanding 
of high-leverage coaching practices such as deep 
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and specific conversations about the instructional 
triangle and providing evidence-based feedback. 
For example, regular activities in the face-to-face 
workshops included direct instruction in specific 
coaching practices, coaching simulations/role-
playing, collaborative analysis of videotaped 
coaching sessions, and/or transcripts of coaching 
interactions, and presentations from the research 
team sharing the results of analyses of the data 
coaches shared (videos of coaching sessions and 
teachers’ instruction). During the data-based ses-
sions, coaches and the research team engaged in 
conversation to make sense of and interpret 
trends in the data. Most of the training was pro-
vided in whole group settings; however, at three 
strategic points in time, the project team pro-
vided individualized written feedback to coaches 
about their uptake of key coaching practices by 
annotating a transcript of one of their coaching 
conversations. Finally, some of the coaches 
reached out to the professional development 

providers with informal questions and requests 
for advice.

Between meetings, coaches were asked to 
apply what they learned by conducting formal 
coaching cycles with two partner teachers using 
the Coach–Teacher Discussion Process. Figure 
1 describes the steps in the process. The state-
ments depicted in boldfaced text  in Figure 1 
highlight three key coaching practices, which 
have been identified through our iterative work 
examining variation in coaching interactions 
through the lens of theory about teaching devel-
opment. Coaches completed the Discussion 
Process with each of their partner teachers 3 
times in Year 1 of the study (2014–2015) and 
twice in Year 2 of the study (2015–2016), each 
corresponding with a project improvement 
cycle. For each cycle, coaches worked with 
teachers to plan and enact a lesson that included 
a high cognitive demand task of their choos-
ing. Given that teachers were in schools and 

Figure 1.  Coach–teacher discussion process.
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districts that used a variety of curricula, in 
most cases, the tasks were selected by coaches 
and teachers from a repository provided by the 
TDOE and created by the IFL. To capture 
intensive data on coaching practice, each 
enactment of the Discussion Process was docu-
mented by coaches who gathered: videotapes 
of prelesson planning conferences, lessons, 
and postobservation feedback conferences; 
teacher and coach planning and reflection 
notes; and artifacts such as the instructional 
tasks. Coaches shared these data sources with 
the research team by uploading them to a 
shared folder.

In addition, we sought to collect representa-
tions of each partner teachers’ instruction that 
was not directly associated with a coaching 
cycle. At the beginning of Year 2 of the study, 
prior to beginning to work with their coach, we 
asked partner teachers to videotape a lesson that 
represented their typical mathematics instruction 
(Year 2 baseline lesson). At the end of the school 
year, we asked partner teachers to videotape and 
share a lesson representing their instruction, that 
they did not work with a coach to plan or imple-
ment (Year 2 postcoaching lesson).

To answer our research questions about 
changes in coaching and teaching, we identified 
measures that would track expected changes that 
related to the training provided to coaches and 
the instructional philosophy promoted through 
our coaching model. An overview of our mea-
sures is provided in Table 1, and a more complete 
description in the following sections.

Deep and Specific Prelesson Planning Conver-
sations.  Our analyses of coaching began with 
an exploratory approach. Framed by the guid-
ance we provided to coaches in each cycle, we 
engaged in a mix of inductive and deductive 
coding of videos and transcripts of coaching 
conversations, to surface seemingly productive 
features of coaching interactions documented 
with video. Our deductive exploration drew on 
the list of coaching practices culled from our 
IFL partners’ practice-based insights. Over 
time, our team came to consensus around three 
key coaching practices depicted in red text in 
Figure 1: deep and specific conversations 
about the instructional triangle, goal setting, 

and evidence-based feedback. At the end of the 
first year of the study, we explored the relation-
ship between enactment of each coaching prac-
tice and trends in partner teachers’ instruction. 
Given resource constraints, and emerging evi-
dence of its importance, we invested our analytic 
capacity in developing a measure of deep and 
specific prelesson planning conversations and 
pursued it as a specific focus of inquiry. As this 
coaching practice occurred in the context of pre-
lesson planning conferences (conducted as part 
of the planning, enacting, and reflecting coach-
ing routine), we refer to it as “preconference 
depth and specificity” for short.

Based on exploratory analyses, we developed 
and iteratively refined a rubric for scoring the 
enactment of key components of deep and spe-
cific prelesson planning conversations. The four 
key components of this construct were: (a) the 
appropriateness of mathematical content in the 
task for the grade level, (b) the depth at which 
multiple solution paths for the task were dis-
cussed, (c) whether specific questions to advance 
the conceptual goals of the lesson were identi-
fied and discussed at depth, and (d) the depth of 
discussions about the specific math content and 
goals of the task (Figure 2). Six independent 
coders applied the rubric to all prelesson plan-
ning conferences documented in the five coach-
ing cycles. In addition, we calculated a composite 
Preconference Depth and Specificity score for 
each preconference by taking the mean of the 
four items.1 Given this measure was developed 
in the context of the project, the coding pro-
ceeded in an iterative fashion. Initially, coders 
scored the same transcripts using the rubric 
and discussed impressions to build consensus. 
Once they were reliably scoring transcripts 
consistently, the coders continued to meet 
weekly, scoring one common transcript in 
addition to 3 to 5 others. Again, the weekly 
meetings resolved any discrepancies in the 
common transcript and clarified expectations. 
Approximately 5% of transcripts were scored 
via consensus.

Students’ Opportunities to Engage in Concep-
tual Thinking.  To identify changes in teaching 
practices throughout the years, we coded the 
classroom videos from each coaching cycle and 
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the Year 2 baseline and postcoaching lessons 
submitted for each partner teacher. Our com-
posite measure—Students’ opportunities to 
engage in conceptual thinking—is an average 
of two measures: maintenance of cognitive 
demand and attention to student thinking. Our 
coaching framework focuses on building the 
capacity of teachers to orchestrate high level 
mathematics tasks in the classroom, because 
prior research suggests that cognitively 

demanding tasks provide opportunities for stu-
dents to build conceptual understanding by 
engaging in productive struggle (Stein & Lane, 
1996). The specific measures (maintenance of 
cognitive demand and attention to student 
thinking) assess teacher capacity to orchestrate 
such tasks and have been shown to be associ-
ated with student learning gains (Stein & Lane, 
1996), in one of the main studies cited by 
Hiebert and Grouws’s (2007) in support of their 

Table 1

Coaching and Teaching Measures

Measure Definition Metric

Preconference depth and specificity composite (average of the following four measures):
  Appropriate math 

content
The extent to which the mathematics 

goals of the lesson were aligned 
with standards-aligned content for 
the grade level taught

0 = not appropriate for grade level; 1 = 
appropriate

  Discussion of 
student thinking 
(multiple 
solution paths)

The extent to which coach and teachers 
have deep and specific discussions of 
the multiple solution paths students 
might use to solve the task

0 = no solution paths discussed; 1 = all solution 
paths discussed in superficial ways; 2 = one 
discussed in more than superficial ways; 3 = at 
least two discussed in more than superficial ways

  Discussion of 
pedagogy: 
advancing 
questions

The extent to which coach and 
teacher identify ways that teachers 
can advance student thinking 
toward the mathematical goals of 
the lesson using questioning

0 = questions not named; 1 = 1 or more questions 
named but not discussed; 2 = discussed with 
depth (e.g., likely student answers and teacher 
subsequent responses)

  Discussion of 
math content

The extent to which discussion of 
mathematical goals went beyond 
broad topics (e.g., fractions) to 
include specific math concepts or 
principles

0 = no goal named; 1 = broad topics named;  
2 = gives math definition or procedure as goal; 
3 = discuss student acquisition of the underlying 
meaning of a concept

Students’ opportunities to engage in conceptual thinking composite (average of maintenance of cognitive 
demand and attention to student thinking):

  Maintenance 
of cognitive 
demand

The extent to which the teacher 
maintains the cognitive demand of 
the lesson from materials, to set up, 
and through enactment

2–8 scale: 1–4 for maintenance from written to 
setup and from setup to enactment (see Stein & 
Kaufman, 2010) for procedures

  Attention to 
student thinking

The degree to which teachers 
explored and facilitated the 
public display of student thinking 
throughout the lesson

1 = the teacher did no work to uncover student 
thinking; 2 = the teacher did some work to 
uncover student thinking, including asking 
students to publicly share their work; 3 = in 
addition to #2, the teacher purposefully selected 
some students to share their work; 4 = in 
addition to #2 and #3, the teacher connected or 
sequenced students’ responses in a meaningful 
way. Item converted to a 2–8 scale.

  Coach assist Degree to which the coach assisted 
the teacher while they were 
teaching the task

0 = no coach help; 1 = minor prompts from the 
coach to the teacher; and 2 = the coach, at times, 
helped coteach the lesson
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claim that productive student struggle is associ-
ated with student learning.

Cognitive demand measures have been widely 
used to judge the extent to which mathematics 
teachers adhere to the main tenets of ambitious, 
standards-based instruction (e.g., Boston & 
Smith, 2009; Jackson et al., 2013; Rigby et al., 
2017; Stigler & Hiebert, 2004). We employed the 
procedures described by Stein and colleagues 
(1996) to code cognitive demand as written in the 
task, at lesson set-up, and during lesson enact-
ment. Following procedures described in Stein 
and Kaufman (2010), we calculated a “score” for 
the maintenance of cognitive demand throughout 
the lesson. Specifically, we measured the mainte-
nance of cognitive demand from the task-as-writ-
ten to task-as-setup (rubric score from 1 to 4) and 
from task-as-setup to task-as-enacted (rubric 
score from 1 to 4), and then summed them creat-
ing a scale from 2 to 8. In addition, raters scored 
the degree to which teachers explored and facili-
tated the public display of student thinking 
throughout the lesson on a scale from 1 to 4. We 
adjusted the scale of the latter item to develop a 
mean of the two scales—yielding a composite on 
a scale from 2 to 8. A higher score on the stu-
dents’ opportunities to engage in conceptual 
thinking composite therefore represents not only 
maintenance of cognitive demand of the task 
during the lesson, but also whether students had 
the opportunity to engage in and make public 
their (conceptual) thinking.

The videos were scored by a set of seven 
mathematics education experts, primarily assistant 

professors in universities who were trained to uti-
lize the scoring rubric and subsequently scored 
410 classroom videos. In Year 1, videos were 
scored after each cycle. In Year 2, the videos were 
scored only after all videos had been collected. In 
Year 2 scoring, raters were blind to both the 
teacher they were scoring and also the cycle the 
video was from. During the scoring of Year 1 vid-
eos, we randomly selected 33 of the 176 videos 
(almost 20%) for double-scoring. Videos were 
evenly distributed among our raters. We exam-
ined the interrater reliability of students’ opportu-
nities to engage in conceptual thinking, as this is 
the measure used in all subsequent analyses. 
Given our measure was scored from 2 to 8 and is 
ordinal, we examined the intraclass correlation 
coefficient (ICC) between two raters for our 33 
double-scored videos. ICCs, equivalent to 
Cohen’s weighted kappas, are commonly consid-
ered “good” when they are between .6 and .74, 
while ICCs above .74 are considered “excellent” 
(Hallgren, 2012). We obtained an ICC of .62 indi-
cating adequate interrater reliability for our mea-
sure of students’ opportunities to engage in 
conceptual thinking.

In addition to scoring that used the measures 
described above, raters also scored each lesson 
for the degree to which the coach assisted the 
teacher during implementation of the task. “Coach 
assists” were scored on a 3-point scale with “0” 
indicating no coach help, “1” indicating minor 
prompts from the coach to the teacher, and “2” 
indicating the coach, at times, helped coteach the 
lesson. With respect to interrater reliability, raters 
applied very similar scores on lessons where they 
agreed there were no coach assists (ICC = .72;  
n = 22) versus lessons where at least one of them 
coded coach assists (ICC = .52; n = 11).2

Table 2 provides an overview of the final data 
set for the study accounting for missing data and 
variability in the length of time that partner 
teachers participated in the study. Overall, we 
had limited missing data: we gathered and scored 
97% of expected prelesson planning conferences 
and 93% of expected lesson videos. We also 
employed analytic models that enabled us to 
accommodate missingness.3

Analytic Approach

Our analyses sought to explore trends in 
coaching practice, trends in teaching practice, 

Student Thinking
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Depth / 
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Figure 2.  Dimensions of deep and specific 
discussions of the instructional triangle.
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and the relationship between coaching and teach-
ing. Although these analyses are primarily 
descriptive, our longitudinal exploration of 
coaching and teaching aimed to generate sugges-
tive evidence regarding the relationship between 
coaching and instruction.

Statistical Analyses for Growth in Coaching.  To 
understand whether the depth and specificity of 
prelesson planning conferences improved over 
time, we explored trends in two ways. First, we 
examined mean scores and standard deviations 
for each item contributing to the measure of pre-
conference depth and specificity for each cycle. 
A one-way repeated measures analysis of vari-
ance (ANOVA) was conducted to determine the 
effect of time on each item,4,5 as well as the com-
posite of the four indicators (the mean of the four 
scale-adjusted items). These analyses demon-
strate whether there was a mean change, in gen-
eral, over time, when including all preconferences 
across all teachers and coaches. The repeated 
measures ANOVAs also provide descriptive sta-
tistics about change in the coefficient of varia-
tion6 over time, as well as measures of variance 
to estimate the standard deviation to calculate 
our within-subjects effect size estimates.7

Second, in an attempt to describe overall pat-
terns of growth and develop estimates of the mag-
nitude of this growth, we examined hierarchical 
linear growth models. In these models, time points 
are nested within coach–teacher pairs, to better 
understand patterns of within-subjects change over 
time. Using HLM v.7.03, we examined five sepa-
rate univariate analyses8—one for each item mea-
suring depth and specificity of the preconferences 
and one for the composite score. To investigate 
whether different items grew at different rates dur-
ing Year 1 and Year 2, we examined piecewise 

hierarchical linear growth models (Raudenbush & 
Bryk, 2002, pp. 178–182). Our two-level uncondi-
tional model for the composite can be summarized 
as follows (Appendix A1, available in the online 
version of this journal)9,10: 
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Our primary interest in these models was to 
understand and describe model-based rates of 
growth over time for depth and specificity of pre-
lesson planning conferences for coaches trained 
during the first 2 years of development of the TN 
+ IFL Coaching Model. Model-based estimates 
allow us to construct the average growth trajec-
tory using all data from teachers who experi-
enced coaching during the intervention (i.e., 311 
preconferences with 103 teachers, n

j
 = 3.02). We 

were also able to determine the statistical signifi-
cance of each interval in these growth trajecto-
ries, whether some items displayed greater 
increases during particular intervals, and the 
variability between teachers in their growth rates 
for each interval.

Statistical Analyses for Growth in Teaching.  We 
examined a series of HLM models to answer dif-
ferent questions with our teaching data. Using all 
videoed observations across both study years we 

Table 2

Sample of Partner Teachers and Data Availability

Partner teacher participation N
Complete 

data

Teachers with 
one incomplete 

data cycle

Teachers with 
two cycles of 

incomplete data

Participated in Years 1 and 2 (seven data cycles) 24 18 5 1
Participated in Year 1 only (three data cycles) 41 36 5 0
Participated in Year 2 only (four data cycles) 38 19 15 4
Total teachers 103 73 25 5
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examined model-based estimates of change in 
teaching among our treated sample. The purpose 
of these analyses was to explore teaching growth 
in the context of a coaching intervention. The final 
analyses incorporate all data from all time points 
(i.e., 410 videos from 103 teachers, n

j
 = 3.98).11

Our findings demonstrate what we learned as 
we engaged in a process of model-building 
within each of the different ways we configured 
our data to determine the best model fit.12 In so 
doing, we examined whether the functional form 
of improvement for our coached teachers was 
linear, quadratic or cubic. We began the process 
by adjusting for several independent covariates. 
For example, because teaching scores could be 
affected by help from coaches we adjusted for 
whether raters considered the coach to have 
assisted during the enactment of the lesson.13 
Coach assistance during lessons also created 
ambiguity about how to score the teachers’ per-
formance for a given lesson, so we accounted for 
differences in how raters scored videos by includ-
ing a fixed effect for rater as a dichotomous time-
varying covariate. Finally, we also included a 
dichotomous time-varying covariate for whether 
the lesson video was obtained during a coached 
session or not, as videos during Year 2 included 
two un-coached videos—one at the beginning of 
the year (Year 2 baseline lesson) and one at the 
end of the year (Year 2 postcoaching lesson).14 
We ran a model to estimate the average growth in 
teaching across all teachers before examining 
prediction models with fixed effects at the teacher 
level of the model.

Examining associations between preconfer-
ence depth and specificity scores and changes 
in teaching.  To explore between-teacher dif-
ferences in their growth trajectories, we also 
included a measure of the partner teachers’ aver-
age preconference depth and specificity scores 
across cycles for coach–teacher pairs.15 This 
model also adjusts for the teachers’ beginning 
status in providing students’ opportunities to 
engage in conceptual thinking. Below we pres-
ent the prediction model from our final data con-
figuration. To simplify the presentation of the 
model, we did not include the fixed-effect esti-
mates of the Level-1 dichotomous time-varying 
covariates described above although all of those 
adjustments were included in our final models 

and results of those models are supplied in Table 
B3 in online Appendix B.
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While all parameters of the model are 
described in the online files in Appendix A2, we 
briefly describe the decision to account for a 
teacher’s beginning status. To adjust for begin-
ning status we included a dichotomous indicator 
for whether the teacher was at ceiling on the 
maintenance of cognitive demand measure (a 
score of 8) on their first recorded lesson (with 
teachers at ceiling coded as 1). For teachers 
beginning in Year 1, the first recorded lesson was 
the one that occurred in the first coaching 
cycle; for teachers beginning in Year 2, it was 
the un-coached Year 2 baseline lesson. Fifteen 
percent of teachers were at ceiling on their first 
recorded lesson. We found this adjustment cru-
cial because teachers beginning at or near the 
ceiling had no opportunity to demonstrate 
growth on measures of their teaching, but they 
did have potential for growth in preconference 
depth and specificity.16

Examining how within-teacher changes in 
preconference depth and specificity influence 
changes in teaching.  Finally, we also ran one 
subsequent model beyond the one just described 
with the only change being the addition of pre-
conference depth and specificity scores at Level 
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1, person-mean centered, as a time-varying 
covariate. By centering preconference depth and 
specificity scores within teachers, this analy-
sis examined, for each coached cycle, whether 
the deviation in preconference scores (from an 
individual’s average preconference score) at 
each timepoint was predictive of their teaching 
practice. This model further helps us understand 
whether within-teacher changes in preconference 
depth and specificity scores influenced growth in 
their teaching practice, which can be considered 
a causal estimate when adjusting for between-
teacher differences in preconference scores (see, 
for example, Duckworth et  al., 2010). Here, 
again, we adjusted for whether the initial estimate 
of teaching practice contributed by a teacher was 
at ceiling because estimates of this relationship 
should be examined among those teachers with 
potential for both measures to increase over time. 
Throughout discussion of the findings we refer 
to data cycles (1−7), which correspond with data 
collection events including five coaching cycles 
and the two un-coached recorded lessons col-
lected in Year 2 (see Table 3).

Findings

We developed a model for mathematics 
coaching practice, trained coaches to enact the 
model, and tested it in schools by collecting and 
analyzing data on its effectiveness. Our analyses 
provide promising evidence in support of key 
features of the model. Participating coaches did 
in fact use the model’s key coaching practices 
during the two school years, as evidenced by 
analyses of videotaped coaching interactions. 
Likewise, partner teachers improved their capac-
ity to provide rich opportunities for students to 

develop understandings of key mathematical 
concepts. Finally, we demonstrate how the depth 
and specificity of coaching conversations pre-
dicted rates of improvement in teaching practice, 
and how within teacher changes in the depth and 
specificity of conversations also predicted 
growth in teaching.

RQ1: To What Extent and How Did Coaching 
Improve Over Time?

Growth in Coaching Practice.  Each of the four 
items measuring deep and specific prelesson 
planning conversations demonstrated statisti-
cally significant improvement over time. Raw 
means, standard deviations, and the coefficient 
of variation for each cycle are all reported in 
Table 4. For each item, there is an increase in the 
mean, as well as a decrease in the standard devia-
tion, resulting in a lower coefficient of variation 
(dispersion relative to the mean) over time. There 
was a marginally significant effect of time on: (a) 
appropriateness of mathematics content, Wald 
χ2 = 8.95 (df = 4, p = .06); and a statistically 
significant effect of time on (b) discussion of stu-
dent thinking: multiple solution paths F(4, 
247.66) = 4.40, p = .002; (c) discussion of peda-
gogy: advancing questions, F(4, 249.00) = 4.96, 
p = .001; (d) discussion of specific mathematics 
content, F(4, 248.84) = 9.54, p = .000; and (e) 
composite preconference depth and specificity, 
F(4, 249.66) = 6.04, p = .000.

To examine non-linear trends for some items 
suggested by the raw mean values in Table 4, we 
examined piecewise hierarchical linear models 
with our data. We first examined whether the 
piecewise model was a better fit to the data for 
each of the five univariate analyses. Three of the 

Table 3

Data Cycles

Data cycles Description of data collected and analyzed in this manuscript

1 Coaching Cycle 1: Prelesson planning conference and lesson
2 Coaching Cycle 2: Prelesson planning conference and lesson
3 Coaching Cycle 3: Prelesson planning conference and lesson
4 Year 2 baseline lesson
5 Coaching Cycle 4: Prelesson planning conference and lesson
6 Coaching Cycle 5: Prelesson planning conference and lesson
7 Year 2 postcoaching lesson
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analyses demonstrated a better model fit as a lin-
ear model (i.e., the test for an increment beyond 
the base rate by itself did not result in a signifi-
cant reduction in deviance). In each case, the lin-
ear base rate demonstrated significant growth in 
depth and specificity across the 103 coach–
teacher pairs—appropriateness of mathematics 
content (β

10
 = 1.19 logits/year; p = .021), dis-

cussion of student thinking: multiple solution 
paths (β

10
 = .356 points/year; p = .010), and 

composite preconference depth and specificity 
(β

10
 = .319 points/year; p = .001). For model 

parsimony, for each of these three items we 
retained the growth estimates from the linear 
base-rate-only model for Figure 3. For two of the 
items, discussion of pedagogy: advancing ques-
tions (χ2 = 6.15, df = 3, p = .100) and discus-
sion of specific math content (χ2 = 11.70, df = 3, 
p = .009) the piecewise models identified a sig-
nificant increment beyond the base rate between 
the end of Year 1 (third round of coaching, Data 
Cycle 3) and beginning of Year 2 (fourth round of 
coaching, Data Cycle 5). These models thus pro-
vide two different linear growth rates for Year 1 

and Year 2 for these two items, as reflected in 
Figure 3.

Effect sizes shown in Figure 3, provide a 
sense of the relative magnitude of these findings. 
We generated within-subject effect sizes (d

av
) 

based on the total improvement seen in the 
model-based estimates, relative to the pooled 
standard deviation in the outcome. Model-based 
estimates represent improvement over a year-
and-a half, given the first round of coaching was 
in the fall of AY 2015–2016 (Data Cycle 1) and 
that the fifth round of coaching (Data Cycle 6) 
happened in the early spring of AY 2016–2017. 
As displayed in Figure 3, effect sizes for indi-
vidual items ranged from d

av
 = .31 to d

av
 = .62. 

The effect size for the composite score d
av

 = .71 
indicates that, overall, coach–teacher pairs were 
growing in preconference depth and specificity 
over time, and that, on average coach–teacher 
pairs improved about seven tenths of a standard 
deviation of the outcome.

More substantively, with items converted to 
be on the same 0 to 3 scale, we see that by the 
fifth round of coaching (Data Cycle 6), each 
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Figure 3.  Plot of growth estimates of coaching from the piecewise hierarchical linear models.
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individual item, on average, is between a score of 
“2” and “3”—the top two rubric scores, indicat-
ing that not only did coach–teacher preconfer-
ences grow in their depth and specificity, but 
they are far closer to the top of the scale than the 
bottom (for the meaning of the scale see “Metric” 
column in Table 1). Indeed, the average for the 
composite depth and specificity score is 
approaching 2.5. The growth coefficient (β

10
 = 

.338 points/year; p = .001) describes the average 
gain in preconference depth and specificity per 
year. Thus, teachers grew nearly one half point, 
on average, over the five rounds of coaching, 
representing a shift, generally, from pro-forma 
implementation of multiple solution strategies or 
discussion of superficial elements of the task and 
toward a deeper consideration of implementing 
multiple strategies and/or discussion of students’ 
acquisition of the meaning of concepts.

Growth in Coaching Practice Aligned With 
Training Program.  Figure 3 shows a graphical 
depiction of the overall improvement in coaching 
conversations, in general, where the items are all 
adjusted to the same 0 to 3 scale. The non-linear 
(and inverse) patterns for two of the items (deep 
and specific discussions of advancing questions 
and math content) are evident in this visual dis-
play of the growth trajectories for coaching prac-
tice. Across all coach–teacher pairs, coaching 
conversations were seen to first improve in hav-
ing greater depth and specificity of discussions 
of the math content for the lesson, and in subse-
quent cycles showed more rapid growth in their 
depth of discussions about advancing questions. 
As we considered these patterns in relation to 
our projects improvement cycles, we see that 
these trends in growth trajectories align with the 
focus of our coach training across network meet-
ings, lending further support for our hypothesis 
that training coaches to have deep and specific 
conversations with teachers would influence 
their capacity to do so in prelesson planning 
conferences.

For example, in the network meeting immedi-
ately prior to the third round of coaching (March 
2015), we emphasized the need to develop stu-
dents’ mathematical understanding and engaged 
coaches in activities that pressed them to iden-
tify, “what mathematics do we want students to 
know or understand as a result of implementing 

this task” as they analyzed mathematics tasks. In 
addition, coaches were trained in the difference 
between performance mathematics goals and 
learning goals. For example, they were given 
examples of how identifying learning goals such 
as “students will understand and recognize that a 
unit rate describes how many units of the first 
quantity correspond to one unit of the second 
quantity” provide greater guidance for teachers 
as they teach for conceptual understanding than a 
performance goal such as “students will calculate 
the unit rate by determining the ratio to one.” It is 
not surprising then that the prelesson planning 
conferences following this meeting included 
more in-depth discussions of the specific mathe-
matical content for the lessons coaches and 
teachers were collaboratively planning.

Subsequently, our analyses of the prelesson 
conferences from the first year of the project, led 
us to identify the need to provide additional train-
ing on pedagogy to support the development of 
students’ conceptual understanding of mathemat-
ics. In the fourth network meeting (August 2015), 
coaches had opportunities to identify how they 
could guide prelesson planning conferences to 
discuss in-depth pedagogy for supporting student 
learning. Specifically, coaches analyzed tran-
scripts from prelesson conferences for evidence 
of deep and explicit discussion of the instruc-
tional triangle. In particular, we emphasized dis-
cussion of pedagogy, including explicit attention 
to how teachers can plan questions to advance 
student understanding. It is not surprising then 
that we see more in-depth discussion of advanc-
ing questions in the fourth and fifth rounds of 
coaching (Data Cycles 5 and 6) following this 
meeting. These patterns may suggest that given 
limited time in the prelesson planning confer-
ences, coaches made choices to emphasize dis-
crete aspects of this practice at different times as 
they were learning how to incorporate deep and 
specific conversations into their practice.

Coaching Growth Trajectories Do Not Vary 
Significantly.  One important question for gaug-
ing our effectiveness was the degree to which all 
coaches (and their associated coach–teacher 
pairs) seemed to have benefited from the train-
ing. In other words, were effects obtained 
because we observed improvements among a 
handful of coaches and their associated teachers, 
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or were improvements seen broadly across most 
coach–teacher pairs? Variance decompositions 
from the HLM analyses show there is not signifi-
cant variation between coach–teacher pairs on the 
growth slope (τ

1;
 χ2 = 96.98; df = 98, p > .500—

see Table B1 in online Appendix B). Other fea-
tures of this model are also important to mention. 
For example, when examining a linear model for 
the composite depth and specificity of preconfer-
ence conversations, about half of the variance 
was between time points within coach–teacher 
pairs (i.e., measurement error: σ2). It is notable 
that this model demonstrates high variability 
between preconference scores within teachers 
(σ2) which serves to underscore one of the diffi-
culties of measuring change in the quality of 
coach–teacher conversations over time. In addi-
tion, there was significant variance between 
coach–teacher pairs in their baseline preconfer-
ence depth and specificity at Cycle 1 (τ

0;
 χ2 = 

130.33, df = 98, p = .016). Thus, in this rather 
idealistic implementation of a mathematics 
coaching model (i.e., relative lack of resource 
constraints limiting coaches from conducting full 
coaching cycles with two partner teachers), 
coach–teacher pairs significantly differed at base-
line (τ

0
), but they did not significantly differ from 

the average rate of improvement (τ
1
). There is 

further evidence that coaches also did not vary 
significantly in the growth rates experienced by 
their two partner teachers relative to the rest of the 
group. When we ran three-level models, where 
coach–teacher pairs were nested in coaches, the 

growth rates between coaches also did not sig-
nificantly vary (τ

β1;
 χ2 = 34.84; df = 32, p > 

.500—see Table B2 in online Appendix B), nor 
did the growth rates between-teachers within-
coaches (τ

π1;
 χ2 = 74.81; df = 66, p > .500—see 

Table B2 in online Appendix B). Given this, it is 
notable that the variance components show sig-
nificant differences between coach–teacher pairs 
in their status but not in their average growth rate.

RQ2: To What Extent Did Teaching Improve 
Over Time?

The findings from models examining changes 
in teaching largely parallel the findings for growth 
in the depth and specificity of preconference con-
versations. Teaching improved for almost all part-
ner teachers. Arriving at accurate effect-size 
estimates to describe the patterns of teaching 
improvement, however, is complicated by several 
factors including, the presence of coach assists, 
the fact that two of the seven videos were un-
coached and occur in Year 2 of the study, that par-
ticipants vary in how long they were coached, and 
that ceiling effects (even at the beginning of 
coaching) were present for some of our partner 
teachers. A quick examination of the raw data, 
provided in Table 5, is illustrative of both the 
underlying growth and these complications.

A glance at the progression of means over 
cycles shows that, generally, scores are higher 
in Cycle 7 (an un-coached cycle with virtually 
no coach assists) than they were in Cycle 1, 

Table 5

Repeated Measures Descriptive Statistics for Video-Based Measure of Opportunities for Students to Engage in 
Conceptual Thinking During Lesson at Each Cycle

Cycle
Coached 
cycle?

Number of 
videos

Opp. for students’ conceptual thinking Coach assists

M SD COV (%) M SD

1 Yes 62 5.57 1.85 33.1 0.63 0.77
2 Yes 65 5.85 1.61 27.6 0.78 0.86
3 Yes 62 5.81 1.64 28.2 0.41 0.75
4 No 60 5.01 1.82 36.4 0.10 0.30
5 Yes 55 5.67 1.45 25.4 0.45 0.63
6 Yes 53 6.35 1.27 19.9 0.38 0.60
7 No 53 6.49 1.23 18.9 0.23 0.42

Note. SD = standard deviation; COV = coefficient of variation.
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supporting the notion that growth in teaching 
was occurring in the population of partner 
teachers, in general. In addition, the standard 
deviation is decreasing over cycles and so is the 
coefficient of variation. Yet, while the number 
of videos remains consistent across cycles, dif-
ferent teachers contribute to the means, hence 
the need for hierarchical growth models to more 
appropriately estimate within-teacher changes 
over time. In addition, the lack of growth, but 
not decline, in the mean for Cycle 3 of Year 1, 
masks potential improvement represented in the 
reduction in coach assistance during teaching 
events from Cycle 2 to Cycle 3. If coach assists 
diminish, but the teaching scores remain the 
same, then this represents “growth” because 
teachers achieve the same score with less teach-
ing assistance from their coach (i.e., their scores 
are obtained independent of their coach). 
Declining coach involvement during lessons 
likely represents an important improvement in 
the coaching process by placing more responsi-
bility onto the teachers for instruction. Indeed, 
coach assists demonstrate a continued decrease 
over the cycles.17

Further evidence for teaching improvement 
is shown in the teaching growth trajectory pre-
sented in Figure 4. This graph represents the 
model based estimates of average growth in 
teaching during the approximately 1½ year 
interval we were training coaches. On average, 
teachers gained about 1.51 points on our mea-
sure of teaching across this time interval. The 
effect size of .95 is achieved despite the fact 
that 31% of teachers started between 6 and 8 on 
our scale that ranges from 2 to 8, and an addi-
tional 15% of teachers started at 8. Thus, there 
was a high proportion of teachers near or at the 
ceiling on our scale. Finally, our model esti-
mates suggest the per-year effect size is .61. 
The online Appendix A3 provides further 
details about how this finding on a per-year 
basis is equivalent to alternate data configura-
tions (see Table A3.1.). Furthermore, in com-
paring and contrasting across models, we 
found that, in general, all teachers contribute 
to the overall growth estimate (i.e., we did not 
see differences in growth for first year only 
teachers vs. second year only teachers, and 
teachers present for both years continued to 
grow in their second year of the study).

RQ3: Does Variance in the Depth and 
Specificity of Teachers’ Prelesson Planning 
Conversations Predict Growth in Teaching?

To better understand the association between 
the depth and specificity of preconference con-
versations and growth in teaching, we added the 
composite measure preconference depth and 
specificity as a fixed effect to the model (see left 
hand column of Table B3 in online Appendix 
B). Figure 5 illustrates the association between 
preconference depth and specificity and the rate 
of growth in teaching. This graph shows differ-
ent trajectories based on average preconference 
depth and specificity scores. The solid line rep-
resents 23 teachers whose preconference depth 
and specificity scores were .5 SD or more below 
the mean; ES = .66 for growth in teaching over 
the 1½ year interval. The dashed line represents 
54 teachers whose depth scores were between 
−.5 SD and .5 SD; ES = .95 for growth in teach-
ing. And the dotted line represents 26 teachers 
whose depth scores were .5 SD or more above 
the mean; ES = 1.26. In other words, teachers 
whose coaching conversations were character-
ized by greater depth and specificity in prelesson 
planning conferences had higher rates of growth 
in teaching.

Examining Whether Changes in Depth and Speci-
ficity of Coaching Conversations Predicts Change 
in Teaching.  To better understand the association 
between changes in coaching conversations and 
changes in teaching, we added a within-person 
measure of preconference depth and specificity as 
a fixed effect to the model.18 In addition to the 
between teacher differences in growth trajectories 
described above, the time-varying covariate for 
within-teacher change in standardized composite 
preconference depth and specificity scores was 
also marginally statistically significant (β

120b
 = 

.20, p = .055; see right hand column of Table B3 in 
online Appendix B). Thus, in addition to the 
between-teacher differences in growth noted ear-
lier, for each one standard deviation change in 
preconference depth and specificity scores 
within-teachers, they are predicted to gain an 
additional .20 points in their teaching, ultimately 
providing students’ greater opportunities to 
engage in conceptual thinking during mathemat-
ics lessons. These within-person effects show that 
growth in depth and specificity of preconference 
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Figure 4.  Two-year model-based cubic growth trajectories in classroom teaching scores for all 103 partner 
teachers, with grand-mean centered adjustments for coach assists, video rater, and coached versus un-coached 
lessons.
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Figure 5.  Comparing model-based estimates of two-year cubic growth trajectories for all 103 partner 
teachers at different levels of average preconference depth and specificity scores, with grand-mean centered 
adjustments for coach assists, video rater, and coached versus un-coached lessons.
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conversations predicts changes in teachers’ pro-
viding students’ opportunities to engage in con-
ceptual thinking during lessons.

Discussion

Our findings suggest that when coaches had 
deep and specific conversations with teachers in 
the context of planning specific lessons—includ-
ing attention to content, pedagogy, and student 
learning—teachers improved their capacity to 
maintain the cognitive demand of high-level 
mathematics tasks. Developing this capacity is 
significant because prior research suggests (a) 
that maintaining the demand of high-level tasks 
is challenging (Stein et al., 1996, 2010) and (b) 
that when teachers provide opportunities to rea-
son through complex tasks and sustain student 
engagement at a high-level, students are more 
likely to learn mathematics concepts (Boaler & 
Staples, 2008; Hiebert & Wearne, 1993; Stein 
et  al., 2017; Stein & Lane, 1996; Stigler & 
Hiebert, 2004; Tarr et al., 2008). Teaching that 
supports students’ conceptual understanding of 
mathematics is critical in the current policy 
environment that has set rigorous college- and 
career-readiness standards, as the learning goal 
for all students.

Through our ongoing analyses of data from 
successive improvement cycles, we came to 
understand how prelesson planning conferences, 
and specifically deep and specific discussions of 
the instructional triangle, present a critical oppor-
tunity for teachers to prepare for instruction. By 
tying discussion of mathematics lessons to 
important dimensions of the instructional trian-
gle, teachers have a template for learning how to 
incorporate broad ideas about conceptually ori-
ented and student-focused instruction into their 
practice. In addition, our results suggest that 
these coaching practices were associated with 
growth in teaching even when teachers had as 
little as two or three coaching cycles in a given 
year. Orchestrating deep and specific prelesson 
planning conferences appears to be a high-lever-
age coaching practice.

This study makes a significant contribution to 
prior research on coaching by examining coach-
ing practice in a large sample of coach and 
teacher discussions. The majority of coaching 
studies have treated coaching practice as a black 

box or investigated it in small numbers of quali-
tative cases (Kraft et al., 2018). By identifying a 
high-leverage coaching practice and a way to 
measure its uptake in practice, we provide a 
model for the kind of research that is critical to 
advance the field’s understanding of coaching. In 
addition, the findings make a tentative connec-
tion between the quality of the uptake of specific 
coaching practices and growth in teaching 
practice.

Although the analyses presented in this article 
provide significant insight into high-leverage 
coaching practice during prelesson planning con-
ferences, there are limitations to our analyses that 
should be considered when interpreting our 
results and which provide guidance on avenues 
for future research. First, the way we measured 
instruction—operationalized in the context of or 
close proximity to coaching cycles—is not a mea-
sure of the extent to which teachers changed their 
typical mathematics teaching. Rather this is a 
measure that provides an indicator that teachers 
have developed capacity to maintain the cogni-
tive demand of high level tasks. This is an impor-
tant first step in establishing the potential power 
of the coaching model, yet the lack of attention to 
sustained change in practice is a potential limita-
tion that creates an opportunity for future research.

Similarly, it may be possible that the changes 
in teaching we observed in our sample could be 
caused by factors other than exposure to our 
coaching model. For example, teaching practice 
may be improving due to increased exposure to 
or understanding of the rigorous college and 
career standards that occurred outside the context 
of the coaching study. Our longitudinal growth 
models provide suggestive evidence that coach-
ing practice is associated with the changes in 
teaching practice that we observed because 
within teacher changes in the depth and specific-
ity of coaching conversations predicted growth 
in their teaching. However, a similar concern 
arises in that these changes could be attributed to 
other exogenous factors such as teachers’ inter-
ests in developing student conceptual under-
standing, which may have facilitated both growth 
in the depth of prelesson planning conferences 
and teaching for understanding. This suggests 
that further research is necessary to substantiate 
the relationship between this coaching practice 
and teacher learning and development.
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Furthermore, a rival hypothesis for the 
changes in instruction we observed may simply 
be that teachers were encouraged to utilize a 
challenging task. In other words, the coaching 
effects may stem primarily from the selection 
and faithful implementation of high-quality tasks 
rather than the quality of the coaching itself. 
Although possible, we argue that this it is not 
likely that coaching effects can be traced simply 
to the selection of tasks, because implementation 
of high-level tasks is hard to do without support 
for learning the pedagogical strategies that sup-
port maintenance of cognitive demand (Stein 
et al., 1996).

Another limitation of our study is that we 
relied on a carefully selected group of coaches, 
who in turn selected participating teachers. As a 
result, we do not know the extent to which the 
findings might generalize to more typical coach-
ing contexts. Although we took care to select 
coaches that varied in their baseline capacity and 
prior training, the sample may not reflect the full 
range of coaches in natural contexts. In addition, 
the range of teacher skills and capacity may not 
be representative. We acknowledge this as a limi-
tation and note that future investigations should 
examine whether typical coaches and teachers 
achieve similar gains when they are trained to 
utilize the coaching and teaching practices 
described in this study.

Our research contributes significantly to future 
explorations that can begin to disentangle the 
influence of exogenous factors on teaching 
growth. Having identified a seemingly high-
leverage coaching practice, we create opportunity 
to test whether coaches trained to enact this prac-
tice produce superior gains in teaching develop-
ment than teachers coached by coaches without 
that training. In a follow up investigation we are 
analyzing results from a prospectively matched 
quasi-experimental study that compares coaching 
and teaching effects for two different groups of 
teachers—those coached using our model versus 
those receiving garden-variety coaching.

Our findings have significant implications for 
research, policy, and practice. In addition to the 
contributions to research on coaching noted 
above, our study illustrates the affordance of con-
tinuous improvement research conducted in the 
context of a research–practice partnership. By 
partnering with coaches, we had an opportunity to 

collect rich and comprehensive data on coaching 
practice and gain insights into complex imple-
mentation dynamics. In this way, our work is 
part of a broader trend in education research that 
aims to utilize research–practice partnerships to 
facilitate systemic educational improvement and 
knowledge production (Coburn & Penuel, 2016). 
We believe our experience reinforces the impor-
tance of research–practice partnerships, provid-
ing an example of how researchers, policymakers, 
and practitioners can work together to support 
ambitious instructional improvement. The study 
exemplifies how a design-based approach to 
conducting implementation research can result 
in improved policies and practices while also 
generating research findings that are useful to 
the field.

With respect to policy and practice, our study 
supports schools and districts aiming to utilize 
instructional coaching as part of their improve-
ment agendas. With the growing investment in 
instructional coaching in districts around the 
country that are trying to support shifts in teach-
ing aligned with rigorous standards, a need has 
emerged for providing guidance and training for 
the coaching role (Gallucci et  al., 2010; Kraft 
et al., 2018; Matsumura et al., 2009). To inform 
the design of coaching programs, we need rigor-
ous empirical examinations of what coaching 
practices contribute to teaching improvement, so 
schools and districts can get an optimal return on 
this investment. Our investigation identifies a 
seemingly high-leverage practice that our experi-
ence suggests can be taught to coaches, and pro-
ductively incorporated into their practice. The 
Coach–Teacher Discussion Process routine with 
a focus on deep and specific prelesson planning 
conferences provides considerable guidance for 
how coaches can utilize their time in support of 
teacher learning and practice improvement. In 
addition, it suggests a focus for coach training, 
support, and evaluation.

This kind of practical knowledge about coach-
ing is critical as local policymakers and instruc-
tional leaders implement ambitious instructional 
improvement efforts that aim to ensure equitable 
access to the learning opportunities students need 
to achieve college and career readiness stan-
dards. Coaching is a component of the instruc-
tional guidance infrastructure that districts and 
schools can design and leverage to promote 
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teacher learning and development (Cobb et  al., 
2018; Hopkins et  al., 2013). District work to 
redesign the instructional guidance infrastructure 
can support teacher leadership and act as a cou-
pling mechanism that ties district-level instruc-
tional priorities to teachers and their instruction 
(Hopkins & Woulfin, 2015). In addition, instruc-
tional coaching can support implementation of 
instructional reforms by working in concert with 
other reforms, such as teacher evaluation sys-
tems (Woulfin & Rigby, 2017). Studies that gen-
erate insights about educational practice, in this 
case the work of coaches to support teaching 
improvement, can provide the guidance neces-
sary to help systems move beyond the identifica-
tion of structures and policies that signal 
alignment with ambitious teaching and learning, 
to the design of robust instructional infrastruc-
tures that support teaching, learning, and contin-
uous improvement.
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Notes

1. As three of the four items were on a scale from 
0 to 3, we transformed the last item to the same scale 
before taking the average of the four items.

2. Although this is a small sample to make infer-
ences from, it points to one potential difficulty in scor-
ing coached videos, that is, how to handle the scoring 
of lessons when the coach actively contributes to aid 
in the implementation of the lesson. These ICCs sug-
gest that raters agree quite well when all of the teach-
ing during the lesson is attributed solely to the teacher. 
However, there are possible rater by coach assist inter-
actions which could lead to greater variability in rater’s 
scores of teaching on coach-assisted lessons. Interrater 
agreement was lower for lessons where at least one 
of the raters indicated a coach assist. In our view this 

may be due to the complexity of scoring video-based 
lessons in the context of coaching. Should teachers be 
credited with the teaching achieved (ignoring that the 
idea may have originated with the coach) or should 
they only be scored on what the teacher did indepen-
dent of the coach? This is a complex judgment raters 
face when conducting scoring and our hypothesis is 
that one reason the ICC might be lower for videos 
with assists is that different raters might have different 
views about how they should score these situations. In 
generating model-based estimates of teaching growth, 
we have adjusted for any main effects of a lesson being 
labeled as a “1” or “2” for coach assist, as well as any 
main effects of raters, in part to account for any such 
differences.

3. We used whatever data teachers had. One of the 
advantages of hierarchical models (and HLM soft-
ware, in particular) is that it allows for missing data 
at Level 1. Therefore, it will construct within person 
growth estimates based on the portion of data a person 
has available.

4. We used a linear mixed model in SPSS v.26 
and compared a compound symmetry model (con-
stant variance assumed) versus an unstructured model 
(independent variance). Both models demonstrate a 
significant effect of time (F = 6.84; p < .001 vs. F 
= 5.93; p < .000). There is not a significant drop in 
−2 log likelihood for the unstructured model χ2 (25, 
n = 103) = 22.80, p = .59. The more parsimonious 
model (compound symmetry) is preferred, and, thus, is 
the one we present in this article, though both models 
demonstrate a significant effect of time.

5. One item, the grade-level appropriateness of the 
mathematics content, was dichotomous and violated 
the assumption of normality for a repeated measures 
ANOVA outcome. To assess the statistical signifi-
cance for change over time for this item we examined 
a repeated measures logistic regression with cycle as 
the focal independent variable.

6. The coefficient of variation is a dispersion sta-
tistic that measures the standard deviation relative 
to the mean. In studies with interventions it is likely 
that in addition to mean changes, the standard devia-
tion might also decrease if subjects at the lower end 
of the distribution are “pulled up.” The coefficient of 
variation, expressed as a ratio, would demonstrate a 
decrease if there was either an increase in the mean or 
a decrease in standard deviation, and would be espe-
cially large if both were occurring simultaneously.

7. For effect sizes we report Cohen’s d for within-
groups designs (d

av
) as discussed in Lakens (2013). 

To find the average standard deviation across all 
time points, we used the standard deviation for the 
first and last time points from the descriptive sta-
tistics of the repeated measures mixed model and 
averaged them.
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8. For this analysis we used 311 preconference vid-
eos from 103 teachers (n

j
 = 3.02) across both years. We 

examined two different types of growth models—we 
examined both two- and three-level univariate growth 
models. In the three-level models, in addition to time 
points nested in teachers, teachers were also nested in 
coaches (n

j
 = 3.18). We chose to present the simpler 

two-level growth models, given the fact that both pro-
duced essentially the same growth coefficients, that 
there was no significant variation between coaches in 
the growth estimates, and because the number of teach-
ers nested in coaches is relatively sparse. In addition, 
this fits with our primary purpose which was to describe 
the observed growth parameters among all teachers.

9. Model parameters are described in online 
Appendix A1.

10. The “Base Rate” measures linear growth over 
the entire interval, while the “Incremental Rate” pro-
vides a significance test to identify whether the linear 
growth rate is the same in the second year as it was in 
the first year. If there is no change to the rate of growth 
in Year 2, then the “Incremental Rate” would be close 
to “0,” indicating no divergence in growth rate.

11. Prior to examining our final data configuration, 
we examined two simpler growth models. The first 
model estimated teaching change over a single year 
across all 103 teachers. The second model estimated 
teaching change over 2 years for the 24 teachers receiv-
ing coaching in both years. The models and findings 
are described in online Appendix A3. In particular, 
Appendix A3 demonstrates the similarity in the mag-
nitude of the effect size estimates on a per-year basis 
across the different model configurations. We justify 
our final model selection, including adjustments for 
covariates, because it uses all of our collected data.

12. The process of determining model fit included 
an examination of a chi-square test of the deviance sta-
tistics from two models, one of which was fully nested 
in the other. If the model with the greater number of 
parameters resulted in a reduction in deviance, taking 
into account the number of extra parameters added to 
the model then the model was deemed to be a better 
fit to the data.

13. Recall that coach assists were scored at three 
different levels. We created two dichotomous variables 
to be included as time-varying covariates in the model. 
The first dichotomous variable was for a coach assist 
of “1” (CchAssist1) when coaches provided sugges-
tions to teachers, and the second was for a coach assist 
of “2” (CchAssist2) when coaches may have helped 
to coteach the lesson at times. Both dichotomous vari-
ables were entered in the model and videos with no 
assists were the reference category.

14. Inclusion of this variable muted the effect of 
coach assist one because coach assists were close to 
zero during these un-coached sessions. Thus, prior to 

this covariate being added the effects of coach assists 
appeared much greater, partly because it was picking 
up on the contrast of scores within teacher during these 
un-coached sessions. In addition to fewer assists, this 
covariate accounts for the fact that teachers also do not 
have preconferences for these two videos.

15. Although this measure is endogenous to their 
teaching gains, our intent here is merely to describe 
differences in these growth trajectories, and not make 
a causal attribution.

16. We examined many different models making 
adjustments for baseline level of teaching, including 
linear adjustments, to understand the sensitivity of 
model estimates to the model specification. In gen-
eral, the findings persist no matter how adjustments 
for prior teaching status were made. Linear adjust-
ments made less sense to us theoretically because we 
assumed the relationship might be curvilinear. We also 
tried grouping teachers into three groups—those 1 
SD or more above in baseline status, those between 
1 SD and −1 SD and those below −1 SD in status at 
baseline—with similar findings on the coefficients. 
Although lower standard errors for coefficients from 
these models indicated greater precision, an increase 
in variance components for the final model in Table 
B3 indicated the model may have over-controlled for 
beginning status. Therefore, we ended up only adjust-
ing for whether or not the teacher was at ceiling at 
baseline.

17. In a repeated measures ANOVA, there was a 
statistically significant effect of cycle on coach assists 
F(6, 336.32) = 13.35, p = .000, demonstrating a 
decrease over time.

18. To run this model, we had to remove the time-
varying covariate for coached versus un-coached 
lessons because un-coached lessons do not have pre-
conference rigor scores. Thus, this model is primarily 
informative about the associations between coaching 
and teaching. We tested for a random effect but devi-
ance statistics suggested this model was not a better fit.
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