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ABSTRACT 

In this work, recurrent and linear sequences are studied, exploring the teaching of these numbers 

with the aid of a computational resource, known as Google Colab. Initially, a brief historical 

exploration inherent to these sequences is carried out, as well as the construction of the 

characteristic equation of each one. Thus, their respective roots will be investigated and analyzed, 

through fractal theory based on Newton's method. For that, Google Colab is used as a 

technological tool, collaborating to teach Fibonacci, Lucas, Mersenne, Oresme, Jacobsthal, Pell, 

Leonardo, Padovan, Perrin and Narayana sequences in Brazil and Portugal. It is also possible to 

notice the similarity of some of these sequences, in addition to relating them with some figures 

present and their corresponding visualization. 
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INTRODUCTION 

Studies referring to recurring sequences are being found more and more in the scientific literature, 

exploring not only the area of Pure Mathematics, with theoretical instruments used in algebra, but also in the 

area of Mathematics teaching and teacher training. In the work of Alves (2017), Oliveira and Alves (2019), 

and Souza and Alves (2018), one can perceive the use of research and teaching methodologies for the study of 

these sequences, emphasizing the use of technological resources as facilitating tools for this process. In 

addition, the existing works deal only with one or two recurring sequences, not addressing them all in a single 

research or systematic scientific report. 

In turn, according to Protázio, Oliveira, and Protázio (2019), Mathematics software can be educational once 

the teacher develops strategies to achieve his educational objective, before exploring them. They also report 

that the use of educational software is a promising tool for teaching Mathematics and exploring visualization 

and, we add, for the training of Mathematics teachers in Brazil and Portugal. 

Through this perspective, a proposal was conceived, in which it explored the teaching of the roots of the 

characteristic equations of recurrent and linear sequences, through Newton's fractal, using Google Colab as a 

computational tool to aid this analysis, with emphasis on its character visualization, originated in 2D and 3D 

representations. A study of the historical and epistemological process of these sequences is also inserted before 

investigating their respective roots. When establishing a direct division of a term in the sequence by its 

predecessor, this numerical ratio converges-to a certain number, being, therefore, one of the real root of the 
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characteristic equation. Thus, each equation presents as a solution at least one real root, which is still related 

to the sequence through its convergence relationship. 

In this study an analysis of the roots of the characteristic equations of the recurrent and linear sequences 

is performed, using the computational resource of Google Colab, based on the work of Alves and Vieira (2020), 

Vieira, Alves, and Catarino (2019). This tool assists the analysis of these roots, through the Newton fractal 

method, covered only in works of pure mathematics, not being approached for teaching. For this, the historical 

context of the Fibonacci, Lucas, Mersenne, Oresme, Jacobsthal, Pell, Leonardo, Padovan, Perrin sequences 

and, finally, the Narayana sequence are presented. We then proceed with a brief explanation of Newton's 

method, and so we seek to analyze the roots through fractal theory, in view of the interest in emphasizing the 

visualization of certain properties. 

RECURRENT AND LINEAR SEQUENCES 

A sequence is said to be recurrent and linear, as it presents an infinite number of terms, and is therefore 

obtained by means of a mathematical formula in which it needs to know its predecessors, in addition to its 

initial values (Zierler, 1959). This formula is called a recurrence relation, being represented by an equation, 

in which, recursively, it defines the sequence. Thus, each term in the sequence is like a function of the previous 

terms, fixing their respective initial values. With that, we have that this relationship, in a recurring and linear 

sequence, is described as follows:𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2+. . . +𝑐𝑘𝑎𝑛−𝑘, where 𝑐1 , 𝑐2, . . . , 𝑐𝑘 are the coefficients and 

elements 𝑎𝑛−1, 𝑎𝑛−2, . . . , 𝑎𝑛−𝑘 are the terms of the recurring sequence. 

Every sequence also has a characteristic polynomial or characteristic equation, which is obtained through 

the fundamental relationship of recurrence, given by the general formula:𝑥𝑛 − 𝑐1𝑥
𝑛−1 − 𝑐2𝑥

𝑛−2−. . . −𝑐𝑘𝑥
𝑛−𝑘 =

0 (Forbes, 2014). 

It should also be noted that a sequence is said to be linear, only when presenting its function as being of 

the first degree. However, its respective characteristic equation may be of higher orders. Then, we will carry 

out a brief historical study (Alves, 2017) referring to recurring and linear sequences, having as precursor the 

Fibonacci sequence, being, therefore, of second order. 

The Fibonacci Sequence 

Introduced in the Middle Ages in Europe, the Fibonacci sequence was created by the mathematician 

Leonardo de Pisa (1180-1250), still considered the precursor sequence for the origin of similar ones. Having 

their character of mathematical popularization according to a reproduction model of immortal rabbits, these 

numbers also raise the question of the reproduction of drones, however, this recurrence model was already 

known by Indian mathematicians, centuries before (Singh, 1985). Some applications of this sequence are seen 

in several branches of scientific knowledge and, still, in the human body. On Monalisa's face, we find the 

formation of the Fibonacci spiral, building the rectangle considered perfect (Kbott, 2020). 

The recurrence formula for this second order sequence is given by: 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 𝑛 ≥ 2, still having the 

following initial values 𝐹0 = 0, 𝐹1 = 1. Considering another sequence, indicated𝑓𝑛, in the condition that 𝑓𝑛 =
𝐹𝑛+1

𝐹𝑛
, we will explore its convergence through Table 1, observing the algebraic behavior and numerical of the 

following limit indicated by lim
𝑛→∞

𝑓𝑛 = lim
𝑛→∞

𝐹𝑛+1

𝐹𝑛
≈ 1.61 = 𝜙 ∈ 𝐼𝑅, known as the gold number. 

Furthermore, we have to start from the recurrence and the relationship involving the quotients lim
𝑛→∞

𝐹𝑛+1

𝐹𝑛
=

𝜙, we can obtain its characteristic equation 𝜙² − 𝜙 − 1 = 0, originating from the following relations described 

below: 

Table 1.  Convergence ratio of the ratio of the elements of the Fibonacci sequence 𝑓𝑛 =
𝐹𝑛+1

𝐹𝑛
 

𝒏 𝒇𝒏 𝒏 𝒇𝒏 

1 1 6 1.625 

2 2 7 1.615384615 

3 1.5 8 1.619047619 

4 1.666... 9 1.617647059 

5 1.6 10 1.618181818 

Source: Elaborated by the authors 

http://www.iejme.com/


 

 

 INT ELECT J MATH ED 

 

 

http://www.iejme.com   3 / 19 

 

 

 

 

𝐹𝑛
𝐹𝑛−1

=
𝐹𝑛−1
𝐹𝑛−1

+
𝐹𝑛−2
𝐹𝑛−1

↔ 𝜙 = 1 +
1

𝐹𝑛−1
𝐹𝑛−2

↔ 𝜙 = 1 +
1

𝜙

↔ 𝜙² − 𝜙 − 1 = 0

 (1) 

The Lucas Sequence 

When studying the Fibonacci sequence, the French mathematician Édouard Anatole Lucas (1842-1891), 

created the Lucas sequence, having its fundamental recurrence relationship identical to the Fibonacci 

numbers and formulated by 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2, 𝑛 ≥ 2 differentiating it only in relation to its initial numerical 

values chosen, given by 𝐿0 = 2, 𝐿1 = 1. With that, we have that the characteristic equation of these numbers is 

similar to that of Fibonacci, given by the polynomial equation 𝜙² − 𝜙 − 1 = 0. In addition to its convergence 

relation, corresponding to the ratio of the terms, interconnected with the gold number and other properties 

similar to the Fibonacci numbers. 

E. Lucas was motivated to study divisibility and factorization issues, elaborating a problem regarding the 

content of combinatorial analysis, in which he says: how many ways can n couples sit in 2n different chairs 

around a circle so that people in the same sex do not feel together and that no man stands by his wife? 

This question was raised primarily by Peter Guthrie Tait (1831-1901), but a few years later Lucas modified 

that question. But, only in 1943, Irving Kaplansky (1917-2006) found a solution to the classic problem and 

published his work, therefore, counting the number of existing ways to seat a certain number of couples around 

a round table, alternating still between men and women (Kaplansky, 1943). 

Known for the problem of the tower of Hanoi, E. Édouard Lucas also proved a way to obtain Fermat's 

theorem and performed several tests for prime numbers, calculating, without the aid of computational 

resources, the largest prime number with 39 digits, during many years. Based on this, he managed to establish 

a relationship between the twelfth term of the prime number and the Mersenne numbers, which will be studied 

in the next subsection. There are many applications of these numbers in the areas of Applied Mathematics, 

Linear Algebra, Computer Sciences, Physics, Biology and among others found in Koshy's work (Koshy, 2001). 

In the subsequent section we will discuss some properties about the Mersenne sequence. In general, this 

sequence is disregarded by authors of History of Mathematics books adopted in Brazil. 

The Mersenne Sequence 

Formulated by the French mathematician Marin Mersenne (1588-1648), the Mersenne sequence is a 

second order sequence, with its recurrence defined as: 𝑀𝑛 = 3𝑀𝑛−1 − 2𝑀𝑛−2, 𝑛 ≥ 2 and having the initial 

numerical values defined as follows 𝑀0 = 0,𝑀1 = 1. 

In turn, there are still the prime numbers of Mersenne, they are denoted by 𝑀𝑛 = 2𝑛 − 1, where 𝑛 it is a 

non-negative number (Catarino, Campos, & Vasco, 2016). Through a simple mathematical calculation, it is 

possible to demonstrate that if it 𝑀𝑛 is a prime number, then 𝑛 it is a prime number, although 𝑀𝑛 not all are 

prime. When 𝑀𝑛 it is a prime number, it is called a Mersenne prime. The search for Mersenne's cousins is still 

a current and active issue in number theory, combinatorics, computer science and coding theory, since they 

have a connection with perfect numbers. On the other hand, the Mersenne sequence is less popular in the 

literature related to the historical and mathematical context. In the mathematical problem of the Tower of 

Hanoi, for example, to solve a puzzle with a disk tower, it is necessary to use Mersenne's number formula, 

assuming that no mistake was made (Ford, Luca, & Shparlinski, 2009; Koshy & Gao, 2013). 

On the other hand, analyzing the subsequence called 𝑚𝑛 =
𝑀𝑛+1

𝑀𝑛
, we will explore its convergence 

relationship, with a view to obtaining the characteristic equation. Thus, observing Table 2, we can see 

mathematically that we will have the limit  lim
𝑛→∞

𝑚𝑛 = lim
𝑛→∞

𝑀𝑛+1

𝑀𝑛
≈ 2 = 𝜇 ∈ 𝐼𝑅, 𝜇 = 2 known as metallic copper 

number. 
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With that, we have the characteristic equation 𝜇2 − 3𝜇 + 2 = 0 that is determined below: 

 

𝑀𝑛

𝑀𝑛−1
= 3(

𝑀𝑛−1

𝑀𝑛−1
) − 2 (

𝑀𝑛−2

𝑀𝑛−1
)

↔ 𝜇 = 3 − 2(
1

𝑀𝑛−1

𝑀𝑛−2

)

↔ 𝜇 = 3 −
2

𝜇

↔ 𝜇2 − 3𝜇 + 2 = 0

 (2) 

The Oresme Sequence 

The philosopher, mathematician, medieval scholastic Nicole Oresme (1320-1382), stood out for his studies 

regarding the graphic representations of qualities and speeds; was the pioneer to establish a notion of 

fractional symbolic forms, also suggesting a notation, in addition to considering a pattern of increasing speed 

without limit and other representations. Thus, starting the interval with the unit time, Oresme established 

speed 1 in the first half of the time, 2 in the next quarter, 3 in the following eighth and so on. With that, he 

found the infinite sum of rational numbers indicated by 
1

2
+

2

4
+

3

8
+

4

16
+. . . +

𝑛

2𝑛
. . . = 2. More recently, he then 

used geometric interpretation to demonstrate such a suggested problem, but there are no published papers on 

Oresme's research during the Middle Ages (Horadam, 1974). Based on this infinite sum, we have the 

recurrence of the Oresme sequence, given by 𝑂𝑛 = 𝑂𝑛−1 −
1

4
𝑂𝑛−2, 𝑛 ≥ 2 , with initial numerical values equal to 

𝑂0 = 0,𝑂1 =
1

2
. Exploring a subsequence, given by 𝑜𝑛 =

𝑂𝑛+1

𝑂𝑛
, we have that it converges according to Table 3. 

We then have to lim
𝑛→∞

𝑜𝑛 = lim
𝑛→∞

𝑂𝑛+1

𝑂𝑛
≈ 0.52 = 𝜎 ∈ 𝐼𝑅, and the characteristic equation determined by𝜎2 − 𝜎 +

1

4
= 0 is indicated as follows: 

Table 2. Convergence ratio of the ratio of the elements of the Mersenne sequence𝑚𝑛 =
𝑀𝑛+1

𝑀𝑛
 

𝒏 𝒏 𝒏 𝒎𝒏 

1 3 6 2.015873016 

2 2.333... 7 2.007874016 

3 2.142857143 8 2.003921569 

4 2.066666667 9 2.001956947 

5 2.032258065 10 2.000977517 

Source: Elaborated by the authors 

Table 3. Convergence ratio of the ratio of the elements of the Oresme sequence𝑜𝑛 =
𝑂𝑛+1

𝑂𝑛
 

𝒏 𝒐𝒏 𝒏 𝒐𝒏 

1 1 11 0.545454545 

2 0.75 12 0.541666667 

3 0.666666667 13 0.538461538 

4 0.625 14 0.535714286 

5 0.6 15 0.533333333 

6 0.583333333 16 0.53125 

7 0.571428571 17 0.529411765 

8 0.5625 18 0.527777778 

9 0.555555556 19 0.526315789 

10 0.55 20 0.525 

Source: Elaborated by the authors 
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𝑂𝑛
𝑂𝑛−1

=
𝑂𝑛−1
𝑂𝑛−1

−
1

4
(
𝑂𝑛−2
𝑂𝑛−1

)

↔ 𝜎 = 1 −
1

4
(

1

𝑂𝑛−1
𝑂𝑛−2

)

↔ 𝜎 = 1 −
1

4

1

𝜎

↔ 𝜎2 − 𝜎 +
1

4
= 0

 (3) 

According to Alves (2019), this second-order sequence has an application in the area of Biology, since from 

the first two terms, it is possible to estimate the number of parents, grandparents and determine the 

proportion in any generation. In the subsequent section, we will deal with the case of the sequence named 

after the work of the mathematician Ernst Erich Jacobsthal (1882 - 1965). 

The Jacobsthal Sequence 

Considered as a particularity of the Lucas sequence, the Jacobsthal sequence is used to solve problems 

related to the content of combinatorial analysis, having a question proposed and resolved by Craveiro (2004), 

in which it says: the amount of tiles 𝑞𝑛 that it is possible to calculate for a rectangle (3xn), using two types of 

tiles, one of them with dimensions (1xt), in white and the other (2x2) in red, according to Jacobsthal numbers. 

Defining 𝑞0 = 0, for a rectangle (3x1), we will have 𝑞1 = 1, for a rectangle  (3x2), 𝑞2 = 3, that is, three types of 

possible tiles, for a rectangle (3x3), 𝑞3 = 5. 

Created by the German mathematician Ernest Erich Jacobsthal (1882-1965), these numbers belong to the 

second order sequence (Alves, 2017), with their respective recurrence formula given by the relation:𝐽𝑛 = 𝐽𝑛−1 +

2𝐽𝑛−2, 𝑛 ≥ 2 , with the initial numerical values indicated by 𝐽0 = 0, 𝐽1 = 1. 

De forma a analisar a subsequência, definida como 𝑗𝑛 =
𝐽𝑛+1

𝐽𝑛
 , we can observe a numerical behavior of its 

convergence visualized in Table 4, realizing that lim
𝑛→∞

𝑗𝑛 = lim
𝑛→∞

𝐽𝑛+1

𝐽𝑛
≈ 2 = 𝜇 ∈ 𝐼𝑅, known as copper number. 

It is observed that the subsequence has the same convergence value as the Mersenne sequence. With that, 

we will analyze the obtaining of the characteristic equation 𝜇2 − 𝜇 − 2 = 0, based on the recurrence of the 

Jacobsthal sequence. 

 

𝐽𝑛
𝐽𝑛−1

=
𝐽𝑛−1
𝐽𝑛−1

+ 2(
𝐽𝑛−2
𝐽𝑛−1

)

↔ 𝜇 = 1 + 2(
1

𝐽𝑛−1
𝐽𝑛−2

)

↔ 𝜇 = 1 + 2(
1

𝜇
)

↔ 𝜇2 − 𝜇 − 2 = 0

 (4) 

The Pell Sequence 

The Pell sequence was created by the English mathematician John Pell (1611-1685), being a second order 

sequence, given by the fundamental recurrence indicated by, 𝑃𝑛 = 2𝑃𝑛−1 + 𝑃𝑛−2, 𝑛 ≥ 2 with the initial 

numerical values 𝑃0 = 0, 𝑃1 = 1. Malcolm (2000) reports that despite these numbers presenting the name to 

Table 4. Convergence ratio of the ratio of the elements of the Jacobsthal sequence 𝑗𝑛 =
𝐽𝑛+1

𝐽𝑛
 

𝒏 𝒋𝒏 𝒏 𝒋𝒏 

1 1 6 2.047619048 

2 3 7 1.976744186 

3 1.666... 8 2.011764706 

4 2.2 9 1.994152047 

5 1.909090909 10 2.002932551 

Source: Elaborated by the authors 
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the mathematician, there are no publications attributed to the name of this researcher, since Pell did not have 

financial conditions and resources. This mathematician also stood out for developing resolutions for problems 

involving tables of squares, sums of squares, primes and compounds, logarithms, among others (Walker, 2011). 

Defining the subsequence 𝑝𝑛 =
𝑃𝑛+1

𝑃𝑛
, we analyzed its convergence relationship based on Table 5. 

Thus, we can perceive the behavior of the following limit lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

𝑃𝑛+1

𝑃𝑛
≈ 2.41 = 𝛿 ∈ 𝐼𝑅, known as the 

silver number. The characteristic equation indicated by 𝛿2 − 2𝛿 − 1 = 0 is determined as follows:   

 

𝑃𝑛
𝑃𝑛−1

= 2(
𝑃𝑛−1
𝑃𝑛−1

) +
𝑃𝑛−2
𝑃𝑛−1

↔ 𝛿 = 2 +
1

𝑃𝑛−1
𝑃𝑛−2

↔ 𝛿 = 2 +
1

𝛿
↔ 𝛿2 − 2𝛿 − 1 = 0

 (5) 

The Leonardo Sequence 

Currently, few researches are found regarding the Leonardo sequence, highlighting the works of Shannon 

(2019), Catarino and Borges (2020) and Vieira, Alves, and Catarino (2019), defining it as a second order 

sequence with a recurrence formula 𝐿𝑒𝑛 = 𝐿𝑒𝑛−1 + 𝐿𝑒𝑛−2 + 1, 𝑛 ≥ 2, with values initials 𝐿𝑒0 = 𝐿𝑒1 = 1. Catarino 

and Borges (2020) define yet another recurrence relationship given as 𝐿𝑒𝑛 = 2𝐿𝑒𝑛−1 − 𝐿𝑒𝑛−3, 𝑛 ≥ 3:. Based on 

this second recurrence, we can establish a subsequence in order to obtain the characteristic equation. With 

that, we have 𝑙𝑒𝑛 =
𝐿𝑒𝑛+1

𝐿𝑒𝑛
, and its convergence relationship, known as the gold number and observed according 

to Table 6. 

We can now determine the following limit lim
𝑛→∞

𝑙𝑒𝑛 = lim
𝑛→∞

𝐿𝑒𝑛+1

𝐿𝑒𝑛
≈ 1.61 = 𝜙 ∈ 𝐼𝑅. Therefore, its respective 

characteristic equation 𝜙³ − 2𝜙² + 1 = 0, which is determined as indicated below: 

Table 5. Convergence ratio of the ratio of the elements of the Pell sequence𝑝𝑛 =
𝑃𝑛+1

𝑃𝑛
 

𝒏 𝒋𝒏 𝒏 𝒋𝒏 

1 2 6 2.414285714 

2 2.5 7 2.414201183 

3 2.4 8 2.414215686 

4 2.416666667 9 2.414213198 

5 2.413793103 10 2.414213625 

Source: Elaborated by the authors 

Table 6. Convergence ratio of the ratio of the elements of the Leonardo sequence 𝑙𝑒𝑛 =
𝐿𝑒𝑛+1

𝐿𝑒𝑛
 

𝒏 𝒍𝒆𝒏 𝒏 𝒍𝒆𝒏 

1 1 11 1.620209059 

2 3 12 1.619354839 

3 1.666... 13 1.618857902 

4 1.8 14 1.618539787 

5 1.666... 15 1.618347694 

6 1.666.. 16 1.618227372 

7 1.64 17 1.618153668 

8 1.634146341 18 1.618107882 

9 1.626865672 19 1.618079681 

10 1.623853211 20 1.618062217 

Source: Elaborated by the authors 
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𝐿𝑒𝑛
𝐿𝑒𝑛−1

= 2(
𝐿𝑒𝑛−1
𝐿𝑒𝑛−1

) −
𝐿𝑒𝑛−3
𝐿𝑒𝑛−1

↔ 𝜙 = 2 − (
1

𝐿𝑒𝑛−3𝐿𝑒𝑛−2
𝐿𝑒𝑛−2𝐿𝑒𝑛−1

)

↔ 𝜙 = 2 −
1

𝜙²

↔ 𝜙³ − 2𝜙² + 1 = 0

 (6) 

The Padovan Sequence 

After the end of World War II, large churches were destroyed, and with that the architect Hans Van Der 

Laan (1904-1991) chose to rebuild these churches, thus discovering a new standard of architectural 

measurement, given by an irrational number, known as plastic number (Voet & Schoonjans, 2012). 

Some time later, the Italian architect Richard Padovan, developed a sequence, having a connection with 

this plastic number, with an approximate value of 1.32. Thus, we have a third order sequence, with a 

recurrence relation given by 𝑃𝑎𝑛 = 𝑃𝑎𝑛−2 + 𝑃𝑎𝑛−3, 𝑛 ≥ 3 and with initial values 𝑃𝑎0 = 𝑃𝑎1 = 𝑃𝑎2 = 1. 

Analyzing the subsequence called 𝑝𝑎𝑛 =
𝑃𝑎𝑛+1

𝑃𝑎𝑛
, we explored its convergence relationship based on Table 7. 

It is possible to determine the behavior of the following limit lim
𝑛→∞

𝑝𝑎𝑛 = lim
𝑛→∞

𝑃𝑎𝑛+1

𝑃𝑎𝑛
≈ 1.32 = 𝜓 ∈ 𝐼𝑅, known 

as the plastic number. The characteristic equation 𝜓3 − 𝜓 − 1 = 0 is obtained, similarly, to the previous cases: 

 

𝑃𝑎𝑛
𝑃𝑎𝑛−2

=
𝑃𝑎𝑛−2
𝑃𝑎𝑛−2

+
𝑃𝑎𝑛−3
𝑃𝑎𝑛−2

↔
𝑃𝑎𝑛
𝑃𝑎𝑛−2

𝑃𝑎𝑛−1
𝑃𝑎𝑛−1

= 1 +
1

𝑃𝑎𝑛−2
𝑃𝑎𝑛−3

↔ 𝜓² = 1 +
1

𝜓

↔ 𝜓3 − 𝜓 − 1 = 0

 (7) 

The Perrin Sequence 

Similar to the Padovan sequence, we have then the Perrin sequence, created by the French engineer Olivier 

Raoul Perrin (1841-1910), having the same recurrence and equation characteristic of the Padovan sequence, 

which we indicate by the fundamental recurrence relation 𝑃𝑒𝑛 = 𝑃𝑒𝑛−2 + 𝑃𝑒𝑛−3, 𝑛 ≥ 3, however, changing only 

from their initial numerical values 𝑃𝑒0 = 3,𝑃𝑒1 = 0,𝑃𝑒2 = 2. 

It should be noted that during the year 1876 this sequence was mentioned by Édouard Lucas, noting that 

if 𝑝 it is a prime number, then it divides 𝑃𝑒𝑝, thus being a consequence of Fermat's theorem (Adamns, 1982). 

However, in 1899, Olivier Perrin defined Perrin's sequence as having great importance, particularly in graph 

theory, using it to discover the coordinates of taxis in urban networks in a confidential manner. Finally, in the 

Table 7. Convergence ratio of the ratio of the elements of the Padovan sequence𝑝𝑎𝑛 =
𝑃𝑎𝑛+1

𝑃𝑎𝑛
 

𝒏 𝒍𝒆𝒏 𝒏 𝒍𝒆𝒏 

1 1 11 1.3125 

2 2 12 1.333... 

3 1 13 1.3214 

4 1.5 14 1.3243 

5 1.333... 15 1.3265 

6 1.25 16 1.3230 

7 1.4 17 1.3255 

8 1.28 18 1.324561 

9 1.333... 19 1.3245033 

10 1.6 20 1.325 

Source: Elaborated by the authors 
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following section, we will address an example from an hindu mathematical culture e. usually, disregarded and 

not discussed by authors of History of Mathematics books adopted in Brazil. 

The Narayana Sequence 

Having its genesis in the problem in which it says: a cow gives birth to a calf every year. In turn, the calf 

gives birth to another calf when it is three years old. What is the number of progenies produced by a cow 

during twenty years? Thus, when solving this problem, we were able to obtain the terms of the Narayana 

sequence (Ramiréz & Sirvent, 2015). 

The Narayana sequence, was created by the Indian Narayana Pandita (1340 - 1400), as a third order 

sequence, having its fundamental recurrence 𝑁𝑛 = 𝑁𝑛−1 + 𝑁𝑛−3, 𝑛 ≥ 3, with the initial numerical terms equal 

to 𝑁0 = 𝑁1 = 𝑁2 = 1. In search of its characteristic equation, we then have the subsequence named 𝑛𝑛 =
𝑁𝑛+1

𝑁𝑛
, 

analyzing its convergence according to Table 8. 

With that, we can establish the behavior of the limit lim
𝑛→∞

𝑛𝑛 = lim
𝑛→∞

𝑁𝑛+1

𝑁𝑛
≈ 1.46 = 𝜂 ∈ 𝐼𝑅, and thus obtain the 

characteristic equation 𝜂³ − 𝜂² − 1 = 0 as we determined, then, just below: 

 

𝑁𝑛
𝑁𝑛−1

=
𝑁𝑛−1
𝑁𝑛−1

+
𝑁𝑛−3
𝑁𝑛−1

↔ 𝜂 = 1 +
1

𝑁𝑛−3
𝑁𝑛−1

𝑁𝑛−2
𝑁𝑛−2

↔ 𝜂 = 1 +
1

𝜂²

↔ 𝜂³ − 𝜂² − 1 = 0

 (8) 

NEWTON'S METHOD AND THE FRACTAL THEORY 

In view of the characteristic equations of all the recurring sequences indicated above, it is important to 

obtain their roots, since the result of a real root is related to the convergence relationship between the 

neighboring terms of the sequence, making it necessary to obtain these results precisely. 

For this, in this work, Newton's method is used, as a theory known for calculating successive 

approximations of the polynomial zeros of the characteristic equations, which are transformed into functions. 

That done, there can be a rapid convergence of this mathematical function, if the iteration started with a value 

close to its respective root. If the iteration has started with certain values far from the exact value of the root, 

great care must be taken to avoid errors during the use of this method (Teodoro & Aguiar, 2015). 

One way to exemplify this method is found in the work of Vieira, Alves, and Catarino (2019), Alves and 

Vieira (2020) and Teodoro and Aguilar (2015), in which they carry out an example of Newton's method, using 

only the mathematical formula , without the aid of computational resources. In these works, we can see that 

visualization plays an important strategic role, aiming to communicate and transmit mathematical ideas and 

notions. 

Table 8. Convergence ratio of the ratio of the elements of the Padovan sequence𝑛𝑛 =
𝑁𝑛+1

𝑁𝑛
 

𝑛 𝑛𝑛 𝑛 𝑛𝑛 

1 1 11 1.464285714 

2 1 12 1.463414634 

3 2 13 1.466666667 

4 1.5 14 1.465909091 

5 1.333... 15 1.465116279 

6 1.5 16 1.465608466 

7 1.5 17 1.465703971 

8 1.444... 18 1.465517241 

9 1.461538462 19 1.465546218 

10 1.473684211 20 1.46559633 

Source: Elaborated by the authors 
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On the other hand, this is only one of the means of obtaining the roots of the equation, and is therefore 

considered easy to solve because the equation is second order. However, as seen in the previous section, it is 

clear that there are some sequences with higher order equations, resulting in some complex numbers, which 

makes the method even more difficult. 

In fact, fractal theory consists of an art in which it transforms mathematical functions into a medium, 

which can be images, music and 2D or 3D animations. A fractal is nothing more than a geometric object that 

can be divided into several parts, where each is similar to another fractional part from the original object. This 

term was used in 1975 by the French mathematician Benoît Mandelbrot, giving the real meaning of breaking. 

Thus, according to Assis et al. (2008) "a fractal is an object that presents invariance in its form as the scale, 

under which it is analyzed." 

There are many properties linked to this theory, such as: self-similarity, infinite complexity and dimension. 

The first is identified through the proportion of the figure, where a part of the figure is then removed, and 

thus a similarity with the other parts of the figure as a whole is perceived. For the second property, a reference 

is then made around the figure generation process, where once defined as a fractal, it is considered a recursive 

figure. Thus, when executing a code or procedure, a running sub-procedure is found, based on the initial 

procedure. Finally, the last property is given by a fractional dimension, different from Euclidean geometry 

(Takayasy, 1990). 

In view of this, it was then thought of using a computational resource to assist and facilitate the search for 

these roots, thus using the fractal theory linked to Newton's method. With that, we will use the Google Colab 

tool, which deals with a free Google resource, where you can develop a programming code in the Phyton 

language, to facilitate the search for the roots of the equations. This tool is hosted by Google, with no need for 

a computer with a large memory capacity, since it is then run in the cloud. This feature has some libraries 

already installed, and the files are then saved to Drive, making their configuration quick and easy. 

In the next section, we will analyze Newton's fractals generated based on Google Colab, thus performing 

the search for their real roots. 

NEWTON FRACTAL ANALYSIS OF RECURRENT SEQUENCES WITH GOOGLE COLAB 

In this section, Newton's fractals will be generated and analyzed using Google Colab as an auxiliary tool 

for plotting the figures. According to the code developed in Phyton, the equations were transformed into 

functions, making it possible to generate fractals according to Newton's method. With the aim of seeking the 

values of the real roots of the sequences, we then have to discuss only the solutions that have a connection 

with the convergence of the studied sequences. 

Due to the similarity of the recurrence formula and the characteristic equation of some sequences, these 

will be discussed together. It is also possible to observe that because there are sequences with equations very 

similar to others, your generated fractals will have similar formats. Finally, these fractals are related to objects 

found in nature, establishing a possible application of this sequence content in everyday life. 

Fibonacci and the Lucas fractal 

In order to explore the roots of the characteristic equation 𝜙² − 𝜙 − 1 = 0 of these two sequences, indicated 

by, then we have Figure 1, showing the Newton fractal by Fibonacci and Lucas. 
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We can see the existence of two lobes, representing exactly the two roots of the equation 𝜙² − 𝜙 − 1 = 0. 

Because they are located horizontally, we have both to be real, in addition to being on the side attached to the 

other, meaning that one is positive and the other negative. It is also possible to notice the presence of few 

colors, that is, that few iterations will be necessary to reach the exact value of these roots. In Figure 2, we 

have a 3D representation of this fractal, where when navigating with the mouse in the figure it is possible to 

perceive the dimensions of the root, where we have the value of x approximately 1.6; the value of y close to 0, 

indicating that the root is not complex; and the value of z representing the degree of accuracy, since according 

to the table presented laterally, it is found that values close to 250 represent approximation with the correct 

value of the root under analysis. To obtain the other root, just perform the same process. (See Figure 2). 

Mersenne’s Dractal 

For the analysis of the real root of the Mersenne sequence determined by the characteristic equation 𝜇2 −

3𝜇 + 2 = 0, based on its convergence relation seen previously, we have the Newton fractal generated by Google 

Colab, as shown in Figure 3. 

 
Figure 1. Newton's 2D fractal of the Fibonacci and Lucas sequence 

Prepared by the authors 

 
Figure 2.  Newton's 3D fractal of the Fibonacci and Lucas sequence in 3D 

Prepared by the authors 

http://www.iejme.com/


 

 

 INT ELECT J MATH ED 

 

 

http://www.iejme.com   11 / 19 

 

 

 

As it presents a characteristic equation similar to the Fibonacci sequence, we can see some similarities 

with these two fractals. Thus, we visualize the presence of two real roots, and the orange lobe with a smaller 

appearance, highlighting that to assume a good value from the initial iteration is more difficult, since starting 

with values far from the correct root value, they may occur more iterations until you can get to the exact value 

of the real root. We also have a 3D fractal analysis, as shown in Figure 4, obtaining the root value as being 

approximately 2 (copper number). In a similar way to the analysis performed for the Fibonacci and Lucas 

fractal, the use of the scale and coordinates obtained. 

Oresme’s fractal 

Newton's fractal of the Oresme sequence, is represented through Figure 5, in which we seek to analyze 

its real root determined by the characteristic equation 𝜎2 − 𝜎 +
1

4
= 0, based on its convergence relation. Thus, 

we observed the presence of two real and equal roots, in addition to a greater amount of colors than those 

presented for the previous sequences. 

 
Figure 3. Newton's fractal of the Mersenne sequence 

Prepared by the authors 

 
Figure 4. 3D Newton's fractal of the Mersenne sequence in 3D 

Prepared by the authors 
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Analyzing the value of this real root, as we can see, according to the coordinates in Figure 6, it is 

approximately 0.52. Comparing with objects in nature, we can see the similarity of this 3D fractal with the 

human eye. 

Jacobsthal’s fractal 

The Jacobsthal sequence has an equation very similar to the Fibonacci, Lucas, Pell and Mersenne 

sequence. Therefore, we notice that in Figure 7, this sequence has two real and distinct roots originating from 

the characteristic equation 𝜇2 − 𝜇 − 2 = 0. 

 
Figure 5. Newton's fractal from the Oresme sequence 

Prepared by the authors 

 
Figure 6. Newton's fractal of the Oresme sequence in 3D 

Prepared by the authors 
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Analyzing the fractal in a 3D version, as shown in Figure 8, we perceive the value of the convergence ratio, 

given by the positive root, having approximately 2 (copper number), a value equal to that of the Mersenne 

sequence. 

Pell’s fractal 

The Pell fractal, shown in Figure 9, has the presence of two real and distinct roots, also observing a 

similarity with the fractals presented for the second order sequence, which have real and distinct roots 

determined by the characteristic equation 𝛿2 − 2𝛿 − 1 = 0. 

 
Figure 7. Newton's fractal of the Jacobsthal sequence 

Prepared by the authors 

 
Figure 8. Newton's fractal of the Jacobsthal sequence in 3D 

Prepared by the authors 
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In order to find the value of the real root, referring to its convergence relation, we have that in Figure 10, 

we can obtain the approximate value of 2.41, known as the silver number. 

Leonardo’s fractal 

For this sequence, we have the work of Alves and Vieira (2020), in which an analysis of Newton's fractal is 

made in search of the roots of the characteristic equation 𝜙³ − 2𝜙² + 1 = 0. Thus, we have in Figure 11, 

showing the three roots of the characteristic equation. Observing the existence of three real roots, since both 

are horizontal. 

 
Figure 9. Newton's fractal of the Pell sequence 

Prepared by the authors 

 
Figure 10. Newton's fractal of the Pell sequence in 3D 

Prepared by the authors 
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For Figure 12, we have the 3D fractal, visualizing the approximate root value, 1.6, known as the gold 

number. 

In this work (Alves & Vieira, 2020), the authors still compare this fractal with the image of a bird, showing 

its similarity with objects found in nature. 

Padovan and Perrin’s fractal 

Based on the work of Vieira, Alves, and Catarino (2019), in which they carry out an analysis of Newton's 

fractal, using the same technological tool, for Padovan's sequence, then we have Figure 13 the presence of the 

three roots, where two are complex and conjugated and a real one, which can be determined from the 

characteristic equation 𝜓3 − 𝜓 − 1 = 0. The complex roots are located vertically, emphasizing that they have 

y-values, that is, they are complex. 

 
Figure 11.  Newton's fractal from Leonardo's sequence 

(Alves & Vieira, 2020). 

 
Figure 12. Newton's fractal of Leonardo's sequence in 3D 

Prepared by the authors 
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Figure 14 shows the approximate value of the real root 1.3, known as the plastic number. The other 

complex roots can be obtained in a similar way, however, as this research seeks to analyze only the roots that 

are related to the convergence of the subsequence, they will not be analyzed in this work. 

It should be noted that for the Perrin sequence, the graphs will be the same, since they have the same 

characteristic equation. In the work of Vieira, Alves, and Catarino (2019), the fractal of this sequence is 

compared to the geranium flower. 

Narayana’s Fractal 

The Narayana sequence has its fractal plotted according to Figure 15, presenting its three roots 

determined by the fundamental equation 𝜂³ − 𝜂² − 1 = 0, where two are complex and conjugated and one real 

root. In Brazil we do not find specialized books on the History of Indian Mathematics, so we consulted other 

 
Figure 13.  Newton's 2D fractal of the Padovan sequence 

(Vieira, Alves, & Catarino, 2019) 

 
Figure 14. Newton's fractal from the Padovan sequence in 3D Leonardo 

Prepared by the authors 
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important sources and authors who discuss the role of the Indian mathematician Narayanna (Parameswaran, 

1998). 

We also have, in Figure 16, the fractal representation of this sequence in 3D, where it is possible to 

visualize its real root, according to the convergence ratio, being approximately 1.46. 

CONCLUSION 

In this work it was possible to know, briefly, the historical process of linear and recurring sequences, 

comparing them with Fibonacci numbers, since this sequence is considered the precursor of the others. In 

relation to the mathematical study, their respective recurrence formulas were analyzed, performing 

mathematical operations, from which their respective characteristic equations. 

In view of these set of characteristic equations, it was possible to use the computational tool of Google 

Colab, to generate fractals using Newton's method, in order to search for their real roots. Furthermore, some 

similarities between the generated fractals were established, with objects found in nature. It should be noted 

that this search for real roots has the bias of highlighting the convergence relationship between the 

 
Figure 15. Newton's fractal of the Narayana sequence 

Prepared by the authors 

 
Figure 16. Newton's fractal of the Narayana sequence in 3D 

Prepared by the authors 
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neighboring terms of the sequence. Since, by dividing a term by its predecessor, that division converges to a 

certain numerical value, which is found in one of the real solutions of their respective characteristic 

polynomials. 

On the other hand, the computational representations shown here, 2D and 3D, which we discussed in the 

previous sections are an example of the role and importance of visualization, with the aim of stimulating 

intuition and the perception of mathematical properties that, sometimes, derive from abstract mathematical 

models, however, technology provides another approach and meaning bias for mathematics and, consequently, 

another way of providing an expanded mathematical culture to the mathematics teacher in Brazil. 

We observed that the knowledge produced about the abstract notion of recurrent sequences and their 

interface with technology and that we potentiate learning situations involving the importance of visualization, 

involve an important scientific cooperation of researchers from Brazil and Portugal (Alves & Catarino, 2019; 

Catarino & Borges, 2020), in the context of the initial training of teachers of Mathematics. Thus, the results 

presented here can stimulate further research and professional training itineraries. For future work, a 

proposal is presented to apply a research and teaching methodology for mathematics teachers in initial 

training in Brazil. Thus, some structured didactic situations can be elaborated, so that this content is 

transformed into a content to be taught. 
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