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Recent work on measuring growth with categorical outcome variables has

combined the item response theory (IRT) measurement model with the latent

growth curve model and extended the assessment of growth to multidimensional

IRT models and higher order IRT models. However, there is a lack of synthetic

studies that clearly evaluate the strength and limitations of different multilevel

IRT models for measuring growth. This study aims to introduce the various

longitudinal IRT models, including the longitudinal unidimensional IRT model,

longitudinal multidimensional IRT model, and longitudinal higher order IRT

model, which cover a broad range of applications in education and social

science. Following a comparison of the parameterizations, identification con-

straints, strengths, and weaknesses of the different models, a real data example

is provided to illustrate the application of different longitudinal IRT models to

model students’ growth trajectories on multiple latent abilities.

Keywords: item response theory; latent growth curve model; overall ability; domain

ability

1. Introduction

In education, one is often interested in determining student growth. These

changes can sometimes be captured by latent variable models. The latent vari-

ables, such as students’ abilities, are typically measured by binary (or polyto-

mous) responses to items. Item response theory (IRT) models are useful tools to

model the relationship between the categorical outcome variables and the latent

continuous traits. Recent work has extended IRT models to model changes in

latent traits, leading to the family of longitudinal IRT (L-IRT) models (e.g.,

Andersen, 1985; Cai, 2010; Hsieh, von Eye, & Maier, 2010; Huang, 2013;

McArdle, Grimm, Hamagami, Bowles, & Meredith, 2009; Paek, Li, & Park,

2016; von Davier, Xu, & Carstensen, 2011; Wang, Kohli, & Henn, 2016; Wilson,
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Zheng, & McGuire, 2012). Within this family, models differ mainly in the

following aspects: (1) the measurement model that implies the factor structure

of the primary latent traits measured repeatedly, which could either be unidimen-

sional, multidimensional (Hsieh et al., 2010), or hierarchical (Huang, 2013); (2)

the relationship of the latent traits over time, which could either be captured by a

completely unstructured covariance matrix (Andrade & Tavares, 2005; Cai,

2010; Paek et al., 2016) or by linear/nonlinear change patterns via the latent

growth curve (LGC) models (Bollen & Curran, 2006; Duncan, Duncan, &

Strycker, 2006); and (3) whether nuisance factors are in place to account for the

dependency of the same items administered over time (e.g., two-tier model; Cai,

2010; Paek et al., 2016; Wang et al., 2016).

Due to the well-known connection between IRT and categorical factor anal-

ysis (e.g., Takane & de Leeuw, 1987), L-IRT models can also be discussed in

structural equation modeling (SEM) terms. However, IRT offers two conceptual

advantages: (1) assuming item (or anchor item) parameters are the same over

time to ensure longitudinal invariance of the lowest order traits and (2) incorpor-

ating guessing parameters into the functional form of the model.

Different forms of L-IRT models were proposed by different groups of

researchers, and they have all been individually demonstrated to work well;

however, few studies have explored the connections among the models or the

strengths and limitations of each of them. Our goal here is to capitalize on the

shared features and distinctions among various L-IRT models to provide practi-

tioners with coherent guidelines about the conditions under which each model

could be applied and/or should be preferred.

Three specific types of models will be the focus of discussion. In order of

complexity, these models include the longitudinal unidimensional IRT (L-UIRT)

model (Wang et al., 2016; Wilson et al., 2012), longitudinal multidimensional

IRT (L-MIRT) model (Hsieh et al., 2010), and longitudinal higher-order IRT (L-

HO-IRT) model (Huang, 2013). All of these models are variations of the general

LGC model and the respective measurement model: The UIRT model assumes

that a single latent trait is measured by all the items; MIRT models posit that item

responses are probabilistically determined by multiple, usually correlated, latent

traits; the HO-IRT models (de la Torre & Song, 2009; Sheng & Wikle, 2008)

capture the hierarchical nature of factor structure (e.g., Huang & Wang, 2014;

Sawaki, Stricker, & Oranje, 2009), whereby a general factor (such as math

aptitude) informs domain-specific factors (such as algebra, geometry, calculus,

or subsets thereof). These three models were selected to cover a majority of

practical applications. Moreover, LGC models were chosen over an unstructured

covariance matrix because LGC results in both group-level and individual-level

growth trajectories, which are often useful for interpreting data patterns. On the

other hand, LGC introduces additional latent variables (i.e., individual intercepts

and slopes) that complicate model identification constraints and requires addi-

tional guidelines for model estimation. Note that the L-MIRT model with
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unstructured covaraince matrix of y over time is discussed in detail in Paek, Li,

and Park (2016).

In the remaining sections, we introduce the three models and explain when

each model could be applied. For each model, we describe identification con-

straints, which can be different depending on whether some items have pre-

calibrated parameters. After determining the identification requirements, we

are then ready to estimate the models. Estimation presents various challenges,

and we describe the available estimation methods, complications due to high

dimensionality, and possible solutions. We finally illustrate the models with a

real data example.

2. L-IRT Models

2.1. L-UIRT Model

If only one primary latent trait is measured over time, then the simplest model,

the L-UIRT model, can be applied. Let θi denote the T-by-1 vector of the uni-

dimensional trait for person i across T time points. Assume there are p fixed

(denoted as �) and q random (denoted as �i) effects explaining the growth pattern

of y. Then, the LGC model on θi can be written in a general form as follows:

θi ¼ X�þ Z�i þ �i : ð1Þ

In Equation 1, X and Z are the T-by-p and T-by-q design matrices for

the fixed effects and random effects, respectively. In a simple LGC model

with only random intercepts and random slopes, p ¼ q ¼ 2 and

X ¼ Z ¼

1 0

1 1

..

. ..
.

1 T � 1

0
BBBB@

1
CCCCA. �i is a T-by-1 vector of residuals. The random

effects are often assumed to follow a multivariate normal distribution with

a mean of 0s and a covariance matrix of Sn. Note the number of measure-

ment occasions, T, can be different for each person in the LGC model,

allowing for missing data by design. For simplicity, we keep T the same

across persons in this article.

For a simple linear growth model with a single person-specific intercept and

slope, we can rewrite Equation 1 as

yt
i ¼ p0i þ p1i � ðt � 1Þ þ dt

i; ð2Þ

where p0i and p1i are the individual intercept and slope parameters. The indi-

vidual intercepts/slopes can be further written as deviations from an overall

intercept (b0) and slope (b1) as p0i ¼ b0 þ n0i and p1i ¼ b1 þ n1i.

The latent variable described by Equation 2, yt
i, can be measured by responses

to assessment items. Assuming that responses are binary, one can model the
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probability of correctly responding to any item given a particular value of the

latent variable with the two-parameter logistic (2PL) model. The 2PL defines the

probability of examinee i correctly responding to item j by the following item

response function (IRF):

Pjðyt
iÞ ¼ Pr Y t

ij ¼ 1jyt
i; a

t
j; b

t
j

� �
¼ 1

1þ exp �at
j yt

i � bt
j

� �h i ; ð3Þ

where at
j and bt

j refer to discrimination and difficulty parameters for item j

administered at time t. This notation is flexible enough to accommodate item

sets varying across time. Figure 1 shows an illustrative path diagram of the

L-UIRT model with three hypothetical time points and three items per time

point.

Many large-scale educational surveys have primary measurements that differ

from one occasion to another (Edwards & Wirth, 2009; McArdle et al., 2009).

Yet, to establish a common scale, one must either have a common set of anchor

items that is shared across time or sets of anchor items that already have para-

meters precalibrated and put on a common scale (e.g., Wang et al., 2016). Kolen

and Brennan (2004) recommended that assessments should have at least 20% of

items to anchor the parameters to the common scale. If enough items are linked

across time, and assuming no item parameter drift, then assessments with

unknown item parameters require some model identifiability constraints to be

imposed. Constraints are required to fix the mean and variance of the latent

variable (x) at one time point (commonly t ¼ 1). Given this constraint, the scale

of x at the remaining time points will then be determined through the linking

items. These constraints include:

Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33

θ1 θ2 θ3

π0 π1

1

1
1

1 1 2

β0 β1

σπ0π1σ2
ν0

σ2
ν1

FIGURE 1. A path diagram for the longitudinal unidimensional item response theory

model with three items per time point and three time points. p0 represents the random

intercept parameter per person, whereas p1 represents the random linear slope parameter

per person. b0 and b1 are the population means of p0 and p1, respectively.
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1. All of the residuals having mean 0 (i.e., Eðdt
iÞ ¼ 0 for all t ¼ 1; : : : ; T ). This is a

typical assumption in parametric regression analysis.

2. The mean of the person-specific intercept parameter being set to 0 (i.e.,

mp0i
¼ b0 ¼ 0). The purpose of this assumption is to fix the mean of y at t ¼ 1

to 0.

3. The residual variance at the first time point being fixed to be a constant (i.e.,

s2

dð1Þ
i

¼ c1, where c1 is some specified constraint). This constraint indirectly fixes

the variance of y at t ¼ 1.

Note that after imposing a growth curve structure on y, y becomes an endo-

genous variable in Equations 1 and 2. Hence, instead of directly fixing the mean

and variance of y (as is often desired), most SEM software packages (such as

Mplus) only allow fixing its intercept and the residual variance. The value of c1 is

arbitrary and results in the variance of y at t ¼ 1 becoming the sum of the intercept

variance
�
i:e:;½Su�ð1;1Þ

�
and c1. When anchor items are precalibrated with known

parameters, then only the first constraint is necessary to identify the model.

2.2. L-MIRT Model

As a multivariate extension of the L-UIRT model, the L-MIRT model combines

the MIRT model with the associative LGC model. The earliest version of the

L-MIRT model was proposed by McArdle (1988) and called the “curve of factors”

(CUFFS) model. The CUFFS model was developed for multiple, correlated latent

traits being tracked over time. For instance, the National Educational Longitudinal

Study (NELS: 88) tracked students’ academic performance across three measure-

ment occasions on four correlated cognitive scales: mathematics, reading, science,

and social studies. In this case, the L-MIRT instead of L-UIRT can better recover

the group-level and individual-level growth trajectories by considering all related

information. Please note that name “L-MIRT” instead of “CUFFS” is used

throughout the didactic for consistency with the other models’ names.

Let θi ¼ ðy1
i1; : : : ; y

1
iK ; : : : ; y

T
i1; : : : ; y

T
iKÞ
0

be a KT � 1 vector, where T

denotes the number of time points and K denotes the number of correlated latent

traits (i.e., dimensions) measured at each time point. Assume again that there are

p fixed and q random effects per dimension. Then, the general multivariate LGC

model can be written as

θi ¼ X�þ Z�i þ �i : ð4Þ

Similar to the notations in Equation 1, X and Z are the KT � Kp and KT � Kq

design matrices. The fixed effect, �, is a Kp� 1 vector, which is arranged in the

following order: (1) the K intercepts, (2) the K slopes for the first fixed covariate,

(3) the K slopes for the second fixed covariate, and so on, until (p) the K slopes

for the ðp� 1Þ th fixed covariate. This can be written in an equation as

� ¼ ðb01; b02; . . . ; b0K ;b11;b12; : : : ; b1k ; : : : ; bðp�1Þ1; : : : ; bðp�1ÞKÞ0.
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Similarly, �i is a Kp� 1 vector of random effects with a covariance matrix

represented by Sn. Often, Sn is assumed to be a full matrix, which allows random

intercepts and slopes to be correlated within and across all domains. Finally, the

residuals of θi are represented by �i ¼ ðd1
i1; : : : ; d

1
iK ; . . . ; dT

i1; . . . ; dT
iKÞ
0
, a KT � 1

random vector. The covariance matrix of �i, Sd, is often assumed to be diagonal

and have the following structure:

S1 � � � � � � 0

0 S2 � � � 0

..

. ..
. . .

. ..
.

0 � � � � � � ST

0
BBBB@

1
CCCCA

KT�KT

;

where St ¼ diagðs2
1;s

2
2; . . . ;s2

KÞ and Sd has T such diagonal blocks.

To be consistent with the description of the L-UIRT model, assume that each

domain-level latent trait follows a simple linear trajectory without any additional

covariates, which is analogous to the assumption made in the preceeding section.

Then p ¼ q ¼ 2. If T ¼ 4, then both X and Z take the form of

IK 0IK

IK 1IK

IK 2IK

IK 3IK

0
BBB@

1
CCCA,

where IK is the K � K identity matrix. If nonlinear growth trajectories are con-

sidered, such as a quadratic effect of time, then X and Z would need to be updated

with additional columns to account for these effects.

We can also rewrite the model by expanding Equation 4 as follows:

yt
ik ¼ pi0k þ pi1k � ðt � 1Þ þ dt

ik ; ð5Þ

where pi0k and pi1k denote the individual intercept and slope parameters for

person i on domain k. As before, the individual intercepts/slopes can be further

written as deviations from an overall intercept on domain k (b0k) and slope on

domain k (b1k), or

pi0k ¼ b0k þ ni0k ; ð6Þ

pi1k ¼ b1k þ ni1k : ð7Þ

The L-MIRT IRF takes the form of

Pjðθt
iÞ ¼ Pr Y t

ij ¼ 1jθt
i; a

t
j; b

t
j

� �
¼ 1

1þ exp �ðat
jÞ

Tθt
i þ bt

j

h i ; ð8Þ

where at
j is a vector of discrimination parameters for item j at time t, and “T”

denotes transpose. This equation is general enough to include both within-

item and between-item multidimensionality structures (Recakase, 2009). Fig-

ure 2 provides an illustrative path diagram for a L-MIRT model with
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three measurement occasions, two domains per measurement occasions, and

three items per domain. This path diagram only illustrates between-item

multidimensionality.

As in the L-UIRT model, items can differ across time, as reflected by the

superscript t on item parameters in Equation 8, but anchor items must still be

embedded in the item parameter sets to link the scale. Because each domain has a

potentially unique scale, anchor items must load on every domain, so that the

scale of yik is linked across time for all k ¼ 1; : : : ;K. As in the unidimensional

case, if enough items are linked across time but all item parameters are unknown,

then constraints are required to determine the scale of yik for k ¼ 1; : : : ;K.

These constraints are similar to those for the L-UIRT model and include

1. All of the residuals having mean 0 (i.e., Eðdt
ikÞ ¼ 0 for all t ¼ 1; : : : ; T and

k ¼ 1; : : : ;K).

2. The mean of the person-specific intercept parameters being set to 0 (i.e., mp0ik
¼

b0k ¼ 0 for all k ¼ 1; : : : ;K). The purpose of this assumption is to fix the mean of

yt
ik at t ¼ 1 to 0 for all k ¼ 1; : : :; K.

3. The residual variances at the first time point being set to a constant (i.e.,

s2
d1

ik

¼ c1k , k ¼ 1; : : : ;K). As in the unidimensional case, fixing the variance of

yt
ik at t ¼ 1 (for all k) fixes the variances of yt

ik for the remaining time via the

linking items. Moreover, yt
ik is endogenous to the model, so that the variance of yt

ik

can only be constrained via its residual variance after partialing out the exogenous

fixed and random effects.

As before, when anchor items are precalibrated with known parameters, only

the first constraint must be specified to identify the model.

2.3. L-HO-IRT Model

Hierarchical factor structures often emerge in the social sciences to represent a

latent construct of interest such as intelligence (Golay & Lecerf, 2011), cognitive

ability (Murray & Johnson, 2013), or personality (DeYoung, 2006). General

factors are often comprised of several highly related specific factors (a.k.a.

first-order factors), each of which is measured by multiple indicators (usually

referred to as items). For example, in many educational assessments, one is often

required to report both overall proficiency for accountability purposes as well as

domain-specific proficiency for diagnostic purposes. To this end, the HO-IRT

model was developed by introducing a higher order ability (de la Torre & Hong,

2010; de la Torre & Song, 2009) that relates to each of the first-order abilities.

The HO-IRT model contains two levels: (1) a link between a single overall latent

trait and one of several domain latent traits and (2) a probabilistic relationship

between each domain latent trait and items designed to measure that domain.

Specifically, let y represent the domain latent trait underlying responses to test

items and denote x as the higher order trait. Then, one can hypothesize that

On Longitudinal Item Response Theory Models: A Didactic

346



yik ¼ lkxi þ Eik ; ð9Þ

where xi is the overall ability of examinee i, yik represents domain-specific

ability k 2 f1; : : : ;Kg for examinee i, lk indicates the relationship between

domain-specific ability k and overall ability, and Eik is a disturbance term that

can be interpreted as the domain-specific component of the ability not explain-

able by xi. According to de la Torre and Song (2009), the residuals in Equation 9

are usually assumed uncorrelated across domains, which results in �i (containing

all of the Eik s) having a diagonal covariance matrix. Note that the variance of Eik

is the unique variance of the first-order factor that is not shared by the common

second-order factor. At a lower level, the probability of examinee i correctly

responding to item j on domain k is defined by the same IRF in Equation 3 except

replacing xi with yik . As a result, the IRF in Equation 3 implies between-item

multidimensionality that is often assumed in the HO-IRT models (e.g., de la

Torre & Song, 2009; Wang, 2014). Other measurement models could also be

considered based on the properties of the test.

To extend the HO-IRT model across T time points, assume the second-order

factor (i.e., overall ability) follows the LGC model, as in Equation 1. Then, the

domain-specific ability for person i at time t would also be predicted to system-

atically change over time (Huang, 2013, 2015) as follows:

θi ¼ �ðX�þ Z�i þ �iÞ þ �i : ð10Þ

Equation 10 can be further understood by expanding it using a scalar equation.

That is, given Equations 6 and 7, a domain-specific ability for person i at time

point t, yt
ik , would also follow a linear change over time,

yt
ik ¼ lkx

t
i þ Et

ik ¼ lkðp0i þ p1i � ðt � 1Þ þ dt
iÞ þ Et

ik ;

¼ lkp0i þ lkp1i � ðt � 1Þ þ ðlkd
t
i þ Et

ikÞ;

¼ z0ki þ z1ki � ðt � 1Þ þ ut
ik : ð11Þ

Notably, Equation 11 implies that the loading of the domain-specific factors

on the overall factor remains the same over time, as indicated by the lack of a

superscript t on lk . By assuming invariance of the factor structure, Equation 11

ensures that the lower order factors carry the same meaning over time, which

fulfills the “longitudinal measurement invariance” property (Chen, Sousa, &

West, 2006; Liu et al., 2017). Figure 3 provides an illustrative path diagram of

the L-HO-IRT model, assuming three time points, two domain-specific abilities

per time point, and three items measuring each domain-specific ability.

As shown in Equations 5 and 11, the L-HO-IRT model is nested within the L-

MIRT model. This is because the L-MIRT model allows for separate, potentially

unrelated, individual intercept and slope parameters across each dimension (i.e.,

pi0k and pi1k). Conversely, the L-HO-IRT model restricts the domain-level
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intercept and slope parameters to take the predetermined structure of lkpi0 and

lkpi1 due to the functional form of the model.

Assuming either the same sets of items are repeatedly administered or that the

test includes shared items between adjacent time points for all domains, the

minimum model identifiability constraints include:

1. All of the residuals having mean 0 (i.e., Eðdt
iÞ ¼ 0 for all t ¼ 1; : : : ; T ).

2. The mean of the person-specific intercept parameters being set to 0 (i.e.,

mpi0
¼ b0). The purpose of this constraint is to specify the location of xt at t ¼ 1.

3. All of the residuals in the measurement model having mean 0 (i.e., EðEt
ikÞ ¼ 0 for

all k ¼ 1; : : : ;K and t ¼ 1; : : : ; T ) in Equation 9. This assumption is typical for a

factor regression model and made in de la Torre and Song (2009).

4. The residual variances at the first time point being set to a constant (i.e.,

s2
E1

ik

¼ c1
k , where c1

k is a user-specified constant). This constraint is necessary

to establish the scale of the ys in the model. Justification for this constraint is

similar to justification for the similar constraint in the L-UIRT and L-MIRT

models and is due to θt
i being endogenous to the model, so that its variance can

only be fixed indirectly by setting its residual variance. Only the variance at a

single time point needs to be fixed, as the variance of θt
i at the remaining time

points are determined via the linking items.

5. One of the loading parameters, lk for some some k (k ¼ 1; : : : ;K) being set to a

constant, assuming that lk is invariant over time. The remaining ðK � 1Þ loading

parameters are freely estimable.

The first two constraints are essentially the same as the first two constraints for

both the L-UIRT model and the L-MIRT model described earlier. The remaining

constraints are unique to the L-HO-IRT model. The last constraint is similar to the

“reference indicator” constraint in factor analysis. That is, the variance of a factor

can be determined by fixing the loading of one marker indicator. Here, the “marker

indicator” is one of the first-order factors, yik for some k (k ¼ 1; : : : ;K), and the

“factor” is xi. Readers of de la Torre and Hong (2010) may notice that they

imposed a different constraint for the same purpose, namely

varðEt
ikÞ ¼ 1� l2

k : ð12Þ

They argued that the variance of yik is typically assumed to be 1, and the

assumption from Equation 12 results in a variance of xi also assumed to be 1.

Thus, by way of this constraint, both the first-order and second-order factors

would be on the same scale. The motivation of de la Torre and Hong (2010) is not

relevant to our current discussion, as the variance of yik is not assumed to be a

constant over time (and might have good reason not to be given the type of

change observed). If requiring standardized loading parameters, one could cal-

culate a simple linear transformation of lk , that is l?k ¼ lk �
sxt

syt
k

. Moreover, in

Mplus, the equality constraints in Equation 12 can only be specified with
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maximum likelihood estimation (MLE) but not with the Bayesian estimation

option. Note that when anchor items are precalibrated with known parameters,

then only the first, third, and last constraints are necessary to identify the model.

2.4. Applications of the Models

Applying one of the above models versus another depends mostly on the

hypothesized factor structure of the latent traits. Higher-order models are often

applicable in contexts where a measurement instrument assesses several related

constructs that can be accounted for by one or more underlying second-order

factors (Chen et al., 2006). For instance, a common scale to measure “quality of

life” is composed of four subscales that each presume to measure a distinct first-

order factor: mental health, cognition, vitality, and health worry (Chen et al.,

2006). The covariance between each pair of first-order factors can be explained

by a higher order factor, which is usually called “global quality of life.” Simi-

larly, educational measures are often constructed to assess several, separate but

correlated, content domains that can be partially explained by a more general

ability. For instance, a mathematics test may have items measuring numerical

computation skills and data analysis skills (Reckase, 2009, p. 232). Both of these

are examples of content-based multidimensionality rather than strict construct-

based multidimensionality.

In practice, one cannot typically distinguish between content multidimension-

ality and construct multidimensionality because content-based subscales often

measure distinct constructs. Yet certain content-based domains sometimes have

exceedingly high correlations, implying that these domains essentially measure

the same skill or construct (Reckase, 2009). In cases like these, one should

always provide evidence that combining domains makes substantive sense or

yields a better fit than keeping those domains separate.

Although a correlated-factor MIRT model will always fit data generated from

the HO-IRT model, the higher order model has at least four advantages for being

preferred in practice: As compared with the correlated-factor MIRT model, the

HO-IRT model (1) parsimoniously explains the covariance between lower order

factors (Gustafsson & Balke, 1993; Rindskopf & Rose, 1988), (2) separates the

variance in the lower order factors shared by the common higher order factor

from the unique variance of the lower order factors, (3) simplifies model estima-

tion due to the exploitation of the dimension reduction technique (as described in

the next section), and (4) allows for potential construct shifts over time.

To elaborate on the last point, assume teachers want to track students’ ability

in a general subject area such as math knowledge. If math knowledge is a uni-

dimensional trait, it can be measured directly by a set of items, and if the teacher

is not interested in measuring any specific subareas of mathematics, then the L-

UIRT model is sufficient. However, math knowledge might relate to a number of

specific content areas that teachers might also wish to track. For example, Table 1
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presents the content coverage of the mathematics common core domains across

five domains. The domains (such as Domain 5 “Geometry” and Domain 4

“Measurement and Data”) are expected to be taught and developed in every

grade from Kindergarten–4. Student growth in these domains can be tracked

across all five grades. However, the required content coverage shifts from grade

to grade, and many domains only appear in limited grades. For instance, Domain

1 (“Counting and Cardinality”) is expected to be assessed only in Kindergarden,

whereas Domain 6 (“Numbers and Operations-Fractions”) does not emerge until

Grade 3. In these cases, the L-MIRT model and L-UIRT model overlook crucial

details. In particular, the L-MIRT model (Hsieh et al., 2010) essentially assumes

a constant set of traits measured over time. For this relatively straightforward

example, the domains are designed to change over time.

However, when indeed the same sets of domains are measured overtime, the

L-MIRT model is preferred because the L-HO-IRT model is parametrically more

restricted than the L-MIRT model. That is, any growth patterns in the lower level

traits that can be captured with the L-HO-IRT model can ultimately be captured

with the L-MIRT model. Yet, if the multidimensional (lower level) constructs

each change differently over time, then the L-HO-IRT model would no longer fit

the data, and one should use the L-MIRT model. For instance, if certain domain-

level traits grow linearly, whereas others grow in a piecewise fashion, then one

should no longer use the L-HO-IRT model due to the restrictions implicit in

Equation 10. On the other hand, the L-MIRT model can handle different growth

patterns if needed.

When assessing change over time, one must consider whether the measures

retain measurement invariance. Often, practitioners use the exact same scale on

TABLE 1.

Mathematics Common Core Domains by Grade (K–4)

Kindergarten Grade 1 Grade 2 Grade 3 Grade 4

Domain 1 Counting and

cardinality

Domain 2 Operations and

algebraic

thinking

Operations and

algebraic

thinking

Operations and

algebraic

thinking

Operations and

algebraic

thinking

Operations and

algebraic

thinking

Domain 3 Number and

operations in

base 10

Number and

operations in

base 10

Number and

operations in

base 10

Number and

operations in

base 10

Number and

operations in

base 10

Domain 4 Measurement

and data

Measurement

and data

Measurement

and data

Measurement

and data

Measurement

and data

Domain 5 Geometry Geometry Geometry Geometry Geometry

Domain 6 Number and

operations—

Fractions

Number and

operations—

Fractions
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multiple occasions. This practice can ensure that identical constructs are con-

tinuously assessed and that the metric of measurement remains the same over

time. However, out of necessity, scales often differ across repeated measure-

ments due to the need for “developmentally appropriate measures” (Widaman,

Ferrer, & Conger, 2010). Adjusting the scale to consider the typical range of

traits over repeated measurements can help avoid ceiling and floor effects.

Determining whether the same construct, measured by multiple indicators,

has the same meaning and metric over time falls under the rubric of measurement

invariance (Widaman et al., 2010), and is often referred to, especially in a long-

itudinal setting, as longitudinal invariance. The factorial invariance of longitu-

dinal measures is paramount in evaluating the change in behavior over time

(McArdle, 2001; McArdle & Hamagami, 2001; Meredith & Tisak, 1990; Wida-

man & Reise, 1997). Using the same set of items or a set of anchor items (Grimm,

Kuhl, & Zhang, 2013) partially satisfies longitudinal invariance. A thorough

examination of longitudinal invariance is beyond the scope of this article. Inter-

ested readers can refer to Teresi (2006), Isiordia and Ferrer (2018), Liu et al.

(2017) for details regarding invariance assumptions of L-UIRT, L-MIRT (i.e.,

CUFFS), and L-HO-IRT, respectively.

3. Model Estimation

Within the general framework of SEM, the L-IRT models can be viewed as a

multilevel LGC model with the lowest level represented by categorical indica-

tors. Unsurprisingly, the L-IRT models can also be motivated from the frame-

work of generalized linear models (McCullagh & Nelder, 1989), a

conceptualization favored within biostatistics. The most common methods for

estimating multilevel models are based on integrating the likelihood over the

distribution of random effects, which is often referred to as marginal likelihood

estimation. For instance, in the L-HO-IRT model, the overall- and domain-

specific latent abilities as well as the latent intercepts and slopes represent the

random effects over which to integrate. Because analytical integrals often do not

exist for these types of models, researchers frequently adopt one of the two

classes of methods. One could either approximate the integrand analytically or

evaluate the integral via numerical approximation. The first approach includes

Laplace’s method of linearizing the integrand via a sixth-order Taylor series

approximation (called “Laplace 6”) as well as quasi-likelihood methods such

as marginal quasi likelihood (MQL; Goldstein, 1991; Goldstein & Rasbasch,

1996) and penalized quasi likelihood (PQL; Breslow & Clayton, 1993; Laird,

1978). Because the performance of PQL and MQL depends on the validity of a

normal approximation, these methods tend to perform poorly when the observed

data are markedly nonnormal (Rodriguez & Goldman, 1995; Tuerlinckx, Rij-

men, Verbeke, & Paul De Boeck, 2006) and are thus typically not recommended

for use in IRT models with binary responses. The second approach includes ML
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using Gauss–Hermite quadrature, adaptive quadrature, and simulation methods

such as the Monte Carlo expectation-maximization (EM) algorithm (Wang &

Xu, 2015).

However, ML estimation via the EM algorithm is known to converge slowly

in many applications (e.g., Meng & van Dyk, 1997) and is computationally

intensive when the number of latent variables is large. Bayesian estimation using

Markov chain Monte Carlo (MCMC) with diffuse (or noninformative) priors

(Patz & Junker, 1999) is an alternative to EM (Huang, 2013; Wang & Nydick,

2015) and is usually preferred for complex models.

All of the above estimation methods are based on full information, in that the

likelihood is constructed directly from the raw response pattern. Alternatively, one

could adopt limited information estimation methods, such as modified weighted

least squares (WLS) estimation. Rather than basing the likelihood on the complete

response pattern, modified WLS estimates model parameters via the first four

moments of the response contingency table. By avoiding the time-consuming

numerical integration or sampling steps of the full information methods, WLS

leads to much faster convergence. However, WLS is known to yield inaccurate

estimation with small sample sizes or large amounts of missing data (e.g., Forero &

Maydeu-Olivares, 2009). Moreover, the parameter estimates from WLS are not as

efficient as a full information method (Muthén & Asparouhov, 2015). Given these

limitations, WLS is not discussed further in this article.

In the following subsections, we describe estimating the L-IRT models in

Mplus with ML or MCMC methods. Mplus software was chosen due to being

widely used in social science research. Other IRT estimation software packages,

such as flexMIRT (see Paek et al., 2016, for details on how to estimate similar

models to those described in this article), or general-purpose estimation

packages, such as WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000),

should also be able to recover L-IRT-based model parameters. Interested readers

could refer to Curtis (2010) or Isiordia and Ferrer (2018), which present BUGS

code and R code (using the “lavaan” package, see Rosseel, 2012), respectively,

for estimating a subset of L-IRT models. Details of estimating L-IRT models

using WLS are explained in Wang, Kohli, and Henn (2016).

3.1. MLE

When using Mplus, one must specify the model estimation method in the

ANALYSIS section of the input script. If estimating IRT-based item parameters

with MLE, include the following ANALYSIS statement:

ANALYSIS: TYPE ¼ GENERAL;
ESTIMATOR ¼ MLR;
LINK ¼ LOGIT;
INTEGRATION ¼ MONTECARLO;
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As indicated in the last line of the previous statement, we recommend

using Mplus’s MONTECARLO integration routine for the numeric integration.

Without including the INTEGRATION line, Mplus would default to use

rectangular (trapezoid) numerical integration with either 15 adaptive quad-

rature points per dimension, or 30 to 50 nonadaptive quadrature points per

dimension (Chapter 14, Mplus User Guide). Although adaptive numeric inte-

gration is computationally faster, if the data have outliers or nonnormally

distributed latent traits, it may yield unstable results. If estimating a model

with one to three dimensions of integration, the default quadrature-based

numerical integration algorithm usually results in precise estimates. Conver-

sely, MONTECARLO integration does not yield as accurate estimates of para-

meters for low dimensions of integration but is much more efficient for

higher dimensional integration.

Table 2 illustrates the dimensions of numeric integration for each of the three

models with values in parentheses assuming that T ¼ 4, K ¼ 5, and q ¼ 2. As

shown in Table 2, the number of continuous latent variable per model (the second

column in Table 2) is simply the number of latent factors (including the first-

order and second-order latent traits) plus the number of random effects (the

person-specific intercepts and slopes). The dimensions of integration (the third

column in Table 2) include only those factors that have categorical indicators (the

ys) as opposed to higher level factors (the xs) or random effects. According to the

Mplus User Guide (p. 527), closed form solutions may exist for integrating out

latent factors with continuous indicators, such as the xs or random effects, so that

the numerical integration approximation is no longer needed. Nonetheless, the

number of dimensions of integration for all three longitudinal models is prohibi-

tively large.

TABLE 2.

Number of Continuous Dimensions and Dimensions of Numerical Integration for

Different Models and Methods (T denotes the number of time points, K denotes the

number of lower-order latent traits, q denotes the number of random effects)

Models

Number of Continuous

Latent Variables

Dimensions of

Numerical Integration

(Mplus Default)

Dimensions of Numerical

Integration (Analytic

Dimension Reduction)

L-UIRT T þ q (6) T (4) qþ 1 (3)

L-MIRT T � K þ q� K (30) T � K (20) q� K þ 1 (11)

L-HO-IRT T � K þ T þ q (26) T � K (20) qþ 2 (4)

Note. IRT ¼ item response theory; L-UIRT ¼ longitudinal unidimensional IRT; L-MIRT ¼
longitudinal multidimensional IRT; L-HO-IRT ¼ longitudinal higher order IRT.
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The right-most column in Table 2 indicates the dimensions of integration if

using an analytic dimension reduction technique. Analytic dimension reduction

is often used to rearrange terms in the marginal likelihood integral to yield a

series of integrals, each of much lower dimension than the original integral (Cai,

Yang, & Hansen, 2011; Gibbons & Hedeker, 1992; Rijmen, Vansteelandt, & de

Boeck, 2008). Applying a dimension reduction technique to the L-UIRT model,

rewrite Equation (3) as

1

1þ exp �at
j yt

i � bt
j

� �h i ¼ 1

1þ exp �at
j p0i þ p1i � ðt � 1Þ þ dt

i � bt
j

� �h i : ð13Þ

If assuming that dt
is are uncorrelated across pairs of time points, then one need

only integrate out p0i, p1i, and dt
i, resulting in a three-dimensional integral, for a

given item (Paek et al., 2016). The same arguments lead to a similar dimension

reduction solution to the L-MIRT model. The results for the L-MIRT model in

Table 2 are based on the assumption that the residual covariance matrix of �i is a

diagonal matrix.1

The L-HO-IRT model has a different dimension reduction solution given the

addition of the higher level trait. First, write the HO-IRT IRF as

1

1þ exp �at
jk

yt
ik � bt

jk

� �h i ¼ 1

1þ exp �at
jk

lk p0i þ p1i � ðt � 1Þ þ dt
i

� �
þ Et

ik � bt
jk

h in o ;
ð14Þ

where ajk and bjk denote item parameters for item j measuring domain k. In

Equation 14, the only additional random effect to integrate out of the likelihood

equation is Et
ik . Because all Et

ik s are assumed uncorrelated across time, then

generalized dimension reduction yields a four-dimensional integral (p0i, p1i,

and dt
i as before, as well as Et

ik). Note that this dimension reduction technique

can only be applied if the residuals from the growth curve model, dt
i, are

uncorrelated across time. If estimating models with correlated residuals (such

as an autoregressive model), this dimension reduction technique can no longer

be applied.

Advantages of estimating parameters using the EM algorithm, as compared

with Bayesian methods, in Mplus include: (1) being able to estimate the three-

parameter logistic (3PL) model rather than only being able to estimate one or two

parameter normal ogive models, (2) providing comparative model fit indices

such as Akaike information criterion (AIC) and Bayesian information criterion

(BIC), and (3) being able to impose equality constraints on model parameters.

Note that these limitations of Bayesian methods are not necessarily inherent to

the methods themselves, only to the application of those methods in Mplus. Due

to the high-dimensional integration, we have had more success estimating the

L-IRT models with the MCMC option in Mplus. Researchers and practitioners
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should always keep in mind complexity and feasibility when choosing a model

and corresponding estimation algorithm.

3.2. MCMC

If estimating IRT-based item parameters with MCMC, include the following

ANALYSIS statement:

ANALYSIS: ESTIMATOR ¼ BAYES;
CHAINS ¼ 1;
FBITER ¼ 50000;
POINT ¼ MEAN;

In the above statement, the FBITER line denotes the fixed number of itera-

tions for each Markov chain (i.e., the chain length). If FBITER is not specified,

the chain will stop once convergence is reached with the default convergence

criterion being a potential scale reduction (PSR; Gelman & Rubin, 1992) at or

below 1.05 (see Mplus User Guide, 1998-2011, p. 640). After 50,000 iterations,

POINT ¼ MEAN indicates that the posterior mean will be used as the point

estimate of the model parameters.

The next section provides a real data example of applying Mplus (Version 8

used in this study) to estimate parameters of data that fit the L-IRT model. A

corresponding simulation study, demonstrating parameter recovery of the three

L-IRT models, is included as an Appendix in the online version of the journal to

this article.

4. A Real Data Example

The current section applies the three L-IRT models to a real data example. The

purpose of this demonstration is to illustrate the potential application of each

model as well as the information each model provides to researchers and practi-

tioners. For this purpose, we adopted and analyzed a series of math assessments

that students in one Midwest state took between 2009 and 2012. These students

were assessed in each of Grades 3 through 6 using a five-dimensional, simple-

structure test with precalibrated item parameters. The five dimensions had been

termed “number and operation,” “geometry and spatial sense,” “data analysis,

statistics, probability,” “measurement,” and “algebra, functions, and patterns,”

respectively. Students took 57 items in 2009 (with 23, 9, 7, 11, and 7 items,

respectively, measuring each dimension) and 52 items in each of the three sub-

sequent years (with 23, 9, 7, 11, and 7 items, respectively, measuring each

dimension). After initial data cleaning, only N ¼ 327 students had a complete

set of mixed responses (i.e., including both correct and incorrect responses) for

sets of items on each dimension at every time point.2
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Due to different sets of items being administered in each year, common-item

linking is not possible. However, precalibrated anchor items were embedded

within each of the five dimensions across all 4 years and are all on the same

scale. Because of fixing known anchor items, many of the identifiability con-

straints need not be explicitly specified (see the model description section for

additional details). Only l1 in the L-HO-IRT model must still be specified, and

we set l1 ¼ 1 to fix the scale of x. All growth models were assumed to have only

random intercepts and slopes (see the spaghetti plots below for linearity of time

on y and x). Moreover, all responses were assumed to conform to the 2PL IRT

model.3 For estimation, an MCMC algorithm was run in Mplus with a Markov

chain length (FBITER) fixed to 30,000 with the first half of the iterations dis-

carded as burn-in by default. In all cases, the PSR for all model parameters were

below 1.03, implying successful chain convergence.

To evaluate global model fit in Bayesian models with categorical outcome

variables, Mplus provides the Bayesian posterior predictive p value (Kaplan &

Depaoli, 2012; Muthén, 2010). In our case, the Bayesian p value for the L-UIRT,

L-MIRT, and L-HO-IRT4 models were estimated to be .103, .081, and .106,

respectively, implying that all three models yielded acceptable global fit. Note

that other Bayesian software packages such as JAGS (Plummer, 2003) provides

the deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der

Linden, 2002) for model comparison. Mplus does not yet include DIC for models

with categorical indicators.

Table 3 presents the parameter estimates from the three L-IRT models.

Because of fixing l1 ¼ 1 in the L-HO-IRT model, parameter estimates from

this model may not be on the same scale as those from the L-UIRT and L-MIRT

models. Even though parameter estimates are not strictly comparable across

models, we can still make some general statements based on Table 3: (1) The

fixed effect of time is positive, implying an increase in average ability over time;

(2) the intercept and slope combined variances (i.e., ZSnZ
T, where Z is the

design matrix defined in Equation 1, indicating the dependent variable variance

explained by random effects) greatly exceed the residual variance in the growth

part of the model (i.e., s2
di

), which evidences the linear functional form being

sufficient to capture the latent growth pattern; (3) the random intercepts vary

more than the random slopes, and there is a moderate negative correlation (of

�.3 to �.4) between random intercepts and random slopes, implying larger

differences in initial ability than in growth rates. This moderate negative cor-

relation between initial state and growth is interesting and implies that the gap

between high- and low-performing students decreases over time. Even though

one cannot directly compare parameter estimates from the L-MIRT and L-HO-

IRT models, the intercept variances being larger for Domains 2 and 3 in the

L-MIRT model (i.e., .255 and .267 in Table 3) are consistent with the ls being

relatively lower for these two domains (i.e., .768 and .734) in the L-HO-IRT
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model. Thus, estimation patterns persist regardless of lack of direct compar-

ability of parameter magnitudes.

In contrast to the L-HO-IRT model, the L-UIRT and L-MIRT models can be

directly compared in this case due to anchor items setting the scale for the lower

order traits. From Table 3, one can see that averaging the intercepts and slopes

from the L-MIRT model leads to estimates similar to those from the L-UIRT

model. Yet the variance of the intercept and slopes from the L-MIRT model is

much larger, implying that evaluating individual performance at the domain level

leads to higher variability than assuming that responses are all generated from a

single, common trait. That said, if a test is constructed across several domains,

considering domain-level growth patterns may reveal subgroup differences

TABLE 3.

Structural Model Parameter Estimates for Three Different Models

Models NP

Fixed Effects

b0 b1ð Þ

Random Effects

s2
p0i

sp0ip1i
s2
p1i

 !
Others

L-UIRT 275 �:653 :472ð Þ
:081

�:008 :005

� �
�2

di
¼ :048 :063 :046 :015ð Þ

L-MIRT 351

�:652 :509

�:633 :428

�:421 :356

�:659 :444

�:795 :524

0
BBBBBB@

1
CCCCCCA

:145 :014

:255 :039

:267 :038

:169 :042

:120 :017

0
BBBBBB@

1
CCCCCCA

�2
di
¼

:051 :087 :052 :019

:063 :066 :025 :037

:032 :048 :009 :029

:035 :055 :042 :031

:054 :010 :031 :013

0
BBBBBB@

1
CCCCCCA

L-HO-IRT 299 �:702 :514ð Þ
:102

�:009 :007

� �
� ¼

1�
:768

:734

:882

:935

0
BBBBBB@

1
CCCCCCA

�2
di
¼ :052 :071 :061 :015ð Þ

�2
Ei
¼

:028 :031 :016 :017

:121 :091 :088 :044

:018 :031 :013 :011

:059 :020 :018 :034

:059 :012 :013 :008

0
BBBBBB@

1
CCCCCCA

Note. NP denotes the number of free parameters in each model. The covariances between random

intercepts and random slopes from the L-MIRT model are omitted to save space because they are

between �.01 and .01. “*” denotes a fixed constant. IRT ¼ item response theory; L-UIRT ¼
longitudinal unidimensional IRT; L-MIRT ¼ longitudinal multidimensional IRT; L-HO-IRT ¼
longitudinal higher order IRT.

On Longitudinal Item Response Theory Models: A Didactic

358



otherwise diminished if assuming responses came entirely from a unidimensional

trait.

Figure 4 presents a spaghetti plot of the overall ability across time for N ¼
327 students using the L-HO-IRT model (left) and the L-UIRT model (right).

Unsurprisingly, the lines in the right panel are slightly closer together than the

lines in the left panel, which is consistent with the results in Table 3 that the

variance of the random slopes is slightly higher from the L-HO-IRT model.

Figure 5 presents the spaghetti plot of the domain-specific abilities across time

using the L-HO-IRT model (upper) and the L-MIRT model (lower). As shown in

Figure 5, aside from minor differences, the overall growth lines and the individ-

ual growth trajectories from both models exhibit similar patterns. One anomaly

worth mentioning is that the individual growth curves from the L-HO-IRT model

tend to fluctuate quite a bit more than the growth curves from the L-MIRT model.

The L-MIRT model growth curves (for all but k ¼ 1 and k ¼ 4) tend to follow

strict lines. This result is due to where the growth trajectory is imposed. With

respect to the L-HO-IRT model, the growth trajectory is fit to the ys only

indirectly (due to the ys relationship with x) as reflected in Equation 11. Because

of this indirect effect, the residual variance of y s2
ut

ik

¼ l2
ks

2
dt

i

þ 1� s2
Et

ik

� �
could

be large, and the individual growth trajectories might exhibit some departure

from a strict line. Conversely, with respect to the L-MIRT model, a growth line is

imposed directly on the individual ys (see Equation 5). Due to a small estimated

higher−order unidimensional

ξ

1 2 3 4 1 2 3 4

−1

0

1

time

es
tim

at
e

FIGURE 4. A spaghetti plot, illustrating the linear trend of x (overall-level ability) on

math between Grades 3 and 6 for N ¼ 327 students. The left panel is obtained from the

longitudinal higher order item response theory model, and the right panel is from

the longitudinal unidimensional item response theory model. The bolded, slanted line in

the center of the spaghetti depicts the estimated fixed effect of time.
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residual variance in the ys (between .007 and .088), the domain abilities were

estimated to be close to the trajectory line. Note that the figures reinforce linear-

ity in the average growth pattern over time, which was implied earlier by com-

paring the slope/intercept variances to the residual variances from Table 3.

5. Conclusion

Many teachers, administrators, and policymakers require the measurement of

student growth. Teachers can use estimated growth to modify lesson plans based

on strategies of improvements. Administrators can use estimated growth to

examine school performance and help make budgetary decisions. In either case,

one must ensure estimates are accurate across several, possibly correlated, ability

dimensions. Several L-IRT models haven been proposed for different purposes.

These L-IRT models all share the same form and contain two components: (1) an

IRT measurement model for each measurement occasion and (2) a LGC model

imposed on the latent trait, quantifying the intraindividual developmental trajec-

tories. In this article, we reviewed three specific types of L-IRT models with the

goal of demonstrating appropriate applications of these models for longitudinal

assessment. We also illustrated fitting different models with a commonly used

software package.

Among the three models, the L-UIRT model is the simplest and has been the

most extensively studied in the literature (e.g., Andersen, 1985; Embreston,

1991, Grimm et al., 2013; McArdle et al., 2009; von Davier et al., 2011; Wang

et al., 2016; Wilson et al., 2012). In contrast to the L-UIRT model, which tracks

change in a unidimensional latent trait, the L-MIRT model describes change in

multiple, correlated latent traits (see Paek et al., 2016). Compared to models that

directly model change in the lower level abilities, the L-HO-IRT model includes

two unique features. First, because the HO-IRT model captures the hierarchical

nature of learning, the L-HO-IRT model simultaneously models the growth

trajectories of both overall- and domain-specific abilities. Second, as described

earlier in this article, the L-HO-IRT model allows for a shift in domain coverage

over time, as long as one carefully verifies the second-order longitudinal invar-

iance requirement (e.g., Chen et al., 2006; Liu et al., 2017). Allowing for a shift

in the domain coverage over time is extremely important in educational mea-

sures, as one typically finds more advanced domains added and basic domains

eliminated as students complete more schooling. Furthermore, a higher order

model allows one to find trends at the individual, domain level. Domain-level

information can hint at particular academic subjects that improve the most over

particular grades. For instance, in our real data example, y1 and y5 tended to

improve the most over time, and y3 tended to improve the least (assuming, of

course, that the location and scale across dimensions are comparable). With a L-

HO-IRT model, one can obtain estimates of overall trends as well as delve into

individual dimensions underlying complex assessments.
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In terms of model estimation, we provided a thorough discussion of the

analytical dimension reduction techniques that are available to alleviate high-

dimensional integration challenges of marginal MLE (MMLE). Even after

dimension reduction, the number of integration dimensions can still be high.

In this case, the Metropolis–Hastings Robbins Monro algorithm (Cai, 2010) or

the MCMC algorithm can be used in lieu of MMLE via EM. Given that the L-

MIRT and L-HO-IRT are less studied in the literature, a simulation study was

conducted to provide a thorough quality control check on the precision in esti-

mating model parameters (refer to the Supplementary File in the online version

of the journal for details of the simulation, which evaluated the recovery of both

structural parameters and individual latent traits/growth parameters). When

examining simulation results, all model parameters were adequately recovered,

and the generating model evidenced adequate model fit. Even with the support-

ing evidence from the simulation study, interested users of the L-HO-IRT and L-

MIRT models should keep in mind that both of these models should only be

applied when there are sufficient items per domain, otherwise the domain-level

ys and the resulting higher order factors (i.e., x and growth parameters) would

not be reliably estimated.

This article serves two purposes. First, no prior paper has explicitly documen-

ted and reviewed the three popular L-IRT models as well as their identifiability

constraints with and without known item parameters. Including this information

has profound didactic value for practitioners who wish to apply the models to

their own data. Sample Mplus code is provided in the Appendix in the online

version of the journal for each model for readers’ reference. Second, this article is

the first attempt to thoroughly compare and demonstrate the applicability of each

of the discussed models. Even though these models can adequately capture

changes in typical longitudinal measures, they are by no means exhaustive. A

handful of other longitudinal models exist, such as the two-tier model (Cai,

2010), in which nuisance factors are introduced to account for residual depen-

dencies between common items over time, or the item-level growth curve model

(Paek et al., 2016), in which growth rates for different items can differ and

therefore be described and examined.

Regardless of chosen model, constructing and estimating growth using L-IRT

can improve the measurement of educational outcomes and thus provide educa-

tors with tools they need to better help students learn. Currently available soft-

ware packages can estimate growth across a wide variety of measurement models

(e.g., 1PL, 2PL, 3PL, unidimensional, multidimensional, and higher order) and

LGC models (i.e., Equations 1 and 4). Interested practitioners should be cogni-

zant of the different estimation methods offered in each of the programs and to

choose the method appropriate for the problem at hand, especially given complex

models with many estimable parameters. For instance, the discussed analytic

dimension reduction technique is only relevant to MML estimation approaches

but not to the Bayesian MCMC estimation approach commonly used to estimate
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parameters of complex models. Software packages such as Mplus may not auto-

matically use a given dimension reduction unless the command file (or source

script) is written with dimension reduction in mind.5 Hence, understanding the

logic of dimension reduction can help with constructing the command file or

script processed by the algorithm and greatly reduce computation time.

Although this didactic offers sufficient technical details for three popular L-

IRT models for researchers and practitioners to use those models in their own

research, two relevant topics were outside the scope of the current discussion.

First, LCG models with intrinsically nonlinear growth patterns were not dis-

cussed because this family of models is not currently included in a majority

of software packages for LCG model estimation. An example of this kind of

model is a “piece-wise growth curve model with unknown knots” (e.g., Kohli,

Hughes, Wang, Zopluoglu, & Davison, 2015). Second, we have not discussed

how to evaluate global model fit. Although most SEM software packages will

output one or multiple absolute fit indices, few studies have examined appro-

priate cutoffs for these indices in determining adequate fit. Moreover, the DIC

that is often used with MCMC can take different forms. The first-level condi-

tional DIC provided by WinBUGS may not always provide the best estimates of

model fit, whereas a second-level joint DIC might be more appropriate for

multilevel IRT models (Zhang, Tao, & Wang, 2019). A thorough examination

of model fit for L-IRT models is needed to ensure credible conclusions drawn

from any model-based results.
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Notes

1. If, on the other hand, the residual covariance matrix of �i is a block diagonal

matrix, allowing the residuals from different latent traits to correlate at a given

time point, then the dimensions of numerical integration would be

ðqþ 1Þ � K.
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2. The complete data set is available for download on www.placeholder.com.

3. Mplus can estimate three-parameter logistic model parameters using only the

marginal maximum likelihood estimation/EM algorithm, which becomes

exceedingly slow when the number of integration dimensions is large, such

as in the longitudinal multidimensional item response theory or longitudinal

higher order item response theory models considered in this article.

4. Originally, we ran the model allowing l2 to lK to differ across time. Relaxing

the invariance assumption resulted in a posterior predictive p value changed

by .001. Because imposing an invariance assumption still yields a p value >

.05, we decided to base our results and discussion on the invariance model.

5. Please see an example for the higher order item response theory model at

www.placeholder.com.
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