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Abstract: In this study, it is aimed to investigate the impact of different missing 
data handling methods on the detection of Differential Item Functioning 
methods (Mantel Haenszel and Standardization methods based on Classical 
Test Theory and Likelihood Ratio Test method based on Item Response 
Theory). In this regard, on the data acquired from 1046 candidates who entered 
to Foreign National Student Exam (FNSE) held in year 2016 by Mersin 
University (MEU) and answered Basic Skills subtest, using different missing 
data handling methods, differential item functioning analyses with Mantel 
Haenszel, Standardization and Likelihood Ratio Test methods are performed. 
Basic Skills test consists of 80 multiple choice items. The items are all binary 
scored (1-0) items. Among the participants 523 are female and 523 are male. 
The findings showed that the number of items flagged as DIF has changed with 
the used missing data handling methods. The DIF detection methods based on 
Classical Test Theory are more consistent within themselves compared to DIF 
detection method based on Item Response Theory, whereas the used missing 
data handling methods differentiate the DIF detected items and this difference 
reaches a significant level for Mantel Haenszel method 
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1. INTRODUCTION 
Even if the reliability of the measurements acquired with a measurement tool is investigated 

with different method, in some cases where the desired quality (latent trait) to be measured is 
mixed with other qualities, the individuals in different subgroups can be affected systematically 
from this situation. In the current literature it is named as “bias” and causes negative effect on 
validity due to the definition, and it decreases somehow the reliability. 
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Bias that occurs as a systematic variation source and affects the validity is defined as “the 
difference between the probabilities of correct answer of the individual within different subgroups 
with the same ability level (Angoff, 1993). 

From this definition, in the studies regarding the determination of the bias initially, it is 
understood that it is necessary to match the individuals in different subgroups regarding the ability 
levels and to examine statistically the item parameters of these individuals. This situation is defined 
as the examination of whether there is Differential Item Function (DIF) in the items or not. 

 It is required that the items with detected DIF should be checked by the experts and whether 
the DIF is due to another source rather than the desired measured quality shall be investigated. In 
cases that the DIF is detected to be caused by another source than the desired measured quality, it 
can be convinced of that the related item(s) is/are biased (Camilli & Shepard, 1994; Zumbo, 1999). 

In order to provide validity of the items detected biased, it can be said that it is proper for 
them to be revised in possible cases, and in impossible cases to be removed completely from the 
test. In fact, in the literature it is described that one of the important threats that affect the 
objectivity and validity of the measurement tools is the bias (Kristanjansonn, Aylesworth, 
McDowell & Zumbo, 2005). 

Bias, besides decreases the validity, presents a preventable structure as a systematic variation 
source. Thus, scientists have developed significantly extensive methods regarding the detection of 
DIF. As examples of some frequently used ones of these methods Standardization (SPD-X), 
Mantel-Haenszel (M-H), Logistic Regression (LR) and Likelihood Ratio Test (LRT) methods can 
be given (Angoff, 1993; Camilli&Shepard, 1994; Osterlind, 1983). 

However, it is possible to say that nearly all of these frequently used methods and other 
methods have different weaknesses and strengths and many methods are developed to fix weakness 
of each. Hence, in DIF detection there are many different distresses like in methods acting over 
item difficulty (pj) index, ‘pj’ values are affected from the average group differences and item 
discrimination index (rjx). In methods based on variance analysis, variance to be affected from pj 
and rjx values, in methods based on correlation, ‘rjx’ is able to be able to process in similar ways 
for the groups and even if the ‘pj’ differs, in this case to increase correlation coefficient, the correct 
response likelihood of the item to operate in favor of the same group for all ability levels and non-
uniform DIF situation to arise etc. (Selvi, 2013). 

In addition to these in the literature, studies are showing the different DIF detection methods 
also being affected from many variables like number-ratio of items with DIF, test length, DIF 
level, sample size, DIF structure in items, and item scoring method etc. (Camili & Shepard, 1994; 
Gelin & Zumbo, 2003; Gierl, Jodoin & Ackerman, 2000; Narayanan & Swaminathan, 1994; 
Osterlind, 1983; Padilla, Hidalgo, Benitez & Gomez-Benito, 2012; Selvi, 2013).  

Another variable that can change the findings acquired by the DIF detection methods is 
thought to be the problem of missing data. Hence, many statistical methods used today based on 
complete data matrix and missing data rate being increased may cause these methods to give 
erroneous results (Bernhard, Celia & Caotes, 1998; Molenberghs & Kenward, 2007; Woodward, 
Smith & Tunsatall-Pedoe, 1991).  

Similarly, in the literature, including M-H, LR, SIBTEST, it is said that many DIF detection 
methods are not capable of handling missing data (Banks, 2015). Missing data can be formed in 
cases like, for a performance test not reaching the item due to time limitations, accidentally 
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omitting the item or leaving it empty due to not knowing the right answer (Banks, 2015); for a 
scale, accidentally omitting the related item or refusal to answer due to personal reasons. In other 
words, and in the most general sense, the missing data can be considered as an information loss 
(Alpar, 2011). 

Missing data may lead to problems like decrease of the power of the used statistical analyses, 
faulty estimate of standard error, increase in Type I error rate, not being able to estimate in quality 
the closed properties based on observation (Hohensinn & Kubinger, 2011; Molenberghs & 
Kenward, 2007). Thus, many studies have been done in line with the resolution of the missing data 
problem in time and many different methods have been developed. 

Regarding the proper method to be chosen, primarily the pattern and the mechanism of the 
missing data should be understood. For this aim the issues like whether the missing data is 
distributed over the observations randomly, whether they have a specific pattern, how much 
missing data there is (how frequently it occurs) etc. are investigated. In other words, it is researched 
whether there is a case leading to missing data process in the data or not is researched (Alpar, 
2011). In the literature regarding this process, it is mentioned that researchers acting carefully in 
data collecting presents an opportunity in observing the reasons and increasing the quality of the 
possible missing data (Pigott, 2001).  

On the other hand, the researchers in general act in tendency to prove the assumption that 
the missing data does not make a significant difference on the study findings and can perform 
listwise deletion of the missing data with the assumption that it is missing at random (MAR) 
without investigating whether it is negligible or not (Alison, 2002; Groves, 2006). 

In ignoring the missing data problem (un)consciously, it is thought that conditions like the 
researcher not having sufficient knowledge on the field of missing data problem, in scoring of the 
measuring tools where the maximum performance are measured (especially in optic reader usage) 
1 point to correct answered items and 0 points to be assigned to the incorrect, left empty or different 
marking done items thus the missing data being removed by zero imputation method somehow 
without examination, in some statistical software the missing data to be removed by a default 
method automatically etc. are in play. This condition is specially emphasized in a study done by 
Demir & Parlak (2012). In the related study 405 researches conducted in Turkey universe and 
containing statistical analysis process are examined and in 40% of these studies, despite containing 
different analysis methods like standard error, mean, variance, covariance, correlation, t and F 
statistic, reliability and validity coefficients, factor analysis, regression analysis, structural 
equation modelling analyses, it is indicated that there was no explanation/proof seen regarding 
whether the data set on which the analyses are conducted had missing data or not. Listwise deletion 
and zero imputation make the resolution of the problem fairly ease in cases that the missing data 
is really formed as missing at random. However, any method to be used before the quality of the 
missing data is understood also consists of the possibility that the study findings are faulty.  

Rubin (1976) defined three possible conditions regarding the understanding of the quality of 
the missing data (Missing Data Mechanism). These define cases in which the missing data is 
formed as missing completely random, MCAR, missing at random, MAR, and missing at non-
random, MNAR. MCAR explains the situations that the probability of a value regarding x variable 
to be a missing data is not related to x variable itself or any value regarding another variable in the 
data set (Alison, 2002). In other words, MCAR explains the cases where there are no justified 
explanations is made regarding the formation of the missing data and the formation of the missing 
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data is referenced to randomization (Peng & Zhu, 2008). When the condition is looked at from 
DIF angle, Banks (2015) says that the MCAR missing data formation is realized in general when 
the related item is left empty both by the focus and the reference groups accidently. 

MAR expresses the cases where the probability of a value regarding x variable to be a 
missing data is not related to x variable itself when the other variables in the data set are fixed 
(Alison, 2002). In other words, MAR is the cases in which the probability of missing data 
formation in the certain item is related to the observed data systematically. In the perspective of 
DIF definition, this situation is explained as for a test includes 30 items, the probability of the DIF 
analyzed items without any response (empty items) is dependent on which group that the 
individuals are in (focus, reference) or their performances in 2nd - 29th items (Peng & Zhu, 2008). 

MNAR is the cases where the probability of a value regarding x variable to be a missing data 
is related to x variable itself. In other words, MNAR explains the cases where the probability of 
individuals to leave the item empty depends on the performances of individuals on the related item, 
item being left empty as it is faulty etc. (Peng & Zhu, 2008). Alison (2002), based on the definitions 
Rubin (1976) made regarding the quality of the missing data, classified the missing data simply as 
ignorable and nonignorable. In order for the missing data to be ignored, Alison said that it should 
be in MAR or MCAR and a missing data in MNAR cannot be ignored. Here, by the ignorable term 
means the case where extra modelling of missing data is not needed for the analyses to be made.  

In the literature search regarding the missing data problem, there are many studies suggesting 
a resolution of this problem and many different methods have been developed. These methods in 
general are classified within as methods based on deletion and value assignment (Alpar, 2011; 
Demir, 2013; Alison, 2002; Little & Rubin, 1987). Among methods based on deletion; listwise 
deletion and analysis wise deletion, among methods based on value assignment (simple); zero 
imputation, mean substitution, assigning mean of nearby points, assigning median of nearby points 
and regression imputation methods are used frequently in the literature (Banks, 2015; Little & 
Rupin, 1987; Alison, 2002; Alpar, 2011). 

In listwise deletion method; the observations containing one or more missing data are 
removed from the data.  

In analysiswise deletion method; observation(s) or variables with missing data are removed 
from the analysis if only they are to be analyzed.  

As seen, deletion methods appear as fairly simple approaches regarding the resolution of the 
missing data problem. However, removing the missing data from the observation via deletion 
methods can cause serious decrease in observation numbers and a sample deemed sufficient can 
turn into a sample with insufficient numbers. Moreover, methods based on deletion can decrease 
the stability of the calculated statistics, can place the validity and generalizability of the study to 
distress (Alpar, 2011). In addition to this, for methods based on deletion to be used, the assumption 
of missing data being in MCAR should be met (Alison, 2002; Alpar, 2011). 

In methods based on value assignment, new values are assigned to the missing values based 
on specific assumptions and rules. In assigning these values (except zero imputation method) the 
other values or variables in the data set are considered. 

In zero imputation method, omitted item is considered as ‘wrong’ or in most general state 
‘zero’ points are assigned to this value. However, as this condition leads to biased parameter 
estimates and faulty hypothesis results, in Item Response Theory (IRT) and DIF studies it is 
especially not recommended (Banks & Walker, 2006; Lord, 1974).  
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In mean imputation method, empty value(s) is/are filled via taking the average of the values 
given by other individuals to the related item as serial mean imputation, via taking the average of 
the values given to other items by the individual as unit’s mean imputation, via taking mean of 
nearby points, via taking median of nearby points etc. However, this condition too, can cause bias 
addition to many analysis results including variance-covariance estimates and parameter estimates 
(Little & Rupin, 1987). Similarly, for these assignment methods to be used the assumption of 
missing data being in MCAR should be met (Alpar, 2011). 

The regression imputation method; is based on estimation operations realized by taking the 
regressed variable as the variable with missing value(s) and other variable(s) as regressing 
variables. However, in this method, as it starts upon relations between other variables, the already 
present relation in the data can be strengthened more as the result of the assignment thus lead to 
being biased. In addition, the value obtained as the result of estimation can exceed the score range 
of the missing data. In order to use the regression imputation methods, the missing data being in 
MCAR should again be met (Alpar, 2011). 

The methods based on deletion and value assignment appear as frequently used method in 
resolution of the missing data problem. However, it is known that these methods also bring up 
many restrictions. These restrictions, whereas, drove the researchers to develop new methods. 

Among the methods suggested in this regard, the multiple imputation method suggesting 
estimation of the missing data via using two or more methods together and Expected-Maximization 
method based on maximum likelihood shine out are mentioned (Alison, 2002; Alpar, 2011; Demir, 
2013; Little & Rubin, 1987). The most important advantage of these methods compared to methods 
based on deletion and simple value assignment is that they can also be used in cases where the 
missing data is in MAR (Alison, 2002; Alpar, 2011).  

When the studies performed in literature regarding the missing data problem and used 
methods are examined; it is suggested that in cases that may cause serious reduction in data set or 
bias listwise deletion shall not be used (Graham, 2009). As it increases Type I error rate the zero 
imputation method shall be avoided if possible (Banks & Walker, 2006; Banks, 2015; Robitzsch 
& Rupp, 2009). The method with Type I error rate that is similar to the complete data set shall be 
preferred (Banks & Walker, 2006; Finch, 2011) and especially in DIF studies the missing data 
problem shall not be ignored (Banks, 2015). Besides; it is expressed that sample size and DIF level 
in items being increased, the performance of analysiswise deletion methods instead of listwise 
deletion and zero imputation methods, increase the rate of accurately determined items with DIF. 
It is shown that item to grow difficult and missing data rate to be increased decreases as well 
(Banks & Walker, 2006; Emenogu, Falenchuck & Childs, 2010; Finch, 2011; Garrett, 2009). 

On the other hand, the most efficient solution in missing data problem can be shown as with 
precautions like being careful yet on the data gathering stage, training individual given the task of 
data gathering, the missing data not to be present or be in ignorable quality and level (Alison, 2002; 
Little & Rubin, 1987). In this regard, there are different suggestions in literature regarding the 
ignorable missing data ratio. Schafer (1999) said that this rate should be below 5%, Bennett (2001) 
10%, Peng, Harwell, Liou & Ehman (2006) 20% and otherwise it should be considered that the 
findings acquired from the study may be biased. 

The missing data problem and DIF are still seen important problem and research studies on 
these topics are ongoing. In the literature there are many extensive studies regarding the detection 
of the lacking and powerful points of the missing data approaches and DIF detection methods. 
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However, it is observed that nearly all of these studies were performed over data sets acquired by 
simulation method (e.g., Banks & Walker, 2006; Banks, 2015; Emenogu, Falenchuck & Childs, 
2010; Falenchuck & Herbert, 2009; Finch, 2011; Garrett, 2009; Hohensinn & Kubinger, 2011; 
Pigott, 2001; Robitzsch & Rupp, 2009; Rousseau, Bertrand & Boiteau, 2006; Sedivy, Zhang & 
Traxel, 2006). And it is observed that nearly all of these studies were performed over frequently 
used DIF detection methods like, Standardization, SIBTEST, Linear Logistic Regression and 
Likelihood Ratio Test (e.g., Banks, 2015; Finch, 2011; Robitzsch & Rupp, 2009; Wu, Lee & 
Zumbo, 2007). A study which includes the Classical Test Theory (CTT) and Item Response 
Theory (IRT) based DIF detection methods, a non-simulative data set and expected maximization 
and regression imputation methods at the same time is not seen. 

In the literature, regarding the studies conducted on simulation technique, it is expressed that 
being aware of the situation that these studies cannot present enough proof that the actual results 
shall be found and cannot guarantee the accuracy of the results to be found and thus it is imperative 
to be sure exactly that all the analytic and experimental options that can be used in solving the 
problem would not be usable before these studies are performed and finally they should be used 
as last resort (Harwell, Stone, Hsu & Kirisci, 1996). 

Thus in this study, the answer of the question “How are the performances of expectation 
maximization and regression imputation methods for handling with missing data on detecting DIF 
methods based on CTT and IRT is sought. 

2. METHOD 
In this study, over the complete data matrix obtained by using different missing data 

methods, the investigation of operation of DIF detection methods based on different theories in 
regard to gender variable is aimed for. Thus it can be said that the type of this study is basic 
research (Kothari, 2004; Royce, Straits & Straits, 1993; Singh, 2006). 

Data acquired from 1046 candidates who attended to the Foreign National Student Exam 
(FNSE) conducted by Mersin University (MEU) in year 2016 and answered Basic Learning Skills 
subtest.  

Some descriptive information related to the participants is given in Table 1. 

Table 1. Descriptive values regarding the participating group 

 Foreign National Turkish National Total 

Female 448 (50.1%) 75 (49.3%) 523 (50%) 

Male 446 (49.9%) 77 (50.7%) 523 (50%) 

Total 894 (100%) 152 (100%) 1046 (100%) 

 

2.1. Instrument 
FNSE consists of two subtests as Basic Skills Test and a Language Test and is applied to 

high school graduates in Turkey and specific centers around the world every year for granting 
them undergraduate education in MEU. Candidates are ranked according to the scores they 
achieved in this exam and regarding specific quotas, are placed to programs they chose. In 
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development of the tests, all works are planned and realized by the Measurement and Evaluation 
Application and Research Centre of the university. The Basic Skills subtest was used as data 
collecting tool in this study is scored in binary (0-1), multiple-choice and consists of 80 items with 
5 choices and the reliability (KR 20) of the acquired scores is calculated as 0.95.  

2.2. Data Analysis  
DIF analyses was done via M-H, Standardization and LRT methods. M-H, and 

Standardization methods do not contain the assumptions which of the parametric techniques 
should be faced. However, as LRT is one of the methods based on IRT the data should meet the 
unidimensionality and local independence that are basic assumptions of IRT (Embretson & Reise, 
2000; Hambletton & Swaminathan, 1985). Thus, in the first stage of the data analysis whether 
these assumptions were checked.  

In this regard, the unidimensionality that is one of the basic assumption of the IRT, is 
investigated utilizing the principal components analysis based on intra-item tetrachoric correlation 
matrix and the data is observed to be unidimensional from the acquired results regarding the local 
independence, in the literature it is said that this assumption is linked to the unidimensionality and 
a data that is seen to be unidimensional meets also the local independence (Lord, 1980: 19; 
Hambletton & Swaminathan, 1985: 25). Based on these it is deemed that the study data also meets 
the local independence. 

In the second stage of the data analysis, in order the analysis based on Item Response Theory 
to be done, model-data fit was examined. Because the likelihood ratio test, which is one of the DIF 
methods used in this research based on IRT and the DIF analysis software (IRT-LR-DIF) requires 
the selection of the model. The -2 log likelihood value of the data obtained for the two parameter 
logistic model is calculated as 71207,78. As this statistic showing 2 distribution is very sensitive 
to sample size and in big sample sizes model-data fit cannot be provided for nearly all models; for 
evaluation of the model data fit –2 log likelihood / (S-1) – 2n(r-1) ≤ 3.00 condition is considered. 
Here ‘S’ shows response pattern number, n number of items, r number of response category The 
possible response pattern of this study dependent on the item number and response category 
number is 580. Bock (1997) indicates that all values meeting the ‘–2 log likelihood / (S-1) – 2n(r-
1) ≤ 3.00’ condition are sufficient for model data fit (Gözen Çıtak, 2007). Based on these findings 
it can be said that the data is fit to the 2 parameter logistic model.  

In the third stage of the data analysis, in order to decide the pattern of the missing data Little’s 
MCAR test was applied and it was observed that the data was not in MCAR (2=22815.65, 
p<0.05). In the fourth stage of data analysis, the missing values that are present in the raw data set 
and whose ratios change in between 0.3% and 10%, due to the data not being in MCAR, are 
removed by Expectation Maximization and Regression Imputation and DIF analyses are made on 
complete data set by Mantel Haenszel, Standardization and Likelihood Ratio Test methods and 
items showing DIF and number of items with DIF are determined.  

Whether the number of items determined with different missing data methods and different 
DIF detection methods show discrepancies is examined by Cohran’s Q and McNemar tests. 
Cohran’s Q test is used for testing whether the number of items with DIF determined via Mantel 
Haenszel, Standardization and Likelihood-Ratio Test for each missing data method, differentiate 
from each other or not; and McNemar test is used if there is a significant difference found by 
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Cohran’s Q test and in order to test whether the number of DIF included items according to the 
used missing data method are significantly different from each other or not. 

3. FINDINGS 
In the scope of the study the DIF analyses performed on the complete data matrix obtained 

by expectation maximization and regression imputation methods and the values obtained as the 
result of these analyses are given in Table 2. 
Table 2. Results of DIF analysis performed on complete data matrix obtained by expectation maximization 
and regression imputation methods. 

 
 
Items 

Expectation Maximization Regression Imputation  
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Focus-Ref. 
Group Mean M-H Std. LRT Focus-Ref. 

Group Mean M-H Std. LRT 

Male Female 2MH  p SPD* G2** Male Female 2MH  p SPD* G2** 
Item 1 0.9 0.87 3.67 0.05 -0.03 5.5 0.9 0.87 5.21 0.02 -0.03 6.6 1.0 
Item 2 0.87 0.87 0.00 0.92 -0.01 0.1 0.86 0.87 0.09 0.75 0.00 0.10 1.3 
Item 3 0.75 0.73 0.27 0.59 0.00 1.3 0.75 0.73 0.47 0.49 -0.01 1.6 1.9 
Item 4 0.84 0.78 6.72 0.01 -0.05 11.8 0.83 0.78 7.01 0.00 -0.06 12.2 2.4 
Item 5 0.85 0.85 0.05 0.81 0.00 1.4 0.85 0.84 0.1 0.74 0.00 1.6 1.7 
Item 6 0.69 0.69 0 0.92 0 1.6 0.68 0.69 0.13 0.71 0.01 1.5 3.3 
Item 7 0.44 0.41 0.39 0.53 -0.02 1.9 0.45 0.42 0.25 0.61 -0.02 2 6.8 
Item 8 0.93 0.92 0 0.95 0 0.9 0.93 0.92 0.01 0.91 0 1.1 0.4 
Item 9 0.62 0.63 0.02 0.87 0 0.4 0.62 0.63 0.15 0.69 0.01 0.1 7.8 
Item 10 0.88 0.91 1.99 0.15 0.02 6.9 0.88 0.91 3.2 0.07 0.04 5.4 1.1 
Item 11 0.66 0.55 19.81 0 -0.12 22.8 0.64 0.54 14.3 0 -0.10 17.9 5.3 
Item 12 0.54 0.5 1.76 0.18 -0.04 6.6 0.54 0.51 1.12 0.28 -0.02 5.2 3.5 
Item 13 0.81 0.85 1.15 0.28 0.02 3.4 0.81 0.85 1.22 0.26 0.02 4.5 1.6 
Item 14 0.55 0.53 0.45 0.49 -0.02 1.8 0.56 0.54 0.46 0.49 -0.01 1.5 5.3 
Item 15 0.91 0.89 0.17 0.67 -0.01 1.8 0.9 0.89 0.22 0.63 0 2 0.8 
Item 16 0.82 0.86 2.98 0.08 0.02 3.7 0.82 0.86 3.22 0.07 0.03 4 1.1 
Item 17 0.93 0.94 1.37 0.24 0.01 2.6 0.93 0.94 0.42 0.51 0 1.7 0.4 
Item 18 0.9 0.89 0.11 0.73 0 0.8 0.9 0.89 0.07 0.78 -0.01 0.5 0.7 
Item 19 0.91 0.92 0.67 0.41 0.01 2.8 0.92 0.93 0.23 0.62 0.02 2.6 0.3 
Item 20 0.93 0.95 4.39 0.03 0.04 2.6 0.93 0.94 2.04 0.15 0.02 2.2 0.5 
Item 21 0.27 0.25 0.3 0.58 -0.02 0.7 0.28 0.25 0.32 0.56 -0.02 0.2 2.2 
Item 22 0.75 0.76 0.09 0.75 0.01 0 0.75 0.75 0.01 0.90 0 0 3.0 
Item 23 0.66 0.63 2.1 0.14 -0.03 5.3 0.64 0.62 1.85 0.17 -0.03 3.5 6.8 
Item 24 0.82 0.76 5.94 0.01 -0.06 8.3 0.82 0.76 5.99 0.01 -0.06 7.1 1.2 
Item 25 0.87 0.88 0.27 0.6 0 0.3 0.87 0.88 0.56 0.45 0.02 0.8 2.2 
Item 26 0.69 0.63 3.99 0.04 -0.06 8.7 0.69 0.62 7.85 0 -0.07 11.3 3.7 
Item 27 0.87 0.86 0.53 0.56 0 6.8 0.87 0.86 0.88 0.34 -0.01 6.4 0.9 
Item 28 0.92 0.93 0.02 0.88 0 0.5 0.92 0.93 0.14 0.70 0.01 0.5 0.9 
Item 29 0.9 0.9 0 0.93 0 1.9 0.9 0.9 0.48 0.48 -0.01 2.1 1.3 
Item 30 0.66 0.66 0.02 0.88 0 0.9 0.66 0.64 1.44 0.22 -0.03 1.8 5.9 
Item 31 0.84 0.84 0 0.98 -0.01 0.7 0.84 0.84 0 0.93 0 1.5 1.9 
Item 32 0.53 0.47 3.66 0.05 -0.05 10.3 0.53 0.46 3.91 0.04 -0.05 10.9 5.6 
Item 33 0.69 0.72 0.73 0.39 0.03 0 0.69 0.71 0.95 0.32 0.03 0 4.3 
Item 34 0.8 0.83 0.7 0.40 0.02 1 0.81 0.83 0.04 0.83 0.01 0.2 1.8 
Item 35 0.64 0.65 0 0.98 0 4.8 0.64 0.64 0 0.95 0 4.6 5.0 
Item 36 0.33 0.31 0.02 0.88 0 2.2 0.65 0.33 0.22 0.63 0 3.3 5.7 
Item 37 0.69 0.74 3.25 0.07 0.05 2.9 0.69 0.73 1.82 0.17 0.03 2 5.3 
Item 38 0.93 0.92 0.02 0.88 0 5.7 0.93 0.92 0.12 0.72 -0.01 6.6 1.0 
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Item 39 0.63 0.63 0.04 0.83 0 0.3 0.63 0.63 0.2 0.64 -0.01 0 3.2 
Item 40 0.9 0.89 0.15 0.69 0 2.1 0.9 0.89 0.13 0.71 0 2.2 0.4 
Item 41 0.7 0.7 0 0.95 0 0 0.7 0.7 0 0.95 0 0 1.2 
Item 42 0.88 0.9 0.56 0.45 0.02 1.5 0.88 0.9 0.76 0.38 0.01 1.5 0.8 
Item 43 0.75 0.75 0.04 0.82 0 0.7 0.75 0.75 0 0.95 0 0.6 1.8 
Item 44 0.8 0.73 10.78 0 -0.08 11.7 0.8 0.74 9.64 0 -0.07 8.9 1.6 
Item 45 0.47 0.42 3.73 0.05 -0.05 9.9 0.48 0.43 4.1 0.03 -0.05 8.1 4.4 
Item 46 0.16 0.2 1.62 0.20 0.03 1.5 0.16 0.2 1.46 0.22 0.03 0.5 2.3 
Item 47 0.82 0.84 0.35 0.55 0 0 0.82 0.84 0.12 0.72 0 0.1 2.4 
Item 48 0.74 0.76 0.19 0.65 0.01 1.6 0.73 0.76 0.07 0.78 0 1.8 3.0 
Item 49 0.71 0.78 8.08 0 0.05 8.7 0.71 0.79 8.61 0 0.05 11.1 3.1 
Item 50 0.3 0.63 1.08 0.29 0.02 1.2 0.59 0.62 0.25 0.61 0.01 0.7 8.3 
Item 51 0.7 0.76 2.39 0.12 0.04 4.8 0.7 0.76 4.91 0.02 0.05 5 4.7 
Item 52 0.76 0.82 8.27 0 0.05 8.4 0.76 0.82 4.14 0.04 0.03 6.2 4.1 
Item 53 0.69 0.7 0.06 0.8 -0.01 1.6 0.69 0.69 0.32 0.57 -0.01 3.6 4.8 
Item 54 0.8 0.88 10.06 0 0.05 19.1 0.8 0.87 10.1 0 0.05 17.4 2.3 
Item 55 0.63 0.62 1.35 0.24 -0.02 4.5 0.63 0.62 0.52 0.46 -0.01 3.7 6.6 
Item 56 0.67 0.71 1.43 0.23 0.02 3.4 0.67 0.71 2.02 0.15 0.03 3.2 4.5 
Item 57 0.56 0.61 1.76 0.18 0.03 2.9 0.56 0.6 1.63 0.20 0.03 2.9 6.6 
Item 58 0.72 0.74 0.08 0.77 0 2.5 0.72 0.74 0.02 0.87 0 1.5 3.8 
Item 59 0.55 0.61 3.78 0.05 0.04 4 0.54 0.6 4.74 0.02 0.06 5.7 6.9 
Item 60 0.39 0.25 19.19 0 -0.12 28.7 0.39 0.26 15.8 0 -0.11 25.9 4.2 
Item 61 0.69 0.73 2.7 0.09 0.03 2.1 0.69 0.72 1.18 0.27 0.02 2.6 5.1 
Item 62 0.64 0.64 0.1 0.74 -0.02 3.7 0.63 0.63 0.07 0.78 -0.02 2.8 6.0 
Item 63 0.69 0.74 3.61 0.05 0.03 2.5 0.68 0.74 4.08 0.04 0.03 2.9 5.2 
Item 64 0.45 0.43 0.12 0.72 -0.01 4.5 0.47 0.45 0.14 0.70 -0.01 3.1 9.1 
Item 65 0.76 0.76 0 0.94 0 3.2 0.76 0.76 0.01 0.89 0 1 4.8 
Item 66 0.35 0.34 0.07 0.78 -0.01 0.4 0.37 0.36 0.16 0.68 -0.01 0.3 3.7 
Item 67 0.15 0.17 0.04 0.83 0 3.7 0.17 0.18 0.11 0.73 0 4 10.3 
Item 68 0.47 0.49 0.64 0.42 0.03 0.7 0.47 0.49 1.46 0.22 0.04 1.1 7.8 
Item 69 0.49 0.5 0.07 0.78 0 5.2 0.49 0.51 0.67 0.41 0.01 1.5 9.0 
Item 70 0.58 0.61 1.86 0.17 0.02 0.8 0.58 0.61 0.33 0.56 0 0.1 7.5 
Item 71 0.54 0.57 0.73 0.38 0.02 1 0.54 0.57 1.17 0.27 0.03 3 8.9 
Item 72 0.63 0.64 0 0.97 -0.01 12.7 0.64 0.64 0.18 0.66 -0.01 15 6.1 
Item 73 0.54 0.56 0.16 0.68 0 5.2 0.54 0.56 0.19 0.65 0 3.7 8.4 
Item 74 0.62 0.62 0.26 0.60 -0.01 2.6 0.63 0.63 0 0.92 0 1.9 5.5 
Item 75 0.32 0.34 0.91 0.33 0.02 0.5 0.33 0.37 3.31 0.06 0.04 3.3 7.9 
Item 76 0.65 0.71 2.36 0.12 0.04 2.6 0.65 0.71 3.64 0.05 0.05 2.6 5.8 
Item 77 0.54 0.54 0.07 0.77 0 0.5 0.55 0.54 0 0.92 -0.01 0.9 7.3 
Item 78 0.4 0.37 1.28 0.25 -0.02 4.6 0.42 0.39 0.35 0.54 -0.02 3.4 10.0 
Item 79 0.69 0.77 6.19 0.01 0.05 11.1 0.68 0.75 7.27 0 0.06 9.6 5.8 
Item 80 0.58 0.59 0.05 0.81 0.01 0 0.56 0.58 0.5 0.47 0.02 0.5 7.2 

* SPD-X values are located between ‘-1.00’ to ‘1.00’. The values between -0.05 to 0.05 shows ignorable level of DIF; and values 
between -1 to -0.05 and 0.05 to 1 intervals shows unignorable level of DIF presence (Gonzales. Padilla. Dolores. Gomez & Benitez. 
2010). 
**As the G2 values calculated with LRT test show the chi-square distribution in the freedom degree up to estimated parameter 
number. the critical value of the chi-square distribution here regarding the DIF detection is taken as 5.99 (p=0.05. df=2) (Dişçi. 
2012). 

When Table 2 is examined. in the analyses performed on the complete data matrix obtained 
by expectation maximization. DIF is seen in 11 items with M-H method. 13 items with 
Standardization method and 16 items with LRT method. Similarly, on the complete data matrix 
obtained by regression imputation method. DIF is seen in 16 items with M-H method. 14 items 
with Standardization method and 16 items with LRT method. 
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The results of Cohran’s Q and McNemar tests performed regarding whether the items 
determined with different missing data methods and different DIF detection methods show 
difference and simple coefficient of concordance calculated related to these are shown in Table 3 
and Table 4. 

Table 3: The results of Cohran’s Q and McNemar tests performed regarding whether the items determined 
with different missing data methods and different DIF detection methods show difference. 

 
Missing Data Methods 

MH. Std. and LRT 
MH 

(em-reg.) 
Std. 

(em-reg.) 
LRT  

(em-reg.) 
Cohran’s Q p McNemar (p) McNemar (p) McNemar (p) 

Expectation Max. 4.75 0.09  
0.03 

 
1.00 

 
0.34 Regression Imputation 0.89 0.64 

 
Table 4. Simple coefficient of concordance calculated related to items determined with different missing 
data methods and different DIF detection methods 

 MH. Std. and LRT MH-Std. MH-Std. Std.-LRT 
Expectation Max. 0.91 0.95 0.91 0.95 

Regression Imputation 0.91 0.95 0.93 0.91 

 
When Table 3 is examined. in the analyses performed on the complete data matrix obtained 

by both expectation maximization and regression imputation according to the Cochran’s Q test 
results. items determined to be with DIF are observed to be differentiated from each other 
significantly. McNemar’s test results show that the items determined by M-H method are 
differentiated significantly with the used missing data method. In the other DIF detection methods 
examined in the scope of the study in items with DIF determined regarding the used missing data 
method there has no significant change occurred. 

The findings acquired in the scope of the study showed that the item numbers showing the 
DIF are changed among the DIF detection method. the DIF detection methods that are used in the 
scope of the study and based on the Classical Test Theory are more fit internally compared to the 
DIF detection method based on IRT. the used missing data approaches differentiate the items 
determined to be with DIF and this difference reaches to a significant level for Mantel Haenszel 
method. 

4. DISCUSSION, CONCLUSION AND SUGGESTIONS 
The findings acquired in this study showed that the items included DIF and their numbers 

were changed based on DIF detection method.  The findings are partially overlapping with the 
findings of the other studies in the literature (Abedlazeez, 2010; Doğan & Öğretmen, 2008; Finch, 
2011; Hohensinn & Kubinger, 2011; Kan, Sünbül & Ömür, 2013; Pigott, 2001; Robitzsch & Rupp, 
2009; Spray & Miller, 1994; Ward & Bennett, 2012). Hence, in many of these studies significant 
difference between the items determined with different DIF methods and their numbers are 
present, whereas the determined difference in this study did not reach a significant level. Among 
the reasons, the difference between the item difficulty values obtained from the focus and reference 



Selvi & Özdemir Alıcı 

 
11 

groups to be very close to zero, the related items and the test to be possibly qualified as ‘easy’ by 
the item difficulty value averages can be shown. 

On the other hand, even if there was no significant difference between the results of DIF 
methods used for the missing data methods, the methods based on CTT are observed to have more 
concordance within compared to the methods provided by the methods based on IRT. The main 
reason of this can be shown as the M-H and Standardization methods to be calculated over 
contingency table and based on the same theory. These findings are overlapping with the findings 
of Selvi (2013). 

In addition to these it is seen from the acquired findings that the used missing data 
approaches differentiate the items determined to be with DIF and this difference reaches to a 
significant level for Mantel Haenszel method. The findings acquired are overlapping with the 
findings of Robitzsch and Rupp (2009). In short, based on the findings obtained in the scope of 
this study and related literature, the conclusion can be reached that the used missing data approach, 
being also dependent on the DIF detection method, differentiate/can differentiate the items 
determined to be with DIF. 

This result shows the possibility of the findings to be erroneous of the studies in which the 
missing data pattern and mechanism are ignored consciously/unconsciously or an inappropriate 
missing data approach is chosen and this reduces the importance of the missing data problem to 
an extent. The findings obtained in the scope of this study are limited with the expectation 
maximization and regression imputation methods among missing value assignment methods; and 
Mantel Haenzsel, Standardization and Likelihood Ratio Test methods among the DIF detection 
methods. Thus it can be suggested that similar studies, considering also the variables like scoring 
condition, sample size, different psychometric properties of items etc., shall be repeated with 
different missing data assignment method. Different DIF detection methods and the operation of 
different missing data methods on DIF shall be examined in order to contribute in solution of the 
missing data problem. 
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