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Introduction for the study 
Mathematics outcomes in South Africa are very low and many researchers and stakeholders have 
expressed concerns about the poor performance in mathematics at school level, especially in 
geometry (Luneta, 2015; Mthembu, 2007; Singh, 2006; Van Putten, Stols & Howie, 2010). Euclidean 
geometry forms part of the core curriculum of mathematics in the Further Education and Training 
(FET) band in South Africa; however, many learners seem to have the opinion that the study of 
geometry is irrelevant to their daily lives (Patkin & Levenberg, 2012). 

In South Africa, curriculum developers did not seem to be convinced about the important role of 
geometry in the mathematics curriculum. In 2006, as part of the many changes brought in by 
Curriculum 2005, for instance, the Euclidean geometry strand was made optional for those 
learners who opted to study mathematics in the FET band (Department of Education, 2006). One 
of the reasons for making it optional was the perception that teachers did not know the content 
well enough (Bowie, 2009). When geometry was made optional, many learners chose not to study 
the strand. It was found that less than 4% of the Grade 12 mathematics learners in 2008 wrote the 
third examination paper in mathematics where geometry was included (Van Putten et al., 2010). 
However, the education authorities changed their minds about the importance of geometry and 
in 2011 geometry was made compulsory again for these FET grades as part of the Curriculum and 
Assessment Policy Statements (Department of Basic Education, 2011). 

When it was brought back into the core mathematics curriculum, teachers did not feel as confident 
about the strand since it had not been taught for such a long time. Some researchers note that 
teachers avoided the teaching of geometry in school because of poor mastery of Euclidean 
geometry (Atebe & Shaefer, 2009; Ndlovu, 2011). Some teachers find the Euclidean geometry 
section difficult, even if they had studied it in high school and at tertiary level, let alone those who 
did not study Euclidean geometry in high school or at tertiary level. Many of our pre-service 
teachers were understandably anxious because they would be expected to teach the content when 
they start their teaching career. In order to help these students overcome their fears, the 
mathematics education department at a KwaZulu-Natal university designed a series of 3-hour 
workshops based on Euclidean geometry that were run over six weeks. One of the key Euclidean 
geometry concepts covered in the workshops was that of similarity of triangles, and it is this 
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concept that this study focuses on. There is very little 
literature on students’ understanding of similar triangles 
using a Euclidean geometry approach, and we hope that this 
study can add to knowledge in this field. 

In this study we delve into the area of semiotics which is 
the study of signs and sign symbols, how these signs are 
used to signify actions or objects, and the interpretation of 
these signs (Moore-Russo & Viglietti, 2012) As noted by 
Ernest (2006), a semiotic system is characterised by a set 
of  elementary signs, a set of rules for the production 
and  transformation of signs and an underlying meaning 
structure deriving from the relationship between the signs 
within the system (Ernest, 2006). Duval (2006) noted that 
mathematical objects cannot be perceived directly, but 
accessing them is bound to the use of representations. 
Hence the role of semiotic systems of representation goes 
beyond just a means of labelling mathematical objects but 
they allow a person to work on mathematical objects and 
with them.

The purpose of the study was to explore how semiotic 
representations influence students in their reasoning about 
the similarity relationship between triangles. To achieve this 
goal, the following research question was addressed:

What role do semiotic representations play in pre-service mathematics 
teachers’ reasoning about the concept of similar triangles?

Literature review
Geometry is an essential part of mathematics and provides 
unique opportunities for mathematical modelling by 
drawing upon real-life examples (Usiskin, 2002). The study 
of geometry provides opportunities for learners to visualise 
concepts that may be related to other areas of mathematics, 
including trigonometry, patterns and measurement. It has 
links with culture, history, art and design and it is the 
interaction with these vital human activities that provides 
opportunities to make geometry lessons interesting and 
stimulating (Chambers, 2008). However, learners often do 
not view geometry as being relevant to their lives which may 
be because the logical and structured approach used in 
the  study of geometry is so different from their previous 
experiences (Patkin & Levenberg, 2012).

Many learners find the study of Euclidean geometry 
challenging (Ngirishi & Bansilal, 2019; Singh, 2006; Van 
Putten et al., 2010). Nationally in 2008 only 3.8% of the Grade 
12 mathematics learners wrote the optional Paper 3 with 
almost half of them achieving less than 30% in that national 
examination paper (Van Putten et al., 2010). Furthermore, 
in  the latest National Senior Certificate mathematics 
examinations in 2018, based on a random sample of Grade 12 
learners’ responses, it was found that, in the second 
mathematics paper, learners performed worst in the 
Euclidean geometry question based on similarity of triangles 
(Department of Basic Education, 2019, p. 143). This result 
supports Patkin and Lavenberg’s (2012) contention that 

geometry is seen as the most complicated strand of the 
mathematics curriculum. It seems that the emphasis on the 
learning of deductive proofs of theorems, the correct use of 
symbolic notation and the structured requirements of 
providing appropriate reasons for statements that are 
made  make the subject seem complicated (Department of 
Basic Education, 2019). Furthermore, the complexity of 
disentangling the various figures that make up more complex 
figural arrangements whose properties need to be discerned 
render the strand even more challenging for learners 
(Department of Basic Education, 2019).

Many students are daunted by the learning of the formal 
logic and deductive reasoning that are necessary elements of 
Euclidean geometry. One of the reasons why students find 
geometry difficult is the emphasis on the deductive aspect 
without a corresponding focus on the underlying spatial 
abilities (Del Grande, 1986). The use of deductive reasoning 
is an integral part of the study of geometry and is used to 
develop proofs about properties and relationships within 
and among figures. A proof is a set of deductive steps that are 
used to create a narrative starting from a known fact. It then 
proceeds in a step-by-step manner where each step is 
deduced from the result of the previous one until the 
unknown fact is justified (Ngirishi & Bansilal, 2019). It is 
generally expected that the proof, made up of the sequential 
statements, should be supported by valid reasons (Serra, 
1997). Mudaly and De Villiers (2004) highlight that the study 
of formal proof as part of the study of geometry is a useful 
means of developing deductive reasoning skills.

Another characteristic feature of the study of geometry is the 
necessary intertwining of the visual and symbolic or analytic 
representations where the one representation supports and 
underpins the others. As pointed out by Del Grande (1986), 
the development of spatial abilities is an important part of 
studying geometry. For some students it is this necessary 
dependence on the use of more than one representation that 
is experienced as a challenge. Duval (2006) argues that in 
geometry it is necessary to combine the use of at least two 
representation systems, one for verbal expressions of 
properties and the second one for visualisation. Duval (2006, 
p. 107) maintains that the ‘ability to change from one 
representation system to another is very often the critical 
threshold for progress in learning’. Visualisation is the ability 
to ‘represent transform, generalise, communicates, document, 
and reflect on visual information’ (Hershkowitz et al., 1990, 
p. 75). Presmeg (1997, p. 304) focused on visualisation as a 
process ‘involved in constructing and transforming visual 
images’ which is the view that is taken in this study. 

Bansilal and Naidoo’s (2012) study focused on the use of 
visualisation and analytic strategies by 40 Grade 12 learners 
when working with problems based on transformation 
geometry. The findings revealed that most learners easily 
carried out processes and calculations in the analytic mode 
when responding to the tasks, showing a limited movement 
across the two modes which are essential for a deepening of 
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understanding of geometry. The authors argued that on the 
one hand, as the learners’ understanding improves, the 
learners find it easier to move across different representations. 
On the other hand, as learners work with different 
representations of an object, the different aspects emphasised 
by each representation contribute to a deeper understanding 
of the properties and relationships associated with the object 
(Bansilal & Naidoo, 2012). Another study (Bansilal, 2012), 
which drew upon Duval’s theory about transformations 
within and between semiotic representation systems, focused 
on teachers’ success rates in solving problems based on the 
normal distribution curve. The findings of the study showed 
that the teachers achieved a higher success rate in processes 
that were based in one representational system compared to 
those processes that required coordination between two 
different representational systems. 

Sinclair et al. (2016), in their review of research on geometry 
education, noted that there has been increased attention in 
recent years on visuospatial reasoning mainly in the teaching 
and learning of geometry, although researchers refer to this 
focus by different terms such as visualisation and visualising, 
spatial reasoning, visuospatial thinking as well as visual 
reasoning. Sinclair et al. (2016, p. 696) note that they have in 
common ‘the activity of imagining static or dynamic objects 
and acting on them (mentally rotating, stretching etc.)’. 
Rivera (2011) drew attention to the complexity of reasoning 
about visual representations. Duval (2005), cited in Sinclair 
et  al. (2016), identified three cognitive processes as being 
central to learning. These three processes are visualisation, 
construction (using instruments) and a discursive process for 
communicating argumentation and proofs (Sinclair et al., 
2016). Duval argued that ‘attending to the properties of a 
geometric figure involves dimensional deconstruction’; for 
example, in order to ‘see’ the properties of a rectangle, a 
student needs to concentrate on the sides and angles (cited in 
Sinclair et al., 2016, p. 693). However, a study by Gal and 
Linchevski (2010) found that students had difficulty with 
deconstruction of figures when asked to point out shared 
parts (lines or angles) of triangles that have a common side. 
The students commonly identified intersecting lines as a 
shared side or the combination of two angles, with one falling 
in the one triangle and the other in the second triangle, as 
being shared or common.

Rivera (2011) noted that depending on what activity is being 
done, different kinds of visual representations can be 
generated which could be influenced by personal intuition, 
related to the development of a concept or process or 
produced as a means of solving a problem. In their study of a 
Brazilian classroom, David and Tomaz (2012) argued that 
visual representations should form a central part of structured 
learning activities. However, in their analysis, they found 
that learners held a dominant view that geometry required 
the learning of rules and norms and this interfered in their 
learning about calculating areas using drawings. It was also 
found that talking about and establishing common 
understandings about visual representations helps learners 

develop a conceptual understanding of geometric concepts 
(Steenpass & Steinbring, 2014).

Gal and Linchevski (2010) identified that students experienced 
difficulties when trying to distinguish between the various 
configurations present in geometric diagrams. It was a 
challenge for students to identify those visual characteristics 
that were relevant to the solution of the problems and they 
could be side-tracked by those characteristics that were not 
relevant. The authors also noted that students try to deal with 
mental objects as if they were physical objects by trying to 
transform or manipulate the objects mentally. Consequently, 
the difficulty of problems in geometry increases as the 
cognitive demand of the mental transformation increases. For 
example, the authors found that students found it easier to 
identify similar triangles in figures such as Shape 1 in Figure 1 
(DAB′C′ and DABC, where ∠AB′C′ and ∠ABC are right angles) 
than that of Shape 2(DKLM and DKNL, where ∠KLM and are 
∠KNL right angles) because the second shape requires a 
greater cognitive effort for the mental transformation. 

Identifying and understanding the errors that students make 
during the process of constructing their knowledge has 
occupied the attention of many researchers. However, such an 
enterprise is also valuable for teachers since knowledge of 
these errors can be used as a learning resource in their 
classrooms. Chauraya and Brodie (2018) argued that teachers 
need learning opportunities that can allow them to develop the 
skills of eliciting learners’ thinking about the errors they made. 
They found that as teachers focused on understanding learner 
errors, the teachers also improved their own mathematics 
knowledge (Chauraya & Brodie, 2018). Going beyond just an 
acknowledgement of correct or incorrect answers, towards 
actively using the incorrect answers productively as a means to 
enhance understanding, may need a mind shift on the part of 
teachers as well as researchers. In this study we offer an 
example of how one student’s incorrect answers were used as 
a resource to develop meaningful learning.

Theoretical background
According to Duval (2006), there is no mathematical 
processing that can be performed without using a semiotic 

Shape 1 Shape 2 
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FIGURE 1: Shapes requiring different mental transformations.
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TABLE 1: Frequency of Correct, Wrong and No responses for items in the task.
Items 2.1 2.2 2.3 2.4 2.5 2.6 2.7

n % n % n % n % n % n % n %

Correct response 30 46.2 39 60.0 32 49.2 20 30.8 19 29.2 17 26.2 14 21.5
Wrong response 28 43.1 20 30.8 23 35.4 37 56.9 35 53.9 38 58.5 42 64.6
No response 7 10.8 6 09.2 10 15.4 8 12.3 11 16.9 10 15.4 9 13.9

system of representation. This is because mathematical 
processing always involves substituting some semiotic 
representation for another. Duval’s focus is not on single 
representations but on systems of representations which 
have rules for performing transformations of representations 
within the system without changing the mathematical object 
that is used. Duval referred to these systems of representations 
as registers and specified two different types of 
transformations of semiotic representations that can take 
place during any mathematical activity, namely treatments 
and conversions. Treatments involve transformations from 
one semiotic representation to another within the same 
system or register, while conversions involve changing the 
system while retaining the reference to the same objects 
(Bansilal & Naidoo, 2012).

An example of a treatment could be carrying out a calculation 
while remaining in the same notation system. Transforming 

the representation + +1
4

1
4

1
4

 into the representation +1
2

1
4

 is 

a treatment because the notation system has remained the 

same. However the transformation from +1
2

1
4

 to 0.5 + 0.25 

is an example of a conversion, because the algorithms for the 
addition of the decimal numbers are different from that of the 
numbers written in fractional form (Duval, 2006). 

Duval (2006) notes that a conversion comes in ‘for the 
purpose of choosing the register in which the necessary 
treatments can be carried out most economically or most 
powerfully’ (p. 106). For example, when asked to show that 
the opposite angles of a cyclic quadrilateral are supplementary, 
it would be very cumbersome to write out a verbal argument, 
whereas it would make sense to provide a visual 
representation of the quadrilateral which can be used to 
support and clarify the argument. A further purpose of 
conversions, according to Duval (2006), could be to provide 
‘a second register to serve as a support or guide for the 
treatments being carried out in another register’ (p. 106). An 
example of this function is when one is asked to solve a 
trigonometric equation such as: + − =x x xsin cos2 cos 02 . The 
algebraic register can serve as a support to expand this 
trigonometric expression using the rules of algebra (once the 
expansion for cos 2x is identified).

Methodology
This interpretative study was located within a six-week 
intervention that was designed to help pre-service 
mathematics teachers improve their understanding of FET 
Euclidean geometry. The purpose of the study was to explore 
how students used semiotic representations in reasoning 
about the similarity relationship between triangles. The 
participants of the study were 65 students who enrolled for 
the intervention. The data for the study were generated by 
the written responses of the participants to one task based on 
similar triangles, as well as semi-structured interviews that 
were conducted with 13 participants who volunteered to be 
interviewed about their understanding of the concept. The 
interviews were video-recorded and then transcribed 
verbatim by the first author. 

In order to ensure reliability, the transcripts were checked by 
the second author against the original recordings. For the 
purpose of this study, we draw upon interviews with three 
participants: Sabelo, Celo and Vince, to highlight particular 
ways in which the semiotic representations were used to 
reason about the similarity of triangles. Sabelo and Celo had 
not studied geometry in the FET phase of their schooling while 
Vince had written the third mathematics paper in Grade 12, 
which was optional, and which included the study of 
Euclidean geometry. The purpose of the interviews was to 
probe their reasoning about the concepts in the written tasks. 
However, the interviews were also used to help improve the 
interviewees’ understanding, hence they were interspersed 
with explanations of key concepts where necessary to clarify 
the thinking and strategies used in responding to the questions. 

Ethical considerations
Ethical clearance for this research was obtained from the 
Research Ethics Committee of the Education Faculty at the 
relevant university (ethical clearance number HSS/0425/018A). 
After obtaining approval, each participant gave their written 
informed consent to participate in the research, allowing the 
use of their responses to the written task and interview extract 
for research purposes and assured anonymity in the use of 
these data. 

Results and discussions
We discuss the participants’ responses to the task which was 
based on identifying and naming the similar triangles that 
emerged from various geometric figures. The identification 
of the equal angles within the triangles to confirm the 
similarity of pairs of triangles, required knowledge of the 
properties of these figures which are typically studied in FET 
mathematics. 

The item analysis for the task based on the pre-service 
teachers’ written responses is presented in Table 1.

From the results in Table 1, 39 (60.0%) out of 65 participants 
answered Question 2.2 correctly, while 32 (49.2%) participants 
answered Question 2.3 correctly. Thirty (46.2%) participants 
answered Question 2.1 correctly. Question 2.4, Question 2.5 
and Question 2.6 recorded poor performance while Question 
2.7 had the fewest correct responses (21.5%). The difference 
in success rates for Question 2.2 (60%) and Question 
2.7 (21.5%) is quite striking, considering that the underlying 
figure in both diagrams is that of a crossed quadrilateral. 
The  increased difficulty of Question 2.7 supports the 
assertion by Gal and Linchevski (2010) that the difficulty of 
problems in geometry increases as the cognitive demand of 
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the mental transformation increases. The mental transformation 
required in Question 2.7 is more difficult to achieve than that 
of Question 2.2 because ∆PQT needs to be mentally reflected 
across a vertical line so that the new configuration of the 
triangle enables the identification of the matching angles in 
the two triangles concerned. For Question 2.2, the configuration 
of the triangles is such that the matching angles are easily 
identified. A second reason for the large number of correct 
responses in Question 2.2 may be because participants were 
very familiar with the theorem that ‘angles on the same 
segment’ of a circle are equal (see interview extract for Sabelo 
below for confirmation). The students also struggled with 
Question 2.4, Question 2.5 and Question 2.6 whose complex 
figures may have limited the participants’ correct response. 
For questions in the task to identify the matching pairs of 
angles and hence the order of the triangle representation (such 
as ∆PRS ||| ∆PTQ in Question 2.2), it is helpful to move to the 
visual representation so that the properties of the figures could 
be discerned. Figure 3 presents the response of Sabelo who 
had problems with naming the triangles in the correct order. 

In Figure 3, Sabelo has been able to identify the triangles, but 
he was unable to represent most of the triangles in the correct 
naming order. He did not have a problem with Question 2.2 
however as he explained in the extract from the interview 
below. This shows that Sabelo was comfortable with working 
with the visual representation in Question 2.2 which drew 
upon the ‘angles of the same segment are equal’ theorem, 
and he was consequently able to represent this using the 
symbolic representation ∆PRS ||| ∆PTQ: 

R:	� Which of the six figures do you find very easy to 
solve?

Sabelo:	 Question 2.2.
R:	 Why?
Sabelo:	� Because the theorem involved is very easy; angles of 

the same segment are equal.
R:	 Then which angle is equal to what?
Sabelo:	� [Gesturing at the points Q and S in the figure] ∠Q = ∠S 

[same segment], ∠T = ∠R, then P is common. Hence 
∆PRS ||| ∆PTQ.

As seen above, Sabelo had no problems identifying the angles 
that were equal in the two triangles using the ‘angles in the 
same segment are equal’ result and thereafter representing 
the symbolic relationship between the similar triangles 
correctly. The interview continued, where Sabelo was probed 
about other questions: 

R:	 What are we required to do in Question 2.1?
Sabelo:	� We are required to show that ∆BQP is similar to 

unknown triangle.
R:	 How do we find the unknown triangle?
Sabelo:	 The diagram is confusing.
R:	 Let’s start by identifying the equal angles.
Sabelo:	� We start by identifying the equal angles; like ∠B is 

equal to ∠Q (tangent and chord theorem), ∠Q in 
∆BQP is equal to ∠P in another triangle ∠P, is equal 
to ∠A then ∆BQP is equal to ∆QPA

For each diagram below, write down a triangle similar to the given triangle.
Naming must be in the correct order:

PQ  is a tangent to the circle at Q.
Q

P

1

1

2

2

T

R

S

ΔPRS /// ΔPTQ

Q

B

P

A

1
1

2

ΔBQP /// ΔQPA

2

P

Q S R

1

1

2

2

ΔPQR /// ΔPQS //ΔPSR

E

C
B

1

1

D
A

ΔABE /// ΔEDC 

C

D

B P

1
1
2

2

A

ΔPBC /// ΔAPD 

P

T

Q

S
R

ΔRTS /// ΔPTQ 

FIGURE 3: A representation of Sabelo’s response.

Q
2.2

2.3

2.6
2.7

2.4/2.5

2. For each diagram below, write down a triangle similar to the given triangle.
Naming must be in the correct order:

2.1 PQ is a tangent to the circle at Q.

Q

P

B

2

2
A
11

∆BQP /// ∆______

A
D

1

E

C
1

B
∆ABE /// ∆_____

A 1 2

1
2 C

B P

D

∆PBC /// ∆______

P
Q

T
1
2

R
S

∆RTS /// ∆______

Q R

P

12

S
21

∆PQR /// ∆______ ///∆______

P

S

T

1
2

R
∆PRS /// ∆______

QPR= 90° and PS⊥QR.

FIGURE 2: Details of the task.
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∆PQR /// ∆PSR /// ∆PQS
Q

P

1

1 2

2

S R
∆ABE /// ∆DCE

A
D

E

C
1

1

B

∆RTS /// ∆PQT

P
Q

1

2
T

R
S

∆PBC /// ∆PAD

B P

C
2

1

D

A

For each diagram below, write down a triangle similar to the given triangle.
Naming must be in the correct order:
PQ is a tangent to the circle at Q.

Q

1
P 2

S

T

R
∆PRS /// ∆QPT

A

2

B

1
1

2

P

∆BQP /// ∆PAQ

Q

2.1

2.3

2.6 2.7

2.4/2.5

2.2

QPR = 90°and PS⊥QR.

FIGURE 4: A representation of Celo’s response.

R:	 Why is ∠Q = ∠P? 
Sabelo:	 Because ∠P is exterior to ∠Q.
R:	 Do you mean that ∠P is also exterior to ∠A?
Sabelo:	 Yes, Then ∆BQP ||| ∆QPA
R:	� [Moving on to the other question] Now in Questions 

2.4 and 2.5, how do we get the unknown triangles 
similar to ∆PQR?

Sabelo:	� That question is confusing because of that 90°. I 
wanted to say that ∠S should be common, but S is 
not in ∆PQR. I need to study the question.

In the above extract, Sabelo’s misconception that ‘∠P is 
exterior to ∠Q’ which made them equal was revealed. Based 
on this incorrect deduction, Sabelo has named the triangles in 
the order ∆BQP and ∆QPA respectively. Sabelo’s steps can be 
viewed as a treatment that was carried out within the 
symbolic register. He has used the pairs of angles he identified 
as equal from the two triangles to set out the order of naming 
the two triangles and hence represented the similarity 
relationship incorrectly as ∆BQP ||| ∆QPA. With respect to 
Question 2.4 and Question 2.5, he was at a loss and did not 
know how to figure out the triangles that were similar or 
identify the equal angles. Further problems with his reasoning 
in the visual representations are revealed in the following 
extract: 

R:	� What of Question 2.7, how do we get the unknown 
triangle?

Sabelo:	� [He first draws the two triangles RTS and PQT 
separately.] PQ is parallel to RS, so it means that 
∠Q = ∠S [alternate angles], also ∠P = ∠R, and ∠T is 
common, hence ∆RTS ||| ∆PTQ.

The above interview extract shows that Sabelo has once again 
made an incorrect deduction when working with the visual 
representation and identified angles incorrectly as being 
equal (∠ = ∠ ∠ = ∠Q S  P R; ). Furthermore, his understanding 
of ‘common angle’ is similar to the misconception identified 
in the study by Gal and Linchevski (2010). As he did for 
Question 2.1, Sabelo applied the incorrect deduction to carry 
out a treatment within the symbolic register to represent the 
similarity relationship incorrectly as ∆RTS ||| ∆PTQ.

Vince was one of the students who correctly represented the 
similarity relationships for all the questions in the task and 
agreed to be interviewed. During the interview he was asked 
to explain how he arrived at the correct answer for some of 
the items.

R:	� Looking at the given task [pointing to the script of the 
participant] what do you observe?

Vince:	� There are six different shapes included in different 
triangles and we are required to name triangles 
similar to the given triangle in correct order.

R:	� How do we find the unknown triangles? Let’s 
take 2.3.

Vince:	� In 2.3; ∆ABE, is similar to? Er let’s take ∆DCE. So, we 
have ∠A = ∠D1 since line DC is parallel to AB, these 
are corresponding, and ∠B is equal to ∠C1 also 
corresponding angles. Therefore, ∆ABE is similar to 
∆DCE …

R:	� Now in questions 2.4, 2.5, 2.6 and 2.7, how do we get 
the unknown triangles similar to given triangles?

Vince:	� [He first marked off the equal angles in the diagram.] For 
question 2.4 and 2.5; ∆PQR is given; ∠P [pointing to 
∆PQR] is equal to ∠S [pointing to ∆SPR]; ∠Q [pointing 
to ∆PQR] is equal to ∠P  from ∆SPR and ∠R = ∠R, 
hence ∆PQR ||| ∆SPR [addressing the first part of 
question which is 2.4. Question 2.5 is the second part 
which required one to show that ∆PQR ||| ∆SQP or 
alternately ∆SPR ||| ∆SQP] 

From the interview extracts above, Vince is comfortable 
with working with the visual representation and 
effortlessly moves to the symbolic representation. For 
Question 2.2 he was able to connect the visual and symbolic 
representations without any hesitation, although for 
Question 2.4 he first spent some time working within the 
visual register so that he could identify the equal angles 
using the visual representation before expressing the 
relationship symbolically. 

Celo’s responses in Figure 4 show that he was only able to 
identify the pair of similar triangles, and name them in the 
correct order for Question 2.3, while his answers for the other 
six questions were wrong. Celo was interviewed about his 
responses.

R:	� If we look at your answer for Question 2.3, it is 
∆ABE ||| ∆DCE, how did you arrive at that answer?

http://www.pythagoras.org.za
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Celo:	� This was easy because you have two parallel lines 
and DC is cutting the big triangle and parallel to AB. 
Since the lines are parallel to each other, they divide 
the biggest triangle into two triangles, so the bigger 
triangle is similar to the smaller triangle.

His response is focused on how he identified the two triangles 
that are similar, but he has not mentioned the order of naming 
the triangles. He was then probed about this.

R:	� But why would you say ∆DCE, why not ∆CDE? If 
you got ∆ABE similar to ∆CDE how did you work, it 
out so that you wrote ∆ABE ||| ∆DCE?

Celo:	� I just wrote it.

Hence, it was clear that Celo did not assign any significance 
to the symbolic representation ∆ABE ||| ∆DCE and assumed 
it was sufficient to just identify the pairs of triangles that 
were in a similarity relationship. He seemed to have used the 
same reasoning for Question 2.6 – he was pleased to just 
identify the triangles that were similar. 

The researcher spent much time explaining the significance 
of the order when using the ||| notation. The symbol ||| is a 
specialised notation, for example ∆ABE ||| ∆DCE shows that 
the two triangles are similar. However, the symbol ||| goes 
further than that and specifies the order of the corresponding 
angles (and sides). That is, angles A, B and E of ∆ABE are 
respectively equal to angles D, C and E of ∆DCE, while the 
ratios of the lengths of the lines AB:DC = BE:CE = AE:DE. 

In continuing, the researcher then asked him to try and work 
out the correct representation for the similarity of the triangles 
in Question 2.1. In considering ∆BQP:

R:	� So, let’s try to get the angles matched for ∆BQP, then 
we can get the right order.

Celo:	� Okay er B er = Q1 because of tangent … P is the 
same, and Q = A2 [mumbling]

R:	� Right so ∆BQP is similar to triangle? 
Celo:	� QAP, but I was right [referring to his written answer 

that ∆BQP ||| ∆PAQ] I identified the triangles, it is 
the right triangle.

R:	 But the order was not correct.

Celo then went on to correctly represent the similarity 
relationship for Question 2.2. He was then probed about 
Question 2.4 and Question 2.5 which he found difficult to 

work with. The researcher explained how the order could be 
found by taking ∠Q = x, then working out ∠P1 to be 90º − x, 
then ∠P2 = x and ∠R = 90º − x. Celo understood the calculations 
but did not seem convinced. He said he had a different 
method and tried to explain it:

C:	� My method is different from yours – I use logic. I 
have ∆PQR here … now we got three triangles here. 
… Now my method is like logic … I will take this 
triangle [referring to ∆SPR] and put it over here [he 
gestured with his hand showing that he was moving the 
triangle to coincide with ∆PQR] 

R:	� Are you trying to move it in your head, like inverting 
it?

C:	� [Continues] Yes so P will come to this point [gesturing 
to point R on ∆PQR] the S will move over to like this 
[gesturing to ‘P’ on ∆PQR and ‘S’ on ∆SPR]. 

R:	� Can you draw it for me? Can you tell me your order?
C:	� [Celo tried to draw the triangles that were manipulated to 

show the corresponding pairs of equal angles but did not 
quite succeed. He wrote ∆PQR ||| ∆SRP].

It was evident that Celo was trying to visualise how the 
triangle could be moved around so the two triangles were 
oriented so that the similarity of the shapes could be easily 
discerned. However, it was difficult to mentally transform 
the image in his mind to match the symbolic representation 
that was needed. At this stage, the time was up so it was 
arranged that Celo would meet up again and demonstrate 
his method. At the next meeting, Celo came prepared with 
three different coloured triangles that were arranged as 
shown in Figure 5.

In Figure 5 on the left-hand side, Celo placed the model of 
∆PQR using white cardboard on the desk with the angles 
marked as given. The right-hand side of Figure 5 shows two 
other triangles overlaid on ∆PQR. The triangles are in two 
other colours with ∆PQS being dark grey while ∆PSR is made 
up of light grey cardboard.

Thereafter, Celo then reflected the light grey triangle across 
the line SR and then moved the triangle so that the angle S in 
the light grey triangle coincided with angle P in the original 
white triangle ∆PQR as shown in Figure 6. It could now be 
seen clearly that the light grey triangle was a dilation of the 
white triangle.

FIGURE 5: Celo’s cardboard models of the triangles.
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FIGURE 6: Reorientation of the light grey and white triangles.

By physically manipulating the light grey triangle, he was 
therefore able to easily match the pairs of equal angles 
corresponding to one another in the two triangles. He then 
proclaimed, ‘Now you can see that ∆PQR is similar to ∆SPR’. 
The reorientation using the physical representation helped 
him to identify the matching vertices which was needed for 
the symbolic representation. Once the order of the 
corresponding vertices of the triangles has been established, 
it becomes easier to work within the symbolic register and 
express the ratios of the corresponding sides that were in 
proportion: PQ/SP = QR/PR = PR/SR. At this stage the 
student did not need the visualisation of the two triangles 
but can make the necessary deductions using just the 
symbolic expression, ∆PQR ||| ∆SPR.

Figure 7 shows how the three triangles in the original figure 
are rearranged to illustrate their similarity property, making 
it easy to recognise that ∆SQP ||| ∆SPR ||| ∆PQR.

This demonstration provided insight into Celo’s reasoning 
because it showed that Celo was dependent on the 
cardboard cut-outs as a physical representation that could 
be manipulated. He needed to ‘see’ the orientation of 
the  triangles so that he could draw out the symbolic 
representation. This means that he could not work within 
the symbolic register only – that is, to carry out a treatment, 
using the equality relationship between the angles of 
the  triangles to express it using the similarity notation. 
However, when he had the physical triangle models that 
could be manipulated then he was able to use the similarity 
notation to express the relationship between the triangles. 
His problem is that he needed the visualisation processes to 
be merged with the symbolic representation. Working 
within the symbolic register requires one to be convinced 
that if angles S, Q and P of ∆SQP are respectively equal to 
angles S, P and R of ∆SPR, then this means that ∆SPR ||| 
∆SQP.

Celo’s experiences show how important it is for students to be 
able to make connections between different representational 
registers. Duval highlighted that it is sometimes necessary to 
move to another register, that is, to carry out a conversion, so 
certain properties of an object can be discerned. Although an 
object in one register is the same as the object in another 
register, each register conveys certain properties that may not 
be so easily discernable in the other register. This function of 
conversions was illustrated by Celo’s use of the concrete 
manipulatives which enabled him to manipulate the triangle 
models so that he could ‘see’ that one was an enlargement of 
the other. He was not able to discern the equal angles based on 
the visual representation only and needed to perform the 
transformations on the physical representation so that the 
matching angles could be identified. The interview with Celo 
revealed that he found the mental transformation required in 
the visual representation too difficult. By drawing upon his 
cardboard cut-outs (physical representation) he was able to 
carry out a physical manipulation on the triangle models. 
Furthermore, he was not able to engage properly with the 
symbolic notation of ||| because he used it as a sign indicating 
that two shapes are similar without giving any consideration 
to the order of the naming. The symbolic register did not give 
Celo access to the objects and he needed to use the 
manipulatives comprising a physical or concrete representation 
so that he could work out the properties of the objects. 

It was clear that Celo needs more opportunities for working 
across the three registers of representation for the concept of 
similarity. However, it was to Celo’s credit that he recognised 
that the physical representation would help him access the 
properties of the objects unlike Sabelo, for example, who was 
stuck when faced with Question 2.4 and Question 2.5 and did 
not have the means to move beyond this barrier. Sabelo’s 
problem was that he did not understand the properties of the 
geometric figures well enough and needs more opportunities 
to improve his skills in this area. Clearly the understanding 
of geometry requires fluency in moving between the visual 
representation using geometric figures and the symbolic 
representations which make use of symbolic notations for 
congruency, similarity, etc. Sabelo was able to work with the 
symbolic register and carried out the treatments within the 
symbolic register but expressed the similarity relationship 
incorrectly because of his incorrect deductions.

Conclusion
In this article, we studied the responses of 65 pre-service 
mathematics teachers to a Euclidean geometry task based on 
similar triangles and focused on the role played by semiotic 
representations in identifying and naming similar triangles 
which arose in various configurations of geometric objects. It 
was found that most students struggled with the symbolic 
specialised similarity notation (|||). The symbol ||| is a 
specialised notation that denotes which two triangles are in a 
similarity relationship, for example ∆ABE ||| ∆DCE shows 
that the two triangles are similar. However, the symbol ||| 
goes further than the identification and specifies the order 
that the vertices must be arranged when the triangles are FIGURE 7: Rearrangement of the three triangles. 
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configured so that the matching of the corresponding angles 
and sides is evident. Some students handled this challenge 
by carrying out mental transformations on the objects (Gal & 
Linchevski, 2010). When the cognitive demand of the mental 
transformation was higher, students found it more difficult 
to identify the similarity relationship. For example, it was 
found that for a pair of items (Question 2.2 and Question 2.7) 
that were similar in configuration except that the mental 
transformation required for Question 2.2 was simpler than 
that required for Question 2.7, students performed much 
better on the first item. 

Sometimes students can carry out treatments that are based 
on incorrect deductions which leads to incorrect results as in 
the case of Sabelo. His use of treatments in the symbolic 
register led to incorrect results because he incorrectly 
identified angles as being equal. His knowledge of the 
relationships and properties of the underlying geometry 
concepts was weak, so his incorrect deductions led him to 
incorrect formulations of the similarity relationships between 
triangles.

Duval (2006, p. 107) asserted that conversion-type activities 
play a crucial role in developing understanding of a concept 
and it is often the case that ‘the ability to change from one 
representation system to another is very often the critical 
threshold for progress in learning’ and the activity of 
conversion can lead to the mechanisms underlying 
understanding. This statement is true especially for the study 
of Euclidean geometry where the artefacts are visual 
representations of configurations of objects such as angles, 
lines, polygons, circles, etc. In this study we found that skilful 
conversion movements between the visual and symbolic 
registers led to success in solving Euclidean geometry 
problems as illustrated by Vince’s approach. Duval further 
notes that a key purpose of conversions in the learning 
process is to provide ‘a second register to serve as a support 
or guide for the treatments being carried out in another 
register’ (Duval, 2006, p. 106). Vince was able to use the 
symbolic register skilfully while the visual representation 
served as a support from which he derived the necessary 
symbolic representations. Vince used the visual representation 
minimally to identify the matching angles using properties 
that were discerned from the visual representation and 
moved easily to express the similarity relationships based on 
these properties.

For one student, the symbolic and the visual representation 
did not provide him enough access to the objects to allow 
him to discern the relationship and it was only after carrying 
out the rigid transformations using concrete representations 
of the triangles that he was he convinced about the similarity 
relationship and the order of the naming. Celo needed the 
comfort of the physical representation of the objects that can 
be manipulated or rigidly transformed in order to facilitate 
the visual representation showing that the one triangle is an 
enlargement or dilation of the other as shown in Figure 7, 
Figure 8 and Figure 9. This rearrangement allowed Celo to 
‘see’ the relationships between the objects in the visual 

representation and he could then express these relationships 
using the symbolic representation. 

A salient point relates to the fact that Vince had elected to 
study Euclidean geometry in school although it was not 
compulsory while Sabelo and Celo did not have that 
opportunity. The geometry workshop was designed to help 
students such as Celo and Sabelo. The results of this study 
showed that the students need much more help in navigating 
these concepts forming part of the Euclidean geometry 
curriculum. Celo’s initiative in making the cardboard cut-
outs helped him to concretise some of the relationships 
embodied in the similarity of triangles concept. Perhaps such 
teaching aids may be useful for other students such as Sabelo 
who did not seem to see the connections between equiangular 
triangles and enlargements or reductions of the triangles, 
which are key to the concept of similarity. Much of the earlier 
work in school in the earlier grades that focus on rigid 
transformations and enlargements or reductions of figures 
are meant to form the basis for this later work on similarity. 
Hence, the use of these concrete manipulations is necessary 
for students to develop a more robust understanding of the 
concept. This suggestion resonates with the advice given by 
Zazkis et al. (1996, p. 455) that ‘moving across [considering 
equivalent representations] in order to move up [increasing 
abstractions], at a rate appropriate for [the learners’ needs], may 
help them to make the connections necessary’. Although 
moving across by deliberately drawing upon other 
representations may not be easy, Zazkis et al. recommend 
such actions so that the students are able to develop a ‘a 
richer and more useful understanding of complex ideas’.

In conclusion, we hope that this contributes some new 
knowledge in the field in terms of how learners’ 
misconceptions or errors could be turned into a resource to 
promote meaningful learning (Chauraya & Brodie, 2018), as 
was done in the case of Celo. We consider that such a mind 
shift among researchers is important so that participants 
derive direct benefit from the research process, instead of the 
situation where participants’ errors are identified, elaborated 
and explained in a report, but very little feedback is given to 
the learners about their wrong answers.
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