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Introduction
One of the aims of teaching secondary school mathematics in Malawi is to promote learners’ logical 
reasoning, problem-solving and critical thinking skills (Ministry of Education, Science and 
Technology [MEST], 2013). Euclidean geometry is regarded as the main area of mathematics that is 
a key source for teaching mathematical argumentation and proof, developing learners’ deductive 
reasoning and critical thinking (Kunimune, Fujita, & Jones, 2010). But the Malawi National 
Examinations Board (MANEB) chief examiners’ reports indicate that secondary school learners fail 
to develop geometric proofs at national examinations (MANEB, 2013). Poor teaching practices are 
highlighted as a major cause of learners’ inability to understand geometric proof development 
(MANEB, 2013). The reports emphasise that due to lack of both content knowledge and pedagogical 
knowledge, the teachers are not creative in conducting effective lessons to support learners’ 
understanding of geometric proof development. Studies conducted in different parts of the world 
also indicate that despite the importance of reasoning and proving in learners’ learning, many 
learners face serious challenges in proof development (Kunimune et al., 2010; Otten, Males & 
Gibertson, 2014; Stylianides, 2014). These studies support MANEB’s by arguing that learners’ 
challenges in proof development should be attributed more to classroom inappropriate practices 
that mainly emphasise rules of verification and devalue or omit exploration. As a result, the 
learners memorise the rules without understanding the process of proof development; hence, they 
are able to reproduce similar proofs but cannot apply the principles to develop a different proof 
(Ding & Jones, 2009). Use of exploratory teaching strategies is suggested as one way of helping 
learners to understand geometric proof development (Ding & Jones, 2009; Jones et al., 2009). This 
implies that the solution for improving classroom practices for enhancing learners’ understanding 
of geometric proof development lies in teacher professional development and teacher education. 

Stylianides (2014) argues that apart from teacher professional development and teacher education, 
textbooks are the other important but less explored and insufficiently exploited solution for 
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improving classroom practices. This is because mathematics 
textbooks of a particular country often mirror the national 
curriculum (Fujita, Jones, & Kunimune, 2009). As Ronda and 
Adler (2016) claim, ‘textbooks have some similarity to 
classroom lessons – of course, without possibilities for actual 
(as opposed to imagined) contributions from learners in the 
development of the texts’ (p. 1097). As such, many mathematics 
teachers use textbooks to decide the type of tasks to implement 
in class and the way of implementing such tasks; hence, 
mathematics textbooks have an influence on learners’ 
opportunities in proof development (Stylianides, 2014). This 
might imply that availability of high cognitive demanding 
tasks in mathematics textbooks will always result in instructions 
that promote learners’ understanding of geometric proof 
development. But Henningsen and Stein (1997) argue that, 
sometimes, a task could be set up in the textbook to require 
high-level cognitive demands from learners, but during 
classroom implementation phase it could be transformed in 
such a way that learners’ thinking focuses only on procedures, 
with no conceptual connections. This implies that teachers’ 
ways of setting up and implementing tasks might affect the 
cognitive level at which learners engage with the tasks. 

This study builds on the findings from my PhD project 
(Mwadzaangati, 2017a) which aimed at exploring 
mathematical knowledge for teaching geometric proof 
development. What I found is that 

most of the tasks that were used by the teachers were taken from 
secondary school mathematics textbooks and were presented in 
the form of either a statement or a diagram, or both statement 
and diagram. (Mwadzaangati, 2017a, p. 143)

One of the recommendations in my PhD dissertation was 
that future research should focus on comparing the textbook 
content on geometric proof development and the teachers’ 
ways of implementing the textbook content. Therefore, this 
study aimed at examining similarities and differences 
between geometric proof development tasks (referred to as 
proof tasks hereafter) set up in the textbook, and those that 
are set up and implemented by the teacher in the classroom. 
In this study, task setup means the way tasks are presented 
either in the textbook or in the classroom. Specifically, this 
study aimed to answer the following two questions: 

•	 What geometric proof development opportunities do 
proof tasks in Malawi secondary school mathematics 
textbooks offer to learners?

•	 How do opportunities in the proof tasks in the textbooks 
compare with opportunities in tasks that are set up and 
implemented by the teacher in the classroom?

Significance of the study
De Villiers (1999) distinguished six functions of proof as follows:

1.	 Verification (concerned with the truth of a statement) 
2.	 Explanation (providing insight into why it is true) 
3.	 Systematisation (the organisation of various results into a 

deductive system of axioms, major concepts and theorems) 
4.	 Discovery (the discovery or invention of new results) 

5.	 Communication (the transmission of mathematical 
knowledge)

6.	 Intellectual challenge (the self-realisation or fulfilment 
derived from constructing a proof). (De Villiers, 1999, p. 3)

The functions of mathematical proof that are suggested by 
De Villiers (1999) imply that teaching and learning of 
geometric proof focuses not only on learners’ ability to verify 
mathematical statements, but also on their ability to explain 
why a certain mathematical statement is either true or false, 
argue in a logical manner, construct new knowledge and 
communicate their arguments. This implies that the teaching 
and learning of geometric proof development promotes some 
of the aims of teaching secondary school mathematics in 
Malawi such as logical reasoning, critical thinking and 
problem-solving. This means that teachers are expected to 
plan and implement proof tasks in a manner that would 
promote learners’ opportunities to achieve the five functions 
of mathematical proof that are suggested by De Villiers. Since 
textbooks are the only resource that Malawian teachers use to 
plan and teach their lessons, it was necessary to compare the 
cognitive levels of proof tasks as set up in the textbook and as 
set up and implemented by the teacher during instruction. 

Literature review
Geometric proof development
Geometric proof development is a process of constructing a 
sequence of arguments from X to Y with supportive reasons, 
and hence is also called deductive reasoning and proving 
(Cheng & Lin, 2009). X is the given information (hypothesis) 
while Y is the statement to prove (conclusion). Reasoning 
and proving are central to learning of geometric proof 
development because they offer learners opportunities to 
make sense of mathematics through pattern identification, 
generation of conjectures and development of arguments 
(Otten et al., 2014). Apart from formal proof development, 
deductive reasoning and proving support learners’ 
capabilities in other mathematical elements including 
developing, outlining, or correcting an argument, deriving a 
formula, making or testing a conjecture (Bergwall, 2017).

It is, however, reported that many learners experience 
challenges in deductive geometric proof development 
(Battista, 2007; Kunimune et al., 2010; Otten et al., 2014; 
Stylianides, 2014). Several reasons have been advanced for 
this problem. Usiskin (1982) argued that learners do not 
succeed in secondary deductive geometric proof development 
because their prior knowledge in the geometry course is 
poor. He claimed that the learners come to learn secondary 
geometry before they have reached the level of formal 
deduction that was proposed by Van Hiele (1999).

Jones (2002) noted three reasons for learners’ difficulties in 
learning to develop geometric proofs. Firstly, the learning of 
geometric proving is complex because it requires coordination 
of a range of competencies. Secondly, the teaching approaches 
used during geometric proving lessons tend to concentrate 
on verification and devalue, or omit, exploration and 
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explanation of how and why the proof works. Thirdly, 
learning to prove involve learners’ ability in making the 
difficult transition from informal geometric reasoning to 
formal deductive geometric reasoning. Jones (2002) argued 
that these reasons imply that teachers find it difficult to 
provide learners with meaningful experiences to enable them 
to understand geometric proof development. Battista (2007) 
explained that geometric proof development continues to be 
challenging to learners because it involves geometric 
reasoning which mainly requires spatial reasoning. As such, 
learners face challenges in using spatial reasoning to see, 
inspect, and reflect on spatial objects, images and relationships 
(Battista, 2007). Heinze (2004) identified three reasons why 
learners fail to develop geometric proofs. These include 
insufficient knowledge of facts and concepts for developing 
the proof, deficits in methodological knowledge about 
mathematical proofs, and lack of knowledge with respect to 
developing and implementing a proof strategy.

This brief review has shown that there are two major causes 
of learners’ challenges in geometric proof development. The 
first challenge lies in the nature of geometric proof 
development itself as being a complex domain. The second 
reason is use of inappropriate teaching and learning strategies 
which prolong learners’ challenges in understanding a 
domain that is already complex. This implies that the solution 
for this challenge lies in teachers’ ability to provide learners 
with meaningful experiences for understanding geometric 
proof development. This study argues that teachers’ ability 
to set up and implement high cognitive level tasks is an 
interplay of many factors including the type of curriculum 
material available to the teachers as well as the teachers’ 
ability to make effective use of these materials.

Design and use of mathematics textbooks 
in Malawi
Malawian textbooks are expected to mediate both the 
intended and the implemented curriculum. As such the 
national curriculum determines the content of textbooks of a 
particular educational level in Malawi. This is because 
textbooks are the main content resource used by teachers in 
Malawi just like in other developing countries which are 
characterised by lack of teaching and learning resources 
(Ronda & Adler, 2016). This implies that textbook design is 
expected to determine the teaching and learning of a 
particular subject or concept to a greater extent. Malawian 
public secondary school textbooks writers and publishers are 
commissioned by MEST. Purchasing and supplying textbooks 
into public secondary schools is also authorised by MEST. As 
such, textbooks that are available in Malawian public 
secondary schools are only those that are recommended and 
supplied by MEST. For secondary school mathematics 
education, there are two types of textbooks that were 
recommended by MEST for use in the secondary schools. The 
content of these mathematics textbooks combines all branches 
of mathematics at secondary school mathematics level in 
Malawi including geometry, algebra and arithmetic. Teachers 
are expected to decide whether to use either both textbooks 

or only one textbook depending on the content. As Mellor, 
Clark and Essien (2018) noticed, two different textbooks can 
present the same topic in different ways, hence creating 
different affordances for learners to learn the topic. The two 
textbooks that are recommended by MEST are written for 
both teachers and learners. The teachers are expected to be 
guided by the two recommended mathematics textbooks 
when planning and implementing their lessons.

The Van Hiele levels of geometric thought
According to Van Hiele (1999), learners progress through five 
levels when learning geometry. These are visualisation, 
analysis, informal deduction, formal deduction and rigour 
(Van Hiele, 1999). Geometric proving starts from the informal 
deduction level. Learners at informal deduction level can 
deduce properties of a shape, recognise classes of shapes and 
follow formal proofs, but they do not know how to construct 
a proof starting from different or unfamiliar premises 
(Crowley, 1987). At formal deduction level, learners can 
develop a proof in more than one way, because they 
understand the interaction of necessary and sufficient 
conditions of a proof (Crowley, 1987). Van Hiele explains that 
most of the secondary school geometry is at the formal 
deduction level. The Van Hiele levels of geometric thought 
have a sequential and advancement property. The sequential 
property is linear and hierarchical; as such, learning and 
attainment of higher levels always depends on attainment of 
the lower levels (Crowley, 1987). The advancement property 
implies that progress or lack of progress from one level to the 
next level depends more on the content and methods of 
instruction received rather than the age of the student 
(Crowley, 1987). If a method only helps a student to memorise 
geometric concepts without understanding, it reduces the 
learners’ ability to progress to the higher level (Crowley, 
1987). This means that learners’ challenges in geometric 
proof development which is at formal deduction level might 
be a result of the quality of content and methods that are used 
by the teachers. The advancement property of the levels also 
implies that learners’ challenges in geometric proof 
development might affect their advancement to the next level 
of geometric thought. As already indicated, the main source 
of content and methods for Malawian teachers is the textbook; 
therefore, a study on textbooks and teachers was necessary.

Studies on geometric proof development 
textbooks
Well-designed mathematics textbooks are regarded as a good 
resource for supporting learners to understand reasoning 
and proving (Thompson, Senk, & Johnson, 2012). Textbooks 
mediate between the intended and the implemented 
curriculum; hence, they are widely used in classrooms 
around the world (Fujita et al., 2009). Mathematical tasks 
presented in the textbooks offer potential sources for 
opportunities to learn reasoning and proving (Bergwall, 
2017). Thus, the learning of mathematics can be influenced 
by the textbook content (Mellor et al., 2018). This influence 
might be greater in developing countries where textbooks 
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remain the most readily available resource due to constraints 
of teaching and learning resources (Ronda & Adler, 2016). 
Due to the widely agreed upon importance of textbooks to 
learners’ learning, many scholars have called for studies on 
how proofs are presented in textbooks (Fujita et al., 2009; 
Ronda & Adler, 2016; Stylianides, 2014).

Otten, Gilbertson, Males and Clark (2011) examined the 
reasoning and proving activities, justifications given, as well 
as the nature of mathematical statements around which 
reasoning and proving take place in six US secondary 
textbooks. They found that the mathematical content of the 
exposition part of the textbook was general in nature; for 
example, they generalised how to prove properties of a 
particular shape like a rectangle, but the content of the 
exercise tasks was specific to a mathematical concept, for 
example finding values of angles. Otten et al. (2011) concluded 
that although the textbooks contained many theorems and 
proofs, there were rare tasks that asked the learners to 
develop the proof on their own. Most of the tasks required 
the learners either to provide a rationale or to determine the 
truth value of a mathematical claim but not to provide a 
deductive argument.

Fujita et al. (2009) analysed the content of the textbooks 
commonly used for teaching learners geometric proof 
development in lower secondary school in Japan. They found 
that deductive reasoning is prominent in Japanese textbooks 
as expected from the curriculum specification. However, the 
Japanese textbooks only presented geometric proof 
development in a formal way without convincing illustrations 
that can help learners to understand the difference between 
formal proof and experimental proof. Fujita et al. (2009) claim 
that this type of geometric proof presentation in the textbook 
might only help the learners to understand the process of 
geometric proof development but not to understand and 
appreciate its discovery function; hence, they are unable to 
understand the notion of generality as well. This agrees with 
De Villiers (1999) who identified discovery or invention of a 
new mathematical result as one of the functions of 
mathematical proof. Fujita et al. (2009), therefore, suggested 
that textbooks should design geometric proof development 
in a manner that provide learners with opportunities that can 
help them to understand and appreciate more fully the 
notion of generality of proof. Bowie (2013) analysed a Grade 
10 South African textbook chapter on quadrilaterals to find 
out how it managed tensions inherent in transition between 
informal and formal geometry. She found that in some 
instances, the book used tightly prescribed investigations, 
generalisations and definitions to manage the transition. This 
implied that the textbooks struggled with the transition from 
informal to formal geometry.

Thus, this review has shown that analysis of textbooks in 
relation to geometric proof development has focused on 
different issues. These include illustration of differences 
between experimental verification and formal proof (Fujita 
et al., 2009), proof presentation (Otten et al., 2014), mediating 

of transition between informal and formal geometry (Bowie, 
2013; Thompson et al., 2012), significance and methodological 
challenges of analysing reasoning and proving in textbooks 
(Stylianides, 2014), proof and proving in general (Stylianides, 
2009). While the focus of previous studies was on the content 
and tasks set up in the textbooks and their affordances to 
reasoning and proving only, this study focuses on both 
geometric proof task setup in textbooks as well as task setup 
and implementation in the classroom.

Theoretical framework
The study is guided by two analytical frameworks: 
Mathematics Discourse in Instructional analytic framework 
for textbook analysis (MDITx) developed by Ronda and Adler 
(2016) and mathematical task analysis framework developed 
by Smith and Stein (1998). The MDITx framework comprises 
five key elements: object of learning, examples, tasks, naming 
and word use and legitimations. The object of learning is what 
the learners are expected to be able to do at the end of the 
lesson (Ronda & Adler, 2016). In this study, the object of 
learning was developing geometric proofs. Examples are a 
particular case of a larger class used for drawing reasoning 
and generalisations (Ronda & Adler, 2016). Learners’ textbooks 
are expected to contain an example space (set of examples) 
which would enable the learners to attend to a particular 
feature of the object of learning. A mathematics textbook can 
contain two types of example spaces: worked example spaces 
and example exercise spaces (Ronda & Adler). Worked 
examples are those whose solutions are provided, while 
exercises examples are those whose solutions are not provided 
by the textbook or the teacher. Tasks are what learners are 
asked to do with the examples like solving, proving, measuring 
or drawing (Ronda & Adler). Naming and word use is the 
way of naming mathematical concepts. Adler and Ronda 
(2015) argue that the specific words that we use for naming 
mathematical concepts and the way we name the procedures 
or actions carried out on them affect learners’ attention in 
particular ways. Legitimations are the mathematical and non-
mathematical criteria that are communicated to substantiate 
the key steps in procedures or in statements about the object of 
learning. This study used three MDITx elements: (1) object of 
learning, (2) examples and (3) tasks, to partition the content in 
a circle geometry chapter of a textbook. The MDITx framework 
was used for analysing both textbook and lesson observation 
data because the ways of identifying these three elements 
(object of learning, examples and tasks) in the textbook and in 
the lesson is similar (Adler & Ronda, 2015; Ronda & Adler, 
2016). However, although the MDITx framework contains 
different levels for analysing cognitive level of tasks, it does 
not focus on how to analyse the implementation of the tasks. 
Therefore, a framework by Smith and Stein (1998) was used 
for analysing the cognitive level at which the tasks were 
implemented by the teachers.

The mathematical task analysis framework by Smith and 
Stein (1998) comprises four categories of cognitive demands 
of a task: (1) memorisation, (2) procedures without 
connections to concepts or meaning, (3) procedures with 
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connections to concepts and meaning, and (4) doing 
mathematics. The categories of tasks depend on the level of 
learners’ thinking; hence they offer learners different 
opportunities of learning depending on the level of the 
thinking involved and the activities expected in each category. 
Memorisation tasks involve exact reproduction of previously 
learnt facts without showing their algorithms, for example 
listing the properties of a rectangle. Procedures without 
connections to concepts or meaning are tasks that require the 
use of an algorithm without showing understanding of how 
the algorithm works (Smith & Stein, 1998). An example of 
procedure without connections is using given information to 
come up with statements for proving that two triangles are 
congruent. Memorisation and procedures without 
connections are classified under lower-level tasks because 
they place little demand on learners’ thinking and 
explanations. Procedures with connections to concepts 
require some degree of cognitive effort because they involve 
thinking about how to apply a procedure to a task (Smith & 
Stein, 1998). An example of a procedure with connections 
task might involve developing a multi-step proof that 
requires learners to apply several geometric properties. 
Doing mathematics tasks also demands considerable 
cognitive effort because the procedure is not known to the 
learners, so they are required to explore and understand the 
nature of mathematical concepts, processes, or relationships 
to be used in solving the task. An example of a doing 
mathematics tasks might involve exploring a geometric 
theorem and its proof both empirically and formally to 
understand how and why it works. This study used Smith 
and Stein’s mathematical task analysis framework as a guide 
for analysing cognitive changes as the geometric tasks passed 
through different phases from the textbook to the classroom. 
As Stein, Glover and Henningsen (1996) point out, a task can 
be viewed as passing through three phases: firstly, 
as curricular or instructional materials (textbook), secondly, 
as set up by the teacher in the classroom and, thirdly, as 
implemented by learners during the lesson. As such, Smith 
and Stein’s framework of analysing tasks was used and acted 
as a lens for analysing the cognitive level of geometric proof 
development tasks as they passed through these three phases.

Research methods and design
The study utilised a qualitative case study design with the 
aim of gaining in-depth understanding of the issue being 
studied as in line with Yin (2009). Data for the study were 
generated through qualitative content analysis of a secondary 
school mathematics textbook and lesson observations. One 
textbook, Strides in mathematics 3, which was written by Hau 
and Saiti (2002), was analysed because it was the only 
textbook that was being used by all the teachers who 
participated in the study. Deductive proof tasks and examples 
on nine circle geometry theorems were analysed to examine 
their cognitive level. To find out how teachers set up and 
implemented the geometric proof development tasks in the 
classroom, I analysed lessons by three teachers for Form 3 
mathematics. This is part of the data that I collected and 
analysed for my PhD study. The three teachers taught the 

entire topic of circle geometry at secondary level as prescribed 
in the curriculum. In total, I observed and videorecorded 43 
lessons from these teachers. The three teachers were from 
three different government funded secondary schools. The 
teachers, Paul, John and Kim (pseudonyms), were purposively 
selected on the condition that they were qualified teachers 
with a minimum of a Bachelor of Education degree and 
teaching experience of six years. The assumption for selecting 
such teachers was that by the end of six years, the teachers 
would be familiar with the content of the recommended 
mathematics textbooks and would have selected what they 
considered to be the best textbooks for their teaching. In 
Malawi, secondary education is four years and beginning 
teachers (teachers with less than three years of teaching 
experience) are usually allocated junior secondary classes 
(Grade 9 and Grade 10) while experienced teachers are 
allocated senior classes (Grade 11 and Grade 12). As such, the 
teachers would have acquired experience in selecting and 
implementing deductive geometric proof tasks and examples 
by the end of six years.

Data analysis
Geometric task as set up in the textbook is the way the task is 
presented as well as how the learners are expected to engage 
with the task. Geometric task as set up by the teacher is the 
way the task is presented by the teacher in the classroom, 
which can be either in elaborate form (including verbal 
directions and explanations) or short and simple form (such 
as telling the learners to begin work on a set of problems 
displayed on the chalkboard). Task implementation is the 
manner in which learners actually work on the task (Stein et 
al., 1996). Analysis of lesson observation data involved 
transcribing the video recordings, identifying units of 
analysis (segments with deductive geometric proof 
development tasks and their implementation) and analysing 
the cognitive level of the task setup and task implementation.

Identification of the object of learning, the examples and the 
tasks as set up in the textbook, and as set up by the teacher in 
the classroom, was done by using the MDITx analytical 
framework suggested by Ronda and Adler (2016). Analysis 
of the cognitive level of the tasks as set up and as implemented 
by the teacher in the classroom was done by using the Stein 
et al. (1996) framework. Analysis of the textbook data 
involved several steps. As the circle geometry chapter is 
already partitioned into sections according to the theorems 
covered, the first step was to partition each circle geometry 
theorem section into object of learning, examples and tasks 
using the MDITx analytical framework. The second step 
involved identification of deductive geometric proof 
development tasks which were the main focus of the study. 
The third step involved examining what each task required 
of the learners and relating the requirements to the four 
categories of cognitive demands to determine their cognitive 
level using Stein et al.’s analytical framework. To ensure 
credibility of the findings, the transcribed lesson observation 
and textbook data were also analysed by another researcher 
and the differences and similarities were discussed. The issue 
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of transferability was addressed by providing thick 
descriptions on how data was collected and analysed 
(Bryman, 2008). To ensure dependability of the findings, the 
records of all phases of the research process were kept in 
accessible form (Bryman, 2008).

Ethical considerations
During data collection and analysis, I observed several school-
based research ethical principles proposed by Cohen, Manion 
and Morrison (2007) and Berg (2001). These included following 
official protocol to gain access and acceptance into the school 
(Cohen et al., 2007), informed consent, and the issue of 
confidentiality (Berg, 2001). Prior to going to the schools, I 
received approval from my supervisory committee permitting 
me to conduct a study with at least three secondary school 
teachers who were teaching circle geometry during the period 
of data collection. To gain access into the schools, I obtained an 
introductory letter from the department where I was studying 
to the Education Division Manager. Upon approving the 
request to conduct a study in the said secondary schools, the 
Education Division Manager granted me a permission letter 
addressed to the head teachers and mathematics teachers of 
the schools. To seek informed consent from each teacher, I 
followed several steps (Berg, 2001). Firstly, I explained to each 
teacher the purpose of my study and how I was going to 
conduct the study. Secondly, I assured the teacher that they 
would be treated anonymously during reporting, as 
pseudonyms would be used instead of real names. Thirdly, I 
assured the teachers that the data collected from their 
classrooms would only be used for purposes of this study and 
be treated confidentially. Consent to observe the teachers’ 
lessons was sought every day before going to the classroom.

Research findings
The findings are presented in three subsections:

•	 tasks as set up by the textbook
•	 tasks as set up by the teacher in the classroom
•	 task implementation by the teachers.

Analysis of tasks as set up by the textbook
There are nine circle geometry theorems in the textbook. Two 
theorems are on chord properties of the circle, three theorems 
are on angle properties of chords in the circle, two theorems 
are on properties of cyclic quadrilaterals, and two theorems 
are on concyclic points of a circle. In summary, analysis of the 
tasks set up for the nine theorems show that learners were 
expected to do two types of tasks on each circle geometry 
theorem. Firstly, they were expected to do an empirical 
exploration task where they were to draw a geometric 
diagram, do some measurements, and then deduce a theorem. 
Secondly, they were expected to develop a formal proof for 
each theorem that was deduced from the empirical 
exploration task. At the end of these tasks, the formal proof is 
given, but the textbook emphasises that the learners should 
first attempt to develop the formal proofs on their own and 
then compare their proofs to those given it the textbook.

There are two limitations in terms of the way empirical tasks 
are presented in the textbook. The first limitation is that there 
is one instance where the textbook begins with a formal proof 
task then moves to an empirical exploration task. This 
strategy is not supported by some researchers who argue that 
learners should first be engaged in an empirical exploration 
before learning a formal proof to enhance their understanding 
of how and why the formal proof works (Ding & Jones, 2009; 
Jones et al., 2009; Stylianides, 2005). The second limitation is 
that for all empirical tasks, the learners are asked to draw one 
diagram, measure its angles or lines, and deduce a theorem 
from the results of a single case. There is only one empirical 
exploration task where learners are expected to draw several 
diagrams or generalise from multiple cases. This shows that 
most of the empirical exploration tasks that are set up in the 
textbooks do not conform to some mathematical principles 
which discourage generalising from a single case (Marton & 
Tsui, 2004). Despite the limitations, the tasks that are set up in 
the textbook can be regarded as of high cognitive level 
because they promote engagement of learners in both an 
empirical exploration task and formal proof task.

Some examples of the empirical exploration tasks set up in 
the textbook are shown in Figure 1, Figure 2 and Figure 3.

Empirical task on chord properties of the circle
Figure 1 presents the empirical task on chord properties of 
the circle.

According to the MDITx analytical framework, the section 
title in Figure 1 shows that the object of learning is chord 
properties of the circle. Although the activity is titled as 
‘challenge’, I partitioned this segment under example 
exercise because it is a particular case from which learners 
are expected to deduce or generalise that a perpendicular 
line drawn from the centre of the circle to a chord bisects the 
chord (Ronda & Adler, 2016). The task is for the learners to 
first try to develop a formal proof to show that AX = XB and 
then afterwards verify empirically that AX = XB. It is noted 
that the textbook does not provide clear guidelines regarding 
the type of resources to be used for drawing the diagrams. 
This might be the case because the mathematics books that 
the teachers and learners use in Form 1 (Grade 9) provide 
clear guidelines on construction and drawing of geometric 
diagrams. Therefore, at this level, the learners already know 
the materials to use when drawing a geometric diagram. In 
Figure 1 the learners are required to follow the given 
procedure to draw a circle with a chord and to drop a 

Source: Adapted from Hau, S., & Saiti, F. (2002). Strides in mathematics 3. Balantyre: Longman 
Malawi (p. 27)

FIGURE 1: Empirical task on chord properties of the circle. 

Challenge
4.3 Chord proper�es of a circle

Draw a circle with centre O and a chord AB which is not a diameter. From the
centre O, drop a perpendicular to the chord AB. Let the point where the 
perpendicular meets the chord AB be X. Join OA and OB. Can you prove that
AX = XB, without measuring the line segments? Does AX = XB if you measure the 
line segments? 
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perpendicular from the centre of the circle to a chord. Using 
the diagram that they draw, the learners are required to 
think of ways of developing a proof to show that a 
perpendicular line drawn from the centre of the circle bisects 
the chord. Although a hint is provided regarding the 
construction to be made (join OA and OB), the task is under 
the doing mathematics category because it requires learners 
to identify another hint (in this case a theorem) for 
developing the proof (Stein, Smith, Henningsen, & Silver, 
2009). As Cheng and Lin (2009) argue, the most critical part 
of geometric proof development is hypothetical bridging 
which involves identifying or constructing a theorem that 
can link the hypothesis and the conclusion. 

The task in Figure 1 shows that the textbook promotes 
engagement of learners in both formal and empirical 
understanding of the proof. Two limitations of empirical 
exploration task setup are observed in Figure 1. The first 
limitation is that the learners will be required to generalise 

from a single case since only a single diagram will be used to 
deduce the theorem. The second limitation is that the learners 
will begin by developing a formal proof then do the empirical 
exploration task. This means that the empirical task will be 
used for the purpose of verification but not for discovery of a 
proof, hence it might not promote learners’ understanding of 
geometric proof development. 

Empirical exploration task on angle properties 
of the circle
Figure 2 presents empirical exploration tasks that learners are 
expected to carry out before learning the formal proof 
development on angle properties of chords in a circle.

The object of learning for the empirical tasks in Figure 2 is 
angle properties of chords in a circle. There are two empirical 
tasks that learners are required to do before developing a 
formal proof. I also partitioned these activities under example 
exercise because they aim at helping learners to come to two 
generalisations or conclusions (Ronda & Adler, 2016). The 
first generalisation as stated in the textbook is that ‘the angle, 
which an arc of a circle subtends at the centre of a circle, is 
twice that which it subtends at any point on the circumference’ 
(Hau & Saiti, 2002, p. 29). Although the focus of this study 
was not on naming or word use, it is worth commenting that 
the way the textbook has stated the theorem implies that it 
does not matter whether the angles are in the same segment 
or not. For example, it might mean that the angle size of 
reflex ∠AOB is equal to twice the size of either ∠ACB or 
∠ADB or ∠AEB. But for the theorem to be true, the angles are 
supposed to be in alternate segments. For example, in the 
case of the diagram produced in Figure 1, it is the size of the 
obtuse ∠AOB which is equal to twice the size of either ∠ACB 
or ∠ADB or ∠AEB on the circumference. The correct way of 
stating the theorem would be: the angle that an arc of a circle 
subtends at the centre of a circle is twice the angle that it subtends 
at any point on the circumference in the alternate segment. This 
implies that the textbook has not stated the theorem in a 
correct manner; as such, if the teachers do not notice this 
mistake, they might not phrase the theorem correctly during 
the proving lesson. 

The second generalisation as stated in the textbook is that 
‘angles in the same segment of a circle are equal’ (Hau & 
Saiti, 2002, p. 29). Figure 2 shows that Activity 1 requires 
learners to draw a diagram according to the given steps and 
recognise that ∠ACB or ∠ADB or ∠AEB are produced by a 
common chord AB, hence they are named as angles in the 
same segment of a circle. Activity 2 requires learners to 
measure the angles (∠ACB, ∠ADB and ∠AEB), identify 
relationships between or among these angles, and deduce a 
theorem that angles in the same segment of a circle are equal. 
Thus Activity 1 and Activity 2 require the learners to do 
several tasks, for example drawing, measuring, relating 
angles and deducing theorems. Although the limitation of 
generalising from a single case is also observed on exploration 
tasks in Figure 2, both tasks are under the doing mathematics 
category because they require learners to explore the diagram 

Source: Adapted from Hau, S., & Saiti, F. (2002). Strides in mathematics 3. Balantyre: Longman 
Malawi (p. 29)

FIGURE 2: Empirical task on angle properties of the circle. 

Ac�vity
Work in pairs. You will need string, a ruler, and a pair of compasses.
1. Draw a circle and mark the centre O. Mark point A and B on the
     circumference, and join OA and OB.
2. On the major arc AB, mark points C, D and E.
3. Let your partner draw in the lines AC, BC, AD, BC, AE and BE.
4. Iden�fy ∠ACB, ∠ADB and ∠AEB.
5. How are they related to the minor arc AB or chord AB?

From the ac�vity above, you may have come to the following conclusions:
• The angle, which an arc of a circle subtends at the centre of a circle, is twice

that which it subtends at any point on the circumference.
• Angles in the same segment of a circle are equal.

Let us now prove these two conclusions.

Ac�vity
Use the figure you drew in the previous ac�vity.
1. Measure ∠ACB, ∠ADB and ∠AEB.
2. Measure ∠AOB.
3. What conclusions can you draw about ∠AOB and the other angles? Write
     down your conclusions and discuss them with your teacher.
4. What conclusions can you draw about angles at the circumference that are
     subtended by the same arc or chord?

C

E

B
O

A

The three angles are subtended by the minor arc AB or
chord AB.

In figure, C, D and E are points on the circumference of
   the circle. ∠ACB, ∠ADB and ∠AEB are angles subtended
   at the circumference by the chord AB or minor arc AB.
   Find the angles subtended by chord CD or minor arc CD.

Figure 4.11

D

Source: Adapted from Hau, S., & Saiti, F. (2002). Strides in mathematics 3. Balantyre: Longman 
Malawi (p. 32) 

FIGURE 3: Empirical task on angle properties of a cyclic quadrilateral.

4.5 Angle proper�es of a cyclic quadrilateral
Ac�vity

Work in pairs. You will need rulers and protractors.

1. Draw three circles of different sizes.
2. Inside each circle, draw a quadrilateral with the four
    ver�ces on the circumference of the circle.

3. Measure both pairs of opposite angles in each
    quadrilateral (∠A and ∠C; ∠B and ∠D).

What do you no�ce about the sum of the measures of the opposite angles in 
each case?

A

B
C

D

Figure 4.21
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in relation to the values they get and to deduce theorems that 
they will be required to discuss with their teacher. This 
implies that the learners would be engaged in making 
connections between their findings and the lines drawn on 
the diagram and to justify their conclusions. After doing the 
measuring activity and drawing conclusions, the learners are 
expected to learn how to develop the formal proof. This way 
of sequencing geometric proof development tasks supports 
learners’ understanding of the difference between empirical 
proof and formal proof, and it also promotes learners’ 
understanding of formal proof (Ding & Jones, 2009; Jones et 
al., 2009; Stylianides, 2005).

Empirical task on angle properties of a cyclic 
quadrilateral
Figure 3 presents the task on angle properties of a cyclic 
quadrilateral.

As shown by the section title, the object of learning for the 
activity in Figure 3 is angle properties of a convex cyclic 
quadrilateral. I partitioned the activity in Figure 3 under 
example exercise because it aimed at helping learners to 
deduce or generalise that opposite angles of a convex cyclic 
quadrilateral are supplementary. Thus, the task for this 
example required learners to do an empirical exploration by 
following the three steps that have been provided in Figure 3. 
This implies that the task in Figure 3 is also under the doing 
mathematics category because it requires learners to make 
explorations and use the empirical results to deduce a 
theorem (Smith & Stein, 1998). The task in Figure 3 is an 
example of an empirical task that takes into account the 
mathematical principle of generalising from several sets of 
examples (Marton & Tsui, 2004; Ronda & Adler, 2016).

The study found that all the circle geometry theorems in the 
textbook that were analysed used a similar approach. There is 
an empirical activity that learners are expected to do before 
developing the formal proof. However, there is one instance 
where the learners are expected to develop a formal theorem 
before doing an empirical exploration. All empirical exploration 
tasks require learners to do different mathematical activities 
including drawing diagrams, doing measurements on the 
diagram, identifying geometric relationships between or 
among different parts of the diagram, and deducing theorems 
based on the findings. After doing each empirical exploration 
task, the learners are expected to reflect on the inductive proof 
to develop a deductive geometric proof without any given 
hints on theorems or geometric properties to be applied. As 
such, the learners are expected to devise their own strategies of 
developing the proof. In the course of devising the strategies, 
the learners might develop new problem-solving skills. This 
shows that the inductive proof that learners develop through 
empirical activities and the deductive proof that they later 
develop might enhance learners’ abilities not only to verify the 
theorem, but also to discover new knowledge and new ways of 
problem-solving (De Villiers, 2012; Ding et al., 2009). This also 
means that the deductive geometric proof development tasks 
set up in the textbook are in the doing mathematics category, 

hence they are of high cognitive demand (Stein et al., 2009). As 
such, the tasks that are set up in the textbook have the potential 
to engage the learners in making connections among different 
features of geometric content (Ronda & Adler, 2016), to link 
formal and informal geometry (Bowie, 2013), and to make 
logical and clear explanations (deductive proving), hence 
promoting other functions of proof like explaining and 
justifying mathematical concepts (De Villiers, 2012).

Analysis of tasks as set up by the teachers in the 
classroom
The findings showed that deductive geometric proof 
development task setup and implementation by teachers in 
classrooms was slightly different. It was observed that Paul 
and John set up formal proof tasks only during all proving 
lessons for the nine theorems on deductive proof development. 
Kim always started from an empirical exploration task to 
formal proof task in all proving lessons for the theorems. 

Empirical tasks set up by Kim in the classroom
Figure 4 and Figure 5 present some of the empirical tasks set 
up by Kim in the classroom before presenting the formal 
proof task.

Both Figure 4 and Figure 5 show example exercises that the 
learners were asked to do in class. The main object of learning 
for the examples and tasks in Figure 4 was proving the 
theorems about the chord properties of a circle. The specific 
object of learning for Activity 1 in Figure 4 was discovering 
that a perpendicular line drawn from the centre of the circle 
bisects the chord of the circle, while the object of learning for 
Activity 2 was proving that if a line drawn from the centre of 
a circle bisects the chord, then the line is perpendicular to the 
chord. The tasks for both examples required learners to 
measure either lines or angles and deduce theorems based on 
the results of empirical exploration tasks.

Figure 4 shows that the learners were expected to draw a 
circle with a perpendicular line from the centre of the circle to 
chord, measure lines AD and BD, compare lengths of the 
lines, and deduce a theorem. The task setup in Figure 4 is 
similar to the task setup in the textbook (Figure 1). However, 
in addition to the textbook example, Kim set up example 2 
where learners are required to draw another chord whose 
length is equal to the first chord, draw a perpendicular line 
from the centre of the circle to the chord, compare its length to 
the first perpendicular line, and then deduce a theorem. Kim 
might have extended example  1 to ensure that both chord 
properties of the circle that were being proved during the 
lesson are deduced and tested using empirical explorations.

The object of learning for the task in Figure 5 is proving that 
angles in the same segment are equal. As such the learners 
are expected to do a similar empirical exploration task of 
drawing a circle with several angles subtended by the same 
arc, measuring the angles, and deducing a theorem from the 
results. However, the task is slightly different from the one in 
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Figure 2 as it is only concerned with angles in the same 
segment of the circle. This might also be the case because on 
this day the object of learning was only about angles in the 
same segment.

Although the limitation of generalising from a single case is 
also observed in Kim’s exploration tasks, there is an attempt 
to use the exploration approach that is suggested in the 
textbook. In general, the tasks set up by Kim can be categorised 
under the doing mathematics category as they required 
learners to make explorations and discoveries in reference to 
the results from empirical explorations. Figure 4 and Figure 5 
also show that Kim made some modifications to the textbook 
activities according to the theorem that was being explored on 
a particular day, as well as to ensure that learners discovered 
each theorem on their own using empirical evidence. 

Formal deductive geometric proof development 
tasks as set up by the teachers in the classroom
The findings showed that most of the formal proof tasks set 
up by the three teachers in the classroom were similar 
and  they were taken from the same textbook (Strides in 
mathematics 3). The similarity of the tasks might suggest that 
the teachers made either few or no alterations on the textbook 
tasks. Figure 6(a) and Figure 6(b) present examples and tasks 
set up by the teachers in the classroom for development of 
formal deductive geometric proofs. The tasks were set up for 
proving a third theorem on circle geometry and were from 
lesson number 3. 

Figure 6(a) and Figure 6(b) show that the tasks are similar 
despite differences in the way the diagrams are drawn. The 
tasks involve developing a formal deductive geometric proof 
to show that angles in the same segment of a circle are equal. 

As noticed in Figure 6(a), the angles that are subtended by 
the same arc have already been identified and necessary 
construction has also been provided (lines AO and OB are 
already drawn). The learners are required to decide the 
theorem to be used for developing the proof and to construct 
proving statements. The example and task set up by John in 
Figure 6(a) is similar to the one that was set up by Paul under 
the same object of learning. The only difference was that Paul 
added labels to the angles in the same segment. He labelled 
∠ADB as x and ∠ACB as y and wrote that the task was to 
prove that x = y. Although some of the decisions were already 
provided by Paul and John, the tasks are still of high cognitive 
value because the critical part of hypothetical bridging 
(Cheng & Lin, 2009) is not disclosed. Hence the task is under 
the doing mathematics category as it requires learners to 
identify the hypothetical bridge and make geometric 
connections to develop the proofs.

To be able to do the task of proving that angles in the same 
segment are equal using the example in Figure 6(b), the 
learners are required to identify angles subtended by the 

Note: Kim’s observation data. 

FIGURE 4: Empirical exploration tasks on chord properties of the circle.

Source: Mwadzaangati, L.E.N. (2017a). An exploration of mathematical knowledge for 
teaching geometric proofs. Unpublished doctoral dissertation, University of Malawi, Zomba, 
Malawi (p. 201). Retrieved from http://repository.cc.ac.mw:8080/jspui 
FIGURE 5: Empirical exploration task on angle properties of the circle. 
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same arc at the circumference, to decide the construction to 
be added to the diagram, to decide the hypothetical bridge to 
use for developing the proof, and to construct proving 
statements. This implies that Kim’s formal proof task is also 
under the doing mathematics category as there is no hint for 
deciding the construction to be added to the diagram and the 
hypothetical bridge to be used. This analysis has shown that 
the deductive geometric proof development tasks that were 
set up by the three teachers in their classrooms were similar 
to those that were set up in the textbook. The analysis has 

also shown that the formal proof tasks are of high cognitive 
level because they required learners to make several decisions 
on angles to be proved, construction to be made and the 
hypothetical bridge to be used.

Task implementation by Paul
The lesson observation data showed that during geometric 
proof development, Paul explained everything that was 
supposed to be done to develop the proof. For example, 
when proving angles in the same segment of the circle are 
equal, he started by showing the learners that angles x and y 
were the ones that were being subtended by arc AB. Then he 
told the students that they were going develop the proof by 
using the theorem developed in the previous lesson which 
states that ‘an angle that an arc of a circle subtends at the 
centre of a circle is twice the angle subtended by the same arc 
at any point on the circumference of the circle’. This is the 
way the theorem is stated in the textbook. This shows that 
Paul did not realise that the theorem was not stated correctly 
in the textbook. Later on, Paul went ahead explaining and 
writing the proving statements and their reasons on the 
chalkboard until he arrived at the conclusion. This shows 
that despite the task being of a high cognitive level, Paul 
implemented it at a lower level as learners were not involved 
in any form of explaining or justifying the truth of the 
theorem. Although the textbook encouraged the learners to 
first attempt to develop the formal proof on their own before 
referring to the proof development approach provided in the 
textbook, Paul did not give learners an opportunity to 
express their views on how the proof could be developed. 
This implies that despite being set up as a high cognitive 
level task both in the textbook and on the chalk board, the 
proof task was implemented at a low cognitive level as Paul 
did not involve the learners in any form of thinking, 
explaining and exploring of how the proof could be 
developed. Hence, the mode of task implementation reduced 
the cognitive level of the task from a high level to a low level 
(Stein et al., 2009).

Task implementation by John
John also used an approach of question and answer to teach 
the learners how to develop the deductive geometric proofs. 
In all lessons, John provided guidance on the theorems or 
geometric properties that were applied when developing the 
formal proofs. For example, when developing the proof 
using the task in Figure 6(a), John started by telling the 
learners that the lesson was about proving that angles in the 
same segment of a circle are equal. He explained that ‘angles 
in the same segment are the angles that are subtended by the 
same chord or arc at the circumference’. John stated the 
theorem the way it is stated in the book that he was using 
(Strides in mathematics 3). However, John’s description of 
angles in the same segment is partially not correct because it 
has left out an important point that is stated in the textbook. 
He does not specify that the angles should be in the same 
segment of the circle. This might imply that John’s wording 

FIGURE 6: Examples and tasks as set up by the teachers in the classroom. 
(a) John’s example for formal proof and (b) Kim’s task for formal proof. 

b

Task: Prove that angles subtended by the same arc at the circumference
of a circle are equal (angles in the same segment are equal).

a

Theorem: Angles in the same segment of a circle are equal.
Task: Prove that ∠ADC is equal to ∠ACB.
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or explanation of the theorem was not correct as it implied 
that the equal angles that are subtended by the same arc 
might lie in alternate segments as well. After describing 
angles in the same segment, John engaged the learners in the 
following conversation:

1.	 John:	� So, we start with the first step, what are we given?
2.	 Student:	 Circle with centre O. 
3.	 John:	 What else?
4.	 Student:	 Chord AB.
5.	 John:	� Yes, chord AB which is subtending angles c and d 

at the circumference, and angle y at the centre. 
This is what we are given [and he writes on the 
board]. So, what are we asked to prove? 

6.	 Student:	 Angle c equals angle d.
7.	 John:	� Yes, this is what we should prove. So, for us to 

show that these angles are equal, let us consider 
the theorem we proved yesterday. What theorem 
did we prove yesterday? 

8.	 Student:	� Angle at the centre is two times the angle at the 
circumference.

9.	 John:	� Yes, that is true, yesterday we proved that 
angle  at the centre is two times angle at the 
circumference. So what statements can we come 
up with using that theorem to prove that angles c 
and d are equal?

10.	 Student:	� Angle y is two times angle c, reason is that 
angle  at the centre is two times angle at the 
circumference.

11.	 John:	� Correct [while writing the statement on the 
chalkboard], what is the other statement?

12.	 Student:	� Angle y is two times angle d, same reason, 
angle  at the centre is two times angle at the 
circumference.

The lesson conversation shows that John implemented the 
task using the question and answer method in a stepwise 
process. Firstly, he asked the learners to identify the given 
information (utterances 3–6). Secondly, he asked the learners 
to identify the statement to prove (utterance 6). Lastly, he 
involved the learners in constructing the proving sentences 
(utterance 10–13). The lesson extract shows that learners did 
not struggle to construct the proving statements. This might 
be because John had already provided the hint for the 
hypothetical bridge to be used for developing the proving 
statements (utterance 10). Since identification of the 
hypothetical bridge is the critical part of deductive 
geometric proof development (Cheng & Lin, 2009), then this 
shows that the learners were not involved in high cognitive 
level thinking. According to Smith and Stein (1998), 
provision of hints that are critical to solving of a task reduces 
the cognitive level of the task. This implies that the cognitive 
level of the task was reduced from high level to low level 
because of the mode of implementation (Charalambous, 
2010). Some might argue that John provided the hint with 
an aim of trying to help the learners to gradually realise 
how to develop the proof. But Polya (1945) discourages 
teachers from providing much guidance to support learners; 
instead he suggests that teachers should ask different types 
of questions that would support the learners to identify the 
hypothetical bridge on their own. 

Task implementation by Kim
Kim mainly used group work when teaching the learners to 
develop proofs for the theorems. The learners would discuss 
and develop the proofs in their groups and then present them 
to the whole class. For example, when implementing the task 
in Figure 6(b), Kim asked the learners to draw a diagram 
similar to the one that he drew on the chalkboard in their 
groups and discuss how to develop the proof for the theorem 
by stating that angles subtended by an arc in the same 
segment of a circle are equal. As the learners were developing 
the proof in groups, Kim checked their work and provided 
some guidance to those learners who experienced difficulties 
in developing the proof. After about 15 minutes, Kim asked 
the learners to report their work by giving an oral account 
regarding how they proved the theorem. The following is a 
conversation between Kim and students after the group 
discussions:

13.	 Student 1:	� [While pointing at the diagram drawn by Kim] we 
joined AB at O, then Let ∠AOB be 2y. So ∠AEB 
equals y, ∠ACB equals y, and ∠ADB is also 
equal to y. Therefore, angles AEB, ACB and 
ADB are equal.

14.	 Kim:	� Why do you say that angles AEB, ACB and 
ADB are equal to y?

15.	 Student 1	� Because angle at the centre is two times angle 
at the circumference, so if we have 2y here 
[pointing at ∠AOB] then this is y [pointing at 
∠AEB], this is y [pointing at ∠ACB], this is also 
y [pointing at ∠ADB].

16.	 Kim:	� Yes that is true, but you need to remember to 
justify your statements with reasons. Did you 
all use this approach, or is there any group 
with a different approach?

17.	 Student 2:	� Yes, we joined AO and BO. Then two times 
∠AED equals ∠AOB, two times ∠ADB equals 
∠AOB, and two times ∠ACB equals ∠AOB. 
The reason is the same, angle at the centre is 
equal to two times angle at the circumference.

18.	 Kim:	� Yes, that is also a correct method. So, apart 
from the two ways that have been presented, 
any group with a different way?

19.	 Student 3:	� Yes, we joined AO and BO, ∠AEB equals half 
∠AOB, reason is angle at the circumference is 
equal to half angle at the centre. ∠ACB equals 
half ∠AOB same reason, ∠ADB equals half 
∠AOB, same reason, therefore angles AEB, 
ACB and ADB are equal.

The lesson conversation shows that Kim involved the learners 
in exploring the proof of the theorem and the learners came 
up with their own ways of developing the proof. All learners 
made the same construction on their diagrams, and they also 
used the same property – which states that the angle 
subtended by an arc at the centre is twice the angle subtended 
by the same arc at the circumference of the circle – as their 
hypothetical bridge (utterances 15, 17 and 19). This was the 
theorem that the learners proved in the previous lesson. 
Despite making the same construction on the diagram and 
using the same hypothetical bridge, the proofs were 
developed using slightly different approaches (utterances 15, 
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17 and 19). Although the proof explained by student 1 
(utterance 15) is similar to the one presented in the Strides in 
mathematics 3 textbook, the letters that have been used are 
different. This implies that when the learners explored how 
to develop the proof, they made several connections with 
their previous knowledge. Furthermore, the learners were 
able to explain their proofs clearly, and they provided good 
justifications for their proving statements. This shows that 
Kim implemented the task in a manner that involved 
learners’ high cognitive levels of thinking, hence the task 
maintained its high cognitive level during implementation 
(Stein et al., 2009).

Discussion of the findings
The findings reveal that the textbook that the teachers used for 
teaching deductive geometric proof development contained 
both empirical exploration and formal proof tasks which were 
of a high cognitive level. The empirical exploration tasks 
promoted discovering of proofs as they required learners to 
deduce theorems from the results of an empirical activity. The 
formal proof tasks promoted verification, explanation and 
systemisation as they required learners to identify a 
hypothetical bridge for constructing logically sequenced 
proving statements (Cheng & Lin, 2009; De Villiers, 1999). 
This shows that the textbook has included rich opportunities 
for learners to engage in doing mathematics (Stein et al., 2009) 
and in reasoning and proving in a coherent manner 
(Stylianides, 2014). Despite the limitation that the empirical 
task set up in the textbook might lead to misconception that it 
is acceptable to generalise from a single case in mathematics, 
it is worth acknowledging that the textbook attempted to 
provide opportunities for empirical explorations.

Some might argue that the empirical exploration tasks set up 
in the textbook were poorly designed because they mainly 
require the use of pencil and paper and not computer 
software. It is argued that computer software can enhance 
learners’ ability in developing geometric proofs better than 
pencil and paper tasks because they organise and promote 
learners’ thinking (Mariotti, 2000). It has also been observed 
that pencil and paper diagrams are difficult for learners to 
grasp because they might deviate learners’ focus from 
properties of the diagram to properties of construction 
(Mariotti, 2000). Despite this flaw, pencil and paper tasks fit 
well with the context in which the study was undertaken. As 
already explained, Malawian secondary schools operate 
under resource constrained conditions where textbooks are 
the most available teaching and learning resource. The 
textbook tasks might have been designed in this way to 
enable teachers and learners to use the resources that are 
accessible to them, for example mathematical sets, pencils 
and paper. The instructions for doing the empirical 
exploration tasks might serve as attempts to address 
limitations of pencil and paper tasks. As such, a didactical 
design of the textbooks fits well with the Malawian context. 
The instructional approach used in the textbook is called 
presenting a proof problem as an experimental problem and 

a formal proof (Ding & Jones, 2009). This approach helps 
learners to understand the formal proof and to appreciate the 
discovery function of proof in mathematics through the new 
problem-solving strategies that they devise and the reflections 
that they make on the developed proofs (De Villiers, 2012; 
Ding & Jones, 2009; Jones et al., 2009). The task setup approach 
used in the textbook is also supported by Hanna (2000) who 
suggests that during mathematical proof development, 
learners should be provided with opportunities to explore 
different paths to the solution outcome by using a combination 
of inductive and deductive reasoning processes.

Kim provided learners with rich opportunities to explore and 
understand the proof development process and its advantages 
by setting up and implementing tasks similar to the textbook 
tasks. The findings from Kim support the argument that 
textbooks are supposed to have similarity with classroom 
lessons (Ronda & Adler, 2016). The approach that was used 
by Kim is also recommended by Ding and Jones (2009) who 
explain that helping learners to understand why a proof 
works, and then using that understanding to further 
generalise or specialise the result, is one way of encouraging 
learners to understand and appreciate the discovery function 
of mathematical proofs.

However, although the textbook has presented geometric 
proof development as both an empirical and formal process, 
Paul and John only presented the formal proofs in the 
classroom. This implies that Paul and John did not utilise the 
textbook guidance regarding learners’ tasks for supporting 
understanding of geometric proof development. This finding 
agrees with Stylianides (2014) who argues that equipping 
teachers with textbooks containing high quality proving 
tasks does not necessarily imply that the teachers will 
implement the tasks presented in the textbooks faithfully. 
This means that although high quality mathematics textbooks 
have a potential of improving learners’ understanding of 
geometric proof development (Otten et al., 2014), the 
realisation of this potential depends on how teachers 
implement the tasks in the classroom.

The findings also showed that the formal proof tasks that 
were set up by Paul and John in the classroom were similar to 
those that were in the textbook, hence they were of a high 
cognitive level. However, the tasks decreased in their 
cognitive level because learners were not involved in 
activities that would enhance their reasoning. As 
Charalambous (2010) argues, a high level task can decline in 
its cognitive level when learners are not involved in 
exploration and explanation of their procedures during task 
implementation. Charalambous (2010) argues that the 
teacher’s way of explaining and representing mathematical 
tasks largely depends on the breadth and depth of their 
conceptual understanding of mathematics. This agrees with 
the findings in Mwadzaangati (2017a) which showed that 
John and Paul displayed some limitations in conceptual 
understanding of the deductive geometric proof development 
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process while Kim displayed competencies in deductive 
geometric proof development (Mwadzaangati, 2017a, 2017b). 
This suggests that depending on their conceptual 
understanding of geometric proof development, teachers can 
either elevate or decrease a task’s cognitive demand during 
either task setup or task implementation. 

Conclusion 
This study examined similarities and differences between 
deductive geometric proof development tasks as set up in the 
textbook, and as set up and implemented by teachers in the 
classroom. The findings showed that the geometric proof tasks 
in the textbook were set up at a high cognitive level and 
included explorations and explanations. The textbook 
contained two types of deductive geometric proof development 
which can be categorised as empirical exploration tasks and 
formal proof tasks. Empirical exploration tasks were those that 
required the learners to draw diagrams, do some measurements 
on either lines or angles of the diagram and deduce a theorem. 
Formal proof development tasks required the learners to 
explore how to develop the formal proof. Despite the availability 
of both empirical exploration tasks and formal proof tasks, John 
and Paul involved the learners in formal proof tasks only. Kim 
followed the textbook procedure by involving learners in both 
empirical exploration tasks and formal proof tasks. In terms of 
the formal proof tasks, the findings showed that all three 
teachers set up high cognitive level tasks in the classroom but 
their modes of implementation were different. Kim involved 
the learners in exploring and explaining how to develop the 
proofs, hence he maintained the high cognitive level of the tasks 
during implementation. Paul and John implemented the formal 
proof tasks at low cognitive level as they provided the learners 
with hints for the most critical stages of deductive proof 
development. This study, therefore, concludes that ability to 
support learners’ understanding in deductive geometric proof 
development does not only depend on the availability of a well-
designed textbook, but also depends on the teachers’ conceptual 
ability to use the textbook effectively. Since the data analysed in 
this study were only from the teachers’ lessons and the textbook 
content, I suggest further studies to increase our understanding 
of the reasons behind the choices that teachers make during 
task setup and implementation in the classroom through other 
methods of data collection like interviewing the teachers. Since 
naming and word use and legitimations were also observed to 
be problematic for the teachers, future research might also focus 
on examining how teachers explain geometric concepts and 
legitimise them during the lesson.
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