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Learning progressions (LPs) describe the development of domain-specific knowledge, skills, and understanding. Each level of an LP
characterizes a phase of student thinking en route to a target performance. The rationale behind LP development is to provide road
maps that can be used to guide student thinking from one level to the next. The validity of an LP cannot be taken for granted, however.
LPs evolve from a synthesis of multiple research studies, subject-matter expertise, and standards documents. They are working models
of student development that may require revision in light of critique and empirical evidence. The formulation of an LP is an iterative
process in which expert feedback is elicited, data are collected, and the LP is revised accordingly. We developed an LP for the concept of
function both because the concept of function is challenging to attain and because it is central to the study of algebra and higher math-
ematics. We report early findings with respect to the validity of the concept of function LP, based on small-scale cognitive interviews
and expert reviews.
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This report is organized into several main sections. In the opening section, we discuss what learning progressions (LPs)
are and why it is important to validate the interpretations and decisions based on them. We outline a number of steps in
constructing a validity argument and the questions addressed by each of these steps. We provide the research questions
that guided this work, namely, (a) How well does student thinking elicited from cognitive interviews align with a proposed
LP for the concept of function? (b) What revisions to the LP and the tasks based on it are suggested by subject-matter
experts? and (c) What can we learn from the way experts rate student responses using the levels of the LP? In the next
section, we provide the rationale for developing an LP for the concept of function and summarize earlier work in this area.
Following an overview of the steps taken to develop the progression, we present the LP itself.

In later sections, we discuss procedures for conducting cognitive interviews and eliciting feedback and scores from an
expert panel. We present findings from three data sets: The first data set consists of cognitive interviews conducted with
students working on tasks based on the LP, the second data set consists of feedback on the LP from a panel of experts, and
the third consists of student responses scored with respect to the LP by the same panel of experts. The analyses of the first
two data sets are primarily qualitative, while the analysis of the third data set is primarily quantitative. We conclude with
a discussion of the findings and how we used them to produce a revised version of the LP.

Learning Progressions and Validation

LPs describe the development of domain-specific knowledge, skills, and understanding. The term learning progression
originated in science education (e.g., Smith, Wiser, Anderson, Krajcik, & Coppola, 2004); its close sibling, the learning
trajectory, has its roots in mathematics education (e.g., Clements & Sarama, 2004; Confrey, Maloney, Nguyen, Mojica, &
Myers, 2009; Simon, 1995). We use the terms interchangeably here.

In our work, we draw on the LP definition from the CBAL® research initiative (Bennett, 2010; Bennett & Gitomer,
2009). In CBAL, an LP is characterized as
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a description of qualitative change in a student’s level of sophistication for a key concept, process, strategy, practice
or habit of mind. Change may occur due to a variety of factors, including maturation and instruction, and each
progression is presumed to hold for most, but not all, students. As with all scientific research, the progressions are
open to empirical verification and theoretical challenge. (Educational Testing Service, n.d., list item #2)

An LP may be used to guide instructional decisions, pending empirical support. It is important to note here that
“empirically supported” is a different requirement from “research based.” Ideally, LPs are research based, that is, grounded
in literature pertaining to theory, item difficulty factors, or case studies that suggest how and when big ideas emerge. A
research foundation is a necessary, but not sufficient, requirement for an LP. Usually, LPs are based on research as well
as on an analysis of the logical structure of the domain (Daro, Mosher, & Corcoran, 2011). Expert opinion is used to
modify the LP and fill in the gaps. Each of the research studies on which an LP is based typically addresses one concept
or problem type and samples from a particular population (e.g., ninth graders). But an LP usually addresses a number
of concepts that are assumed to develop across years. The development of an LP involves piecing together learning goals
from standards documents, results from multiple studies, and expert opinion. It therefore constitutes a new theory that
must be independently verified.

Kane (2006) distinguished between two types of arguments in validation, an interpretive argument and a validity argu-
ment. According to Kane, “an interpretive argument specifies the proposed interpretations and uses of test results by laying
out the network of inferences and assumptions leading from the observed performances to the conclusions and decisions
based on the performances,” and “the validity argument provides an evaluation of the interpretive argument (Cronbach,
1988)” (p. 23). The interpretive argument is referred to as the interpretation/use argument (IUA) in Kane’s more recent
work (e.g., Kane, 2013), to reflect the emphasis on test-based decisions as well as interpretations. Kane and Bejar (2014)
wrote,

The TUA for assessment based on a learning progression would start with the student performances on the assess-
ment tasks and would end with conclusions about the student (e.g., where the student is in the learning progression),
and in applied settings, with suggestions about what to do next. (p. 120)

Because an LP characterizes the performances typical of different levels of student thinking, it provides proposed inter-
pretations. If, in addition, an LP provides guidance for instruction based on those interpretations, it provides the use
component of an IUA as well. When we refer to a “validity argument for an LP,” we make the assumption that the LP
guides both interpretation and instructional decisions based on student performances.

Kane (2006, 2013) characterized kinds of inferences that are commonly included in an IUA, such as scoring, gen-
eralization, extrapolation, and decision. “A scoring inference takes us from the observed performances to the observed
score” (Kane, 2013, p. 10). A generalization inference is made from “the observed sample of performances to claims about
expected performance in a universe of possible observations (most of which were not made) or to an estimated trait value
that can be used to draw conclusions about the future performances” (Kane, 2013, p. 10). Extrapolation inferences “extend
the interpretation into new performance domains,” (Kane, 2013, p. 11), and a decision inference “takes us from a person’s
score to a decision about the person (or about an educational program or teacher)” (Kane, 2013, p. 11).

How are the inferences described by Kane (2006, 2013) operationalized in the development of an IUA for an LP? This is
the focus of Kane and Bejar’s (2014) article and is discussed here. To assess student standing with respect to an LP, typically
an assessment is developed that is intended to elicit evidence associated with the different levels. As noted by van Rijn, Graf,
Arieli-Attali, and Song (2018, p. 2), “LP levels can be assigned to performance at different grain sizes of the assessment.”
For example, a level can be assigned holistically to a complex performance or collectively to performances across several
items. Another approach is to assign a level to each item so that each correct item response indicates reasoning at or above
a particular level and each incorrect item response indicates reasoning somewhere below a particular level. Yet another
approach is to assign levels to responses, where different responses to the same item may be associated with different levels
of understanding. All of these methods involve assigning an observed score to an observed performance, and hence all
are examples of scoring inferences. Students can be classified into LP levels based on cut scores derived from item response
theory (IRT) models (e.g., Graf & van Rijn, 2016; van Rijn, Graf, & Deane, 2014); doing so involves a generalization
inference. A prediction about the level of thinking a student will show on a classroom-based task involves an extrapolation
inference, and an instructional next step based on a student’s LP classification involves a decision inference.
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Constructing a validity argument for an LP may be supported by a cycle of several steps (Graf & van Rijn, 2016). The
first step involves theory development, or domain analysis (Mislevy, Steinberg, & Almond, 2003; Riconscente, Mislevy, &
Corrigan, 2016). The next step involves empirical recovery of the levels of the LP. For example, an LP expressed as levels
assumes that the levels are distinct and, in general, that they develop in a particular sequence (though some slippage
between levels is expected). Both of these assumptions can be examined with cross-sectional and/or longitudinal data,
using a variety of psychometric methods (such as IRT). If the analysis shows that the levels are distinct and ordered
as expressed by the LP, then the levels are said to be “empirically recovered.” The third step involves a comparison to
competing models (because other learning theories might also account for the specification and ordering of levels). The last
step involves an evaluation of instructional efficacy, that is, does instruction that is based on the LP yield better outcomes
than traditional instruction? The cycle may include subcycles — for example, there may be a return to theory development
following an evaluation of empirical recovery. We do not intend to suggest that the LP must go through the entire cycle
before it can be used as a guide for assessment or instructional decisions—to the contrary, completing the validation
cycle requires that it be used for both. We do suggest, however, that the LP be used provisionally, pending at least some
empirical support. In some sense, an LP is always provisional, because it incorporates expectations about the nature of
instruction (National Assessment Governing Board, 2008), and the nature of instruction is subject to change.

The work described here is a preliminary validity evaluation of an LP for the concept of function (CoF). As such,
it takes place between the analysis of the domain and the empirical recovery at scale. Arieli-Attali and Cayton-Hodges
(2014) suggested using the results from cognitive interviews with students to refine an LP for rational numbers. We used
this procedure as an initial step in the process of constructing a validity argument for the CoF and the tasks designed from
it. It is important to note that for the collection of cognitive interviews, we used samples of convenience. Following this,
we asked experts to provide written feedback on the CoF LP, the tasks, and sample student responses to the tasks. We also
asked experts to classify student responses into levels of the LP. Agreement among teachers with respect to classification
of student responses into levels of an LP has been examined by van Rijn et al. (2018). It has been argued that placing a
student into a particular level of an LP is not necessarily an appropriate task, because his or her performance may show
aspects of multiple levels (Battista, 2011; Corcoran, Mosher, & Rogat, 2009; Daro et al., 2011). For example, in a discussion
of the hierarchic interactionalism framework of Clements and Sarama, Daro et al. (2011) wrote the following with respect
to placing students into levels of an LP:

The levels are seen as being qualitatively distinct cognitive structures of “increasing sophistication, complexity,
abstraction, power, and generality.” For the most part they are thought to develop gradually out of the preced-
ing level(s) rather than being sudden reconfigurations, and that means that students often can be considered to be
partially at one level while showing some of the characteristics of the next, and “placing” them in order to assign chal-
lenging, but doable work becomes a matter of making probabilistic judgments that they are more likely to perform
in ways characteristic of a particular level than those of levels that come before or after it. (p. 24)

Therefore, for each response, we asked experts to provide the probability that the response was at each level.
We have three main research questions, the third of which includes two subquestions:

1 Based on the results from the cognitive interviews, what student thinking is elicited by tasks designed to assess
understanding of the CoF, and how well does this align with the LP?

2 What revisions to the CoF LP and the tasks are suggested by subject-matter experts?

3 What can we learn from the way experts rate student responses using the levels of the LP?

a What are the features of student responses that are not classified consistently among raters?
b What is the level of agreement among raters who are classifying student responses into levels of the LP?

The answers to any of these questions might suggest revisions to the tasks, the LPs, or both.

The Concept of Function Learning Progression

The CoF is both central to the study of mathematics and challenging for students to learn. In our earlier work for CBAL
mathematics, in which we reviewed the literature in cognitive psychology and mathematics education (Graf, 2009; Graf,
Harris, Marquez, Fife, & Redman, 2009, 2010), we identified working with functions as an important skill. The Common
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Core State Standards for Mathematics (CCSSM; Common Core State Standards Initiative, 2010) emphasize the impor-
tance of the CoE For example, eighth-grade Standard 8.F includes the text “Understand that a function is a rule that
assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and
the corresponding output,” and high school Standard F-IF includes “Understand that a function from one set (called
the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range.
If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The
graph of f is the graph of the equation y = f(x).” The ordering of these standards is consistent with the research, namely,
understanding of an operational notion of function (as expressed by Standard 8.F) precedes understanding of the formal,
set-theoretic definition (as expressed by Standard F-IF). Vinner and Dreyfus (1989) found that few college students have
an understanding of the formal definition of function, and results from Sfard (1992) were consistent with this finding.

The CoF LP has several predecessors. These include Sfard’s (1991, 1992) model of concept development as applied to
functions; APOS theory as applied to functions (e.g., Dubinsky & Harel, 1992; Dubinsky & Wilson, 2013); a model for
understanding functions developed by Kalchman, Moss, and Case (2001) and elaborated in Kalchman and Koedinger
(2005); an LP for functions developed by Wilmot, Schoenfeld, Wilson, Champney, and Zahner (2011); and an LP for
functions by Arieli-Attali, Wylie, and Bauer (2012) and discussed in Graf and Arieli-Attali (2015).

Sfard’s (1991, 1992) model consists of three stages: (a) interiorization, (b) condensation, and (c) reification. During
interiorization, a student becomes familiar with operational processes. Once the operational steps are well understood,
attention shifts from discrete steps to the result. Finally, during reification, the concept is realized as a structural object
that can support the development of new concepts. In the context of functions, Sfard (1992) argued that an operational
notion of function is intuitive and should precede introduction of the formal, set-theoretic definition, which represents
complete reification of the concept.

APOS theory (Dubinsky & Harel, 1992; Dubinsky & Wilson, 2013) is described with respect to the stages action, process,
and object, which are enacted according to schemas. At the prefunction stage, no CoF has developed. At the action stage,
the student can find outputs from inputs, one at a time. At the process stage, the student has internalized this procedure
and can carry it out mentally. Finally, at the object stage, the student can operate on functions. As Dubinsky and colleagues
described it, composing functions and finding inverses first happens at the process stage, and finding derivatives happens
at the object stage. A student may demonstrate an approach that falls at or below the highest stage he or she has attained,
depending on the demands of the task.

In the four-level model of Kalchman et al. (2001), students can extend patterns at Level 1. By Level 2, they can generate
ordered pairs and can plot bar and line graphs. At Level 3, they recognize families of linear and nonlinear functions,
and at Level 4, they work in all four quadrants of the Cartesian coordinate system. In the six-level model of Wilmot
etal. (2011), students become increasingly facile with translating among equivalent representations of functions. At the
highest level, they are able to solve nonroutine problems in real-world contexts. The five levels of the LP of Arieli-Attali
etal. (2012) include one-dimensional change (Level 1), mutual change (Level 2), constant change (Level 3), comparing
rates of change (Level 4), and changing change (Level 5). Level 1 is equivalent to the first level of Kalchman et al. (2001).
Level 2 involves being able to detect the direction, if not the magnitude, of change. At Level 3, students can work with linear
functions, and at Level 4, they can compare slopes. Finally, at Level 5, students work with nonlinear functions, such as
polynomials.

Although all of these models of development are for functions, they focus on different aspects of understanding.
Stard’s (1991, 1992) model and the APOS theory model (Dubinsky & Harel, 1992; Dubinsky & Wilson, 2013) empha-
size understanding the properties of a relation that determine whether or not it is a function. The model of Arieli-
Attali et al. (2012) emphasizes the concept of change. The models of Kalchman et al. (2001) and Wilmot et al. (2011)
heavily emphasize representational fluency; the Kalchman et al. model also addresses the idea of function families. A
common theme to all of these models is that they address representational fluency. The CoF LP draws on all of these
models as well as other research findings but shares with the models of Sfard (1991, 1992) and Dubinsky and colleagues
(Dubinsky & Harel, 1992; Dubinsky & Wilson, 2013) that the definition of function is an important component. In
other words, the CoF LP integrates themes about the definition of function, representational fluency, and the concept of
change.

As Plake, Huff, and Reshetar (2010) have noted, characterizing the achievement-level descriptors of an LP is an iterative
process, and so it was with the development of the CoF LP. We went through several cycles of literature review, drafting
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achievement-level descriptors, and discussion. Fairly early on in our literature review, we recognized the presence of
several themes, namely, the properties of a relation that determine whether it is a function, representational fluency, the
concept of change, and function families. These themes helped to structure the levels—for example, representational
fluency seemed to be a theme that crossed levels of understanding, while it seemed the concept of change could not
logically coincide with a pointwise conception of function (Leinhardt, Zaslavsky, & Stein, 1990). The number of levels was
determined by the number of qualitative transitions in understanding with respect to one or more themes as culled from
the literature. For example, understanding the notion of dependence (that the values of one variable depend on the values
of another) is a transition identified in the literature that served as one of the differentiators between Level 1 and Level
2. As another example, understanding the uniqueness property of a function indicates understanding at Level 4 (Ponce,
2007; Vinner & Dreyfus, 1989).

Though there were several relatively complete models of development for the CoF in the literature, there were also
studies that focused on particular misconceptions or particular transitions in thinking. Development of the provisional
LP was in part an exercise in weaving together partial orderings of understanding from the literature (e.g., if Study 1
suggests that Conception A precedes Conception B, and Study 2 suggests that Conception B precedes Conception C, one
might propose that in the LP, Conception A precedes Conception B, which precedes Conception C). This weaving together
of findings entails major assumptions, however, since the samples from different studies typically generalize to different
populations, and the studies are typically carried out using different procedures.

We had quite a bit of discussion about Levels 5 and 6 and whether they should really be distinct. Eventually, we decided
that a complete understanding of domain and range is an important qualitative transition to Level 6, and our read of the
literature suggests that this is challenging to develop (Markovits, Eylon, & Bruckheimer, 1986).

In what follows, we discuss the nature of student thinking at different levels of the CoF LP.

Levels 1 and 2 (Preinstruction and Familiarization)

Consistent with the model of Kalchman et al. (2001), at Level 1 of the CoF LP, students can detect patterns in one variable
by extending sequences but have not yet developed the notion of dependence (that the values of one variable depend on the
values of the other). At Level 2, they have a limited notion of dependence (for example, they can recognize if a function
is strictly increasing or decreasing), but their interpretation of graphs is primarily pointwise. Pointwise interpretation
involves observing what happens at a point on the graph rather than attending to a trend (Leinhardt et al., 1990). Also
at Level 2, students think of a function as a formula or computational process (Carlson & Oehrtman, 2005; Sfard, 1992).
Students at this level will identify different formulas that represent the same function as different functions. For example,
y=3xand u = 3v might be considered different functions. Because they associate functions with formulas, students at this
level are not yet translating among equivalent representations of a function — for example, they may not recognize that a
graph and a formula represent the same function and would probably assert that a function represented by a graph is not
a function.

A couple of difficulties emerge at Level 2 that persist through Level 4. One is confusion with pictorial aspects of the
situation (Carlson & Oehrtman, 2005; Dugdale, 1993; Monk, 1992). One way this can happen is if a student interprets
position as speed when looking at a graph. For example, consider the graph of Wanda’s Walk in Figure 2. A student who
interprets position as speed might say that Wanda is moving fastest between Points D and E. Another difficulty concerns
overgeneralization of linearity (Carlson & Oehrtman, 2005; Karplus, 1979; Leinhardt et al., 1990). An example of this is
if a student draws a straight line as the only function that will pass through a pair of points.

Level 3 (Making Connections)

At this level, the notion of dependence is developing (students think in terms of inputs and outputs), and students are
close to the Grade 8 standard from the CCSSM, except that the one-valuedness idea (Ponce, 2007; Vinner & Dreyfus,
1989) that each input maps to exactly one output is not yet part of students’ schemas. Students at this level are starting
to translate among alternative representations of functions, though they are more likely to successfully translate from
equations to tables and graphs than from tables or graphs to equations, since the latter is more difficult (Leinhardt et al.,
1990; Markovits et al., 1986). Certain kinds of functions are less likely to be identified as such, including many-to-one
functions (in particular constant functions), piecewise functions, discontinuous functions, and other functions that do
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not have an obvious rule or pattern (Leinhardt et al., 1990; Markovits et al., 1986). When presented with a piecewise
function, students at this level may indicate that it is not a single function but several.

Level 4 (Synthesis)

By Level 4, students have developed the one-valuedness idea (Vinner & Dreyfus, 1989). They are beginning to translate
from graphs and tables to equations. Because they have a fully developed notion of dependence and inputs and outputs,
they are able to compose functions and find inverses (Carlson & Oehrtman, 2005). Students at this level have acquired a
process view of functions (Dubinsky & Harel, 1992), in which they consider what is happening to the function as a whole
rather than at single points. According to Carlson and Oehrtman (2005),

a student with a process view can conceive of the entire process as happening to all values at once, and is able to
conceptually run through a continuum of input values while attending to the resulting impact on output values.
(para. 7)

This, Carlson and Oehrtman argued, is the skill needed to apply covariational reasoning (Confrey & Smith, 1994, 1995),
where the student can visualize how one variable changes (or does not change) with the other. Covariational reasoning
develops at Level 4.

Levels 5 and 6 (Thorough Conceptualization and Drawing Extensions)

At Level 5, students have developed a thorough conceptualization of the CoF as addressed in the Common Core high
school Standard F-IF. They can translate among equivalent representations. They can transform functions and are starting
to recognize the role of parameters in some function families, which is among the more difficult tasks for students to do
(Kieran, 1993). They may still have difficulty in certain situations (e.g., recognizing discontinuous or nondeterministic
functions as such). The concepts of domain and range are not necessarily completely understood. For example, when
evaluating whether two functions are equivalent, the student may not consider the domain and range, focusing only
on the rule that relates the two variables (Markovits et al., 1986). Level 6 is included for completeness —it represents a
professional mathematician’s CoF. An overview of the CoF LP is shown in Table 1.

Themes Addressed by the Concept of Function Learning Progression

As evident from the level descriptions, several main themes, or progress variables, as they are sometimes called, are
addressed by the CoF LP. These include the following: (a) use of multiple representations, (b) understanding of the def-
inition of function, (c) understanding covariation, and (d) understanding of functions as families. A summary of these
themes and how they evolve across levels of the LP is given in Figure 1. The level descriptions also refer to emerging skills
and difficulties. A timeline of concepts and skills is given in Table 2, and a timeline of difficulties is given in Table 3. An
“X” in the timeline of concepts and skills means that students have that skill or understand that concept at a particular
level. An “X” in the timeline of difficulties means that the preconception or misconception is still present at a particular
level. The full CoF LP is given in Appendix A.

Cognitive Interviews
Method
Participants

Fifteen students in Grades 9- 12 participated in the cognitive interviews. They were recruited through an online posting.
There were six male and nine female participants. Four of the participants were in ninth grade, three were in 10th grade, five
were in 11th grade, and three were in 12th grade. They were primarily from New Jersey and Pennsylvania school districts
and enrolled in courses such as Algebra, Algebra I, Algebra I (Honors), Algebra II, Geometry, Precalculus, and Precalculus
(With Limits). Students in this sample reported a minimum grade of B+ in mathematics.
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Table 1 Concept of Function Learning Progression Overview

Level Description Characteristic Schema

6 Drawing Extensions Function families Families of functions are perceived as parameterized
objects, and the role of the parameters is understood; the
role of domain and range is fully recognized.

5 Thorough Conceptualization Function as an object A function is perceived as an object that can be operated
upon.
4 Synthesis Covariational reasoning The one-valuedness idea has developed, and students are

facile in their use of alternate representations of
functions. Students consider how variables covary and

attend to global features of graphs.
3 Making Connections Function as a rule The concept of dependence is beginning to develop, but the

notion of one-valuedness (that each input is mapped to
exactly one output) is not firmly in place. There is some
recognition that that a function can be captured using
different representations. A function that does not appear
to have a consistent “rule” throughout the domain may be
rejected as a function.

2 Familiarization Function as formula A function is perceived as an algebraic formula or equation.
In the student’s view, different algebraic equations cannot

represent the same function, even if they are equivalent.
1 Preinstruction No function concept A concept of function has not yet developed, but students

can extend sequences.

Multiple Representations

Separate Integrated

Function Definition/Domain & Range

As a Computational Process/ As Outputs Dependent Flexible Application of Set-
Algebraic Expression On Inputs Theoretic Notion and
Dependence Notion

Covariation/Interpretation

Pointwise/Static Global/Dynamic

Function Families

Each function treated Functions treated as instances of a
separately class with variable parameters

Figure 1 Themes addressed by the concept of function learning progression.

Materials

Because we did not want students’ performance to be dependent on having memorized the definition of function, we
provided them with definitions prior to solving the tasks. These definitions were adapted from those found in Collins
et al. (2001, p. 802) and are as follows:

function: 1. A relationship between input and output in which every input is paired with exactly one output. 2.
A relation in which each element of the domain is paired with exactly one element of the range.

Three tasks designed to assess students’ standing with respect to the CoF LP were developed: Wanda’s Walk (WW; Mar-
quez, 2015), Annika’s Bakery (AB; Graf, 2015a), and Secret Messages (SM; Graf, 2015b). The tasks were developed to elicit
evidence addressed by the levels of the LP. For example, WW was designed to focus on whether students can disentangle
the meaning of a graph from its pictorial features and whether they can identify a many-to-one function as such. Task
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Table 2 Timeline of Concepts and Skills

Skill/concept Level 1 Level 2 Level 3 Level 4

Extend patterns in one dimension X
Evaluate formulas

Plot points on a graph

Detect increasing/decreasing trends
Interpret function notation
Understand notion of dependency
Understand domain as a set of inputs
Understand range as a set of outputs
Recognize equivalent representations
Understand covariational reasoning
Understand “one-valuedness”
Compose and find inverses
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Table 3 Timeline of Difficulties

Misconception/preconception Level 2 Level 3 Level 4
Function as formula X
Representations are separate X
Not a function
Functions defined by a graph X
Many-to-one functions X X
Piecewise functions X X X
Discontinuous functions X X X
Nondeterministic functions X X X
Difficulty translating to equation X X X
Confusion with pictorial aspects X X X
Overgeneralization of linearity X X X

AB was designed to assess representational fluency and whether the representation used influences a student’s decision
about whether a relation is a function. Like WW, it also features a many-to-one function. Task SM uses relations that are
functions as well as relations that are not because they fail the one-valuedness criterion, with the goal of ascertaining if
students understand the one-valuedness property of a function as well as its contextualized implications. The tasks went
through several iterations of review and revision by the project team, who made comments and suggestions by e-mail.
The three tasks are scenario based and consist of 25 items combined. They are designed for paper-and-pencil delivery and
include items in constructed response, multiple choice, and graphing formats.

In WW, a graph of Wanda’s distance from home with respect to time is displayed with both multiple choice and con-
structed response questions intended to assess students’ interpretation of a graphical representation of a function (see
Figure 2 for the graph from WW). The first questions ask students to consider during which intervals Wanda spends the
most time, the least time, and where she has the greatest speed and the least speed. Finally, the student is asked whether
the graph represents a function.

The first question in AB involves a verbal description of a situation, as follows:

Annika’s bakery is closed on Monday. On Tuesday through Thursday, the bakery prepares 3 chocolate fudge cakes
each day. On Friday through Sunday, the bakery prepares 5 chocolate fudge cakes each day.

a. Is the number of chocolate fudge cakes prepared each day a function of the day of the week? (Explain).

In subsequent questions, the student is asked to translate between tables, graphs, and arrow diagrams. After working
with each representation, the student is asked to reconsider whether or not the number of chocolate fudge cakes prepared
each day is a function of the day of the week.

SM is a more advanced task; a cipher is used that maps letters to new letters or symbols. The student is first provided
with a table that maps plaintext to ciphertext (see Figure 3).
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Wanda’s Walk

Distance
from
Home

A BCD E F G H
Time
One school day, Wanda walks on a straight, flat path from her home to school and back again. The graph shows

Wanda’s distance from home with respect to time. For instance if the point (10 am, 1 mile) were on the graph, we
could say that at 10 am, Wanda was 1 mile from home.

Figure 2 Graph of Wanda’s Walk.

Plaintext |A|B|C|D|E|F |G|[H |[I [J|K|LIM|N|O|P|[Q|R|[S|T|U|V |W|X|Y]|Z

Ciphertext | B |E[H|K | N|Q|T|W|Z|C|F|Il|L |O|R|U[X|A|D|G|J |M|P |S|V]|Y

Figure 3 The first table with which students are presented in Secret Messages.

Plaintext |A|B|C|D|E |F|G|H]|I |J |[K|L|M|N|O|P|Q|R |[S|T|U|V[IW|X]|Y|Z

Ciphertext |E [G || K| M|O|Q|S|U|W|[Y|A|C |E|G|I |[K|[M|O|Q|S|U[W|Y|A|C

Figure 4 The second table with which students are presented in Secret Messages.

The first several questions ask the student to encrypt and decrypt messages using the table. The next couple of questions
ask the student to consider whether the mapping from plaintext to ciphertext is a function and whether the mapping from
ciphertext to plaintext is a function. Next, the student is provided with a different table for mapping plaintext to ciphertext
(see Figure 4).

The student is asked whether the rule in the table will work well for encrypting and decrypting messages, and then to
determine whether the mapping from plaintext to ciphertext is a function, as well as vice versa. The complete tasks WW,
AB, and SM are available in Appendix B.

Procedure

Cognitive interviews were conducted with one student at a time. Two researchers were present during each interview at all
times: one in the role of interviewer and the other in the role of observer. Each session lasted 60 minutes, during which
the student completed two to three CoF tasks designed to elicit evidence with respect to student standing on the CoF
LP. The definitions of function were presented at the beginning of the session, and participants were free to refer to them
throughout. Next, the tasks were presented. WW and AB were presented first, and time permitting, SM was presented last.
The student first worked the solution on paper, and then explained the work. The interviewer asked the student to clarify
explanations, providing prompts when necessary. To the extent possible, we used open-ended prompts to limit constraints
on student responding. The interviewer asked a few general questions at the end, such as, “Which tasks did you prefer,
and why?”

Results

In general, most students performed very well on these tasks. This was true even for SM, which was expected to be par-
ticularly difficult. Given that the minimum mathematics grade reported by students in this sample was B+ and that they
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Table 4 Sample Responses From Wanda’s Walk at Different Levels of the Learning Progression

Sample Response (does the graph of WW

Level  Explanation (learning progression interpretation)

represent a function?)

At this level, students can skillfully use alternative
equivalent representations.. .. [They] apply the
“one-valuedness” core idea in identifying functions (i.e.,
that each input is assigned to one and only one output).

They [students] have an operational notion of function and
are able to apply consistent rules to find outputs given
inputs. In other words, a notion of dependence and
outputs generated from inputs starts to develop at Level 3.
At this level, students would reject the following kinds
of functions: (a) many-to-one functions, (b) piecewise
functions, (c) discontinuous functions, (d) functions with
exceptional points, and (e) nondeterministic functions.

“Yes, it does represent a function. Looking closely at the

graph shows that each element of the domain (x-axis) is
paired with exactly one element of the range (y-axis).
The vertical line test is a common way to test functions,
and in this case the test worked. This graph is a
representation of a function.”

. “No, depending on the distance she is from home being

the input, it changes the time it takes for her to get back.
Time = input, distance = output. No, because there is no
rule to the line.”

. “Wanda’s walk to and from school does not represent a

function because she is at the same distance from her
home at different times. For instance, at both points A
and H, she is at her house.”

2 At this level, students can use an equation to generate “No, the distance away from home gradually increases with

ordered pairs in a table and/or plot points on a graph, but time, but it also decreases.”
this is carried out as a sequence of procedures. However,

students can grasp the “trend” in simple cases, namely,

they can recognize when a dependent variable changes

with an independent variable (the mutual change) and

may be able to characterize it as strictly increasing or

strictly decreasing.

Note. Boldfaced text in the Sample Response column are portions of the student response that correspond to boldfaced text in the
Explanation (learning progression interpretation) column.. WW = Wanda’s Walk.

volunteered to complete the CoF task set during the summer, it is likely that the sample consisted of highly motivated
and/or high-achieving students. As noted, this was a sample of convenience recruited from an online posting— our find-
ings might have been quite different had the sampling procedures been different.

Wanda’s Walk

To answer WW completely correctly requires at least Level 4 thinking. However, initial evidence from the cognitive inter-
views suggests that the task may also elicit evidence of student thinking that corresponds to earlier levels. In answer to the
question “At what point(s) in time is Wanda at home?” 13 participants selected A and H and two participants selected
only A. All 15 participants selected D to E in response to the question “During which of the following time intervals does
Wanda spend the most time?” All 15 participants also selected B to C in response to the question “During which of the
following time intervals does Wanda spend the least time?” Fourteen participants selected A to B and one participant
selected E to F in response to the question “During which of the following time intervals does Wanda have the greatest
speed?”

In response to the question “Does the graph of Wanda’s walk to and from school represent a function? Explain in terms
of time and her distance from home,” 11 participants responded “yes” and four participants responded “no.” Sample
student responses to this prompt are provided in Table 4, together with the levels of the LP with which they are aligned
(as determined by the authors). For each student response, the parts that are relevant to the LP and the text from the LP
to which they correspond are highlighted.

The responses in Table 4 are more or less canonical. The Level 4 response shows evidence of the one-valuedness concept
(that each element of the domain is paired with exactly one element of the range). The first response categorized as Level
3 suggests that the student rejects the graph as a function because there is no rule underlying it. The second response
categorized as a Level 3 suggests that the function is not a function because it is many-to-one (many time points map to

10 ETS Research Report No. RR-19-21. © 2019 Educational Testing Service



E. A. Graf et al. Evaluating Concept of Function Learning Progression

the same position). In the Level 2 response, the student observes a trend (that the graph increases and then decreases) but
rejects the function as such.

Annika’s Bakery

For task AB, responses to the prompt to “make a graph that shows the number of chocolate fudge cakes prepared on each
of the 7 days of the week” and to consider whether “the number of chocolate fudge cakes prepared each day [is] a function
of the day of the week” are provided in the right column of Table 5. Note that the graphs were drawn on paper and pencil
and have been rerendered in the figure. In contrast to the responses in Table 4, two of these responses (the second and
the third) are less canonical, and hence more challenging to categorize using the levels of the LP. Instead of assigning a
single level to each response, then, we assign a probability distribution to each response (based on the judgment of one
of the authors), where what is assigned is the probability that the response is at each level (probabilities for each response
sum to 1). These probabilities are shown in the far left column. The specific aspects of each level of the LP with which the
responses are aligned are shown in the middle column. The distribution of probabilities reflects the uncertainty about the
categorization of a response. For example, the first response in Table 5 is a benchmark Level 4, hence Level 4 is assigned
with probability 1.00. Responses 2, 3, and 4 are much less canonical, and this is reflected in their distributions.

Results from AB suggest that one misconception may persist into higher levels than we originally thought. Connecting
points with line segments or curves when the function is only defined at certain points, a difficulty hypothesized to emerge
at Level 2, persisted for students who otherwise demonstrated Level 4 thinking. Nine of the 15 students created a graph
either with points connected by line segments or line segments only.

Of the 15 participants, four at some point rejected the idea that the situation represents a function. Of the four par-
ticipants who at some point rejected the situation as representing a function, three rejected it on the grounds that the
relation is many-to-one. It is possible that these students have an overly restrictive definition of function as a one-to-one
function or that they believe that one-to-one and one-to-many relations are functions but many-to-one are not. Three of
the four students who rejected the graph in WW as showing a function also rejected the situation in AB as a function
for at least one of the representations. Another interesting finding of note from AB was that three of the four students
changed their minds about whether the situation describes a function, depending on the representation. Two of these
three changed their minds from believing the situation does not represent a function to believing that it does, one after
making the graph and the other after making the arrow diagram.

Secret Messages

Performance on SM was generally very high. All 15 students correctly responded to the prompts that asked them to encrypt
and decrypt messages using the first chart in the task. In the first chart, the mapping rule from plaintext to ciphertext is
one-to-one, so both the encryption rule and the decryption rule are functions. Thirteen of 15 students thought that both
the encryption rule and the decryption rule in the first chart represent functions; two students answered the question
for the encryption rule only (and responded that it is a function). In the second chart, the mapping rule from plaintext
to ciphertext is many-to-one, so the encryption rule is a function but the decryption rule is not. Three students did not
respond to prompts for the second chart due to time constraints.

Of the 12 students who provided complete responses, 10 responded “yes” to the question of whether the encryption
and decryption rules for the first chart represent functions, “no” to the question of whether the second chart will work
well for encrypting and decrypting messages, “yes” to the question of whether the encryption rule for the second chart
represents a function, and “no” to the question of whether the decryption rule for the second chart represents a function
(i.e., these 10 students responded correctly to these prompts). Of the students who responded incorrectly, one indicated
that neither the encryption rule nor the decryption rule for the second chart is a function, and this student also responded
“no” to whether the graph in WW represents a function and “no” to whether each of the representations in AB represents a
function. With respect to the second chart, the other student wrote, “Although this chart is incorrect, it still does represent
a function because there is an input and an output.” On WW, this student correctly responded that the graph represents a
function but identified the input as the speed at which Wanda is traveling. On AB, this student initially indicated that the
number of chocolate fudge cakes is not a function of the day of the week (but indicated that it is a function after making
the graph). Thus there is evidence that some difficulties persisted across tasks. However, two students who gave incorrect
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Table 5 Sample Responses from Annika’s Bakery at Different Levels of the Learning Progression

Sample response (make a graph that shows the

Explanation (learning number of chocolate fudge cakes prepared
Level progression interpretation) on each of the 7 days of the week)
6:0.00 At this level, students can skillfully use alternative
5:0.00 equivalent representations.. .. [They] apply the #of Chocolate Fudge Cakes Prepared Each Day
4:1.00 “one-valuedness” core idea in identifying functions 7]
3:0.00 (i.e., that each input is assigned to one and only -
2:0.00 one output). This student clearly has developed the g ®7
1: 0.00 “one-valuedness” concept. The points are not L > ¢ e
0: 0.00 connected, and the axes are accurately labeled. The 8 44
response is not above Level 4 because, according to 8 34 ° ° °
the LP, this task would not require understanding E 2
above Level 4, and the student has not exceeded 14
the requirements of the item. .
o T T T T T 1T 1
Mon. Tues. Wed. Thurs. Fri. Sat. Sun.
Day of Week
“The graph continues to support the fact that this is a function.
Here, every element of the domain has been paired with only
one element of the range. This means that the vertical line
test passes and is still a function”
6:0.00 This response was challenging to categorize because it 241
5:0.05 answers a somewhat different question than what
4:0.20 is asked (the graph is cumulative). Consistent with
3:0.55 Level 2, the points are connected. But the response Cl;‘;ii';es
2:0.20 to some extent has exceeded the requirements of 5
1: 0.00 the item, because it suggests an interpretation of
0: 0.00 slope as the average number of cupcakes within an
interval (Level 5). The student clearly has an
operational notion of function and is able to apply
a rule to find input given output (Level 3). Monday sunday

“Number of cupcakes made during each day is represented by
the slope of the graph. When no cupcakes are made, the
graph is flat” where more cupcakes are made, the slope

increases.”
6:0.00 The probabilities reflect the uncertainty in
5:0.00 categorizing this response. It combines features of 6
4:0.35 Levels 2, 3, and 4. Consistent with Level 2, the 9 4
3:0.45 points are connected, but consistent with Level 3, ":‘;
2:0.20 the notion of dependence has developed. 2
1: 0.00 Consistent with Level 4, the notion of 0
0: 0.00 “one-valuedness” has developed. M Tues. w ThursF  Sat. Sun.

Day
[Student made this graph when asked to make a table] “T still
believe this [that it represents a function] because it shows
me that the day of the week (the independent variable)
appears to determine how many cakes are made (the
dependent variable). I also believe it because the input is
paired with exactly one output.”

12 ETS Research Report No. RR-19-21. © 2019 Educational Testing Service



E. A. Graf et al. Evaluating Concept of Function Learning Progression

Table 5 Continued

Sample response (make a graph that shows the

Explanation (learning number of chocolate fudge cakes prepared
Level progression interpretation) on each of the 7 days of the week)
6:0.00 This response reflects the misunderstanding that
5:0.00 many-to-one functions are not functions, which is
4:0.00 typical of Levels 2 and 3. 1
3:0.40 T
2:0.60 T
1: 0.00 #of
0:0.00 cakes 1

M TT F-S
days of the
week
“I still believe that the number of cakes is not a function of the
day of the week. If you look at the graph, you can see the
amount of cakes sometimes stays the same for different days
of the week. If the number of cakes is the range and the day
of the week is the domain, then some elements of the domain
are paired with the same range.”

responses on both WW and AB responded correctly to SM, so it is possible that SM was easier or that learning occurred
during the course of the interview for these students.

Table 6 shows sample responses from three students to three prompts from SM. The prompts appear in the top row of
the table, and responses from each student appear in each of the following rows. The first two sets of responses are clear
Level 4s. The third set of responses is likely also Level 4, but since the responses are brief and less precise, this is more
uncertain than for the first two sets of responses. If we were to assign probability distributions to these sets of responses,
the first and second sets would receive a Level 4 with very high probability, but the probabilities in the third set would be
more distributed across levels.

Expert Panel
Method
Panelists

The expert panel consisted of four subject-matter experts. The panelists were recruited based on recommendations from
colleagues with whom they had done similar work. Two of the panelists are from universities where they hold profes-
sorships: one in mathematics and the other in mathematics education. The other two panelists are from the Assessment
Development division of Educational Testing Services (ETS) in Princeton, New Jersey, and have expertise in item devel-
opment and assessment design.

Materials

The panel was provided a packet of materials that included a brief summary of the literature on which the CoF is based,
the full CoF LP, the CoF task set (WW, AB, and SM), sample student responses to the CoF task set (the samples were
those in Table 4 and Table 5), and guiding questions to frame their reviews of the CoF LP. They were also provided a
spreadsheet in which to complete a level-scoring activity, together with instructions for how to complete the activity. The
guiding questions are as follows:
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Table 6 Sample Responses From Secret Messages

Is the mapping from the plaintext to the
ciphertext a function? Is the mapping
from the ciphertext to the plaintext a
function? Explain. (First chart)

Do you think this chart
will work well for encrypting and
decrypting messages? Why or
why not? (Second chart)

Is the mapping from the plaintext to the
ciphertext a function? Is the mapping from
the ciphertext to the plaintext a function?
Explain. (Second chart)

The mapping from plain text to
ciphertext is a function, and the
mapping from ciphertext to plain text
is a function, because each letter of
the alphabet (plaintext) corresponds
to only one ciphertext letter. The
same is to be said of the decryption of
ciphertext to plaintext. Plaintext “A”

corresponds to only ciphertext “B.”
The mapping of the plaintext to the

ciphertext and the mapping from the
ciphertext to the plaintext are both
functions, because any one element
from the plaintext or the ciphertext is
paired with one element from the
other text.

They are both functions, because both

of them have only one.

No, the new chart has multiple letters
that correspond to a ciphertext letter.
Although encryption will be fine, the
decryption is impossible. How do I
know if ciphertext “A” corresponds to
“L” or “Y?

This chart will not work for encrypting
and decrypting messages because the
ciphertext has repeated letters. So you
wouldn’t be able to tell which letter
from the plaintext it goes with.

It will not work well because there is
more than one output for some
inputs.

The mapping from plaintext to ciphertext is
a function because each of the plaintext
corresponds to only one ciphertext letter.
The ciphertext to plaintext is not because
each cipher text corresponds to more
than one plaintext letter.

The mapping from the plaintext to
ciphertext is a function because each
letter has one letter that it is paired with.
The mapping from ciphertext to
plaintext is not a function because
certain letters are paired with two letters.

Plaintext to ciphertext is because no two
letters are repeated in plaintext, but in
ciphertext, it is not, because it does
repeat letters.

1 Can this LP be used as a framework for designing assessment and research right now? Please note any internal

consistencies in the LP.

oOoNOoOYuUVT A~ WN

Is the LP consistent with research or content from related work on LPs or learning trajectories?

Are the examples of student work consistent or inconsistent with the LP?

How do you think this is useful for the purpose of assessment development?

How do you think this is useful for the purpose of advancing the research field?

How do you think this is useful for the purpose of informing student learning and teacher instruction?
How can this be useful for the purpose of informing the construction of psychometric models?

To what extent is the LP aligned with the CCSSM?

The first few rows of the level-scoring spreadsheet are shown in Figure 5. The first column has student responses to

the prompt “Does the graph of Wanda’s walk to and from school represent a function? Explain in terms of time and her
distance from home” from WW. Responses from 11 students were included (the responses from the other 4 students,
given in Table 4, were excluded since they were given as samples). The second through eighth columns correspond to
score categories for each level of the LP. Level 0 is for responses that are missing, below Level 1, or unclear. Panelists were
asked to enter the probability that a response is at each level, as we did for the responses in Table 5.

The ninth column of the spreadsheet shows the sum of the probabilities in the level columns. Initially, this column
was highlighted in red with a sum of 0. As panelists entered probabilities for a response, the sum changed, and once the
probabilities for the response summed to 1, the sum cell changed from red to white. Panelists entered their comments
pertaining to how responses were scored in the final column. The first row was already complete when the spreadsheet
was given to the panelists; it was intended as an example of how the spreadsheet should be filled out.

Procedure

Panelists completed their work over the course of about a month. They engaged in two main activities: providing written
feedback on the LP and scoring student responses using levels of the LP. We used the same procedure with the panelists
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Student Response |Level O Level1 [Level 2 Level 3 Level 4 Level 5 |Level 6 Sum Comments

Response It seemed to me
that this response
was actually much
more sophisticated
than what would be
suggested by a Level
1 or Level 0, but the
LP description
suggested this was
closest to Level 1,
with some features
of Level 0 and some
features of Level 2.

0.25 0.60 0.12 0.03 0.00] 0.00 0.00 1.00

Yes, her distance
from home is a
function of time,
where distance is the
dependent variable
and time is the
independent
variable. At any one
time she is only one
distance from home.

Yes, because for
every input of time
she has gone
through a new
output of distance
from home is given.

Figure 5 Level-scoring spreadsheet completed by each member of the expert panel.

from the universities and the panelists from ETS, however, the time frames for the two sets of panelists were staggered so
that the procedure was conducted twice: once for the university panelists and once for the ETS panelists. Before they began
their work, we gave each set of panelists a 45-minute slide presentation in which we introduced the materials and outlined
the guiding questions, and discussed general expectations for the reviews and the level-scoring activity. Both introduc-
tory sessions were conducted remotely by video conference. The materials were e-mailed to panelists in advance of the
introductory sessions so that they could ask questions about them at the sessions. They were asked to read the literature
summary; to study the CoF LP, tasks, and student responses; and finally to do the level-scoring activity, time permitting.
Each panelist was asked to deliver a synthesis of impressions about the LP, the research behind it, and the samples of stu-
dent work and also to make specific suggestions for revisions. Although the guiding questions were provided, the task was
deliberately open ended.

For the level-scoring activity, each panelist completed the spreadsheet independently. Panelists were reminded that
there are no “correct” answers and that the probabilities should “reflect your judgment based on your interpretation of
the LP.” They were encouraged to assign probabilities to levels based on how the LP is written, even when they disagreed
with the level descriptors. For example, a response that seems very sophisticated but is still consistent with the LP level
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description for Level 2 should be assigned a high probability for Level 2. All panelists had sufficient time to complete the
spreadsheet.

Each panelist returned his or her materials (the review and the completed spreadsheet) to us via e-mail. We reviewed
the materials and developed slide presentations summarizing the content of the reviews (one presentation for each pair of
panelists). We held a 30-minute debriefing session with each pair of panelists in which we delivered the slide presentation
and asked any questions we had about the reviews. Both debriefing sessions were held by video conference.

Learning Progression Feedback: Results

We received both general and specific feedback from the panelists. As part of the general remarks, one of the panelists
pointed out that no one task will address all themes or progress variables and that we should specify, for each task, which
progress variables or aspects of the LP the task is intended to assess. Another panelist recommended developing task
models to support the transition from the LP to task development. Task models are components of evidence-centered
design (Mislevy et al., 2003), which specify the features of tasks that elicit the requisite evidence. Developing task models
for an LP would entail describing the features of tasks that provide evidence that a student is at a particular level. For the
long term, one of the panelists suggested that we establish links between the CoF LP and LPs for specific kinds of functions
(e.g., linear functions, quadratic functions, and exponential functions). Also for the long term, we were encouraged to
consider how the LP could be used as a guide for curriculum development and implementation, classroom instruction,
individual student learning, diagnostic purposes, differentiated instruction, and teacher professional development.
Expert panelists proposed the following specific changes to the LP:

e The notion of function as formula is at Level 2, but evaluating expressions may occur earlier, at Level 1.

e Add clarifying language that interpreting a graph as a picture does not only occur at Level 2; rather, it is a miscon-
ception that persists from Level 2 up through Level 4 —as reflected by the timeline of difficulties in Table 3.

e Keep “understand function notation as a rule” at Level 3 in the LP and move “understand the domain as a set of
input values” up to Level 4 (perhaps move the high school CCSSM standards from Level 3 up to Level 4 so that
Level 4 of the LP lines up with the high school CCSSM).

e Add clarifying language to Level 3 to emphasize that students at this level will not go straight from an equation to
a graph without first making a table of values.

e Add clarifying language that when a function is not strictly increasing or decreasing, students at Level 4 visualize
how one variable does (or does not) change with the other by describing how the graph changes over different
intervals.

e Add clarifying language to indicate that slope as a rate of change is also a feature of Level 4 (and not just Level 5).
Level 5 seems to indicate that any time a student refers to slope as a rate of change, the student is at Level 5. Since
students are thinking about covariation at Level 4, it seems that slope as a rate of change would be a feature that
students would be familiar with at Level 4.

e Update language at Level 4 to say that students can only apply procedures to compose functions and find inverses
at Level 4. Level 5 seems to imply that students can only apply procedures to compose functions and find inverses
at Level 4, but at Level 5, they can compose functions and find inverses with greater conceptual understanding.

e Add clarifying language to Level 5 of the LP from “students may conflate the domain and range with a particular
set of inputs and outputs” to “students may conflate the domain and range of a function with a finite set of inputs
and outputs that they determined.”

e Function notation is not required at Grade 8 of the CCSSM (which seems to primarily correspond to Level 3). Move
function notation to a higher level.

Level-Scoring Activity: Analysis and Results

Note that although the level-scoring activity was completed by the expert panelists, we refer to them here as “raters”
for consistency with the rater agreement literature. The data for the level-scoring activity consisted of the probability dis-
tributions from each of 4 raters to each of 11 responses to the WW prompt “Does the graph of Wanda’s walk to and
from school represent a function? Explain in terms of time and her distance from home.” Note that the raters pro-
vided probabilities for only 11 responses because we did not include the four responses that were used as examples
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in the rater packets (see Table 4). For each response and each pair of raters, we calculated two distance measures, the
Kolmogorov-Smirnoff distance (Agg) and the sum of the squared distances. Agg is defined as follows. For rater  and
response i, let P;=(P;;, Py, ... , Pyj;) be the vector of cumulative probabilities, where P,; is the cumulative probability
that rater r assigned to response i for score category j. Then A for raters  and s on response i is defined to be

AKS (Pm’P ) =max(|Pn‘1 _Psi1|’|Pri2_Psi2|’|Pri3 _Psi3|’ ’|Prik_Psik|)' (1)

The sum of the squared distances is defined as follows. For rater r and response i, let p,; = (p,i1> Priz> --- »Prit) be the
vector of probabilities, where p,;; is the probability that rater r assigned to response i for score category j (note that P,;; =

j
> p,in)- Then, Agg is defined to be
h=1

=~

Ags (Pis Psi) Z(Prz] psz]) : (2)

=1
For each type of distance, we calculated the mean distance across pairs of raters for each response:

AKS < > ZA ri’ sz (3)

r<s

b -1
ASS,‘; = <2> 2 A (pri’ psi) ’ (4)

r<s

. . 4 o .
where b is the number of raters and 1 <r <s<b. In this case, there are <2> , or six pairs. The third and fourth columns

of Table 7 show Agg. and Agg_, respectively.

The responses in Table 7 are sorted in descending order of A and then in descending order of Agg . We consider
the first three responses in the table here. Response 2 split raters between Level 3 and Level 4. In their comments, the
two raters who assigned a Level 3 with greater probability indicated that the response “does not specify one-valuedness”
and that it “does not describe one-valuedness precisely.” One of the raters who assigned Level 4 with greater probability

Table 7 Mean Distances Across All Possible Pairs of Raters for Each Response to a Prompt From Wanda’s Walk

Resp. Student response Ags, Agg,
2 Yes, because for every input of time, she has gone through a new output of distance from home is given. .60 .92
4 Yes, the graph of Wanda’s walk to and from school does represent a function because for every certain .53 48
amount of distance, there is exactly one certain amount of time.
6 Yes, the graph of Wanda’s walk to and from school does represent a function because the definition of a 48 .54
function is that every input is paired with exactly one output. And in this case, the inputs are the
timer and the outputs is the distance from her house.
3 No, it does not. By definition of a function, every input has one output value. This is not the case 42 53
between B and D where she went back closer to home and then started back to school.
9 Yes, Wanda’s walk to and from school does represent a function because the speed in which she’s .35 .36
traveling (input) determines how long it takes her to make the trip to and from school (output).
1 Yes, her distance from home is a function of time, where distance is the dependent variable and time is .30 24
the independent variable. At any one time, she is only one distance from home.
5 Yes, because there is only one distance from home each time. Since “time” is the x-axis, and “distance .30 24
from home” is the y-axis, there can be only one y-value paired to an x-value. This is a function
because for each time, Wanda is only one distance from home.
11 Yes, because at every point in time, she is exactly and only one set distance from her house. .30 24
Yes, Wanda’s walk to and from school represents a function because every input has exactly one output, .30 22
meaning no input has more than one output. Therefore, by the definition of a function, Wanda’s walk
to and from school represents a function.
Yes, because at one certain time, she is at one distance. One input is paired with one output. .30 21
10 Yes, the graph is a function because it relates her distance from her home in terms of the time she spent 22 11

doing this.
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Table 8 Berry and Mielke’s Kappa for Each Pair of Raters and Overall

Probability distributions Level with maximum probability
Distance Agg Agg Ao Ay
Rater 1/Rater 2 25 40 43 44
Rater 1/Rater 3 32 49 A48 .59
Rater 1/Rater 4 .39 .56 .79 91
Rater 2/Rater 3 17 .37 .39 .59
Rater 2/Rater 4 .16 .30 31 42
Rater 3/Rater 4 A48 51 .35 .58
Overall 29 43 44 .58

noted that “likely L4 uniqueness is understood,” while the other rater who assigned greater probability to Level 4 did not
comment. It seems that raters were split on whether Response 2 provided evidence of one-valuedness.

Three of the four raters noted that in Response 4, the independent and dependent variables were reversed; their dis-
tributions were inclined toward lower levels than was the rater who did not make this observation. This response seems
to have split raters because the error may not have been noticed by all raters, and when it was, there may have been some
uncertainty as to how the error should be handled.

The disagreement for Response 6 seems to have occurred because one rater assigned a low probability to Level 4 (“The
response shows weak evidence of Level 4”), while the other raters assigned a probability of .5 or greater to Level 4.

To evaluate the agreement among the multiple raters, we make use of the generalized version of Cohen’s (1960) kappa
developed by Berry and Mielke (1988). Let n be the number of responses. In their formulation,

k=1-2 (5)
Hs
where, for the KS distance, |
b - n
5= [n <2>] ; Z‘: Ags (P, Py) (6)

and

-1 n n
ps = [nZ (;’)] PIDIPIE (Pr,., st) . )
i=1 j=1 r<s

The & in Equation 6 can be interpreted as the observed disagreement and the pi5 in Equation 7 as the expected dis-
agreement. The A (P
whereas the Ay (P
tion of Berry and Mielke’s kappa for Ay can be obtained in a similar fashion with the necessary changes.

We calculated Berry and Mielke’s kappas using each of Agg and Agg as distances, for each pair of raters and overall.
The results are shown in the second and third columns of Table 8.

In addition, we calculated Berry and Mielke’s kappas using two other types of distances. Let level ... (i1 Pyi2 Pris. ... Prik)
be the score category corresponding to the maximum probability among the p,;. Since score categories can be tied for the
maximum probability, let max(level, .. (p,;1 P,i2 Pris, ... Prix)) be the highest score category among score categories with
the maximum probability. Then Ay, for raters  and s on response i is defined to be

«i» P;)s refer to the distance between distributions for corresponding responses between two raters,

ri» Pgj)s refer to distances between distributions from all paired combinations of responses. The defini-

AMU (pri’PS,‘) — {0 if max ‘(levelmax (pril’priZ’ ’prik)) = max (levelmax (Psil’psiZ’ o ’psik)) s (8)
1 otherwise,
and A,y is defined to be
Apw (Pn" psi) = (max (levelmax (pril’priZ’ ’prik)) — max (levelmax (psil’psiz’ ’psik)))z' ©))

Kappas based on Ay and Ay were calculated for all pairs of raters and overall. These values are shown in the last two
columns of Table 8. Note that Berry and Mielke’s pairwise kappas based on A; are equal to Cohen’s (1960) unweighted
kappas between the score categories with maximum probability. Similarly, Berry and Mielke’s pairwise kappas based on
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Ay are equal to quadratically weighted kappas between the score categories with maximum probability. This is because
when the distance is 0 for matching scores and 1 for mismatched scores, Equation 5 is equivalent to Cohen’s kappa. And
when the distance is the squared difference between scores, Equation 5 is equivalent to quadratically weighted kappa.

The equivalence of these agreement statistics is shown in simplified form by Gwet (2014, par. 3.2). He shows that using
the squared Euclidean distances for binary ratings of two raters that are dummy-coded using a vector in Equation 5 results
in Cohen’s kappa (so only one element of p,; would be 1, and all others 0). In our case, we do not have vectors with 0s
and 1 but a vector with probabilities. However, since the definitions of Ay and Ay effectively reduce the probability
vectors to regular rating data, the equivalence between the agreement statistics should be relatively obvious. For example,
for p,;=(0.1, 0.2, 0.5, 0.2) and p,; = (0.4, 0.3, 0.2, 0.1), the regular ratings based on the maximum probability would be 3
and 1, with Ay;y =1and Ay =4

Landis and Koch (1977) proposed a set of benchmarks for evaluating kappa. Less than 0.00 is considered poor agree-
ment, 0.00-0.20 is slight, 0.21-0.40 is fair, 0.41-.0.60 is moderate, 0.61-0.80 is substantial, and 0.81-1.00 is almost
perfect agreement. The kappas based on Agg are higher than the kappas based on Agg, and the kappas based on A,y are
higher than the kappas based on A, suggesting that when raters disagree, the disparity in their disagreements tends to
be smaller rather than larger. With one exception, the kappas based on Ay, are higher than the kappas based on Ay,
and the kappas based on Ay are always higher than the kappas based on Agg, suggesting that agreement is higher on the
scores corresponding to the maximum probabilities than on how probabilities are distributed across scores. The kappas
with Rater 2 tend to be lower than the kappas with the other raters.

Summary

We evaluated the CoF LP using three sets of results: student responses to cognitive interviews, recommendations from an
expert panel, and probability distributions from a level-scoring activity, also provided by the panel. We now address each
of the research questions that we outlined in the introduction.

Research Question 1

Task performance on the cognitive interviews was in general very high. This was somewhat surprising, given the findings
that misconceptions about CoF continue through the college years. However, this sample consisted of highly motivated,
high-achieving students. Performance was likely further bolstered by access to the definitions of function. This was done
because we wanted to assess student understanding of the CoF rather than the ability to recall a definition.

We did not see very many instances of performance typical of earlier levels of the LP. Nevertheless, some misconceptions
were evident. One of the main findings from the cognitive interviews is that at least through Level 4, students continue
to connect points with line segments when a function is only defined at certain points. Although this misconception is
documented in the literature (Leinhardt et al., 1990), one of the panelists commented that it is rarely addressed by the
curriculum, which is a possible explanation for why it persists into the higher levels. As a result, we modified the LP to
make it clear that this misconception persists through Level 4.

Another finding from the cognitive interviews is that a few students rejected functions as functions on the grounds that
they were many-to-one. This misconception is addressed by the LP and persists through Level 3. We also saw evidence of
rejecting a function as such because “it has no rule” (see the second example in Table 5). This is also addressed at Level 3
of the LP. Also, there seemed to be some consistency on the part of students who rejected functions as functions: three of
the four students who rejected the function in WW as such also at some point rejected the function in AB as such. Three
of four students who responded incorrectly to the questions of whether the encryption rule and decryption rule is each a
function in SM also indicated that at least one of the representations in WW and/or AB is not a function. These findings
would tend to support the specification of levels in the LP.

On a more task-specific note, there were a few instances where students did not answer both parts of Questions 3, 4,
and 5 of task SM. This can be addressed by breaking each of these questions into two parts, for example, Question 3 can
be split into two questions, as follows:

3a. Is the mapping from the plaintext to the ciphertext a function? Explain.
3b. Is the mapping from the ciphertext to the plaintext a function? Explain.
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Table 9 Mappings Between Tasks Wanda’s Walk, Annika’s Bakery, and Secret Messages and Progress Variables

Task Progress variable assessed Progress variable demand
Wanda’s Walk
a Covariation/interpretation Pointwise/static
b Multiple representations Integrated (graph — text description)
Covariation/interpretation Global/dynamic
c Covariation/interpretation Global/dynamic
d Function definition/domain & range As outputs dependent on inputs
Annika’s Bakery
a Function definition/domain & range As outputs dependent on inputs
b Multiple representations Integrated (text description — table)
Covariation/interpretation Pointwise/static
c Function definition/domain & range As outputs dependent on inputs
d Multiple representations Integrated (table — graph)
Covariation/interpretation Pointwise/static
e Function definition/domain & range As outputs dependent on inputs
f Multiple representations Integrated (text description/table/graph — arrow diagram)
Secret Messages
1,2 Covariation/interpretation Pointwise/static
3,4,5 Function definition/domain & range As outputs dependent on inputs

Research Question 2

The expert panel was positive about the LP, however, they did give both general and specific suggestions for revision.
We made all of the specific suggestions recommended by the panel, except for the suggestion to “add clarifying language
to Level 5 of the LP from ‘students may conflate the domain and range with a particular set of inputs and outputs’ to ‘stu-
dents may conflate the domain and range of a function with a finite set of inputs and outputs that they determined.”
This misconception was based on expert opinion rather than findings from the literature, and on further discussion, we
decided there was insufficient evidence for its existence, so we removed it from the LP.

Most of the general suggestions pertain to long-term revisions or extensions to the existing work (e.g., the development
of task models). As yet we have not made these revisions. However, we did address the suggestion to make explicit the
themes or progress variables from the LP that are assessed by the existing tasks. These mappings are shown in Table 9. The
first column shows the task (tasks are subdivided into parts), the second column shows the progress variable(s) assessed
by the task part (progress variables are given in Figure 1), and the last column shows the level of the progress variable
demanded by the task (also from Figure 1). For example, identifying at which points Wanda is at home requires only
pointwise/static interpretation, but describing what she does across time intervals requires global/dynamic interpretation.
Apart from recommending the development of task models and mapping the tasks to progress variables, experts did not
suggest any revisions to the tasks.

Research Question 3

Some of the student responses from the cognitive interviews seemed straightforward to classify using the levels of the LP,
while other responses seemed less canonical, showing features of multiple levels of the LP. We believe this is to a large
extent unavoidable, since as has been noted by others, an LP does not assume that students always perform consistently
at a particular level. It was for this reason that we asked panelists to assign probability distributions, rather than single
scores, to each student response.

Research Question 3a

The results from the level-scoring activity point to a few responses that were not classified consistently among raters,
as reflected by the average distances between pairs of raters’ probability distributions. For one of the responses, raters were
split as to whether the student showed understanding of one-valuedness. Another response was not consistently classified
because raters had a difference of opinion on how to treat the reversal of the independent and dependent variables. While
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Table 10 Revised Version of Timeline of Concepts and Skills

Skill/concept Level 1 Level 2 Level 3 Level 4

Extend patterns in one dimension X
Evaluate formulas X
Plot points on a graph

Detect increasing/decreasing trends

Interpret function notation

Understand notion of dependency

Recognize equivalent representations

Understand domain as a set of inputs

Understand range as a set of outputs

Understand covariational reasoning

Understand “one-valuedness”

Compose and find inverses

<<
PR R KA

PP DA P DA R K R R

these results suggest something about the nature of responses for which there may not be consensus, we do not think that
by themselves they implicate revision to the LP. If we see evidence that many students are consistently making the same
kinds of errors (e.g., reversing the independent and dependent variables) when we evaluate the LP with a greater number
of tasks and a larger sample size, then we may modity the LP to account for this.

Research Question 3b

With respect to the level-scoring activity, agreement among raters is higher when the kappas are based on distances
between scores with the maximum probabilities than when they are based on distances between classification proba-
bilities. It has been suggested in the literature that student performances may show aspects of multiple levels, but raters do
not agree very well on what the classification probabilities across levels should be. Rather, they agree better on the most
likely level of performance.

The revised LP, based on the results of the cognitive interviews and the feedback from the panel, is shown in Appendix
A. Some of these changes also required modifications to the timeline of concepts and skills, the revised version of which
is shown in Table 10.

The results from the cognitive interviews and recommendations from the expert panel informed initial revisions to the
LP. A next step is to develop task models for additional tasks that assess both higher and lower levels of the LP. It may also
be advisable to conduct additional cognitive interviews with a diverse sample of students. This would be followed by a
large-scale empirical recovery study. If the levels of the LP are empirically recovered, we will follow the recommendation
of one of our panelists and propose how the LP could be used as a guide for curriculum development and implemen-
tation, classroom instruction, individual student learning, diagnostic purposes, differentiated instruction, and teacher
professional development. This would pave the way for an evaluation of instructional efficacy, the last step in the cycle for
validating an LP. Such as evaluation could be carried out through teaching experiments, as proposed by Shavelson (2009).
Such an experiment might involve comparing LP-based instruction to traditional instruction.
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Notes
1 CCSSM, high school Standard F-IE5.
2 CCSSM, high school Standard F-IE.2.
3 CCSSM, high school Standard F-IF.4, brackets added.
4 CCSSM, high school Standard F-IE6.
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5 CCSSM, high school Standard F-IE 1.

6 CCSSM, high school Standard F-IE3. Note that understanding sequences as examples of functions is very different from working
with sequences. It is expected that students would work with sequences early on (they are usually students’ first exposure to
functions). Students can extend sequences at Level 1.

7 CCSSM, High School Standard F-IE7.

8 CCSSM, p. 67.

9 CCSSM, eighth-grade Standard 8.E2.

10 CCSSM, eighth-grade Standard 8.F5.

11 CCSSM, eighth-grade Standard 8.F.1.

12 See Carlson and Oehrtmann (2005).

13 According to Leinhardt et al. (1990), functions of time are both more common and easier to grasp.

14 See Vergnaud (1983) for the distinction between scalar and functional strategies.

15 CCSSM, high school Standard F-IES5.

16 CCSSM, high school Standard F-IE.2.

17 CCSSM, high school Standard F-IE 4, brackets added.

18 CCSSM, high school Standard F-IE.7.

19 CCSSM, high school Standard F-IE6.

20 CCSSM, high school Standard F-IE.1.

21 CCSSM, high school Standard F-IE3. Note that understanding sequences as examples of functions is very different from working
with sequences. It is expected that students would work with sequences early on (they are usually students’ first exposure to
functions). Students can extend sequences at Level 1.

22 See Carlson and Oehrtmann (2005)

23 CCSSM, p. 67.

24 CCSSM, eighth-grade Standard 8.E2.

25 CCSSM, eighth-grade Standard 8.E5.

26 CCSSM, eighth-grade Standard 8.E1.

27 According to Leinhardt et al. (1990), functions of time are both more common and easier to grasp.

28 See Vergnaud (1983) for the distinction between scalar and functional strategies.
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Appendix A: Concept of Function Learning Progression

Concept of Function Learning Progression Prior to Review

Level 6: Drawing Extensions

At this level students can recognize, produce, and work with nondeterministic
functions and functions with discontinuities or exceptional points like corners.

At this level students may have slips, but there wouldn’t be any consistent difficulties.

This level represents a professional mathematician’s level of understanding of the
concept of function. Students at this level understand the formal set-theoretic
definition of function and connect it to core ideas about inputs and outputs and
covariational reasoning that have been developed earlier. At this level students
recognize families of functions as parameterized objects and understand the role of
the parameters within those families. Students at this level take greater care with the
ideas of domain and range, understanding that changing the domain of a function
changes the function. They can “Relate the domain of a function to its graph and,
where applicable, to the quantitative relationship it describes. For example, if the
function h(n) gives the number of person-hours it takes to assemble # engines in a
factory, then the positive integers would be an appropriate domain for the

function. %!

Students at this level are able to view functions as objects or points in a space. Students
understand the algebra of functions. For example, if f and g are real-valued functions,
then f 4+ g and f-g are defined as (f + ¢)(x) =f(x) + g(x) and (f-g)(x) =f(x)-g(x);
alternatively, if f and g are functions from a set to itself, then f-g can be defined by
(f-8)(x) =f(g(x))-

Level 5: Thorough Conceptualization

At this level students can comfortably use function notation, and can transform
functions. As expressed in the CCSSM: “[Students can] Use function notation,
evaluate functions for inputs in their domains, and interpret statements that use
function notation in terms of a context.”” Since students attend to global features of

graphs, they are unlikely to make any of the more common graphing errors that

emerge at Level 2. “For a function that models a relationship between two quantities,

[they can] interpret key features of graphs and tables in terms of the quantities, and

sketch graphs showing key features given a verbal description of the relationship. Key

features include: intercepts; intervals where the function is increasing, decreasing,
positive, or negative; relative maximums and minimums; symmetries; end behavior;
and periodicity.x”* They are just starting to understand the role of parameters in
some function families to the extent that they can recognize how changes in some of
these parameters influence the behavior of graphs. In addition, they are unlikely to
overgeneralize linear or quadratic functions, but can apply linear approximation

when appropriate. Students can: “Calculate and interpret the average rate of change of

a function (presented symbolically or as a table) over a specified interval, [and]
estimate the rate of change from a graph.x”* Students compose functions and find
inverses not just by applying procedures (such as switching x and y and solving for y
or reflecting a graph across the line y = x), but with greater conceptual understanding.

Full Abstraction

A function is perceived as an
object that can be operated
upon; understanding of
domain and range is also
well-developed

Object Perception of a
Function

A function is perceived as an
object that can be
operated upon
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Continued

At this level students have difficulty with Although students at this level understand that a
function is not necessarily given by a formula, they may still have difficulty recognizing some
kinds of functions (e.g., nondeterministic functions or discontinuous functions). Also
characterizing the domain and range may also still pose difficulty, for example, students may
conflate the domain and range with a particular set of inputs and outputs.

At this level, students think of functions as expressed in the CCSSM: “Understand that a function

from one set (called the domain) to another set (called the range) assigns to each element of
the domain exactly one element of the range. If f is a function and x is an element of its
domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the
graph of the equation y = f(x).”® Rather than abandoning what they have learned about the
notion of dependence, students at this level build on it, and apply the CCSSM definition of
function flexibly, as the situation demands. An additional important understanding that is
acquired at this level is the ability to identify sequences as functions. This is expressed in the
CCSSM standard: “Recognize that sequences are functions, sometimes defined recursively,
whose domain is a subset of the integers. For example, the Fibonacci sequence is defined
recursively by f(0)=f(1) =1, f(n+ 1)=f(n) + f(n— 1) forn > 1.”¢

Since they now conceive of a function as an object, students are beginning to understand the role
of parameters in some families of functions (e.g., they understand how changing the slope or
the intercept of a linear function changes its graph).

Level 4: Synthesis

At this level students can skillfully use alternative equivalent representations, and can identify
features that are common to equivalent representations (e.g., they can identify a y-intercept by
looking at a graph, equation, or table). They can “Graph functions expressed symbolically and
show key features of the graph, by hand in simple cases and using technology for more

complicated cases.x””

Because they are thinking in terms of inputs and outputs, students at
this level can start to compose functions and find their inverses. Students at this level are
working successfully with functions for which the independent variable is not necessarily time
(or dependent on time), and they can start to find the equation from a table or a graph for

simpler functions.

At this level students have difficulty with still overgeneralizing linear functions but only in more
subtle situations (e.g., interpolation between points), and linear approximation is applied as a
technique rather than as an overgeneralization. They may still have difficulty expressing rules
in formal notation.

At this level, students have a fully developed notion of dependence; that is that a function
operates on inputs to yield outputs. Their interpretation of functions is no longer pointwise;
they think about how the dependent variable changes with the independent variable and the
specific nature of that change; in other words, they think about how variables covary.
Interpretation of domain and range has not changed from Level 3. Students accept that a
function may be associated with more than one computational process (though it is not a
requirement that they be able to prove their equivalence). Students at this level are attending to
the meaning of features of graphs of functions such as minima, maxima, and asymptotes.
Students at this level apply the “one-valuedness” core idea in identifying functions (that is, that
each input is assigned to one and only one output). In other words, they have a complete
understanding of the CCSSM 8.F definition of function (see Level 3). Students at this level are
using patterns of change to select an appropriate function to model a situation; i.e., they can
start to find the equation from a table for simpler functions. At this level students fully

Full Covariational
Relationship

Scheme of a function as a
dependency relationship
between quantities, with
full linking between
alternate representations
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recognize that ‘a function can be described in various ways, such as by a graph (e.g., the trace
of a seismograph); by a verbal rule, as in, “T'll give you a state, you give me the capital city;” by
an algebraic expression like f(x) = a + bx; or by a recursive rule.”® At this level they are fluent
with “Compar[ing] properties of two functions each represented in a different way
(algebraically, graphically, numerically in tables, or by verbal descriptions).” Students at this
level can: “Describe qualitatively the functional relationship between two quantities by
analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear).
[They can also] sketch a graph that exhibits the qualitative features of a function that has been

»10

described verbally.

Level 3: Making Connections

At this level students can start to see the link between different representations of a function
(equation, table, graph, verbal description), and recognize that different, but equivalent
formulas can be used to represent the same function, even if they cannot always demonstrate
their equivalence. They also recognize that rules for functions are not necessarily characterized
by formulas. They can more easily translate from equations to graphs and tables than the
reverse.

At this level students have difficulty with generating an equation from a table or a graph, i.e.,
producing the reverse translation between representations, even though they may be able to
recognize it. When graphing, students at Level 3 may make some of the same errors as at Level
2, though less frequently. At this level, students might still reject the following kinds of
functions as such: (1) Many-to-one functions, (2) piecewise functions, (3) discontinuous
functions, (4) functions with exceptional points, and (5) nondeterministic functions. Students
at this level still overgeneralize linear functions to nonlinear situations.

At this level, students are starting to think of functions as expressed in the CCSSM, though they
have not yet developed the one-valuedness aspect of the definition: “Understand that a
function is a rule that assigns to each input exactly one output. The graph of a function is the
set of ordered pairs consisting of an input and the corresponding output.”!! They have an
operational notion of function, and are able to apply consistent rules to find outputs given
inputs. In other words, a notion of dependence and outputs generated from inputs starts to
develop at Level 3. They understand the domain as a set of input values (or set of first
coordinates in an ordered pair), and the range as a set of output values (or the set of second
coordinates in an ordered pair).

Students at this level are more easily working with functions of time, since these kinds of
functions follow a chronological sequence that is more familiar from everyday life. Because
they are starting to think in terms of inputs and outputs, function notation is less problematic,
though some errors are still common without scaffolding support (e.g., f(g(5)) may be
interpreted as “the value of f when g is 5,” and f and g may be confused with variables.!?
Though their interpretation of functions is still primarily pointwise, they are starting to
distinguish among types of functions by observing the pattern of change.

Level 2: Familiarization

At this level students can use an equation to generate ordered pairs in a table and/or plot points
on a graph, but this is carried out as a sequence of procedures. However, students can grasp the
trend in simple cases, namely, they can recognize when a dependent variable changes with an
independent variable (the mutual change), and may be able to characterize it as strictly
increasing or strictly decreasing.

Generalized
Relational-Function as a
Rule

Scheme of a relationship
between quantities
rule-wise, bound to specific
representation, with early
linking between some
alternate representations

Local Relational — Function
as a Formula

Scheme of a relationship
between quantities
pointwise, bound to a
computational process or
algebraic expression
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At this level students have difficulty with perceiving the connections between the different
representations of a function. Because graphing is pointwise, common errors that may be in
evidence include (1) seeing only marked points as “part” of a graph; (2) connecting points
when a graph is not continuous; (3) neglecting considerations of scale; (4) when interpolating
or extrapolating points on a graph, reverting to simple examples, and overgeneralizing
linearity; and (5) confusing relationships with pictorial aspects of the situation.

At this early stage of learning about functions, students are developing a scheme for the
relationship between two sets of numbers, but it is pointwise and based on operations.
Students at this level think of a function as an equation or a computational process, and do not
perceive a link between alternate representations of the same function, that is, they can work
with the equation, the table, or the graph of a function, but not necessarily understand the
connections between those different representations. Even equivalent functions (equations)
are not necessarily perceived as such when alternate variable names are used, and alternate
computational processes (e.g., a function expressed in explicit form or recursive form) are
definitely not perceived as the same function. They can evaluate expressions, but do not yet
understand formal function notation (e.g., what f and f(x) mean), nor do they conceive of a
function as mapping from inputs to outputs.' It is important to note that while a formula is
one kind of rule for a function, it is certainly not the only kind. At this level, students might
still reject a function defined by a graph as such. It is not until Level 3 that students recognize
that the rule for a function is not necessarily a formula.

Level 1: Preexposure

Quantity Perception
At this level students can work with sequences by extending them or finding missing terms. They Perceiving a quantity as is,
can complete patterns. Although they would not use function notation, they can informally and operating on it

express recursive rules for sequences (e.g., “Keep adding 3”). They would not express rules in
explicit form (take the term as input and generate the corresponding value as output).

At this level students have difficulty with thinking relationally, namely connecting a pattern in
one dimension to a pattern in another.

Students at this level have a solid perception and understanding of patterns in one dimension,
attending to quantities and operating on them. At this stage, students had not yet been
introduced to functions, nor do they perceive a relation or mapping between two patterns. In
the context of proportional reasoning, students may employ scalar strategies but not functional
strategies.!
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Revised Version of the Concept of Function Learning Progression

Level 6: Drawing Extensions

At this level students can recognize, produce, and work with nondeterministic functions
and functions with discontinuities or exceptional points like corners.

At this level students may have slips, but there wouldn’t be any consistent difficulties.

This level represents a professional mathematician’s level of understanding of the concept
of function. Students at this level understand the formal set-theoretic definition of
function and connect it to core ideas about inputs and outputs and covariational
reasoning that have been developed earlier. At this level students recognize families of
functions as parameterized objects and understand the role of the parameters within
those families. Students at this level take greater care with the ideas of domain and
range, understanding that changing the domain of a function changes the function.
They can “Relate the domain of a function to its graph and, where applicable, to the
quantitative relationship it describes. For example, if the function h(n) gives the number
of person-hours it takes to assemble 7 engines in a factory, then the positive integers

would be an appropriate domain for the function. %3

Students at this level are able to view functions as objects or points in a space. Students
understand the algebra of functions. For example, if f and g are real-valued functions,
then f + g and f-g are defined as (f + g)(x) = f(x) + g(x) and (f-g)(x) = f(x)-g(x);
alternatively, if f and g are functions from a set to itself, then f-g can be defined by
(f-9) () =f(g(x).

Level 5: Thorough Conceptualization

At this level students can comfortably use function notation, and can transform functions.
As expressed in the CCSSM: “[Students can] Use function notation, evaluate functions
for inputs in their domains, and interpret statements that use function notation in terms
of a context.”'® Students attend to global features of graphs, and are unlikely to make
any of the more common graphing errors that emerge at Level 2, such as connecting
points when a graph is not continuous. “For a function that models a relationship
between two quantities, [they can] interpret key features of graphs and tables in terms of
the quantities, and sketch graphs showing key features given a verbal description of the
relationship. Key features include: intercepts; intervals where the function is increasing,
decreasing, positive, or negative; relative maximums and minimums; symmetries; end
behavior; and periodicity.x”'” Consistent with this, students can also “Graph functions
expressed symbolically and show key features of the graph, by hand in simple cases and
using technology for more complicated cases.x”!® They are just starting to understand
the role of parameters in some function families to the extent that they can recognize
how changes in some of these parameters influence the behavior of graphs. In addition,
they are unlikely to overgeneralize linear or quadratic functions, but can apply linear
approximation when appropriate. Students can: “Calculate and interpret the average
rate of change of a function (presented symbolically or as a table) over a specified
interval, [and] estimate the rate of change from a graph.x”! Students compose
functions and find inverses not just by applying procedures (such as switching x and y
and solving for y or reflecting a graph across the line y = x), but with greater conceptual
understanding. Students at this level would no longer confuse graphs with pictorial
aspects of the situation.

Full Abstraction

A function is perceived as

an object that can be
operated upon;
understanding of
domain and range is
also well-developed

Object Perception of a
Function

A function is perceived as

an object that can be
operated upon
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At this level students have difficulty with Although students at this level understand that a
function is not necessarily given by a formula, they may still have difficulty recognizing
some kinds of functions (e.g., nondeterministic functions or discontinuous functions).
Also characterizing the domain and range may still pose some difficulty.

At this level, students think of functions as expressed in the CCSSM: “Understand that a
function from one set (called the domain) to another set (called the range) assigns to each
element of the domain exactly one element of the range. If f is a function and x is an
element of its domain, then f(x) denotes the output of f corresponding to the input x. The
graph of f is the graph of the equation y = f(x).”** Rather than abandoning what they have
learned about the notion of dependence, students at this level build on it, and apply the
CCSSM definition of function flexibly, as the situation demands. An additional important
understanding that is acquired at this level is the ability to identify sequences as functions.
This is expressed in the CCSSM standard: “Recognize that sequences are functions,
sometimes defined recursively, whose domain is a subset of the integers. For example, the
Fibonacci sequence is defined recursively by f(0) = f(1) =1, f(n + 1) = f(n) + f(n — 1) for
n> 172

Since they now conceive of a function as an object, students are beginning to understand the
role of parameters in some families of functions (e.g., they understand how changing the
slope or the intercept of a linear function changes its graph).

Level 4: Synthesis

At this level students can skillfully use alternative equivalent representations, and can identify
features that are common to equivalent representations (e.g., they can identify a y-intercept
by looking at a graph, equation, or table). Because they are thinking in terms of inputs and
outputs, students at this level can start to compose functions and find their inverses, though
they do so primarily by relying on memorized procedures and without conceptual
understanding. They understand slope as a rate of change. Students at this level are working
successfully with functions for which the independent variable is not necessarily time (or
dependent on time), and they can start to find the equation from a table or a graph for
simpler functions.

At this level students have difficulty with still overgeneralizing linear functions but only in
more subtle situations (e.g., interpolation between points), and linear approximation is
applied as a technique rather than as an overgeneralization. They can still confuse graphs
with pictorial aspects of the situation. Although they have been introduced to formal
function notation at this level, students may still have difficulty using it to express rules. For
example, f(g(5)) may be interpreted as “the value of f when g is 5,” and f and g may be
confused with variables.??

At this level, students have a fully developed notion of dependence; that is that a function
operates on inputs to yield outputs. Their interpretation of functions is no longer pointwise;
they think about how the dependent variable changes with the independent variable and
the specific nature of that change; in other words, they think about how variables covary,
and understand slope as a rate of change. They understand the domain as a set of input
values (or set of first coordinates in an ordered pair), and the range as a set of output values
(or the set of second coordinates in an ordered pair). Still, they have difficulty fully
characterizing the domain and range. Students accept that a function may be associated
with more than one computational process (though it is not a requirement that they be able
to prove their equivalence). Students at this level are attending to the meaning of features of

Full Covariational
Relationship

Scheme of a function as a
dependency
relationship between
quantities, with full
linking between
alternate
representations
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graphs of functions such as minima, maxima, and asymptotes. Students at this level apply
the “one-valuedness” core idea in identifying functions (that is, that each input is assigned
to one and only one output). In other words, they have a complete understanding of the
CCSSM 8.F definition of function (see Level 3). Students at this level are using patterns of
change to select an appropriate function to model a situation; i.e., they can start to find the
equation from a table for simpler functions. At this level students fully recognize that ‘a
function can be described in various ways, such as by a graph (e.g., the trace of a
seismograph); by a verbal rule, as in, “Tll give you a state, you give me the capital city;” by
an algebraic expression like f(x) = a + bx; or by a recursive rule.”” At this level they are
fluent with “Compar[ing] properties of two functions each represented in a different way
(algebraically, graphically, numerically in tables, or by verbal descriptions).”** Students at
this level can: “Describe qualitatively the functional relationship between two quantities by
analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear).
[They can also] sketch a graph that exhibits the qualitative features of a function that has
been described verbally.”?

Level 3: Making Connections

Generalized

At this level students can start to see the link between different representations of a function Relational-Function as
(equation, table, graph, verbal description), and recognize that different, but equivalent a Rule
formulas can be used to represent the same function, even if they cannot always Scheme of a relationship
demonstrate their equivalence. They also recognize that rules for functions are not between quantities
necessarily characterized by formulas. They can more easily translate from equations to rule-wise, bound to
graphs and tables than the reverse. When generating graphs from equations, students at specific representation,
this level would first generate an input- output table. with early linking

between some alternate
At this level students have difficulty with generating an equation from a table or a graph, i.e., representations

producing the reverse translation between representations, even though they may be able to
recognize it. When graphing, students at Level 3 may make the same errors as at Level 2,
though less frequently. At this level, students might still reject the following kinds of
functions as such: (1) Many-to-one functions, (2) piecewise functions, (3) discontinuous
functions, (4) functions with exceptional points, and (5) nondeterministic functions.
Students at this level still overgeneralize linear functions to nonlinear situations, and they
can still confuse graphs with pictorial aspects of the situation. Students at this level may not
have been introduced to formal function notation.

At this level, students are starting to think of functions as expressed in the CCSSM, though
they have not yet developed the one-valuedness aspect of the definition: “Understand that a
function is a rule that assigns to each input exactly one output. The graph of a function is
the set of ordered pairs consisting of an input and the corresponding output.”?® They have
an operational notion of function, and are able to apply consistent rules to find outputs
given inputs. In other words, a notion of dependence and outputs generated from inputs
starts to develop at Level 3.

Students at this level are more easily working with functions of time, since these kinds of
functions follow a chronological sequence that is more familiar from everyday life. Though
their interpretation of functions is still primarily pointwise, they are starting to distinguish
among types of functions by observing the pattern of change.
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Level 2: Familiarization
Local

At this level students can use an equation to generate ordered pairs in a table and/or plot Relational — Function
points on a graph, but this is carried out as a sequence of procedures. However, students as a Formula
can grasp the trend in simple cases, namely, they can recognize when a dependent variable Scheme of a relationship
changes with an independent variable (the mutual change), and may be able to characterize between quantities
it as strictly increasing or strictly decreasing. When a function is not strictly increasing or pointwise, bound to a
decreasing, students at this level can visualize how one variable does (or does not) change computational process
with the other by describing how the graph changes over different intervals. or algebraic expression

At this level students have difficulty with perceiving the connections between the different
representations of a function. Because graphing is pointwise, common errors that may be
in evidence include (1) seeing only marked points as “part” of a graph; (2) connecting
points when a graph is not continuous; (3) neglecting considerations of scale; (4) when
interpolating or extrapolating points on a graph, reverting to simple examples, and
overgeneralizing linearity; and (5) confusing relationships with pictorial aspects of the
situation. Connecting points when a graph is not continuous persists through Level 4.

At this early stage of learning about functions, students are developing a scheme for the
relationship between two sets of numbers, but it is pointwise and based on operations.
Students at this level think of a function as an equation or a computational process, and do
not perceive a link between alternate representations of the same function, that is, they can
work with the equation, the table, or the graph of a function, but not necessarily
understand the connections between those different representations. Even equivalent
functions (equations) are not necessarily perceived as such when alternate variable names
are used, and alternate computational processes (e.g., a function expressed in explicit form
or recursive form) are definitely not perceived as the same function. They can evaluate
expressions, but do not yet understand formal function notation (e.g., what f and f(x)
mean), nor do they conceive of a function as mapping from inputs to outputs.?” It is
important to note that while a formula is one kind of rule for a function, it is certainly not
the only kind. At this level, students might still reject a function defined by a graph as such.
It is not until Level 3 that students recognize that the rule for a function is not necessarily a
formula.

Level 1: Preexposure
Quantity Perception

At this level students can work with sequences by extending them or finding missing terms. Perceiving a quantity as is,
They can complete patterns. Although they would not use function notation, they can and operating on it
informally express recursive rules for sequences (e.g., “Keep adding 3”). They would not
express rules in explicit form (take the term as input and generate the corresponding value
as output). Students at this level can evaluate simple expressions.

At this level students have difficulty with thinking relationally, namely connecting a pattern
in one dimension to a pattern in another.

Students at this level have a solid perception and understanding of patterns in one dimension,
attending to quantities and operating on them. At this stage, students had not yet been
introduced to functions, nor do they perceive a relation or mapping between two patterns.
In the context of proportional reasoning, students may employ scalar strategies but not
functional strategies.®
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Appendix B: Complete Tasks
Wanda's Walk

Wanda’s Walk

Distance
from
Home

Time

One school day, Wanda walks on a straight, flat path from her home to school and back again. The graph shows Wanda’s
distance from home with respect to time. For instance if the point (10 am, 1 mile) were on the graph, we could say that
at 10 am, Wanda was 1 mile from home.

a. At what point(s) in time is Wanda at home?

b. Write a story about Wanda’s walk to and from school based on the graph. In particular, explain what Wanda might
be doing between each pair of time points below:
AtoB:

Bto C:

CtoD:

DtoE:

EtoF:

Fto G:

G to H:

Wanda’s Walk
Distance
from
Home
Time
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¢. During which of the following time intervals does Wanda
(1) spend the most time?
OAtoBOBtoCoDtoEoGtoH
(2) spend the least time?
OBtoCoDtoEOEtoFOFtoG
(3) have the greatest speed?
ODOAtoBODtoEOEtoFOFto G
(4) have the least speed?
OAtoBOBtoCOCtoDODtoE
d. Does the graph of Wanda’s walk to and from school represent a function? Explain in terms of time and her distance
from home.

Annika’s Bakery

Annika’s bakery is closed on Monday. On Tuesday through Thursday, the bakery prepares 3 chocolate fudge cakes each
day. On Friday through Sunday, the bakery prepares 5 chocolate fudge cakes each day.
a. Is the number of chocolate fudge cakes prepared each day a function of the day of the week? (Explain).

b. Make a table that shows the number of chocolate fudge cakes prepared on each of the 7 days of the week.
c. Initially, you indicated that the number of chocolate fudge cakes (is, is not) a function of the day of the week. Use
the table to support this claim, or to explain why you have changed your mind.

d. Based on your table, make a graph that shows the number of chocolate fudge cakes prepared on each of the 7 days
of the week.

e. You last indicated that the number of chocolate fudge cakes (is, is not) a function of the day of the week. Use the
graph to support this claim, or to explain why you have changed your mind.
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The following arrow diagram shows the number of chocolate fudge cakes prepared on each day of the week at Annika’s
bakery. On Monday the bakery is closed.

f. You last indicated that the number of chocolate fudge cakes (is, is not) a function of the day of the week. Use the
arrow diagram to support this claim, or to explain why you have changed your mind.

Secret Messages

Annika wants to leave a note in the bakery that only her sister Elke (and you!) can read. She decides to encrypt
her message using a cipher. A cipher is a rule that maps letters to new letters or symbols. The letters in the origi-
nal message are called plaintext and the letters or symbols in the encrypted message are called ciphertext. To read
the message, the recipient must decrypt it by mapping the encrypted letters or symbols back to the original let-
ters. Annika uses the chart below to encrypt her message. Only Annika, Elke (and you!) have access to this chart.

Plaintext |A |B |C [D |E |F |G |H|I |J [K|L | M|N|O|P |[Q|R|S|T|U|V | WX |Y|Z
Ciphertext |B |E |H [K | N |Q |T |W|Z |C |F |I |[L |O|R|JU|X|A|D|G|J |M|P|S |V]Y

The first row of the chart gives the letters in the plaintext, and the second row gives the corresponding letters of the
ciphertext.

Annika encrypts a message by translating the plaintext to ciphertext. Elke decrypts Annika’s message by translating
the ciphertext letters in the chart back to the plaintext letters.

1) Annika needs your help encrypting her message. She asks you to encrypt the words below by writing the correspond-
ing ciphertext letters next to each word.

SECRET
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2) Once the note is written, Elke would like your help decrypting it. Help Elke by decrypting the words that have blanks
above them.

THE SECRET INGREDIENT _ __ _ CHOCOLATEFUDGE CAKEIS __ _ __ _
GWN DNHANG ZOTANKZNOG ZO LV HWRHRIBGN QJKTN HBEFN ZD HRQQNN.

3) Is the mapping from the plaintext to the ciphertext a function? Is the mapping from the ciphertext to the plaintext a
function? Explain.

Annika is concerned the cipher may be broken, so she decides to change it. Here is the new chart she comes up with:

Plaintext A|B [C D |E |F |G |H|I J KL M[N]JO|P [Q|R |S |T|U]|V WX |Y |2

Ciphertext |E |G || |K Y M|O |Q|S |U|W]|Y |A|CI|E |G|l |[K M|O|Q|S |U|W|Y [A]|C

4) Do you think this chart will work well for encrypting and decrypting messages? Why or why not?

Is the mapping from the plaintext to the ciphertext a function? Is the mapping from the ciphertext to the plaintext a
function? Explain.
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