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Maximum Marginal Likelihood Estimation
With an Expectation–Maximization Algorithm
for Multigroup/Mixture Multidimensional Item Response
Theory Models

Jianbin Fu

Educational Testing Service, Princeton, NJ

A maximum marginal likelihood estimation with an expectation–maximization algorithm has been developed for estimating multi-
group or mixture multidimensional item response theory models using the generalized partial credit function, graded response func-
tion, and 3-parameter logistic function. The procedure includes the estimation of item parameters, attribute population distribution
parameters, and test takers’ attributes. All estimation functions and derivatives are provided. This procedure has been implemented in
an R program. A simulation study has been conducted using this R program on various models related to the generalized partial credit
function, and the result shows reasonable parameter recovery.

Keywords Multigroup IRT; mixture IRT; multidimensional IRT; maximum marginal likelihood estimation with EM

doi:10.1002/ets2.12272

Since Bock and Aitkin (1981) first applied the maximum marginal likelihood estimation with expectation–maximization
algorithm to item response theory (IRT) models, MML-EM has been widely used for these models. The application of
(MML-EM) MML-EM to IRT models has been discussed in, for example, Baker and Kim (2004, Chapter 6), Cai (2010a),
Gibbons and Hedeker (1992), Glas (1992), Moustaki (2000), Muraki and Carlson (1995), Verhelst and Glas (1993), and
von Davier and Yamamoto (2004). The MML-EM presented in this research report for general IRT models is the direct
extension of the algorithm for a single group unidimensional generalized partial credit model (GPCM) discussed in von
Davier and Yamamoto (2004). In particular, it extends the GPCM (Muraki, 1992), graded response model (GRM; Same-
jima, 1969), and three-parameter logistic model (3PL; Birnbaum, 1968) to accommodate multiple attributes and multiple
observed or latent groups.

The extended IRT models allow analyses of data from an instrument that measures multiple attributes on multiple
groups. An attribute refers to a skill or knowledge that is measured by an item. For example, a Grade 4 mathematics test
may measure the following four skills: numerical representations and relationships, computations and algebraic repre-
sentations, geometry and measurement, and data analysis and personal financial literacy. Attributes are assumed to be
continuous. The groups could be either observed or latent. If observed, they are referred to as multigroup IRT models
(Bock & Zimowski, 1997); if latent, they are called mixture models (Rost, 1991; Uebersax, 1999; von Davier & Yamamoto,
2004). The models are quite flexible at the group level given that a model is identified: (a) Each observed group is allowed
to take a different set of items; (b) item parameters and the distribution parameters of continuous attributes can be fixed,
free, or constrained to be equal across groups; and (c) attribute sets are allowed to differ across groups. For a group,
the population distribution of attributes is assumed to follow a multivariate normal distribution that is approximated by
multivariate Gauss–Hermite quadrature (Davis & Rabinowitz, 1984; Heiss & Winschel, 2008; Jaeckel, 2005).

Although all or some of the multigroup/mixture multidimensional IRT models mentioned previously can be esti-
mated by programs for complicated IRT models, for example, MIRT (Haberman, 2013), mdltm (von Davier, 2008; von
Davier & Xu, 2009), mirt (Chalmers, 2012), and flexMIRT (Cai, 2017), the full details of the MML-EM estimation have not
previously been presented. The MIRT package employs log-linear modeling and implements the maximum marginal like-
lihood method with the stabilized Newton–Raphson algorithm, which is different from MML-EM. Cai (2010a) provided
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a description of the MML-EM procedure in the appendix; however, his coverage of the maximization step was brief: He
only mentioned “standard Newton-type” maximization and referenced the derivatives. For the derivatives of item param-
eters, he cited Baker and Kim (2004); however, this book only contains derivatives for unidimensional IRT models. For
mirt and mdltm, the description in the documentation of MML-EM implementation is limited, especially on the maxi-
mization step. It appears that in mirt, the first and second derivatives of estimated parameters are not calculated based on
explicit analytic derivations, and existing maximization routines are used. In this report, the Newton–Raphson method
and the formulas of the first and second derivatives of all estimated item parameters and the first derivatives of attribute
population distribution parameters are presented.

The main purpose of this report is to present a detailed description of the MML-EM algorithm for general IRT models
that many psychometricians can follow. In the following sections, the estimation method is first described including MML-
EM estimation of item parameters and attribute population distribution parameters, and attribute estimation (scoring).
This is followed by a parameter recovery study on variant models of GPCM using an R program (R Core Team, 2017) that
implements the MML-EM estimation described previously. Finally, a summary of the report is provided.

Estimation of Item Parameters and Attribute Distribution Parameters With a Maximum Marginal
Likelihood Estimation With an Expectation–Maximization Algorithm

First, let us set up the notation. There are a total of I items and the associated J continuous attributes. The relationship
between items and attributes is defined by an item by attribute incidence matrix Q with an element qij = 1 indicating
that item i (i = 1 to I) relates to attribute j (j = 1 to J) and qij = 0 indicating that item i does not relate to attribute j in
any way. There are a total of N test takers who belong to G observed or latent groups, and each group has Ng (g = 1 to
G) test takers. Let G be a vector denoting all test takers’ group memberships. The attribute set associated with group g
includes Jg attributes, and the set of attribute indexes (i.e., j) is represented by jg . Note that attribute sets could be different
across observed groups but must be the same across latent groups. The set of attributes in jg , denoted as 𝛉g , are assumed to
follow a multivariate normal distribution with a mean vector 𝛍g and a variance–covariance matrix 𝚺g . The multivariate
normal distribution is approximated by Jg-variate Gauss–Hermite quadrature points with D quadrature points on each
dimension, resulting in a DJg -grid with node vector 𝛚gl and weight πgl (l = 1 to Lg , where Lg=DJg ; Davis & Rabinowitz,
1984). Each element in 𝛚gl is denoted as wglj, referring to the quadrature point of attribute j in node vector l in group g.
In each group g, test takers respond to a set of Ig items, and the set of item indexes (i.e., i) is denoted by Ig . Note that
item sets could be different across observed groups but must be the same for latent groups. Item i has Mi score categories,
sim (m = 1 to Mi). Item category scores sim can be any real numbers; usually the integers from 0 to Mi − 1 are used, for
example, si1 = 0, si2 = 1, and si3 = 2. In each group g, there are Pg item response patterns Xgp (p = 1 to Pg) with individual
item responses xgpi, i∈ Ig , and there are Ngp test takers having response pattern Xgp with associated attribute vector 𝛉gp.
Subscript g may be dropped from Xgp if item response patterns are the same across groups, for example, in latent groups,
and subscript pis dropped from xgpi if item response patterns are not referenced. Let Np denote the number of test takers
having response pattern Xp across groups. The set of all item response patterns across groups is denoted as X, and the
set of all test takers’ attribute vectors across groups is denoted as 𝛉. The probability of an item response depends on a test
taker’s attribute parameters and the item’s parameters, and conditional independence is assumed among item responses
(responses are independent conditional on the J attributes). The item parameter vector for item i in group g is denoted as
𝛈gi, and the item parameter vectors for all items and attribute population distribution parameters in group g, and across
all groups, are denoted as 𝛈g and 𝛈, respectively.

The EM algorithm (Bock & Aitkin, 1981; Dempster, Laird, & Rubin, 1977) involves an iterative process that repeatedly
executes two steps: an E step and an M step. In the E step, the expectation of the complete data log-likelihood with respect
to the posterior distribution of missing data is estimated, leading to a marginal log-likelihood of the observed data. For
IRT models, the unobserved (missing) data are test takers’ attribute vectors, 𝛉, and/or latent group memberships, G. In the
M step, the marginal log-likelihood is maximized with respect to item parameters and attribute distribution parameters,
if estimated.

The complete likelihood of general IRT models based on the previous setup is

L (X, 𝛉,G|𝛈) = G∏
g=1

Pg∏
p=1

∏
i∈Ig

p
(

xgpi|𝛉gp,𝛈gi

)Ngp
,
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which can be approximated as

Lappr (X, 𝛉,G|𝛈) = G∏
g=1

Lg∏
l=1

p
(
𝛚gl, g

)ngl ∏
i∈Ig

Mi∏
m=1

p
(

xgi = sim|𝛚gl,𝛈gi

)nglisim
,

where the superscript “appr” in Lappr(X, 𝛉, G|𝛈) indicates the approximation of the likelihood; p(𝛚gl, g) is the joint prob-
ability of group membership g and the attribute vector l in group g; ngl is the number of test takers having attribute vector
𝛚gl; nglisim

is the number of test takers having attribute vector 𝛚gl and getting score sim on item i; and p(xgi = sim|𝛚gl,𝛈gi) is
the probability of obtaining item score sim conditional on attribute vector 𝛚gl and item parameters 𝛈gi. Then, the complete
log-likelihood is approximately

log
(

Lappr) = G∑
g=1

Lg∑
l=1

⎡⎢⎢⎣ngl log p
(
𝛚gl, g

)
+
∑
i∈Ig

Mi∑
m=1

nglisim
log p(xgi = sim|𝛚gl,𝛈gi)

⎤⎥⎥⎦ . (1)

The iterative process stops if the convergence criterion is met. Usually, the convergence criterion is the largest change
in an item parameter estimate and/or the ratio of the change of the approximate observed log-likelihood [log

(
Lappr

obs

)
]

between two consecutive iterations over the previous log
(

Lappr
obs

)
being smaller than predefined values (e.g., .001 and

.00001, respectively). The log
(

Lappr
obs

)
is estimated below.

For observed groups:

log
(

Lappr
obs

)
=

G∑
g=1

Pg∑
p=1

Ngp log
⎡⎢⎢⎣

Lg∑
l=1

πgl

∏
i∈Ig

p
(

xgpi|𝛚gl,𝛈gi

)⎤⎥⎥⎦ ,
for latent groups:

log
(

Lappr
obs

)
=

Pg∑
p=1

Np log
⎡⎢⎢⎣

G∑
g=1

Lg∑
l=1

p
(
𝛚gl, g

)∏
i∈Ig

p(xgpi|𝛚gl,𝛈gi)
⎤⎥⎥⎦ .

E Step

In the E step, the expectation of the complete data log-likelihood is estimated with respect to the posterior distribution of
attributes, that is,

log L (X,G ∣ 𝛈) =
G∑

g=1

Pg∑
p=1

Ngp

∑
i∈Ig

[
∫ℜ

log p
(

xgpi|𝛉gp,𝛈gi

)
f (𝛉g|Xgp, g,𝛈g)d𝛉g

]
, (2)

where f (𝛉g | Xgp, g,𝛈g) is the density function of the attribute vector, 𝛉g , conditional on Xgp, g, and 𝛈g . As for the approx-
imate complete log-likelihood (Equation 1), this process is essentially to estimate the expected values of ngl and nglisim
conditional on Xgp, G, and 𝛈g . To do that, for observed groups, the posterior distribution of 𝛚gl conditional on Xgp, g, and
𝛈g is needed:

p
(
𝛚gl|Xgp, g,𝛈g

)
=

πgl
∏
i∈Ig

p
(

xgpi|𝛚gl,𝛈gi

)
Lg∑

l′=1
πgl′

∏
i∈Ig

p
(

xgpi|𝛚gl′ ,𝛈gi

) . (3)

Then,

ngl =
Pg∑

p=1
Ngpp

(
𝛚gl|Xgp, g,𝛈g

)
, (4)

and

nglisim
=

Pg∑
p=1

NgpI
(

xgpi = sim

)
p
(
𝛚gl|Xgp, g,𝛈g

)
, (5)
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where ngl and nglisim
are conditional expected values of ngl and nglisim

, respectively; I(xgpi = sim) is the indicator function
with value 1 if xgpi = sim, and 0 otherwise. If group g is latent, then the joint posterior distribution of 𝛚gl and g conditional
on Xgp and 𝛈g is needed:

p
(
𝛚gl, g|Xp,𝛈g

)
=

p
(
𝛚gl, g

)∏
i∈I p

(
xpi|𝛚gl,𝛈gi

)
∑G

g′=1
∑Lg

l′=1 p
(
𝛚g′l′ , g′

)∏
i∈I p

(
xpi|𝛚g′l′ ,𝛈g′i

) . (6)

Then,

ngl =
Pg∑

p=1
Npp

(
𝛚gl, g|Xp,𝛈g

)
,

and

nglisim
=

Pg∑
p=1

NpI
(

xpi = sim

)
p
(
𝛚gl, g|Xp,𝛈g

)
. (7)

By replacing ngl and nglisim
in Equation 1 with their conditional expected values, the approximate complete log-likelihood

becomes the approximate marginal log-likelihood function,

log
(

Lappr
m
)
=

G∑
g=1

Lg∑
l=1

⎡⎢⎢⎣ngl log p
(
𝛚gl, g

)
+
∑
i∈Ig

Mi∑
m=1

nglisim
log p(xgi = sim|𝛚gl,𝛈gi)

⎤⎥⎥⎦ . (8)

If attribute distribution parameters are estimated,𝛚gl and πgl at iteration t + 1 are updated based on the estimated attribute
distribution parameters from the M step at iteration t, and if attribute distribution parameters are fixed, 𝛚gl and πgl are
fixed during estimation. The joint probability p(𝛚gl, g) at iteration t + 1 is equal to πgl

∑Lg
l=1 ngl∕N for latent groups and

πglNg/N for observed groups, where ngl is estimated from iteration t and πgl is the current value at iteration t + 1.

M Step

In the M step, the marginal log-likelihood function is maximized with respect to the distribution parameters of con-
tinuous attributes, if estimated, and item parameters. The maximization takes two steps: one with respect to the item
parameters and another with respect to the distribution parameters (Glas, Wainer, & Bradlow, 2000). The maximum
number of iterations within the M step can be specified, and the same convergence criteria used for the EM cycles can
also be applied here.

Item Parameter Estimation

For item parameters, the maximization uses the Newton–Raphson method (Atkinson, 1989). That is, item i’s parameters
in iteration t + 1 are updated based on

𝛈t+1
gi = 𝛈t

gi − H−1
(
𝛈t

gi

)
L
(
𝛈t

gi

)
, (9)

where L
(
𝛈t

gi

)
is a vector containing the first derivative of the marginal log-likelihood function (Equation 2) with respect

to each item parameter; H
(
𝛈t

gi

)
is the Hessian matrix, which is the second derivative matrix of the marginal log-likelihood

function with respect to item parameters. According to an integration rule called differentiation under the integral sign
(Lang, 1997, pp. 337–339), which is applicable here, the derivatives of the marginal log-likelihood function can be approx-
imated by the derivatives of the approximate marginal log-likelihood function (Equation 8). Therefore, in the maximiza-
tion process, we actually calculate the first and second derivatives of the approximate marginal log-likelihood function
with respect to item parameters within an item:

∂ log
(

Lappr
m
)

∂ηiv
=

G∑
g=1

Lg∑
l=1

⎡⎢⎢⎢⎣
Mi∑

i∈Ig ,m=1
nglisim

∂ log p
(

xgi = sim|𝛚gl,𝛈gi

)
∂ηiv

⎤⎥⎥⎥⎦ ,
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and

∂2 log
(

Lappr
m
)

∂ηiv∂ηiv′
=

G∑
g=1

Lg∑
l=1

⎡⎢⎢⎢⎣
Mi∑

i∈Ig ,m=1
nglisim

∂2 log p
(

xgi = sim|𝛚gl,𝛈gi

)
∂ηiv∂ηiv′

⎤⎥⎥⎥⎦ ,
where ηiv and ηiv′ are item parameters of item i. Thus the calculation of the derivatives of the approximate marginal
log-likelihood function is essentially calculating the derivatives of p(xgi = sim|𝛚gl,𝛈gi) with respect to item parameters
of item i. In the following, the derivatives for the multigroup and multidimensional response functions with the GPCM
form (MGPCM), the GRM form (MGRM), and the 3PL form (M3PL) are presented.

Generalized Partial Credit Response Function

The response function of the MGPCM can be written as (von Davier, 2008)

pglisim
= p

(
xgi = sim|𝛚gl,𝛈gi

)
= p

(
xgi = sim|𝛚gl, bi, ai

)
=

exp
(

bisim
+
∑

j∈Jg
aijqijwgljsim

)
Mi∑

m′=1
exp

(
bisim′ +

∑
j∈Jg

aijqijwgljsim′

) , (10)

where bisi1
+
∑

j∈Jg
aijqijwgljsi1 ≡ 0; bisim

is the intercept parameter for score category sim; aij is the discrimination (slope)
parameter for attribute j; and wglj is the attribute j in the attribute vector, 𝛚gl. The derivation of the derivatives of

log
(

pglisim

)
with respect to bi and ai becomes easy by taking advantage of the properties of the exponential family.

Equation 10 can be rewritten in the form of the exponential family as the following (Barndorff-Nielsen, 1978):

pglisim
= exp

⎡⎢⎢⎣bisim
+
∑
j∈Jg

aijqijwgljsim − A
(
𝛚gl, bi, ai

)⎤⎥⎥⎦ , (11)

where A
(
𝛚gl, bi, ai

)
= log

[∑Mi
m′=1 exp

(
bisim′ +

∑
j∈Jg

aijqijwgljsim′

)]
. Then, for qij = 1,

∂ log
(

pglisim

)
∂aij

= wgljsim − ∂A
∂aij

,

and for t ≠ si1,
∂ log

(
pglisim

)
∂bit

= I
(

sim = t
)
− ∂A

∂bit
.

Note that the subscript sim in bisim
is changed to t so as to distinguish it from item scores. The second derivatives are the

following:
For qij = 1 and qij′ = 1

∂2 log
(

pglisim

)
∂aij∂aij′

= − ∂2A
∂aij∂aij′

,

for t ≠ si1 and t′ ≠ si1

∂2 log
(

pglisim

)
∂bit∂bit′

= − ∂2A
∂bit∂bit′

,

for qij = 1 and t ≠ si1

∂2 log
(

pglisim

)
∂aij∂bit

= − ∂2A
∂aij∂bit

.
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Based on a property of the exponential family (Barndorff-Nielsen, 1978),

∂A
∂ηiv

= E
(

Tiv
)

∂2A
∂ηiv∂ηiv′

= cov
(

Tiv,Tiv′
)
= E

(
TivTiv′

)
− E

(
Tiv
)

E
(

Tiv′
)
,

where Tiv and Tiv′ are sufficient statistics for item parameters ηiv and ηiv′ , respectively, and the expectations are with
respect to xgi conditional on 𝛚gl, bi, and ai. According to Equation 11, the sufficient statistic for aij is wgljxgi, and then

∂A
∂aij

= E
(

wgljxgi

)
= wgljE

(
xgi

)
= wglj

Mi∑
m′=1

sim′p
(

xgi = sim′ |𝛚gl, bi, ai

)
∂2A

∂aij∂aij′
= cov

(
wgljxgi,wglj′xgi

)
= wgljwglj′E

(
x2

gi

)
− wgljwglj′E

2
(

xgi

)
= wgljwglj′

Mi∑
m′=1

s2
im′p

(
xgi = sim′ |𝛚gl, bi, ai

)
− wgljwglj′

[ Mi∑
m′=1

sim′p
(

xgi = sim′ |𝛚gl, bi, ai

)]2

.

The sufficient statistic for bit is I(xgi = t), and then

∂A
∂bit

= E
[

I
(

xgi = t
)]

= p
(

xgi = t|𝛚gl, bi, ai

)
,

∂2A
∂bit∂bit′

= cov
[

I
(

xgi = t
)
, I
(

xgi = t′
)]

=
⎧⎪⎨⎪⎩
−p
(

xgi = t|𝛚gl, bi, ai

)
p
(

xgi = t′|𝛚gl, bi, ai

)
, t ≠ t′,

p
(

xgi = t|𝛚gl, bi, ai

)
−
[

p
(

xgi = t|𝛚gl, bi, ai

)]2
, t = t′,

∂2A
∂aij∂bit

= cov
[

xgiwglj, I
(

xgi = t
)]

= wgljp
(

xgi = t|𝛚gl, bi, ai

)[
t −

Mi∑
m′=1

sim′p
(

xgi = sim′ |𝛚gl, bi, ai

)]
.

Graded Response Function

For the MGRM, the item response function is an extension of Samejima’s (1969) unidimensional GRM and can be written
as (Cai, 2010a)

pglism
= p

(
xgi = sim|𝛚gl,𝛈gi

)
= p

(
xgi = sim|𝛚gl, bi, ai

)
= p∗

(
xgi = si(m−1)|𝛚gl, bisi(m−1)

, ai

)
− p∗

(
xgi = sim|𝛚gl, bisim

, ai

)
= p∗gl isi(m−1)

− p∗gl ism
,

where p∗glism
is the cumulative item response function for xgi > sim conditional on 𝛚gl, bisim

, and ai, that is,

p∗glisim
= p∗

(
xgi = sim|𝛚gl,𝛈gi

)
= p

(
xgi > sim|𝛚gl, bisim

, ai

)
=

exp
(

bisim
+
∑

j∈Jg
aijqijwglj

)
1 + exp

(
bisim

+
∑

j∈Jg
aijqijwglj

) ,
p∗glisi0

= 1,
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p∗glisiMi
= 0.

The first derivative of log
(

pgisim

)
with respect to item parameter, ηiv, is written as

∂ log
(

pglisim

)
∂ηiv

=

⎡⎢⎢⎣p∗glisi(m−1)

∂ log
(

p∗glisi(m−1)

)
∂ηiv

− p∗glisim

∂ log
(

p∗glisim

)
∂ηiv

⎤⎥⎥⎦
p∗glisi(m−1)

− p∗glisim

.

Because p∗gisi(m−1)
and p∗gisim

are just the special cases of the GPCM function for dichotomous items, all the derivative results
presented in the preceding section apply to p∗gisi(m−1)

and p∗gisim
. In particular, for m≠ 0 or Mi, and qij = 1,

∂ log
(

p∗glisim

)
∂aij

= wglj − wgljp
∗
glisim

,

and for m≠ 0 or Mi,
∂ log

(
p∗glisim

)
∂bit

=

{
1 − p∗glisim

, t = sim,

0, t ≠ sim.

Then,
∂ log

(
pglisim

)
∂aij

= wglj

(
1 − p∗glisi(m−1)

− p∗glisim

)
,

and

∂ log
(

pglisim

)
∂bit

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p∗glisim

(
p∗glisim

−1
)

p∗glisi(m−1)
−p∗glisim

, t = sim,

p∗glisi(m−1)

(
1−p∗glisi(m−1)

)
p∗glisi(m−1)

−p∗glisim

, t = si(m−1),

0, otherwise.

For the second derivatives of log
(

pglisim

)
with respect to item parameters where m≠ 0 or Mi,

∂2 log
(

pglisim

)
∂bisim

∂bisim

=
p∗glisim

(
1 − p∗glisim

)(
2p∗glisim

− 1
)(

p∗glisi(m−1)
− p∗glisim

)
− p∗2

glisim

(
p∗glisim

− 1
)2

(
p∗glisi(m−1)

− p∗glisim

)2 ,

∂2 log
(

pglisim

)
∂bisi(m−1)

∂bisi(m−1)

=
p∗glisi(m−1)

(
p∗glisi(m−1)

− 1
)(

2p∗glisi(m−1)
− 1
)(

p∗glisi(m−1)
− p∗glisim

)
− p∗2

glisi(m−1)

(
p∗glisi(m−1)

− 1
)2

(
p∗glisi(m−1)

− p∗glisim

)2 ,

∂2 log
(

pglisim

)
∂bisim

∂bisi(m−1)

=
p∗glisi(m−1)

(
p∗glisi(m−1)

− 1
)

p∗glisim

(
p∗glisim

− 1
)

(
p∗glisi(m−1)

− p∗glisim

)2 ,

and for t ≠ sim or si(m− 1), or t′ ≠ sim or si(m− 1),

∂2 log
(

pglisim

)
∂bit∂bit′

= 0;
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if qij = 1 and qij′ = 1,

∂2 log
(

pglisim

)
∂aij∂aij′

= −wgljwglj′
(

p∗glisim
+ p∗glisi(m−1)

− p∗2
glisim

− p∗2
glisi(m−1)

)
;

if qij = 1,

∂2 log
(

pglisim

)
∂aij∂bit

=

⎧⎪⎪⎨⎪⎪⎩
wgljp∗glisim

(
p∗glisim

− 1
)
, t = sim,

wgljp∗glisi(m−1)

(
p∗glisi(m−1)

− 1
)
, t = si(m−1),

0, otherwise.

Three-Parameter Logistic Function

The M3PL function for dichotomous items is written as (Reckase, 1997)

pglisi2
= p

(
xgi = si2|𝛚gl,𝛈gi

)
= p

(
xgi = si2|𝛚gl, bi, ai, ci

)
= ci +

(
1 − ci

) exp
(

bisi2
+
∑

j∈Jg
aijqijwglj

)
1 + exp

(
bisi2

+
∑

j∈Jg
aijqijwglj

) ,
pglisi1

= 1 − pglisi2
,

where ci is the guessing parameter. For easy estimation, define

ci =
exp

(
c′i
)

1 + exp
(

c′i
) ,

and c′i is the item parameter to be estimated. Let

W =
exp

(
bisi2

+
∑

j∈Jgf
aijqijwglj

)
1 + exp

(
bisi2

+
∑

j∈Jgf
aijqijwglj

) .
The derivatives of log

(
pglisi2

)
with respect to item parameters are shown as follows:

For c′i
∂ log

(
pglisi2

)
∂c′i

=
(1 − W) exp

(
c′i
)

pglisi2

[
1 + exp

(
c′i
)]2

∂2 log
(

pglisi2

)
∂c′2i

=
(1 − W) pglisi2

[
1 − exp

(
2c′i
)]

exp
(

c′i
)
− (1 − W)2 exp

(
2c′i
)

p2
glisi2

[
1 + exp

(
c′i
)]4 .

For ηiv and ηiv′ in bisi2
and ai

∂ log
(

pglisi2

)
∂ηiv

=
(

1 − ci
)

W
∂ log (W)

∂ηiv
∕pglisi2

.

Let
W1 =

(
1 − ci

)
W

∂ log (W)
∂ηiv

.

Then,
∂W1

∂ηiv′
=
(

1 − ci
) [

W
∂ log (W)
∂ηiv′

∂ log (W)
∂ηiv

+ W
∂2 log (W)
∂ηiv∂ηiv′

]
,
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∂2 log
(

pglisi2

)
∂ηiv∂ηiv′

=
⎡⎢⎢⎢⎣
∂W1

∂ηiv′
− W1

∂ log
(

pglisi2

)
∂ηiv′

⎤⎥⎥⎥⎦ ∕pglisi2
,

∂2 log
(

pglisi2

)
∂ηiv∂c′i

=

[
−W ∂ log(W)

∂ηiv
− (1 − W)

∂ log
(

pglisi2

)
∂ηiv

]
exp

(
c′i
)

pglisi2

[
1 + exp

(
c′i
)]2 .

Again, the derivatives of log(W) are the special cases of the GPCM function for dichotomous items.
As for log

(
pglisi1

)
, the derivatives with respect to any item parameters ηiv and ηiv′ in c′i , bisi2

, and ai are

∂ log
(

pglisi1

)
∂ηiv

=
∂ log

(
pglisi2

)
∂ηiv

∕
(

pglisi2
− 1
)

∂2 log
(

pglisi1

)
∂ηiv∂ηiv′

=
⎡⎢⎢⎢⎣
∂2 log

(
pglisi2

)
∂ηiv∂ηiv′

(
pglisi2

− 1
)
− pglisi2

∂ log
(

pglisi2

)
∂ηiv′

∂ log
(

pglisi2

)
∂ηiv

⎤⎥⎥⎥⎦ ∕
(

pglisi2
− 1
)2

.

Attribute Distribution Parameter Estimation

For a multivariate normal distribution vector 𝛚gl, its distribution parameters, mean vector 𝛍g with elements μgj, and
variance–covariance matrix 𝚺gwith elements σgkk′ can be estimated, where k (k = 1 to Jg , k′ = 1 to Jg) represents the kth
attribute in group g. Specifically, the estimation is to find 𝛍g and 𝚺g maximizing the approximate marginal log-likelihood
function given item parameter estimates in 𝛈g obtained from the maximization step, which in turn is to maximize the sum
(over all test takers in group g) of the expected logarithm of the density of 𝛚gl with respect to the posterior distribution
of 𝛚gl conditional on Xgp, g, and 𝛈g (Glas et al., 2000; Li, Bolt, & Fu, 2006), that is,

D
(
𝛚gl

)
=

Pg∑
p=1

NgpE
{

log
[
ϕ
(
𝛚gl

)] |Xgp, g,𝛈g

}
,

where ϕ(𝛚gl)is the multivariate normal density function of 𝛚gl.
Based on the integration rule, differentiation under the integral sign, the first derivatives of D(𝛚gl) with respect to the

distribution parameter vector 𝛅g , where 𝛅g contains all parameters in 𝛍g and 𝚺g , become

∂D
(
𝛚gl

)
∂ 𝛅g

=
Pg∑

p=1
NgpE

⎧⎪⎨⎪⎩
∂ log

[
ϕ
(
𝛚gl

)]
∂𝛅g

|Xgp, g,𝛈g

⎫⎪⎬⎪⎭ . (12)

The derivatives of log[ϕ(𝛚gl)] with respect to 𝛍g and 𝚺g (Anderson, 1958) are

∂ log
[
ϕ
(
𝛚gl

)]
∂𝛍g

= 𝚺−1
g

(
𝛚gl − 𝛍g

)

∂ log
[
ϕ
(
𝛚gl

)]
∂𝚺g

= −1
2

[
𝚺−1

g − 𝚺−1
g

(
𝛚gl − 𝛍g

)(
𝛚gl − 𝛍g

)′
𝚺−1

g

]
,
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where

∂ log
[
ϕ
(
𝛚gl

)]
∂𝛍g

=
⎧⎪⎨⎪⎩
∂ log

[
ϕ
(
𝛚gl

)]
∂μg1

· · ·
∂ log

[
ϕ
(
𝛚gl

)]
∂μgJg

⎫⎪⎬⎪⎭
′

;
∂ log

[
ϕ
(
𝛚gl

)]
∂𝚺g

=

⎧⎪⎪⎨⎪⎪⎩

∂ log
[
ϕ
(
𝛚gl

)]
∂σg11

…
∂ log

[
ϕ
(
𝛚gl

)]
∂σg1Jg

⋮ ⋱ ⋮
∂ log

[
ϕ
(
𝛚gl

)]
∂σgJg 1

· · ·
∂ log

[
ϕ
(
𝛚gl

)]
∂σgJg Jg

⎫⎪⎪⎬⎪⎪⎭
;

(·)′ denotes the transpose of a vector or matrix; and both 𝛚gl and 𝛍g are Jg × 1 vectors. Substitute these two equations into
the first derivatives of D(𝛚gl) (Equation 12) with respect to 𝛍g and 𝚺g , respectively, and set the derivatives to zero. The
solutions of 𝛍g and 𝚺g from these functions that maximize D(𝛚gl) (Rayner, 1985) are then

𝛍g =
Lg∑
l=1

𝛚glp
(
𝛚gl|Xgp, g,𝛈g

)

𝚺g =
Lg∑
l=1

(
𝛚gl − 𝛍g

)(
𝛚gl − 𝛍g

)′
p
(
𝛚gl|Xgp, g,𝛈g

)
.

They are just the mean vector and variance–covariance matrix of the posterior distribution of the attributes at the current
iteration.

Attribute Estimation

With the estimates of item parameters and continuous attribute distribution parameters available, test takers’ attribute
vectors can then be estimated. Two approaches for attribute estimation are described in this section: maximum a posterior
(MAP) and expected a posterior (EAP).

Maximum A Posterior

The MAP estimate of an attribute vector (𝛉gp) and/or a latent group membership to a response pattern is just the attribute
value (or quadrature point) vector and/or latent group membership having the largest posterior joint probability condi-
tional on the response pattern and item and/or population parameters that are the by-product of the E step (Baker & Kim,
2004). In particular, the MAP estimate of 𝛉gp is the 𝛚gl that has maximum p

(
𝛚gl|Xgp, g, 𝛈̂g

)
, and the MAP estimate of

the latent group membership is the g that has maximum
∑Lg

l p
(
𝛚gl, g|Xp, 𝛈̂g

)
.

Expected A Posterior

The EAP estimate of an attribute vector for a response pattern conditional on a group is the expected value of an attribute
vector with respect to its joint posterior distribution conditional on the response pattern, group membership, and item
and/or population parameters (Baker & Kim, 2004); that is,

E
(
𝛉̂gp ∣ Xgp, 𝛈̂g , g

)
=

Lg∑
l=1

𝛚glp
(
𝛚gl ∣ Xgp, 𝛈̂g , g

)
.

Variance and Covariance Matrix of Attributes

The covariance matrix of 𝛉gp estimates for response pattern p in group g (Haberman, von Davier, & Lee, 2008) is

cov
(
𝛉̂gp

)
=

Lg∑
l=1

p
(
𝛚gl ∣ Xgp, 𝛈̂g , g

)(
𝛚gl − 𝛉̂gp

)(
𝛚gl − 𝛉̂gp

)′
.
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The covariance matrix of 𝛉g estimates for observed group g (Haberman et al., 2008) is

cov
(
𝛉̂g

)
= 1

Ng

Pg∑
p=1

Ngp

(
𝛉̂gp − 𝛉g

)(
𝛉̂gp − 𝛉g

)′
,

where

𝛉g = 1
Ng

Pg∑
p=1

Ngp𝛉̂gp.

For latent group g,

cov
(
𝛉̂g

)
= 1∑Lg

l=1 ngl

Pg∑
p=1

Lg∑
l=1

Npp
(
𝛚gl, g|Xp, 𝛈̂g

)(
𝛉̂gp − 𝛉g

)(
𝛉̂gp − 𝛉g

)′
,

where

𝛉g = 1∑Lg
l=1 ngl

Pg∑
p=1

Lg∑
l=1

Np𝛉̂gpp
(
𝛚gl, g|Xp, 𝛈̂g

)
.

Simulation Study: Model Parameter Recovery

The MML-EM estimation procedure described previously was implemented in the freeware program R. A simulation
study was conducted to examine item and/or attribute distribution parameter recovery on nine GPCM-related models.
These models varied by the number of item parameters (one or two), number of item score categories (two or three),
number of attributes (one or two), number of groups (one or two), and group feature (observed or latent). The basic
models are GPCM and its two submodels for dichotomous items, 1PLs and 2PLs. The tradition 1PL, 2PL, and GPCM
models are just the one-group one-attribute models. Following are some key points on the setup of the simulation study:

1. A simulated data set included 10 items, either all dichotomous items or three-category polytomous items. Dichoto-
mous items were scored as 0 or 1, and polytomous items were scored as 0, 1, or 2. Discrimination parameters were
drawn from a lognormal distribution with mean 1 and variance .04 on the normal scale. For models with two
attributes, some items only required one attribute, while the others required both. Intercept parameters were drawn
from the standard normal distribution. For the multigroup models with two observed groups, the item parameters
of all items, except one, were constrained to be equal across the two groups. For the mixture models with two latent
groups, no item parameter was constrained to be equal across the two groups.

2. A simulated data set included 3,000 test takers. For two-group (multigroup or mixture) models, test takers were
evenly divided into groups. For one-group models with one attribute, the continuous attribute was sampled from
the standard normal distribution. For one-group models with two attributes, the two continuous attributes were
sampled from the standard bivariate normal distribution with a correlation of .7. For two-group models with one
attribute, the attribute for one group was sampled from the standard normal distribution and for the other group
was sampled from the normal distribution with mean 1 and standard deviation 1. For two-group models with
two attributes, the attribute for one group was sampled from the standard bivariate normal distribution with a
correlation of .7 and for the other group was sampled from the bivariate normal distribution with mean vector (1,
1) and correlation .5.

3. Model identification was achieved by imposing the following constraints during estimation. For one-group models
with one attribute, the mean and standard deviation of the prior distribution of the attribute were fixed to 0 and 1,
respectively. For one-group models with two attributes, the means and standard deviations of the prior distribution
of the two attributes were fixed to 0 and 1, respectively; the correlation was freely estimated. For multigroup models
with two groups and one attribute, the mean and standard deviation of the prior distribution of the attribute for the
first group were fixed to 0 and 1, respectively, and all item parameters, except for those of one item, were constrained
to be equal across the two groups. The mean and standard deviation of the prior distribution of the attribute for
the second group were freely estimated. For multigroup models with two groups and two attributes, the means
and standard deviations of the prior distribution of the two attributes for the first group were fixed to 0 and 1,
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Table 1 Root Mean Square Error of Model Parameter Estimates

Model Discrimination Intercept

Attribute
population

mean

Attribute population
standard deviation
and/or correlation

1PL model NA .047 NA NA
2PL model .078 .057 NA NA
GPCM model .052 .076 NA NA
Two-dimensional GPCM model .102 .083 NA .051
Two-group GPCM model .084 .088 .161 .064
Two-group two-dimension GPCM model .114 .094 .067 .051
Two-group mixture 1PL model NA .094 NA NA
Two-group mixture GPCM model .091 .117 NA NA
Two-group two-dimensional mixture GPCM model .177 .130 NA .058

Note. 1PL = one-parameter logistic. 2PL = two-parameter logistic. GPCM = generalized partial credit model. NA = not applicable.

respectively, and all item parameters, except for those of one item, were constrained to be equal across the two
groups. The mean vector and variance–covariance matrix of the prior distribution of the two attributes for the
second group as well as the attribute correlation for the first group were freely estimated. For mixture models with
two groups, all the parameters of the prior distribution of attribute(s) were fixed to their true values, except that
the correlations between the two attributes in both groups were freely estimated. For models with one attribute, the
attribute distribution was approximated by 40 quadrature points; for two attributes, the attribute distribution was
approximated by a 30× 30 quadrature grid.

4. The model convergence criterion during estimation was that both the largest change of item parameter estimate
and the change of the approximate observed log-likelihood, −2log

(
Lappr

obs

)
, between two consecutive iterations be

smaller than .001. For the M step, only one iteration was allowed. For each model, 30 data sets were generated and
estimated. The evaluation criterion for parameter recovery was the root mean square error (RMSE) of parameter
estimates across the 30 data sets.

Table 1 lists the RMSEs of model parameter estimates for each model separated into four categories: item discrim-
ination, item intercept, mean, and standard deviation/correlation of the population distribution of attribute(s). From
Table 1, one can see that (a) when the models became more complicated (i.e., including more groups and/or attributes),
their parameter recovery became somewhat worse, and that (b) parameter recovery was more difficult for the mixture
models than the multigroup models. Overall, parameter recovery was reasonable for these models.

Summary

The extended MML-EM provides a nicely integrative framework to estimate all commonly used IRT models (i.e., GPCM,
GRM, and 3PL) with multiple (observed or latent) groups and multiple attributes. All estimation functions and derivatives
are provided in this report. This procedure was implemented in an R program. A simulation study was conducted using
this R program and showed reasonable parameter recovery.

The inverse of the negative Hessian matrix was used to approximate the variance–covariance matrix of model param-
eter estimates. However, this estimation of standard errors of model parameter estimates has been shown to have bias
because the Hessian matrix is not based on the complete data (Liu, Xin, Andersson, & Tian, 2019; Sundberg, 1974). Many
estimation methods for standard errors of model parameter estimates have been proposed and compared; see Liu et al.
(2019) for a summary and further discussion. Those standard error estimation methods are easy to incorporate into the
extended MML-EM estimation procedure developed in this report.

The quadrature space grows exponentially with the number of attributes. Based on the author’s experience, each
attribute should have at least 20 quadrature points for models with known attribute distribution parameters and at
least 30 quadrature points for models with estimated attribute distribution parameters to achieve adequate accuracy of
parameter estimation. Thus, for models with more than three attributes, the excessive number of total quadrature points
becomes a serious burden for computation. This issue has been addressed by using adaptive quadrature (Haberman,
2006; Schilling & Bock, 2005), stochastic methods (Cai, 2010b; von Davier & Sinharay, 2007), and dimension reduction
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via utilizing the special feature of attribute structure, for example, the bifactor models (Cai, 2010a; Gibbons & Hedeker,
1992) and, more generally, the graphical models (Rijmen, 2009). The models and the estimation procedure presented in
this report provide a basis for these advancements.
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