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The design and psychometric methodology of the National Assessment of

Educational Progress (NAEP) is constantly evolving to meet the changing

interests and demands stemming from a rapidly shifting educational landscape.

NAEP has been built on strong research foundations that include conducting

extensive evaluations and comparisons before new approaches are adopted.

During those evaluations, many lessons are learned and discoveries surface

that do not often find their way into widely accessible outlets. This article

discusses a number of those insights with the goal to provide an integrated and

accessible perspective on the strengths and limitations of NAEP’s psychometric

methodology and statistical reporting practices. Drawing from a range of

technical reports and memoranda, presentations, and published literature, the

following topics are covered: calibration, estimation of proficiency, data

reduction, standard error estimation, statistical inference, and standard setting.

Keywords: achievement; assessment; item response theory; NAEP; psychometrics; survey

research

Introduction

Over the past three decades, the National Assessment of Educational Progress

(NAEP) statistical methodology has been extensively studied and occasionally

evolved within the core design principles that were introduced by Messick,

Beaton, and Lord (1983). The basic design of group score assessments calls,

within a particular domain (e.g., reading, mathematics, writing), for shorter

collections of test questions at the individual student level in order to minimize

participant burden. Statistical inferences are made, and results are reported at the

group level and with respect to content domains that are much broader than what

can be assessed at the individual level in the amount of available time. Therefore,
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a matrix test design (e.g., Frey, Hartig, & Rupp, 2009) is employed that can

meaningfully link many shorter collections of questions together across partici-

pating students by systematically overlapping some questions between collec-

tions and, as a result, between students. In addition, test takers, their teachers, and

schools fill out survey questionnaires that solicit information about demo-

graphics and instructional practices. Responses to these questions and other

collateral information about test takers and schools are used in the analysis and

define many of the groups about which results are reported. Lastly, data analysis

is carried out through psychometric models that allow for direct estimation of

group-level test results without the need to produce scores for individual test

takers. The models are discussed in greater detail below.

The goal of this article is to summarize and discuss the research on psycho-

metric models, analysis techniques, and reporting over the past 30 years. This

research has often been motivated by increases in the scope of the program

including increasing the number of jurisdictions for which these group-level

results are reported (i.e., wider state participation, urban district participation,

and a Puerto Rico mathematics assessment), offering testing accommodations for

students with disabilities and English language learners, adding content domains

(e.g., technology and engineering literacy), and expanding on survey question-

naires. Subsequently, the reporting of assessment results moved from a contained

and focused set of key results to the provision of user customizable web-based

analysis tools to satisfy a wide range of interests. Yet, despite the fact many

improvements have been implemented and many more are possible, the core

methodology has proven to be robust throughout those 30 years.

Statistical Model for Proficiency Estimation

The NAEP analysis model (Mislevy, 1984, 1991; Mislevy, Johnson, & Mur-

aki, 1992) is a latent regression of one or more (correlated) latent traits of interest

onto student group indicators. For student i and a single, univariate, latent trait y:

yi ¼ g0xi þ ei; ð1Þ

where g is a vector of regression weights, xi a vector of student group indicators,

and ei a normally distributed residual term. To report on student group means and

distributional quantities, we are principally interested in the distribution of y
given student group indicators xi and responses to test items yi:

f ðyjxi; yiÞ * Pðyi jb; yÞfðyjm ¼ g0xi;s2Þ; ð2Þ

where P is a likelihood function containing the product of individual item prob-

abilities and f is a normal distribution function representing the population prior.

NAEP makes use of standard item response theory (IRT) models with item

parameters b, including the two- and three-parameter logistic (3PL) models for
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dichotomous items (Lord & Novick, 1968) and the generalized partial credit

model (GPCM) for polytomous items (Muraki, 1992).

As described elsewhere (von Davier, Sinharay, Oranje, & Beaton, 2007), the

operational approach consists of carrying out item calibration and the estimation

of scale score results for reporting groups in separate sequential steps. This

separation to a large extent has been due to tractability (e.g., in terms of para-

meter identification) and computer processing feasibility, at the cost of some

level of inconsistency in model assumptions between the two different analysis

steps. The primary nature of research and, occasionally, change over the past two

decades in statistical modeling and estimation has for the most part centered on

the following two questions: (1) How to model multiple latent dimensions to

characterize multiple subdomains within overall content domains as well as

crosscutting concepts and practices (e.g., inquiry skills across the science content

domain) where some items may load on multiple latent dimensions and (2) how

to increase the number of “predictor” variables in the latent regression without

over-fitting the data—in order to accommodate the increasing number of report-

ing groups of interest.

Item Calibration

As mentioned before, the likelihood function P contains the product of indi-

vidual item probabilities, which are represented by logistic parametric functions

under the IRT framework (Lord & Novick, 1968). For dichotomous constructed

response items that are scored as either right (Y ¼ 1) or wrong (Y ¼ 0), a two-

parameter logistic model is used:

PðY ¼ yjyÞ ¼ eDaðy�bÞ

1þ eDaðy�bÞ

� �y

1� eDaðy�bÞ

1þ eDaðy�bÞ

� �ð1�yÞ
; ð3Þ

where D is a scaling constant that is used to better approximate a normal cumu-

lative distribution with this logistic model, a is a discrimination parameter to

signify how well an item differentiates between students of different abilities,

and b is an indication of how difficult the item is. Both the a and b parameters are

quantities that need to be estimated from the data in the first analysis step. For

multiple-choice questions, a guessing parameter is added to this model (i.e.,

3PL), and for polytomous items, location parameters are added (i.e., the GPCM).

The goal of estimating these parameters is to (1) place all the items on a

common IRT scale that quantitatively represents performance levels with respect

to a construct of interest and (2) make use of a scale that is consistent with the

established trend scale in order to make comparisons over time. The assumption

is made that if the same items function similarly across two adjacent assessments,

then the scale that is defined by those items is the same across those adjacent

assessments. The data from both assessments can be pooled, and a single set of

item parameters can be estimated based on all the available data. In order to be
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able to estimate those item parameters, an estimate for the mean and variance of y
is required, and the distribution cannot be assumed to be the same across the two

pooled data sets since the population of test takers changes (e.g., fourth graders in

2015 are not the same as fourth graders in 2017). NAEP uses marginal maximum

likelihood (e.g., Johnson, 2007) where y is assumed to be a random effect that

can be integrated over to obtain a marginal distribution.

Operational estimation of item parameters is conducted using a modified ver-

sion 3 of the PARSCALE software program (Muraki & Bock, 1999). The integra-

tion is conducted using numerical quadrature, and the distribution is either

assumed normal or approximated as a multinomial distribution on a fixed set of

y values (Muraki, 1992). This latter approximation was developed to allow for

potentially nonnormal proficiency distributions. Following NAEP’s operational

procedure, first an estimation of item parameters is conducted that assumes a

normal distribution shape for the proficiency distribution. Subsequently, using the

item parameters from this solution as starting values, a new set of item parameter

estimates is generated with the proficiency distribution modeled as a set of multi-

nomial probabilities. The identifiability of the multinomial approach has been

questioned as both person and item parameters are estimated concurrently (Aitkin

& Aitkin, 2006a, 2006b). In response, Sgammato (2012) conducted a study show-

ing that the concerns, while valid, may not generalize to the specific NAEP design

and data and, therefore, did not warrant an overhaul of the analysis procedures.

While operational procedures have remained the same, more flexible, parametric

approaches to modeling the proficiency distribution during the item-parameter

estimation phase is an area of continued interest (e.g., Xu, 2007).

In terms of new developments related to item calibration, significant attention

has been paid to multidimensional models for proficiency. The National Assess-

ment Governing Board (NAGB), a nonpartisan board that sets policy for NAEP,

develops and publishes content frameworks for each subject of interest. These

frameworks are documents that describe measurement objectives for each subject

and form the blueprint, both in terms of content and format, for the assessment.

Frameworks have traditionally specified measurement objectives by subdomain

(e.g., literary and information subdomains within the reading overall domain), and

scale scores are reported for each of those subdomains in addition to a weighted

average of subdomains, usually referred to in NAEP as a composite scale, to

represent the overall scale. The weights are prescribed by the frameworks.

Under the current approach, IRT calibrations are carried out separately for

each of the subdomains. In other words, for each scale, a set of item parameters

and a univariate distribution of the latent variable are estimated. One critique of

modeling the latent variable distribution as a sequence of univariate distributions

rather than as a multivariate distribution is that valuable information from cor-

relations between subscales is ignored, thereby offering less efficient item para-

meter estimates than would be obtained with a fully multivariate approach. As

mentioned in the introduction, crosscutting concepts and practices have been
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introduced in frameworks more recently that are measured across subdomains

(e.g., inquiry across science knowledge domains). This implies a shift from, in

factor analytic terms, a strictly simple structure design to a more complicated

multivariate latent structure where items may measure multiple latent variables.

A well-known issue for multivariate models estimated with marginal maximum

likelihood is that it typically requires exponentially increasing computer

resources as the number of dimensions increases and the number of quadrature

points increases. However, several efficient approaches have been explored that

require less computation and that could be fruitful approaches for appropriately

and efficiently modeling multivariate latent variables with items that contribute

to the measurement of multiple dimensions of latent variables. Based on research

and development by von Davier (2005a), Xu and von Davier (2006) applied the

generalized diagnostic model to NAEP data and obtained good recovery of group

score statistics (e.g., means and standard deviations were close and within ran-

dom variation) relative to the regular operational procedures. This model uses

latent classes (i.e., a discrete approximation to the proficiency distribution) as the

underlying latent trait structure and is computationally less intensive than a

continuous variable full information approach.

Another multivariate direction that has been pursued more recently is the appli-

cation of bifactor models to NAEP data. Following Rijmen (2009), the bifactor

model (Gibbons & Hedecker, 1992) has the distinct advantage that higher dimen-

sional models can be fitted without the computational burden of high-dimensional

integrations. This model and computational approach can be estimated with the

multidimensional item response theory (MIRT; Haberman, 2013) program and

was applied to data from the 2014 NAEP Technology and Engineering Literacy

assessment. In this assessment, both domain-specific dimensions and practices are

included, in addition to larger scenario-based tasks that might represent additional

dimensions associated with the specifics of a task (i.e., task effects). The bifactor

model was set up as a single overall primary factor and several secondary and

tertiary factors that included subdomains, practices, or tasks. The results (Shu, Xu,

& Jia, 2013) showed that task effects tend to significantly overwhelm the effects of

either domain knowledge or practices in this case. This is an active area of con-

tinued research, and the model was not used operationally.

Group Score Estimation

In the second phase of the operational procedure, the item parameter estimates (b̂)

are treated as fixed and known. In Equation 2, we introduced the univariate latent

regression probability function. For most NAEP subjects, a multivariate version is used:

f ðYjxi; yiÞ * Pðyi jb̂;YÞFðYjm0i ¼ Gxi;SÞ; ð4Þ

where Y is the multivariate latent variable of interest and F is the multivariate

population prior with mean vector m0i and covariance matrix S, which is common
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across student groups. The second phase entails the estimation of group effects G
and covariance matrix S in order to report on differences between groups of

students. Similar to item calibration, estimation can be conducted by employing

marginal maximum likelihood and the expectation–maximization (EM) algo-

rithm (Dempster, Laird, & Rubin, 1977). During the maximization step, G and

S are estimated following least squares equations from solving the full likelihood

for G and S. For G this is

Ĝ ¼ ðX 0X Þ�1
X 0 ~Y: ð5Þ

Both this equation and the equation for S rely on two quantities, the provisional

posterior mean vector and the provisional posterior covariance matrix, which

have elements for each dimension k and k0 that are estimated in the expectation

step as follows:

fyi;k ¼

Z1
yk¼�1

ykPiðyi jb̂;YÞFðYjĜxi; ŜÞdy; ð6Þ

gsi;kk 0 ¼

Z1
yk¼�1

Z1
yk 0 ¼�1

ðyk � fyi;k Þðyk 0 �gyi;k 0 ÞPðyi jb̂;YÞFðYjĜxi; ŜÞdy: ð7Þ

Therefore, the main computational challenge is to evaluate the integrals in Equa-

tions 6 and 7. The GROUP program (Mislevy & Sheehan, 1987) was developed for

univariate scales and used numerical quadrature to evaluate the integrals. For the

multivariate case, a number of studies were conducted, and programs developed

resulting in the currently operationally used program CGROUP (Thomas, 1993),

which uses a LaPlace approximation to evaluate the multivariate integrals. The

details of this and alternative approaches to the multivariate case are outside the

scope of this article and well described elsewhere (e.g., von Davier, 2005a). More

recent work has focused on answering two questions: (1) Can the multivariate

integrations be performed more efficiently and accurately? (2) Can some of the

model assumptions be relaxed or additional effects be included in the model to

avoid making those model assumptions (e.g., including effects due to the hierarch-

ical nature of the sample where students are inside schools, schools inside districts)?

To answer the first question, Cohen and Jiang (1999) developed a software

program called AM. Among other capabilities, this program estimates the same

multivariate latent variable model based on marginal maximum likelihood. How-

ever, instead of evaluating multivariate integrals, the group effect and variance

parameters associated with each of the scales are estimated separately first and

then correlations between the scales are estimated last. This approach is based on

an analogy to a seemingly unrelated regressions (SUR) model with fully

observed dependent variables (Zellner, 1962). von Davier (2005b) implemented
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the SUR approach in the standard NAEP operational software in order to conduct

a direct comparison. It was shown in a simulation that the full multivariate

approach recovered simulated parameters often equally and sometimes signifi-

cantly better than the SUR approach. The SUR approach was, therefore, not

implemented operationally.

Based on Mislevy’s (1984) work, Antal and Oranje (2007) investigated

whether the use of fewer, carefully selected quadrature points during the expec-

tation step would make models with more latent traits computationally feasible.

A software routine using Gauss–Hermite quadrature (as opposed to rectangular

quadrature) was developed and implemented in the operational software. A

simulation study (Kong, 2012) showed that once the number of points was

reduced enough to make it competitive with Thomas’s LaPlace approximation

in terms of computation time, parameter estimates were considerably less accu-

rate than what could be obtained with the LaPlace approximation. Pursuing a

similar goal of more efficient multivariate integrations, von Davier and Sinharay

(2004) developed a stochastic EM algorithm based on importance sampling of

the posterior distribution to estimate provisional posterior means and covar-

iances. They found that in the aggregate, this method provides a viable alterna-

tive to existing operational methods, but that further research was needed before

operational use to investigate some convergence issues and outliers in the con-

ditional posterior distribution and to reduce computational resources required.

The second question about relaxing model assumptions has led to several

methodological developments and variations that can be classified as (a) those

that pursued estimating all parameters (i.e., both item parameters and the para-

meters of the latent regression) concurrently (and, therefore, not assuming item

parameters to be known and fixed in a separate estimation stage with separate

assumptions about the distribution of the latent variables) and (b) those that pur-

sued introducing additional parameters in the latent regression model to model

additional effects (and, therefore, no longer assuming those effects to be ignor-

able). ACER’s ConQuest (Adams, Wu, & Wilson, 2015) allows for the joint

estimation of item and population parameters by placing strong constraints on the

measurement model in order to make the estimation problem tractable in a single

step. Specifically, a Rasch model is used to model item functions and, subse-

quently, estimate group-level quantities of interest. In addition, von Davier and

Sinharay (2009, 2010) estimated all model parameters concurrently with a Metro-

polis–Hastings algorithm showing that the method is able to recover parameters

within random variation in a simulation and particularly with small item sets, but

that some research still has to be done on monitoring convergence. Possibly one of

the most complete proposals for a comprehensive model for NAEP that entails an

integrated hierarchical measurement and population model is provided by Aitkin

and Aitkin (2011, p. 53). They propose a model that has a provision for guessing

(though generalized among items) random effects for schools and includes ethni-

city as a model factor. They base their work on commercially available packages
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and provide guidance on how to obtain correct standard errors. They apply their

models to relatively older data that have modest missingness by design and show

accurate estimates of student group means and standard errors. They also point out

a number of smaller technical details beyond the scope of this article that would

require further research as well as the need to apply these models to operational

cases, which typically contain more items overall, fewer items per student, larger

samples, and a different hierarchical structure.

Several studies have been conducted, which focus on introducing additional

parameters to more faithfully represent the data. For example, in order to allow

different student groups to have different variances, Thomas (2000) developed an

alternative version of the operational program where instead of a single variance

(i.e., s2), different variances for different (mutually exclusive) student groups

could be estimated. Upon further inspection, this version had limited gain in

terms of more accurately recovering population distributions unless all identified

groups are significantly large. Thomas’s work was taken further by von Davier

and Yon (2004) who developed a generalized least squares estimator in which the

homoscedasticity assumption was relaxed for the residual variances at the stu-

dent level. They did not find a substantial gain for balanced designs, where every

booklet yields approximately similar levels of reliability.

Another set of examples pertains to the introduction of additional parameters

to model the hierarchical nature of the sample, where students are sampled from

schools, schools are sampled from districts, and so on. Li, Oranje, and Jiang

(2009) developed a hierarchical latent regression model, estimating random

effects parameters to reflect the nested structure of the data. Comparison of a

hierarchical model with the operational model in terms of means and standard

deviations of student groups showed small differences (i.e., within statistical

significance bounds). This finding reflects the fact that the sizable number of

background variables in the NAEP operational model represent most of the

within and between school effects that are explicitly parameterized in a hier-

archical random effects model. Johnson (2002) and Johnson and Jenkins (2005)

developed a fully Bayesian solution using Markov chain Monte Carlo methods to

estimate a hierarchical version of the group score assessment model. They also

estimated all parameters jointly by imposing relatively informative priors.

Recovery of simulated effects was reasonable but not showing a significant

improvement over the existing NAEP approach.

Student Group Variables and Data Reduction

Earlier, we introduced x as a vector of student group variables for which we

want to report scale scores. These variables may come from school records (e.g.,

gender, race/ethnicity, disability, and English language learning status), student

responses to questionnaires about a variety of topics such as access to resources

and study habits, teacher responses to questionnaires about a variety of topics such
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as teacher preparation and experience, and school administrator responses to ques-

tionnaires about a variety of topics such as governance and school culture. By

including these variables in the latent regression analysis, the relationship between

the groups of interest as defined by the x variables and proficiency is estimated.

The estimated latent regression—specifically the model-implied posterior distri-

bution of theta associated with each test taker—can be used to derive estimates of

the proficiency distribution for the various reporting groups of interest. Subse-

quently, the resulting posterior distribution becomes the basis for reporting student

group means. This posterior distribution can also be generated with few variables.

However, as Mislevy (1984, 1985) points out, omitting indicators of student groups

of interest from the set of x variables that define the latent regression model leads to

potentially biased estimates of the proficiency distribution for those groups.

One goal of the NAEP operational approach is to include as many student

groups as possible in a single latent regression model to create a single, canonical

set of results that provides consistency for all data users. This goal cannot be fully

achieved for several reasons. A potential issue common to all regression is

multicollinearity and near-zero variances of independent variables. Early on, this

was addressed manually by multiple sequential analyses and removing indepen-

dent variables as necessary. However, the number of student groups of interest

has grown significantly over the years with the introduction of additional or

longer questionnaires in order to provide more context to the results. Subse-

quently, a manual process for resolving multicollinearity became impractical.

As a result, NAEP adopted the use of principal components to remove multi-

colinearity and near-zero variances of independent variables. NAEP’s practice is

to convert ordinal and nominal responses from the NAEP survey questionnaires

and other test taker covariates into a series of dummy-coded contrasts. Covariates

that can be treated as continuous are left in their original form. Principal com-

ponents of these survey responses and covariates are then obtained based on a

correlation matrix, effectively standardizing all variables to have unit variance.

More precisely, the current approach first makes use of the SWEEP algorithm

(Goodnight, 1978) to remove most multicollinearity and very small variances,

followed by a principal component analysis using the smallest set of variables

that represents 90% of the variance for the latent regression analysis. This pro-

cess is automated and can be applied to national samples as well as for each state

consecutively in state-level assessments.

Cohen and Jiang (2002) proposed that the group score estimation should be

conducted one or a few variables at a time to ensure that inferences would never

be made about variables not explicitly included in the model and, therefore,

would not incur any secondary biases. There are some practical challenges and

statistical issues associated with that proposed approach. As discussed (Mazzeo,

Donoghue, Li, & Johnson, 2006) and shown with real and simulated data (Moran,

Dresher, & Davis, 2007), one issue with this approach is marginal inconsistency.

That is, if the interaction of two variables, A and B, is modeled in one estimation
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and the results are marginalized over B (e.g., you obtain the results for A), these

results are not guaranteed to be identical to a model where only the variable A is

modeled. In addition, Cohen and Jiang’s approach makes the fairly strong

assumption that proficiency is normally distributed in all reporting groups of

interest. Moran et al. show that this procedure cannot recover group score sta-

tistics accurately when this assumption is violated. When the cognitive items

matrix design is relatively sparse, adding more student group indicators into the

model beyond those needed to define the specific reporting group(s) of interest

can improve the accuracy of the standard errors of the group score statistics for

groups that were already included (Thomas, 2002).

Various alternative approaches to reducing the number of predictor variables in

the latent regression model have been studied. For example, Oranje and Ye (2014)

compared the aforementioned operational approach with various other approaches.

One approach was to include key reporting variables directly (i.e., as a set of

dummy codes) into the set of independent variables while using a residual principal

component analysis on the rest. The goal was to make sure that the most important

and frequently reported variables would be fully represented in the model rather

than through a combination of principal components. A second approach was to

use covariances rather than correlations to base the principal component analysis

on. The goal was to avoid making the assumption that all independent variables

have the same standard deviation. They also manipulated the percentage of var-

iance retained in the principal component portion to investigate whether a smaller

model could still represent the variance in all the variables sufficiently. In terms of

the bias–variance trade-off, it was found that even the largest models in this study

still showed the most favorable result, meaning that bias gains still outweighed

variance inflation in very large models with many parameters. The covariance-

based approach was not appreciably different from the correlation-based approach.

Lastly and not surprisingly, including indicators of key student groups directly into

the independent variable set lowered the bias for those variables, but at the cost of

increased bias of the other variables. Finally, Johnson (2011) studied the use of the

least absolute shrinkage and selection operator regression with item responses

included in the model as an alternative for principal components and found that

these methods yielded comparable results in terms of means and variances relative

to standard errors for the situations typically encountered in operational NAEP.

Plausible Values

Based on the ideas of Little and Rubin (1987), plausible values are the primary

conduit for calculating and reporting official NAEP results. They are multiple

imputations generated based on the estimated latent regression model and pro-

vide a stochastic approximation to the group score results that are implied by the

model and, in principle, directly calculable from that model. Moreover, they

provide a convenient mechanism for estimating one component of the error
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variance in NAEP reported statistics associated with the fact that the dependent

variable of interest (i.e., NAEP proficiency) is not directly observable. Plausible

values are not the scores of individual test takers and should not be interpreted as

such. From an operational perspective, having a single set of plausible values that

can be used to calculate the results for many different groups is convenient and

assures internal consistency across the full set of student groups for which results

are sought.

The aforementioned component of error variance (B) represented by the

variability in plausible values is calculated as follows:

Bðzm
g Þ ¼

1

R� 1

X
r

ðzm;r
g � zm

g Þ
2; ð8Þ

where R is the total number of plausible values, zm
g is a statistic m (e.g., the mean,

standard deviation, a percentile) of interest for group g and averaged over plau-

sible values after calculating the statistic zm;r
g for each of the plausible values R.

The most significant change to this methodology has been made recently increas-

ing the number of plausible values (R) from 5 to 20 in order to improve the

estimation of B. While it can be shown that five values lead to robust results for B

for most student groups, the additional draws do provide increased estimation

accuracy of the statistics of interest (Oranje & Freund, 2013) in smaller groups

and states, particularly those who are more at the extremes of the distribution,

where measurement variances (i.e., B) are relatively large.

Statistical Inference and Reporting

The NAEP program reports four main statistics for student groups: means, stan-

dard deviations, percentiles (10th, 25th, median, 75th, and 90th), and achievement-

level percentages. Achievement levels are expert panel-determined cut points on the

proficiency score scale, which signify the boundaries of intervals that are associated

with basic, proficient, and advanced performance. Statistical inference is conducted

primarily through pairwise t tests of student groups (e.g., male compared to female

students) within a jurisdiction (e.g., nation, state, urban district) between 2 years or

between two student groups or jurisdictions within a year (e.g., North Carolina

compared to South Carolina in 2009). Changes to that process over the past two

decades fall into four categories: (1) a more comprehensive reflection of what

sources of error contribute to uncertainty, (2) significance testing, (3) flagging of

results that may be less reliable, and (4) multiple pairwise comparison procedures.

We will first review NAEP’s operational standard error calculation.

In the previous section, the variance term B was introduced as the between-

imputation variance intended to represent measurement variance. A second var-

iance term S is used to represent the variance due to sampling. NAEP uses a

multistage probability sampling design to sample students at random within

schools, schools proportionally to their size (i.e., number of test takers eligible
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for inclusion in the sample) within primary sampling units (PSUs), and PSUs

proportionally to size. As a result, the sample is clustered, and design effects for

major reported student groups typically are between 2 and 3. The combined

standard error for a proficiency statistic zm of interest for group g is the square

root of V, which is calculated as follows (Mislevy et al., 1992):

V ðzm
g Þ ¼ Sðzm

g Þ þ
Rþ 1

R
Bðzm

g Þ; ð9Þ

for R total plausible values.

Following Hansen and Tepping’s (1985) and Kovar’s (1985) evaluation of

various variance estimation methods, including Taylor Series expansion, boot-

strapping, balanced repeated repetitions, and jackknifing, the calculation of S was

determined to be most accurate under the jackknife repeated replications (JRR)

method. Alternatives have been studied over the years. For example, von Davier

(2005b) used White’s robust estimator to obtain standard errors for the coeffi-

cients of the latent regression model with mixed success. In addition, Cohen and

Jiang (2002) adapted Binder’s estimator based on a Taylor series specifically for

their one-variable-at-a-time methodology. Li and Oranje (2007) evaluated the

Binder’s method against the JRR and found that this method is only accurate for

very small models and is inaccurate for larger models.

Sources of Error

In addition to sampling and measurement variance, some other sources of

variance have received consideration over the past two decades, including item

sampling. The idea of item sampling as a source of error is that there is a universe

of content from which each instance of the assessment samples a set of items and

tasks. This sample of the universe may be a significant source of error that should

be included in standard error calculations. This is particularly true for shorter

subdomain scales (e.g., the subdomain of geometry within the larger domain of

mathematics) that are represented in the assessment by a relatively small set of

items. Jiang, Cohen, Hsu, and Johnson (2005) studied the relative magnitude of

this source of error and recommended the use of a double-jackknife approach

developed by Cohen, Johnson, and Angeles (2000). This method successively

leaves out both a student and an item unit, calculates statistics of interest (e.g., a

mean for a particular student group), and uses the variability among these suc-

cessive calculations as standard error due to both item and student sampling. This

research was subsequently reviewed by an expert panel, and the review was

summarized by Aitkin (2006). Aitkin concluded that the original formulation

was technically problematic but that the notion of a double jackknife was not

unreasonable and that further research was recommended to develop a sound and

tractable method for estimating this source of variation and to include it in the

standard error calculation.
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Statistical Testing

As mentioned above, NAEP makes use of pairwise t tests to determine the

statistical significance of differences between student groups, years, and jurisdic-

tions. Up to 2005, NAEP treated all comparisons as though they were compar-

isons between independent samples. While for some of these comparisons (e.g.,

states to the nation, mutually exclusive groups among each other), such assump-

tions were not strictly correct because too large a variance is assumed, the

program adopted this simple convention as a conservative strategy. It was

assumed that standard errors under an independence assumption would be larger

than under a dependence assumption (i.e., there is a positive correlation between

dependent samples) and that it was safer to underreport on statistically significant

results than overreport.

However, changes in the sampling design made the independence assumption

less tenable as some dependencies could be rather substantial. As a result, adjust-

ments to the way statistical tests are conducted were implemented for those cases

where the samples of comparison were not strictly independent. Two big design

changes were of particular impact: (a) combined samples and (b) urban districts.

Prior to 2002, the state public school assessment program and the national

assessment were conducted based on mutually exclusive samples. When No

Child Left Behind was enacted, and states would risk losing federal funds if they

would not participate in certain parts of NAEP (i.e., Grades 4 and 8 reading and

mathematics), it became logical to integrate the two samples. From then on, the

national combined sample was comprised of all the state public school samples

plus a national private school sample. As a result, an inherent sample dependency

was created when comparing a state to the nation, of which that state was also

part. Starting in 2005, select large urban districts were representatively sampled

and separately reported on. This created another level of dependency in compar-

isons between, for example, Chicago and Illinois, as Chicago is part of the

Illinois sample. As a result, dependent t tests have been introduced. Note that

in the combined national sample, states and large urban districts are weighted

according to student population size.

Qualifying Results

Since the inception of modern-day NAEP (i.e., 1990s and on), several con-

ventions have been adopted with the intention to qualify statistical testing results

and inform the user of those results about the technical limitations that need to be

taken into account. For example, two sample size–based conventions are the

rules of 62 and 5. The rule of 62 was derived by adopting a convention that

the minimum student sample size would have 0.80 power of detecting a 0.5 effect

size difference in means controlling for Type I error at 0.05 and, for approxima-

tion purposes, assuming a design effect of 2 compared to simple random sam-

pling. The rule of 5 determines the minimum number of PSUs or schools
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(depending on the type of sample) required for reporting. The intention of this

rule is to assure that the jackknife standard errors of the statistic of interest exceed

a threshold for precision, particularly when the sample on which the results are

based is clustered in a small number of sampling units (Johnson & Rust, 1993).

As mentioned earlier, one statistic of interest is the percentage of students at

(or above) defined achievement levels on the score scale. In addition, the pro-

gram reports on the percentage of students in various student groups defined by

either school records (e.g., race/ethnic groups) or self-reports to questionnaires.

Percentage metrics are typically noncontinuous (i.e., the denominator is a count)

and bounded by 0 and 100. Therefore, computing a standard error following the

aforementioned imputation and jackknife-based methods becomes problematic

because those methods assume continuous, unbounded metrics and random error

that is symmetric around a point estimate. For percentages in the middle of the

range (e.g., around 50%), this may not be an issue. However, toward the

extremes, this leads to cases where a symmetric confidence interval could sur-

pass the bounds of the scale. NAEP has adopted a convention (National Center

for Education Statistics, 2005) to suppress results for which this is the case. This

includes comparisons between percentages if this is the case for at least one of the

estimates in the comparison. Oranje (2006) studied various alternative

approaches with asymmetric confidence intervals for percentage estimates and

found that the Wilson (1927) interval is the most accurate in recovering appro-

priately sized intervals based on simulation. The program has started including

(asymmetric) confidence intervals in an online data analysis tool, and compar-

isons of differences of percentages are based on the standard error of the differ-

ence rather than pooling two error terms and suppressing results.

Multiple Comparisons

Across many student groups (e.g., gender, race/ethnicity, type of location,

answers to questionnaires), assessment years, and jurisdictions (i.e., states and

urban districts), the number of possible comparisons can be sizable. Statistical

testing is a critical component to determine which results can be reported as

different. For every comparison that appears separately in a report, a Type I error

rate of 5% is used. When many multiple comparisons are conducted simultane-

ously, the Type I error rate quickly approaches 1 across comparisons, and some

correction is required. Historically, a Bonferroni correction has been applied

where the Type I error rate is set at a much lower rate commensurate with the

number of comparisons to account for capitalization on chance. Since then,

NAEP has adopted an alternative methodology that controls the false discovery

rate (FDR, Benjamini & Hochberg, 1995) rather than the cumulative probability

of making Type I error. The main advantage is that the FDR method is statisti-

cally more powerful. As with most adjustment methods, the number of compar-

isons or family size needs to be determined. This is challenging in the sense that
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determining the statistical significance of a comparison between two states or 2

years may depend on how many other states or years are included in the pairwise

comparison and, therefore, how large the family size is. As a result, the program

has adopted two conventions that limit the family size for those instances at the

risk of occasionally overreporting of statistical significance: State to nation

comparisons always carry a family size of 1 as do year-to-year comparisons.

Achievement Levels

The introduction of IRT models to NAEP in 1983 provided a way to connect

items to NAEP scales in the same way that populations of students can be given

scores. This opened the technological possibility of linking expectations for

student performance in NAEP to ranges on the NAEP scales. Under the authority

of the legislation that established NAGB in 1988, NAGB took on this responsi-

bility and carried out an achievement level–setting process in each subject at the

beginning of each trend line. In the early 1990s, the initial process of setting

achievement levels on NAEP mathematics and reading scales was controversial.

A nontechnical summary of this controversy can be found in Vinovskis (1998).

In response to the controversy, Congress in 1994 changed NAEP’s legislation to

mandate periodic independent evaluations of NAEP and its achievement levels.

Under this legislation, NAEP reports must make clear the “developmental” status

of the achievement levels (later changed to “trial” status) until that status is ended

by the Commissioner of Education Statistics who is to make a determination, on

the basis of a mandated independent evaluation, that the achievement levels are

“reasonable, valid, and informative to the public.” While some of the issues in the

controversies were political, the ones relevant in this context were technical.

The basis for performance expectations lies in collective judgments by subject

matter experts who rely on policy definitions from NAGB of Basic, Proficient

(defined in part as “competency over challenging subject matter”), and Advanced

performance, as well as initial achievement-level descriptions based on the fra-

meworks that define subject matter content coverage for each assessment. These

experts are carefully selected and trained to make item-specific judgments of

desired levels of performance. The initial achievement-level standards for

NAEP’s reading and mathematics assessments were based on two rating meth-

ods. For multiple-choice and short-answer questions, the judges estimated the

proportion of Basic, Proficient, or Advanced students at the lower borderline of

the category (as defined by the framework-based achievement-level descrip-

tions) who would answer each item correctly. The cut score for these items was

derived by averaging the item percentages and locating the score value along the

IRT test characteristic curve that corresponds to that average percent correct. For

polytomous items, the judges were asked to select from a set of sample papers

(without knowledge of how the papers were scored) one that best represented the

lower border of the achievement-level category. The item ratings of the selected
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papers were averaged across the group of judges, and the cut scores for poly-

tomous items were again located using the test characteristic curve. The two

methods resulted in different cut scores; the differences were reconciled via an

information-weighted average of the two methods. Details can be found in

Bourque (1994), American College Testing (1993), and Luecht (1993) and the

subsequent technical corrections in Loomis, Bay, and Chen (1996).

The principal technical problem with respect to the judgments of technical

experts is that their understanding of the difficulty of the items may not corre-

spond well with the empirically derived quantitative measures of item difficulty

produced by IRT models. Subsequent to setting standards in reading and mathe-

matics, and throughout the 1990s, NAGB’s standard-setting methodologies in

U.S. history, civics, and geography were evolving but were fundamentally

derived from the same Angoff approach. Loomis and Bourque (2001) and Reck-

ase (2000, 2001) provide overviews of this evolution. Since 2000, the

achievement-level standards in Grade 12 mathematics, economics, technology

and engineering literacy, and writing were set with the bookmark method (King-

ston, Kahl, Sweeney, & Bay, 2001), at least in part because the bookmark method

did not require as much time to conduct. With the bookmark method, the test

items are arranged in order of difficulty in books given to the judges. The books

contain all items (or a substantial proportion of them, as when different groups of

judges are given different subsets of the item pool). The task then becomes

placing a bookmark (i.e., finding the dividing line) between the items that stu-

dents should be expected to answer correctly at the lower borderline of the Basic,

Proficient, and Advanced levels and those they are not expected to be able to

handle. The bookmarks can be associated with an IRT score through the response

probability convention. While there is an element of arbitrariness about the

choice of this convention (Loomis & Bourque, 2001; Kolstad, 1999), the value

of a 65% chance of correctly answering a question was discussed by Zwick,

Senturk, Wang, and Loomis (2001) and has become a de facto standard through-

out the testing industry. In this approach, the various levels of partial credit are

treated as separate items and included in the ordered item books. As a result, with

the bookmark method, there is no issue of combining cut scores derived from

different methods.

Documenting the conduct of the achievement-level setting process has been

NAGB’s responsibility, with little online technical information in NAEP’s tech-

nical documentation on the Web. Technical reports explaining the process for

each subject since 1996 are available on the NAGB website, and photocopies of

the earliest 1992 and 1994 reports are available upon request to NAGB. During

the 1990s, NAGB provided summaries of the standard setting process for inclu-

sion as appendices in NAEP’s printed technical reports.

The success of setting achievement levels on NAEP scales has been criticized,

especially the earliest ones in reading and mathematics (National Academy of

Education [NAE], 1993a, 1993b, 1996). Congressionally mandated independent
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evaluations of NAEP (NAE 1997; National Research Council 1999) resulted in

negative evaluations of the NAGB’s achievement-level setting as a flawed pro-

cess that did not encourage ending the trial status of the achievement levels,

although the evaluations did encourage reporting trends against the unchanging

metric of the achievement-level cut scores. A 2009 evaluation by the NAEP

Evaluation Technical Working Group, published in a special issue of Applied

Measurement in Education (volume 22, no 4), found that many users find report-

ing by achievement levels useful, that the procedures used are consistent with

professional standards, but that additional external validity evidence is needed.

The 2016 independent evaluation by the Committee on the Evaluation of NAEP

Achievement Levels for Mathematics and Reading recommended that only

“once satisfactory alignment among the frameworks, the item pools, the

achievement-level descriptors, and the cut scores in NAEP mathematics and

reading has been demonstrated, their designation as trial should be dis-

continued.” The Commissioner responded to this evaluation by determining that

the trial status of the achievement levels in reading and mathematics should be

continued. At this time, all reports from NAEP are still legislatively required to

include cautionary language about the trial status of NAEP’s achievement levels.

Summary and Conclusion

In this article, we have provided an overview of the NAEP methodology and

some of the psychometric and statistical methodology issues that have been

studied over the past three decades. Occasionally, some changes to the NAEP

operational methodology have been implemented alongside larger design

changes of the program. More often, the existing operational methodology

appeared very robust relative to potential alternatives.

We started with an overview of the operational item calibration methodology

and discussed what forays into full MIRT have been made. As the interest in

skills that cut across multiple knowledge domains increases, we expect that

MIRT models will become important components of the methodology. The main

questions for estimating more complex models will concern efficient estimation

of a considerable number of parameters and how to connect that with the latent

regression of student groups on proficiency. Subsequently, we discussed

advances in the latent regression methodology itself, including different para-

digms to approach the task and more minute changes to how the various quan-

tities of interest are estimated by either relaxing or adding assumptions or trying

out different estimation and approximation methods. The size of the model (e.g.,

number of student groups of interest) coupled with the desire to estimate and

report on a single canonical and reproducible set of results means that the esti-

mation task is sizable and grows with the expanse of student group variables.

This area will need to focus and grapple with balancing model size with the

ability to efficiently produce consistent results.
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Underneath the core estimation methodology resides a distinct philosophy

about linking items and trend assessments, which is based on common items

between successive administrations. This philosophy is routinely challenged by

programmatic and societal changes. For example, technology is already signif-

icantly influencing teaching, learning, and assessment. An important question for

the program will be how to maintain a meaningful trend if the circumstances under

which the assessment is assessed in terms of commonly shared technology are so

starkly different from one point to the next. One way that such changes can be

quantified, if still considered meaningful from a substantive perspective, is through

appropriately accounting for additional sources of bias and variance. For example

and as mentioned earlier, further research on the effect of item sampling across

assessments might be worthwhile as well as linking error associated with changes

of assessment mode. Another source of error variance not currently accounted for

is the variability in human ratings of performance on constructed response items.

Finally, we discussed research on and some changes that have been made to

the statistical inference and standard setting methodology. The program’s trans-

formation from providing a restricted set of precalculated results to an environ-

ment in which the public can obtain results about many student groups on-the-fly

has also transformed the statistical testing practice. An important focus for the

program might be to develop new paradigms for multiple comparisons that are

consistent across different comparisons. This is especially important as the

amount of data and possible comparisons will only increase with the advent of

(a) digital assessment environments that can record all student’s interactions with

the test and (b) more elaborate, scenario-based tasks that invite and require a lot

more interaction.

The adoption of IRT methods in the early 1980s was followed 10 years later

by the development of methods to map expectations for student performance onto

the NAEP scales in the form of achievement levels in reading and mathematics.

These methods evolved and changed as expectations for student performance in

U.S. history, civics, geography, science, writing, economics, and technology and

engineering literacy were mapped to their corresponding NAEP scales. The pro-

gram has made some important upgrades over the years and will need to continue

to do so as different item and task types require different processes.
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