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Article

Proficiency in algebra paves the way for success in science, 
technology, engineering, and mathematics (STEM) college 
courses and vocations (National Mathematics Advisory 
Panel [NMAP], 2008). Fraction knowledge, in turn, is foun-
dational for learning algebra (Booth, Newton, & Twiss-
Garrity, 2014). As such, fractions are a critical aspect of 
mathematics education in the elementary and intermediate 
grades (National Governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010; 
NMAP, 2008). Unfortunately, fractions present challenges 
for many students. A large number of students struggle to 
develop even a basic understanding of fractions (e.g., 
Bailey, Hoard, Nugent, & Geary, 2012; Hansen, Jordan, & 
Rodrigues, 2017), and many students show minimal growth 
in fraction magnitude knowledge between fourth and sixth 
grades (Resnick et al., 2016), the period when fractions are 
taught in school. Fractions are particularly hard for students 
with diagnosed learning disabilities (Jordan, Resnick, 
Rodrigues, Hansen, & Dyson, 2017).

Research demonstrates that fraction knowledge is a 
uniquely important predictor of later mathematics achieve-
ment when controlling for the contributions of cognitive 
abilities, other number skills, and socioeconomic status (SES; 
e.g., Resnick et al., 2016; Siegler et al., 2012). In light of the 
importance of fractions, we were interested in investigating 
whether fraction measures could serve as predictive screen-
ers of later mathematics difficulties for the intermediate 

grades. These fraction measures included a single proficiency 
measure that assessed students’ accuracy when estimating 
fraction magnitudes on a number line, a more general mea-
sure of fraction concepts, and a measure of fraction arithme-
tic skills.

Using receiver operating characteristic (ROC) curve 
analyses, this study assessed the diagnostic accuracy of the 
measures for identifying students who do not meet state 
benchmarks in mathematics. In addition, we explored the 
accuracy of combinations of various measures. Research 
suggests that multiple-proficiency screeners may be more 
fruitful than a screener that targets only one discrete skill 
(e.g., Purpura, Reid, Eiland, & Baroody, 2015).

Screening for Mathematics Difficulties

Previous studies on mathematics screeners for identifying 
students at risk for mathematics difficulties have concen-
trated on the primary grades (e.g., Jordan, Glutting, & 

879684 LDXXXX10.1177/0022219419879684Journal of Learning DisabilitiesRodrigues et al.
research-article2019

1University of Missouri, Columbia, USA
2University of Delaware, Newark, USA
3Fairleigh Dickinson University, Teaneck, NJ, USA

Corresponding Author:
Jessica Rodrigues, PhD, University of Missouri, 311B Townsend Hall, 
Columbia, MO 65201, USA. 
Email: rodriguesjm@missouri.edu

Identifying Fraction Measures as  
Screeners of Mathematics Risk Status

Jessica Rodrigues, PhD1, Nancy C. Jordan, EdD2, and  
Nicole Hansen, PhD3

Abstract
This study investigated the accuracy of three fraction measures (i.e., fraction number line estimation accuracy, general 
fraction concepts, and fraction arithmetic) for screening fourth graders who might be at risk for mathematics difficulties. 
Receiver operating characteristic (ROC) curve analyses assessed diagnostic accuracy of the fraction measures for 
predicting which students would not meet state standards on the state mathematics test in fourth grade (n = 411), fifth 
grade (n = 362), and sixth grade (n = 304). A combined measure consisting primarily of fraction number line estimation 
items and general fraction concept items was the most accurate screener of risk status in fourth, fifth, and sixth grades 
(area under the curve [AUC] = .84, .81, and .85, respectively). To maximize efficiency for classroom use, the length of 
the combined screener was reduced using best subset automatic linear modeling. The study highlights the importance 
of fraction knowledge for predicting mathematics achievement more generally and validates an effective and practical 
screening tool for the intermediate grades.

Keywords
mathematics, at risk/prevention, identification, assessment

https://us.sagepub.com/en-us/journals-permissions
https://journaloflearningdisabilities.sagepub.com

mailto:rodriguesjm@missouri.edu


Rodrigues et al.	 481

Ramineni, 2008; Lembke & Foegen, 2009). This focus is 
not surprising, as school personnel want to identify at-risk 
students as early as possible in hopes of circumventing later 
difficulties. Yet, there is also a need for screening students 
in the intermediate grades, when the demands for mathe-
matics shift dramatically (Gersten, Clarke, Haymond, & 
Jordan, 2011; Gersten et  al., 2012). Powell, Fuchs, and 
Fuchs (2013) describe these shifts in the mathematics cur-
riculum in the intermediate grades as “curricular twists and 
turns” (p. 42) that can result in late-emerging mathematics 
difficulties. Powell et  al. (2013) highlight fractions as an 
example of a new challenge in the upper elementary grades 
that poses difficulties for many students who have not pre-
viously struggled with mathematics. Without valid screener 
measures for the intermediate grades, schools may miss 
these students who are struggling and will be ill-prepared 
for more advanced mathematics without intervention.

Next, we provide a review of studies exploring mathe-
matics screeners for the intermediate grades, beginning with 
studies discussed in the 2009 What Works Clearinghouse 
practice guide and leading up to more recent investigations.

Mathematics Screeners for the Intermediate 
Grades

The What Works Clearinghouse practice guide for assisting 
students struggling with mathematics (Gersten et al., 2009) 
cites only two studies that assess screeners beyond the sec-
ond grade (Foegen, Jiban, & Deno, 2007; Jiban & Deno, 
2007). The first study mentioned in the practice guide 
investigated timed, 1-min measures of whole number facts 
(e.g., 6 – 1 = ?) administered in both third and fifth grades 
as predictors of performance on a statewide mathematics 
test at the end of each grade (Jiban & Deno, 2007). A limita-
tion of the study is the reliance on multiple regression anal-
yses to assess the accuracy of whole number fact measures 
predicting later mathematics achievement. Although regres-
sion analyses are considered a good starting point, they are 
insufficient for assessing the utility of a screening tool. A 
common goal of screening is often to avoid “false-negative” 
errors, which refers to the occurrence of a student who is 
truly at risk being incorrectly identified as not at risk; in 
other words, a student who needs additional support is not 
detected by the screener. Regression models do not allow 
researchers to prioritize avoidance of false negatives 
because the models weigh positive and negative errors of 
the same magnitudes equally. The second study cited in the 
practice guide (Gersten et al., 2009) for providing data on 
mathematics screeners beyond second grade is a review 
written by Foegen and colleagues (2007). However, the 
studies mentioned in the review focus on assessing the reli-
ability and criterion validity of mathematics measures 
rather than exploring the measures as screeners for predict-
ing likelihood of risk (e.g., Foegen & Deno, 2001).

A subsequent review of the literature following the 2009 
What Works Clearinghouse publication reveals that 
researchers have since turned to a more sophisticated meth-
odology for exploring the accuracy of mathematics screen-
ers: ROC curve analysis.

ROC Curve Analysis

Although the use of ROC curve analysis is a recent trend in 
mathematics screening literature for the intermediate grades 
(Keller-Margulis, Shapiro, & Hintze, 2008; Shapiro, Keller, 
Lutz, Santoro, & Hintze, 2006; VanDerHeyden, Codding, & 
Martin, 2017), the analysis has been leveraged for years in 
multiple fields as the state-of-the-art method for describing 
the accuracy of a diagnostic test (Weinstein, Obuchowski, 
& Lieber, 2005). ROC curves address limitations of tradi-
tional methods of determining diagnostic accuracy such as 
statistically significant group differences (Cahn-Weiner 
et al., 2003), correlational designs (Foegen et al., 2007), and 
regression models (VanDerHeyden et al., 2017). Advantages 
of the ROC curve analysis include the following: (a) the 
analysis assesses the overall accuracy of a measure for dis-
criminating individual participants, (b) it is not dependent 
on the value of a specific cut score along a measure, (c) it is 
independent of assumptions about the normality of a mea-
sure’s score distribution (Hanley & McNeil, 1982), (d) it 
allows the researcher to prioritize certain decisions such as 
the avoidance of false negative errors (e.g., VanDerHeyden 
et al., 2017), and (e) it yields statistics that provide usable 
information for both research and application in the real 
world (Youngstrom, 2013).

One of the most valuable ROC statistics is the area under 
the curve (AUC). If one student is randomly selected from 
the at-risk population and another student is randomly 
selected from the higher-achieving population, the AUC is 
the probability of distinguishing between those two stu-
dents with the predictor measure (McFall & Treat, 1999). 
Thus, an AUC of .50 means that the measure correctly 
places students 50% of the time, which would not be con-
sidered a powerful screener as it does not discriminate 
between students who are at risk and students who are not 
at risk. An AUC value of .75 and above is recommended in 
the educational literature as indicative of good screeners for 
determining risk status (Cummings & Smolkowski, 2015). 
ROC curve plots allow for a visual interpretation of AUC 
values (see Figure 1 for examples).

Researchers Keller-Margulis and colleagues (2008) used 
ROC curve statistics to assess the accuracy of mathematics 
measures administered in the intermediate grades for predict-
ing later mathematics achievement on a state standardized 
test. A fourth-grade mathematics computation measure that 
included problems of mixed operations and a concepts and 
applications measure that assessed counting, measurement, 
charts and graphs, money, fractions, and word problems 
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Figure 1.  ROC curve plots and AUC values predicting each grade of the outcome.
Note. ROC = receiver operating characteristic; AUC = area under the curve.



Rodrigues et al.	 483

yielded AUC values meeting and hovering around the thresh-
old of good screeners for determining risk status (AUC = .79 
and .72, respectively).

More recently, VanDerHeyden and colleagues (2017) 
used ROC curve analyses to assess several mathematics 
areas (multi-skill computation, single skill computation, 
and concepts/applications) and combinations of the areas 
administered in third, fourth, and fifth grades that best pre-
dicted end-of-year achievement in the same grade on a state 
mathematics test. Among the measures administered in the 
fall, the concepts and applications measure yielded the 
highest diagnostic accuracy for predicting year-end achieve-
ment in the third, fourth, and fifth grades (AUC = .80, .85, 
and .96, respectively). The fall computation measure met 
the AUC threshold in the third and fifth grades (AUC = .76 
and .90, respectively) but did not perform as a strong 
screener in fourth grade (AUC = .72). The authors also 
assessed the accuracy of combined measures, finding that a 
multiple-measure model was the best fit to their data in 
fourth and fifth grades. Yet, they urge future research be 
done to replicate their findings with larger samples to assess 
the benefits of multiple measures versus single measures. 
Support for using a combination of measures is also found 
in the reading screening literature (e.g., Clemens, Keller-
Margulis, Scholten, & Yoon, 2016). Although the adminis-
tration of multiple measures requires additional resources 
and time, one possible solution to the concern is to reduce 
the number of items on the measures without sacrificing the 
diagnostic accuracy of the screener (Purpura et al., 2015).

Rationale for This Study

Fraction skills were purposefully selected for examination 
in this study because they comprise a large and potentially 
unifying portion of mathematics content during the upper 
elementary grades (National Governors Association Center 
for Best Practices & Council of Chief State School Officers, 
2010). Moreover, fraction knowledge is associated with 
later mathematics success (e.g., Booth & Newton, 2012). 
Fractions are a particularly challenging topic for many stu-
dents (e.g., Bailey et al., 2012), which further suggests the 
need to screen for difficulties in this area of mathematics. 
This study investigated fraction number line estimation 
(FNLE), general fraction concepts, and fraction arithmetic 
as screening tools for later mathematics achievement.

FNLE

The integrated theory of numerical development (Siegler & 
Lortie-Forgues, 2014; Siegler, Thompson, & Schneider, 
2011) posits that numerical development is unified by one 
key understanding: All real numbers have magnitudes that 
can be represented on a number line. The development of 
numerical knowledge is considered as a process of 

broadening the set of numbers whose magnitudes can be 
accurately represented. The far-reaching importance of 
magnitude understanding in numerical development has 
been highlighted in early developmental studies (e.g., 
Libertus, Feigenson, & Halberda, 2011; Mazzocco, 
Feigenson, & Halberda, 2011) as well as in studies later in 
development using symbolic numerical tasks involving 
whole numbers and fractions (e.g., Resnick et  al., 2016; 
Siegler et  al., 2011; Torbeyns, Schneider, Xin, & Siegler, 
2015). A valid measure of fraction magnitude knowledge is 
a FNLE task in which students estimate the locations of 
individual fractions on a number line (e.g., Resnick et al., 
2016; Siegler et al., 2011). FNLE acuity is typically assessed 
with 0 to 1 and 0 to 2 number lines (i.e., a number line that 
begins with zero on the left endpoint and extends to 1 or 2 
on the right endpoint) in the intermediate grades.

Students who struggle on FNLE tasks do not appear to 
have an intuitive grasp of fractions and the multiplicative 
relation between the numerator and the denominator. For 
example, these students often use a whole number strategy 
and place a fraction, such as 1/19, to the far right of a 0 to 2 
number line, suggesting that they are relying on the magni-
tude of the denominator rather than the entire fraction 
(Resnick et  al., 2016). Students who cannot accurately 
place fractions on a number line are likely to continue to 
struggle in mathematics classes, at least without receiving 
additional supports (Resnick et  al., 2016; Siegler et  al., 
2011; Tian & Siegler, 2017). As such, we assessed the accu-
racy of FNLE as a screening tool.

General Fraction Concepts and Fraction 
Arithmetic

Fraction concepts measures tend to use a broad set of related 
items that touch on several different fraction concepts, such 
as finding parts of a whole and parts of a set, ordering frac-
tions, and solving word problems with fractions (e.g., Fuchs 
et al., 2013; Seethaler, Fuchs, Star, & Bryant, 2011). This is 
in contrast to the more targeted assessments of fraction 
magnitudes, such as the aforementioned FNLE task (e.g., 
Resnick et al., 2016; Siegler et al., 2011). Fraction proce-
dures primarily involve procedures for adding, subtracting, 
multiplying, and dividing fractions (e.g., cross multiplying; 
Hecht & Vagi, 2012; Siegler, Fazio, Bailey, & Zhou, 2013). 
Proficiency in fraction concepts does not always result in 
procedural fluency or vice versa. For example, a student 
who successfully uses an algorithm for a fraction arithmetic 
problem is often not aware of why the algorithm works 
(Hecht & Vagi, 2012).

A recent study of pathways to fraction knowledge lends 
additional empirical support for considering fraction con-
cepts and fraction arithmetic procedures as distinct types of 
fraction knowledge (Resnick et al., 2016). Sixth-grade frac-
tion concepts were assessed with a measure that included 
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various fraction concept items, including set model items 
(e.g., “Shade 2/5 of 10 circles”) and estimation (e.g., 
“Estimate the sum: 7/8 + 12/13”). Sixth-grade fraction 
arithmetic was assessed with fraction addition, subtraction, 
multiplication, and division items. Researchers used sepa-
rate mediation analyses to explore pathways to learning frac-
tion concepts and fraction arithmetic procedures via 
cognitive skills (i.e., attentive behavior, verbal ability, non-
verbal ability, and working memory) and whole number 
skills (i.e., whole number magnitude reasoning and calcula-
tion). The pathway to learning fraction concepts differed 
from that of learning fraction arithmetic. Whole number 
magnitude reasoning ability in fifth grade fully mediated the 
relationship between third-grade cognitive processes and 
sixth-grade fraction conceptual knowledge. In contrast, 
whole number calculation abilities mediated the relationship 
between third-grade cognitive processes and sixth-grade 
fraction arithmetic knowledge. The findings suggest that 
although fraction concepts and fraction procedures are inter-
twined, they are not completely overlapping processes.

Overall, the literature on fraction concepts and proce-
dures suggests that they are relatively separate but mutually 
supportive competencies, with fraction concepts seeming to 
be most important to mathematics achievement (e.g., 
Hallett, Nunes, & Bryant, 2010). As such, this study inves-
tigated separate measures of fraction concepts and fraction 
arithmetic procedures as potential screeners of students’ 
mathematics risk status.

In sum, we assessed the effectiveness of fraction mea-
sures in fourth grade as potential screening tools for identi-
fying students who are at risk for poor mathematics 
achievement. Students were followed from the fourth 
through sixth grades, which allowed us to explore the accu-
racy of the fourth-grade measures for predicting later math-
ematics performance in the spring of fourth, fifth, and sixth 
grades.

Method

Participants

Students were drawn from nine elementary schools within 
two school districts serving families of diverse socioeco-
nomic backgrounds. Data were collected as a part of a larger 
longitudinal study starting in third grade (Jordan et  al., 
2017). All third-grade students from participating schools 
were sent informed consent letters. A total of 517 returned 
consent forms to participate in the study, of whom 36 opted 
out of the study before the first assessment. Students were 
then followed through sixth grade. The sample was replen-
ished twice, once in fourth grade (n = 27 new children) and 
once in fifth grade (n = 28 new children).

Of the total sample from the larger project, 411 students 
had complete data for this study. The sample was 46.2% 

male, 52.6% White, 38.7% Black, 5.8% Asian/Pacific 
Island, and 2.9% American Indian/Alaskan Native, with 
16.5% of the students self-identified as Hispanic. More than 
half of the sample (58.4%) qualified to participate in the 
free/reduced lunch program and were classified as low 
income. The sample included 11.2% English learners and 
10.7% of the students who were reported to be receiving 
special education services.

Missing data over the years of the project result in 
slightly different total students included each ROC analysis 
(n = 411 in fourth grade, 362 in fifth grade, and 304 in sixth 
grade). Participating schools followed curriculum bench-
marks aligned with the Common Core State Standards in 
Mathematics (National Governors Association Center for 
Best Practices & Council of Chief State School Officers, 
2010).

Fraction Measures

FNLE.  An FNLE task adapted from Siegler et al. (2011) was 
administered on a laptop computer using DirectRT v2012. 
Each number line was 17.5 cm long and presented in the 
middle of the laptop screen. Fractions were presented one at 
a time beneath the middle of the number line. For each item, 
the cursor was set at “0”; students used the arrow keys to 
slide the cursor along the number line and then pressed a 
different key to indicate their final estimation. After provid-
ing their response, a new blank number line and a new frac-
tion were presented and the cursor was reset to “0.” Students 
had no time constraints to make their individual estimates, 
but most students responded with 5 s per trial. The total 
administration time was approximately 2 to 3 min.

Students estimated the location of nine fractions (1/5, 
13/14, 2/13, 3/7, 5/8, 1/3, 1/2, 1/19, and 5/6) on a 0 to 1 
number line and 19 fractions and mixed numbers (1/3, 7/4, 
12/13, 1 11/12, 3/2, 5/6, 5/5, 1/2, 7/6, 1 2/4, 1, 3/8, 1 5/8, 
2/3, 1 1/5, 7/9, 1/19, 1 5/6, and 4/3) on a 0 to 2 number line. 
Estimations were combined to create a single score, which 
had high internal reliability (α = .91). Scores were calcu-
lated as the mean percent absolute error (PAE). Mean PAE 
was calculated by dividing the absolute value of the differ-
ence between the estimated position and actual position by 
the numerical range of the number line (1 or 2), multiplying 
by 100 for each item, and averaging across all trials. Higher 
PAE indicates poorer performance.

Fraction concepts.  A paper-and-pencil measure of 18 total 
released items from the National Assessment of Educa-
tional Progress (NAEP; U.S. Department of Education, 
Institute of Education Sciences, National Center for Educa-
tion Statistics, National Assessment of Educational Prog-
ress, 1990–2009) measured fraction concepts. NAEP items 
assessed part-whole understanding of area models (e.g., 
“Which shows 3/4 of the picture shaded?”), set models 
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(e.g., “What fraction of the group of umbrellas is closed?”), 
equivalence (e.g., “These three fractions are equivalent. 
Write two more fractions that are equivalent to these.”), 
fraction magnitude (e.g., “On the number line above, what 
number does P represent?”), estimation (e.g., “Which frac-
tion has a value closest to 1/2?”), and comparison and 
ordering (e.g., “In which of the following are the three frac-
tions arranged from least to greatest?”). Items were read 
aloud in a group setting. Administration lasted for approxi-
mately 35 min. Students earned one point for each correct 
response. The measure had adequate internal reliability  
(α = .78). Items are publicly available through the NAEP 
website (https://nces.ed.gov/nationsreportcard/).

Fraction arithmetic.  The paper-and pencil-fraction measure 
was adapted from Hecht (1998). The measure included four 
addition (e.g., 2/5 + 1/5) and four subtraction (e.g., 3/4 – 
1/4) computation items. Each item involved fractions with 
the same denominators. Administration lasted approxi-
mately 10 min. Internal reliability was high (α = .95).

Outcome Mathematics Achievement Measure

In spring of the fourth, fifth, and sixth grades, students’ per-
formance was assessed on the mathematics section of 
Delaware Comprehensive Assessment System (DCAS; 
American Institutes for Research, 2014), a statewide test of 
mathematics achievement. The DCAS requires students to 
answer multiple choice questions that assess algebraic rea-
soning (e.g., find a given term in an arithmetic sequence), 
numeric reasoning (e.g., using and applying meanings of 
multiplication and division), geometric reasoning (e.g., ana-
lyze and classify two-dimensional shapes according to their 
properties), and quantitative reasoning (e.g., construct and 
use data displays; American Institutes for Research, 2014). 
Published internal consistency at each time point of the 
DCAS was .86 (spring of fourth grade), .89 (spring of fifth 
grade), and .88 (spring of sixth grade; American Institutes 
for Research, 2014). The DCAS is highly correlated with 
the fourth edition of the Wide Range Achievement Test 
(WRAT; Wilkinson & Robertson, 2006) in mathematics, a 
standardized measure of general mathematics achievement. 
Bivariate correlations between concurrent administrations 
of the DCAS and the WRAT in fourth, fifth, and sixth 
grades in the present sample ranged from .71 to .76, indicat-
ing high criterion validity.

Each student in the state is given an “accountability” 
score that is determined by his or her performance on items 
that measure grade-level content only. Accountability 
scores range from 0 to 1300. Based on these scores, stu-
dents are classified with scores of 1 (well below standards), 
2 (below standards), 3 (meets standards), or 4 (advanced). 
For the ROC curve analyses in this study, students’ scores 
were classified as a binary outcome: 1 (below and well 

below the mathematics standard) and 0 (meets the standard 
or advanced). Differentiating between passing and not pass-
ing a state test is a meaningful classification, as these are the 
assessments that schools are using to evaluate students’ aca-
demic performance. Thus, the goal of the analyses in this 
study is to predict students with low mathematics achieve-
ment who are likely to experience later mathematics diffi-
culties; some of the students may not have an identified 
learning disability but would benefit from additional sup-
port to bolster their mathematics understanding, whereas 
others may have a learning disability diagnosis (Gersten 
et al., 2012).

Procedure

Students were given the fraction concepts measure and 
fraction arithmetic measures in the fall of fourth grade. The 
FNLE measure was administered in the winter of fourth 
grade. The DCAS mathematics achievement outcome mea-
sure was administered in the spring of the fourth, fifth, and 
sixth grades. Trained assessors on the research team admin-
istered all measures, except for the mathematics achieve-
ment outcome measure, which was given by personnel in 
the school districts. Assessors administered the fraction 
concepts measure in a whole-class setting and read aloud 
problems to students. The FNLE measure and fraction 
arithmetic task were administered individually.

Data Analysis

ROC curve analyses were conducted to assess the diagnos-
tic accuracy of the fraction predictor measures. We also 
investigated whether measures with higher AUC values 
were significantly more diagnostically accurate than mea-
sures with lower AUC values. We used a method proposed 
by Hanley and McNeil (1982) that corrects for dependence 
in AUC values when both measures are assessed within the 
same sample. The method yields a critical ratio z value; 
when the value of z = ±1.96, the difference between the 
AUC values is statistically significant at p < .05.

Gersten and colleagues (2009) advise that screeners be 
as efficient as possible to enable screening many students in 
a short amount of time. We used Best Subset automatic lin-
ear modeling (ALM) as a follow-up analysis for improving 
the efficiency of a screener. Best Subset AlM investigates 
all possible models for a given set of predictor items and 
determines the best set for predicting the outcome (Yang, 
2013). When considering a mathematics screener, challeng-
ing items that most students answered incorrectly (e.g., an 
item that is beyond students’ grade level) hold little vari-
ability and thus would not make strong predictions of stu-
dents’ later performance; this type of item would be 
excluded from the screener. Likewise, easy items that all 
students answered correctly are also eliminated. Retained 

https://nces.ed.gov/nationsreportcard/
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items hold predictive power because some students gave 
the correct responses for the items, whereas others missed 
the items (Meyers, Gamst, & Guarino, 2013). When using 
Best Subset AlM for a combination of measures, all items 
from all measures are tested in the model. For example, 11 
items from Measure A combined with five items from 
Measure B may emerge as the best combination of items for 
predicting the target outcome variable. To avoid an overfit 
model, we assessed the model using the overfit prevention 
criterion (average squared error, or ASE) as a means of 
cross-validation (Meyers et al., 2013) and also ran regres-
sion analyses as an additional step to test for overall model 
fit (Bagchi, Holzemer, & Peavy, 2019).

We then ran new ROC curve models to assess the accu-
racy of the shortened screeners for predicting risk status. 
We compared AUC values to determine if the shortened 
screeners significantly differed from the original predictor 
measures. Combinations of screeners were entered into 
binary logistic regression to empirically assess whether 
each predictor measure made significant improvements to 
the model when predicting the outcome and to provide extra 
support for combining the measures.

Power Analysis and Consideration of  
Missing Data

A power analysis was performed (MedCalc Statistical 
Software, 2016) for calculating the required sample size for 
an AUC value to be significantly different from an AUC of 
.50, which signifies a screener has zero discriminating power 
(i.e., the null hypothesis). The analysis was conducted with 
the following information: AUC of .75, null hypothesis of 
.50, power of .80, and alpha of .05. The analysis also requires 
a ratio representative of the expected amount of negative 
cases in the sample (students who meet the mathematics 
standard) as compared with the amount of positive cases 
(students who do not meet the standard). A ratio value of 2.5 
was selected for this study because the amount of negative 
cases across the time points of the outcome measure was 
approximately 2.5 times more prevalent than the amount of 

positive cases. Results revealed that a sample size of 49 stu-
dents with approximately 14 positive cases and 35 negative 
cases would be sensitive to capture a difference from the null 
hypothesis. Additional power analyses revealed that a sam-
ple size of 285 to 356 students is required for the comparison 
of two ROC curves with AUC values that differ by no less 
than .10 from the same sample.

As is common for longitudinal datasets, missing data 
must be considered. The most frequently reported remedy 
for missing data in ROC curve analyses is to assess AUCs 
only from subjects who have compete information, called 
the available-case analysis (Martínez-Camblor, 2013). In 
this study, the available-case analysis yields a total of more 
than 300 students per ROC curve, which is much greater 
than the sample size determined by the first power analysis 
and appropriate for ROC curve comparisons.

Results

Correlations among all variables across grades are shown in 
Table 1, with the DCAS mathematics achievement outcome 
entered as a binary variable to align with the ROC curve 
analyses. All variables are significantly correlated.

Table 2 presents means and standard deviations for all 
fourth-grade predictor measures, separated for students 
who met the end-of-the-year mathematics standard (i.e., 
negative cases) and students who did not meet the standard 
(i.e., positive cases) in fourth, fifth, and sixth grades, respec-
tively. Independent samples t tests revealed that each pre-
dictor differentiated students who met the standard from 
those who did not meet the standard, regardless of the grade 
of the outcome measure (p = .001).

Three ROC curve analyses were conducted to assess the 
diagnostic accuracy of the predictor measures on later 
mathematics achievement. The first analysis assessed the 
measures as potential screeners for predicting the fourth-
grade outcome. The base rate of the first ROC curve analy-
sis was .21, meaning that 21% of the students received a 
positive outcome result (i.e., did not meet the mathematics 
standard). The second ROC curve analysis assessed the 

Table 1.  Correlations Among all Predictor and Outcome Variables.

Variable 1 2 3 4 5 6

1. FNLE —  
2. Fraction concepts –.631 —  
3. Fraction arithmetic –.450 .521 —  
4. DCAS outcome—fourth .353 –.405 –.294 —  
5. DCAS outcome—fifth .369 –.424 –.323 .596 —  
6. DCAS outcome—sixth .421 –.457 –.283 .608 .644 —

Note. All correlations are significant at the .01 level. FNLE is measured in percentage absolute error; higher scores indicate poorer performance. DCAS 
scores were classified as a binary outcome: 1 (below and well below the mathematics standard) and 0 (meets the standard or advanced). FNLE = 
fraction number line estimation; DCAS = Delaware Comprehensive Assessment System.
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ability of the same measures for predicting the fifth-grade 
outcome (base rate = .27). The third ROC curve analysis 
assessed the same measures for predicting the sixth-grade 
outcome (base rate = .33).

On all ROC curve plots the fraction concepts curve 
extended furthest to the top left corner, and its AUC value 
exceeded the .75 threshold to be effective for determining 
risk status (see Figure 1; Cummings & Smolkowski, 2015). 
As such, the fraction concepts measure held the highest 
diagnostic accuracy for predicting mathematics achieve-
ment in all grades.

The FNLE measure also emerged as a powerful screener 
for predicting the outcome, meeting the AUC threshold of 
.75 for each grade of the outcome (see Figure 1). However, 
the AUC value for the FNLE measure in each analysis does 
not exceed those associated with the fraction concepts 
measure.

The fraction arithmetic measure yielded the lowest AUC 
values in each analysis (see Figure 1). The AUC values do 
not meet the .75 AUC threshold. As such, the eight-item 
fraction arithmetic measure is not considered a powerful 
screener measure.

Comparing AUC Values

Three AUC comparisons were analyzed per ROC curve 
analysis (i.e., fraction concepts vs. FNLE, FNLE vs. fraction 
arithmetic, and fraction concepts vs. fraction arithmetic). It 
was of particular interest to assess if the measure with the 
highest AUC value in each analysis (i.e., fraction concepts) 
was significantly superior to the measure with the next high-
est AUC value (i.e., FNLE). The fraction concepts measure 
did not significantly outperform the FNLE measure as a 
screener for any year of the outcome measure (p = .290 in 

fourth grade, .129 in fifth grade, and .334 in sixth grade). 
The fraction concepts measure performed significantly bet-
ter than the fraction arithmetic measure in each analysis (p < 
.05). The FNLE measure outperformed the fraction arithme-
tic measure at fourth and sixth grades (p < .05). Overall, the 
fraction concepts measure and FNLE measure both met the 
AUC threshold and one did not outperform the other. These 
results suggest that an improved screener measure may con-
sist of a combination of fraction concepts and FNLE items 
and possibly some fraction arithmetic items.

Best Subset Measures

Items from the fraction concepts measure, FNLE measure, 
and fraction arithmetic measure were assessed with Best 
Subset AlM to determine the most predictive combination 
of the 54 total items. Separate analyses of the outcome vari-
able were run for the three grades. ALM analyses allow for 
a continuous outcome measure, so we used the DCAS 
accountability scores as the outcome.

For the prediction of the fourth-grade outcome, the final 
model had an adjusted R2 of .59. That is, 59% of the vari-
ance in the fourth-grade mathematics achievement outcome 
was accounted for by the linear combination of the selected 
predictor items. Four fraction concepts items, nine FNLE 
items, and two arithmetic items were included in the model. 
Overfitting was not detected when the model was run again 
using the overfit prevention criterion ASE (Meyers et al., 
2013). The three best subset measures (i.e., the four-item 
fraction concepts best subset measure, the nine-item FNLE 
best subset measure, and the two-item fraction arithmetic 
best subset measure) were entered into binary logistic 
regression with hierarchical entry. The fraction concepts 
best subset measure was entered in the first block because 

Table 2.  Mean Differences for Fraction Predictor Measures Between Students Who Did and Did Not Meet the Mathematics 
Standard in Fourth, Fifth, and Sixth Grades.

Fraction predictor measure Met math standarda M (SD) Did not meet math standardb M (SD) t (df)

Predicting fourth-grade outcome
  FNLE 22.82 (8.49) 30.26 (5.28) –10.04 (211)
  Fraction concepts 10.70 (3.42) 7.15 (2.62) 10.39 (167)
  Fraction arithmetic 3.34 (3.37) 0.95 (2.01) 8.37 (224)
Predicting fifth-grade outcome
  FNLE 22.36 (8.67) 29.41 (5.37) –9.26 (279)
  Fraction concepts 11.02 (3.38) 7.66 (2.64) 9.92 (220)
  Fraction arithmetic 3.50 (3.39) 1.11 (2.27) 7.70 (259)
Predicting sixth-grade outcome
  FNLE 21.92 (8.64) 29.49 (5.36) –9.38 (288)
  Fraction concepts 10.97 (3.33) 7.53 (2.82) 9.42 (232)
  Fraction arithmetic 3.41 (3.40) 1.42 (2.55) 5.72 (256)

Note. FNLE = fraction number line estimation.
aFourth grade n = 326, fifth grade n = 264, and sixth grade n = 203.
bFourth grade n = 85, fifth grade n = 98, and sixth grade n = 101.



488	 Journal of Learning Disabilities 52(6)

the original measure had a slightly higher AUC value than 
the FNLE measure. The FNLE measure was entered in the 
second block and the arithmetic measure in the third block. 
Regression diagnostics revealed no univariate or multivari-
ate outliers. A further evaluation of assumptions was satis-
factory. The Hosmer–Lemeshow goodness-of-fit test 
showed good model fit with the data (p > .05). The Wald 
test revealed that all best subset measures were statistically 
significant (p = .001).

When predicting the fifth-grade mathematics outcome, 
the final model of fraction predictor items accounted for 
43% of the variance in the outcome. The best subset model 
included seven fraction concepts items, seven FNLE items, 
and two fraction arithmetic items. Further analysis did not 
reveal overfitting. A binary logistic regression model met 
the underlying assumptions, there was good model fit with 
the data (p > .05), and all best subset measures were statis-
tically significant (p = .001).

When predicting the sixth-grade mathematics outcome, 
the best subset final model accounted for 55% of the out-
come variance. The model included seven fraction concepts 
items, eight FNLE items, and one fraction arithmetic item. 
Overfitting was not detected. All best subset measures sig-
nificantly improved the model (p = .001). Again the model 
met underlying assumptions and showed good model fit 
with the data (p > .05).

Overall, the items included in each best subset model 
differed by the grade of the outcome measure (see the 
appendices for a list of all items included on each best sub-
set measure). For the prediction of the fourth-grade out-
come, the combined best subset measure included a total of 
15 items. For the fifth- and sixth-grade outcome, the com-
bined measure included 16 items. Thus, each combined best 
subset measure consisted of fewer total items than the origi-
nal 18-item concepts measure and the original 28-item 
FNLE measure.

Additional ROC analyses were conducted to assess the 
diagnostic accuracy of the best subset measures. The 

following seven predictor measures were included in ROC 
curve analyses of fraction measures predicting each grade 
of the outcome:

1.	 original fraction concepts measure with all 18 items,
2.	 best subset fraction concepts measure,
3.	 original FNLE measure with all 28 items,
4.	 best subset FNLE measure,
5.	 original fraction arithmetic measure with all 8 items,
6.	 best subset arithmetic measure, and
7.	 combination of the three best subset fraction 

measures.

Table 3 presents a summary of AUC values. The com-
bined best subset measure met the .75 AUC threshold for 
being a good screener for each grade of the outcome. AUC 
comparisons between the combined best subset measures 
and original measures in each analysis yielded consistent 
results, with one exception: The combined best subset mea-
sure performed significantly better than the original fraction 
concepts measure and the original FNLE measure with high 
AUC values (p < .05), with one exception of the combined 
best subset measure performing equally as well as the origi-
nal concepts measure when predicting the fifth-grade out-
come (p > .05). Thus, the combined best subset measure 
performed better or equally as well but with fewer items. 
The combined best subset measure also consistently per-
formed just as well as the best subset concepts measure and 
best subset FNLE measure (p > .05).

We recommend the combined best subset measure over 
the individual best subset measures for all grades of the out-
come for several reasons. First, the AUC values of the com-
bined best subset measures consistently outperformed the 
individual best subset measures with only one exception 
where it performed equally as well as the original concepts 
measure. Second, results of the regression analyses indi-
cated that the subset measures significantly improved model 
fit when predicting all grades of the outcome. Third, 

Table 3.  AUC Statistics for Best Subset and Original Predictor Measures.

Fraction predictor measure

AUCa [95% CI]

Fourth-grade outcome Fifth-grade outcome Sixth-grade outcome

All items fraction concepts .796a [.749, .843]  .789a [.740, .838] .791a [.738, .844]
Best subset fraction concepts .733 [.677, .789] .740 [.686, .794] .754a [.699, .810]
All items fraction arithmetic .693 [.637, .749] .692 [.636, .749] .659 [.596, .722]
Best subset arithmetic .699 [.644, .755] .691 [.635, .747] .648 [.586, .710]
All items FNLE .766a [.715, .817] .745a [.693, .798] .760a [.706, .814]
Best subset FNLE .797a [.751, .844] .761a [.711, .811] .810a [.762, .858]
Combined best subset measure .840a [.799, .881] .814a [.769, .859] .845a [.803, .888]

Note. AUC = area under the curve; CI = confidence interval; FNLE = fraction number line estimation.
aAUC > .75, indicating that the measure meets the minimum acceptable value to be effective for determining risk status (Cummings & Smolkowski, 
2015).
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combining the best subset measures consistently yielded a 
reasonable total number of items (i.e., 15–16 total items) 
that would not require extensive time to administer.

Summary of Results

Fraction concepts and FNLE emerged as effective screeners 
of later risk status. The selected fraction screener for the 
prediction of fourth-grade mathematics achievement was a 
combined best subset measure with four fraction concepts 
items, nine FNLE items, and two fraction arithmetic items. 
The selected fraction grade screener for the prediction of 
fifth-grade achievement was also a combined best subset 
measure with seven fraction concepts items, seven FNLE 
items, and two fraction arithmetic items. The selected 
screener for the prediction of the sixth-grade outcome was a 
combined best subset measure with seven fraction concepts 
items, eight FNLE items, and one fraction arithmetic item. 
All three of the combined best subset screeners met the 
AUC threshold for determining students’ risk status for later 
mathematics difficulties.

Discussion

Deep knowledge of fractions eludes too many students 
(e.g., Jordan et al., 2017; Ni & Zhou, 2005). Development 
of accurate fraction screeners is an important first step for 
identifying students who might need an intervention. 
Students who do not acquire fraction knowledge are likely 
to face cascading mathematics problems when they reach 
algebra (Booth et al., 2014). To date, however, no fraction 
screeners have been developed and validated through rigor-
ous analysis. This study fills this gap by examining the 
effectiveness of fourth-grade fraction measures as screeners 
for the prediction of later mathematics success in fourth 
through sixth grades. We sought to identify one “best” 
screener for each year of the outcome.

The fraction concepts and FNLE measures emerged as 
accurate screeners of students’ performance on the mathe-
matics achievement outcomes in the intermediate grades. 
The fraction concepts screener consistently held higher (but 
not significantly better) predictive power than the FNLE 
screener. The fraction arithmetic screener, on the contrary, 
did not meet the statistical threshold for being a good 
screener of students’ later performance.

Results favoring fraction concepts over fraction arithme-
tic are consistent with findings of VanDerHeyden and col-
leagues (2017) for fourth grade. The study assessed several 
mathematics measures in the fall of fourth grade for the pre-
diction of spring mathematics achievement. The fourth-
grade concepts and application measures included items 
assessing fractions, charts, graphs, money, and word prob-
lems. This screener had higher diagnostic accuracy (AUC = 
.85) than the computation measure, whole number 

multiplication measure, and whole number division measure 
(AUC = .72, .66, and .55, respectively). The concepts and 
applications measure yielded an AUC value comparable 
with the AUC values of the best subset combination mea-
sures of this study (.84 for predicting fourth grade, .81 for 
predicting fifth grade, and .85 for predicting sixth grade), 
suggesting that future research might explore the value of 
adding items to the fraction screeners that tap into other 
mathematics topics pertinent to the fourth grade curriculum 
such as decimals and graphs.

Furthermore, as the computation measure in VanDer 
Heyden et  al.’s (2017) study yielded an acceptable AUC 
value in third grade and a high AUC value in fifth, future 
work should continue to explore the predictive value of 
computation items on combined screeners. In the study by 
Keller-Margulis and colleagues (2008), the AUC value of 
the fourth-grade concepts and applications measure was far 
lower than the AUC of the concepts and applications mea-
sure reported by VanDerHeyden and colleagues (2017). 
However, as the predictor measures in the 2008 study were 
administered in the spring of fourth grade rather than the 
fall or winter, it is challenging to compare the AUC values 
with the results of the study by VanDerHeyden and col-
leagues and with the results of this study.

Although both mathematics concepts and procedures 
are recognized as important competencies (e.g., Hallett 
et al., 2010), the results of this study provide further sup-
port for the claim that fraction conceptual knowledge is the 
better predictor of mathematics achievement. Knowledge 
of fraction concepts allows students to make sense of pro-
cedures, to estimate solutions, and to notice procedural 
errors in their own work (Hecht, 1998). For example, stu-
dents with good conceptual knowledge can reason that 
they cannot add across denominators for a fraction addition 
problem (2/3 + 2/6 = 4/9), a common mistake (Newton, 
Willard, & Teufel, 2014). Moreover, numerical magnitude 
knowledge, including that of fraction magnitudes, provides 
a supporting structure for learning mathematical concepts 
(Siegler et al., 2011). It is also possible that fraction arith-
metic is more sensitive to instruction, and relatedly, that 
fraction arithmetic algorithms may receive more attention 
in classroom instruction than fundamental fraction 
concepts.

Teachers frequently lament the amount of instructional 
time lost in the classroom due to testing (Cobb, 2003). In 
response, we sought to limit the amount of items on each 
screener by identifying the most predictive subset of items 
and removing the least predictive items while ensuring that 
the best subset of items maintained the high diagnostic 
accuracy of the original measures with all items included. 
Excluding items that did not discriminate well between stu-
dents who are at risk for later difficulties and students who 
are not at risk minimizes the amount of time required for 
administration and for scoring, making the screener much 
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more practical for classroom use. Furthermore, examining 
retained items on each best subset screener provides infor-
mation about the type of items and/or concepts that are most 
important for predicting students’ later success.

In this study, we combined the fraction concepts items, 
FNLE items, and fraction arithmetic items into one screener. 
Initially, the combined screener had a total of 54 items (i.e., 
18 items on the fraction concepts screener, 28 items on the 
FNLE screener, and eight items on the fraction arithmetic 
screener). The combined best subset analyses reduced the 
screener to 15 items for the prediction of the fourth-grade 
outcome and 16 items for the fifth- and sixth-grade outcome 
(the items differed by grade of outcome; see Supplemental 
Material). Importantly, the estimated time required to 
administer these shortened screeners is 11 to 17 min (i.e., an 
estimated 2 min per concepts item, an estimated 5 s per 
FNLE item, and an estimated 1 min per arithmetic item) as 
compared with approximately 46 min for the longer 
screener. Analyses demonstrated that, with only one excep-
tion, the shorter best subset screeners in fourth grade per-
formed significantly better in predicting overall mathematics 
achievement at the end of fourth, fifth, and sixth grades as 
the original measures for the prediction of later mathemat-
ics achievement.

The number of FNLE items retained on each fourth-
grade combined screener exceeded the number of fraction 
concept items when predicting the fourth- and sixth-grade 
outcomes and matched the number of fraction concept 
items for the fifth-grade outcome. Thus, although the full 
fraction concepts measure was slightly more predictive than 
the full number line measure, the best subset number line 
screener actually outperformed the best subset concepts 
measure for two grades of the outcome. This finding indi-
cates that a small subset of number line items in fourth 
grade held especially high predictive power. Specifically, 
proper fractions (i.e., fractions less than one) emerged as 
most consistently predictive over many NAEP fraction con-
cepts items, mixed numbers (i.e., numbers composed of a 
whole number and a fraction) on FNLE, and improper frac-
tions (i.e., fractions equal to or greater than one) on FNLE. 
Students’ estimates of two proper fractions on the 0 to 1 
number line (i.e., 1/2 and 5/6) and one proper fraction on 
the 0 to 2 number line (i.e., 3/8) consistently emerged as 
highly predictive items. The whole number 1 as estimated 
on the 0 to 2 number line also emerged on all three best 
subset screeners.

The importance of students’ estimations of proper frac-
tions early is in keeping with previous research showing 
that fourth-grade students have greater understanding of 
proper fractions than improper fractions (Resnick et  al., 
2016), most likely because early fraction typically empha-
sizes proper fractions rather than improper fractions 
(Vosniadou, Vamvakoussi, & Skopeliti, 2008). It is impor-
tant to consider that improper fractions likely were not 

predictive of students’ later achievement because they are 
hard for students at this grade level.

Examination of best subset fraction concepts items pro-
vides insight into the type of concepts that predict fourth-
grade students’ later achievement. Overall, simpler items 
were retained on the best subset screener for predicting 
fourth-grade achievement (e.g., area model questions in 
which the denominator of the fraction matched the number 
of pieces shown in a model), likely because these items rep-
resented a similar difficulty level to the fourth-grade out-
come measure. More challenging items were retained on 
the screeners predicting fifth-grade achievement and sixth-
grade achievement (e.g., “Which fraction has a value clos-
est to 1/2?” and an item requiring students to order three 
fractions from least to greatest magnitude). Only one item 
emerged on all three best subset measures, suggesting that 
the item may be tapping into an important concept predic-
tive of later mathematics achievement. The item is multiple 
choice and asks: “Luis had two apples and he cut each apple 
into fifths. How many pieces of apple did he have?” The 
response options are 2/5, 2, 5, and 10. Many students 
seemed to focus on “fifths” and thus selected “5” as the 
answer. It is also interesting to note challenging items that 
were not retained on any of the best subset measures. For 
example, item 10 (see Appendix A) presents students with a 
0 to 2 number line and asks them to identify the number that 
is represented by a dot located on the line (the dot represents 
the mixed number 1 3/4). Even high-achieving fourth- 
graders struggled with this number line item, suggesting 
that students need more practice identifying magnitudes on 
number lines that extend beyond the number 1 (Resnick 
et al., 2016).

A similar pattern emerged with the fraction arithmetic 
items: simpler items were retained when predicting the 
fourth-grade outcome (e.g., adding two fractions with like 
denominators) and more challenging items predicted the 
fifth- and sixth-grade outcome (e.g., adding two mixed 
numbers).

Study Limitations and Future Directions

Several limitations must be kept in mind when interpreting 
the results of this study. The generalizability of the results 
may be limited because students were recruited from two 
school districts in only one geographic location. It is also 
important to consider that some of the predictor measures 
were administered before students received targeted frac-
tion instruction in the classroom and certain fraction items 
were challenging for the majority of students (e.g., estimat-
ing improper fractions on the number line). Another limita-
tion is the relatively small scope of measures evaluated as 
potential screeners, as there are several other potential mea-
sures that may also predict mathematics achievement dur-
ing these grades. Nevertheless, we argue that fractions are a 
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critical skill for math learning and that knowledge in this 
area should be screened in fourth grade to determine which 
students may be at risk. Fraction screeners may also point to 
avenues for instruction (e.g., learning about fractions on the 
number line).

The standardized mathematics test as the outcome vari-
able may also raise some concerns when interpreting the 
results. The test was administered by the school district and 
the specific items included on the test at each grade are 
unknown. The proportion of fraction items on each test is 
also unknown. Previous research, however, also relies on 
these state tests for predicting student achievement (e.g., 
Jiban & Deno, 2007; Siegler et  al., 2011; VanDerHeyden 
et al., 2017). Also, it may be possible for researchers and 
schools to determine the diagnostic accuracy of the screen-
ers shared in this study (see Appendix A) with other 

mathematics achievement tests using the relatively simple 
ROC procedures described here.

In conclusion, this study makes a clear contribution to 
the literature by identifying useful mathematics screeners 
for identifying students in upper elementary school at risk 
for mathematics difficulty. To our knowledge, this study is 
the first to develop and validate fraction screeners through 
rigorous analysis. Findings suggest that screeners focused 
on core components of the mathematics curriculum—such 
as fractions—may be powerful approaches for predicting 
mathematics achievement more generally. Although this 
study highlights the importance of fraction understanding 
for at-risk students, it simultaneously points to the impor-
tance of fraction knowledge and especially fraction con-
ceptual understanding for all children’s mathematics 
development.

Appendix A
Best Subset Fraction Concepts Items.

NAEP item # NAEP item Fourth grade Fifth grade Sixth grade

1 Which shows 3
4

of the picture shaded?  

A.

B.

C.

D.

   

x

2

What fraction of the group of umbrellas is closed?

A.	     
1
3

B.	     

3
7

C.	     
4
7

D.	     

3
4

 
   
   
  x  
   

3

What fraction of the figure above is shaded?
Answer:  —————————————––

x x  
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NAEP item # NAEP item Fourth grade Fifth grade Sixth grade

4

These three fractions are equivalent. Write two more 
fractions that are equivalent to these.
Answer:——————,————————

 

5 (Second response to Item #4 above) x x
6

Which picture shows that 3
4

 is the same as 6
8

?
A.

B.

C.

D.

x

 

7 Luis had two apples and he cut each apple into fifths.
How many pieces of apple did he have?

A.	     2
5

B.	     2
C.	     5
D.	     10

x x x

8 4
6  

–
 

1
6  

=
x  

9 How many fourths make a whole?
Answer: ——————————

 

10

On the number line above, what number does P 
represent?

A.	       2
3

B.	       3
4

C.	       1
2
3

D.	       1
3
4

 

Appendix A (continued)
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NAEP item # NAEP item Fourth grade Fifth grade Sixth grade

11

The figure above shows that part of a pizza has been 
eaten.
What part of the pizza is still there?

A.	       3
8

B.	       3
5

C.	       5
8

D.	       5
3

 

12

On the portion of the number line above, a dot shows 

where 1
2

 is.

Use another dot to show where 3
4

 is.

x

13
Students in Mrs. Johnson’s class were asked to tell why 

4
5

is greater than 2
3

. Whose reason is best?

A. said, “Because 4 is greater than 2.”
B. said, “Because 5 is larger than 3.”

C. said, “Because 4
5

 is closer than 2
3

 to 1.”

D. said, “Because 4 + 5 is larger than 2 + 3.”

x

14 Which fraction has a value closest to 1
2

?

A.
	     

5
8

B.
	     

1
6

C.	
    

2
2

D.	       1
5

x x

15

Shade 1
3

 of the rectangle above.

 

Appendix A (continued)
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NAEP item # NAEP item Fourth grade Fifth grade Sixth grade

16

What fraction of the figure above is shaded?

A.	   

1
4

B.	     3
10

C.	     1
3

D.	     3
7

x

17 Mark says 
1
4  of his candy bar is smaller than 

1
5  of the 

same candy bar. Is Mark right?
A.	      Yes, Mark is right.
B.	      No, Mark is NOT right.

Draw a picture or use words to explain why you think 
Mark is right or wrong.

 

18 In which of the following are the three fractions arranged 
from least to greatest?

A.	     2
7 , 

1
2 , 

5
9

B.	     1
2 , 

2
7 , 

5
9

C.	     5
9 , 

1
2 , 

2
7

D.	     5
9 , 

2
7 , 

1
2

x

Note. NAEP = National Assessment of Educational Progress.

Appendix A (continued)
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Appendix C
Best Subset Fraction Arithmetic Items.

Item Fourth grade Fifth grade Sixth grade

3/6 + 1/6 =  
2/5 + 1/5 = ×  
3/4 + 2/4 =  
33/

8
 + 12/

8
 = × ×

3/4 – 1/4 =  
5/6 – 2/6 =  
13/

4
 – 1/4 = × ×  

22/
3
 – 11/

3
 =  

Appendix B
Best Subset FNLE Items.

Outcome

FNLE item Fourth grade Fifth grade Sixth grade

FNLE (0-1): 2/13 ×  
FNLE (0-1): 1/2 × × ×
FNLE (0-1): 1/19 × ×  
FNLE (0-1): 5/6 × × ×
FNLE (0-2): 1/3 ×
FNLE (0-2): 12/13 ×
FNLE (0-2): 3/2 ×  
FNLE (0-2): 1/2 × ×
FNLE (0-2): 7/6 ×  
FNLE (0-2): 1 ×× × ×
FNLE (0-2): 3/8 × × ×
FNLE (0-2): 1/19 ×  
FNLE (0-2): 15/

6
×  

FNLE (0-2): 4/3 ×

Note. FNLE = fraction number line estimation.
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