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A cluster randomized trial design was used to examine the effectiveness of
a Grades 3 to 5 early algebra intervention with a diverse student population.
Forty-six schools in three school districts participated. Students in treatment
schools were taught the intervention by classroom teachers during regular
matbematics instruction. Students in control schools received only regular
matbematics instruction. Using a three-level longitudinal piecewise bierar-
chical linear model, the study explored the impact of the intervention in
terms of both performance (correctness) and strategy use in students’
responses to written algebra assessments. Results show that during Grade
3, treatment students, including those in at-risk settings, improved at a signif-
icantly faster rate than control students on both outcome measures and
maintained their advantage throughout the intervention.
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Effectiveness of Early Algebra Intervention

Algebra has become an academic passport for passage into virtually
every avenue of the job market and every street of schooling. With
too few exceptions, students who do not study algebra are therefore
relegated to menial jobs and are unable often to even undertake
training programs for jobs in which they might be interested. They
are sorted out of the opportunities to become productive citizens
in our society. (Schoenfeld 1995, pp. 11-12)
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Introduction

Currently, one of the most significant questions in mathematics educa-
tion reform is “Does early algebra' matter?” That is, will a comprehensive,
sustained effort to develop children’s algebraic thinking as part of their
mathematics learning in elementary grades improve their readiness for
a more formal study of algebra as they enter middle grades? The answer
to this question has deep implications for school mathematics.

Historically, teaching and learning algebra in the United States empha-
sized computational work in arithmetic in the elementary and middle grades,
followed by a superficial treatment of algebra in secondary grades (Kaput,
2008). This approach resulted in widespread student failure in school math-
ematics (e.g., Kaput, 1999; Stigler, Gonzales, Kawanaka, Knoll, & Serrano,
1999) that positioned algebra as a gatekeeper whereby those who were
not successful were “sorted out of the opportunities to become productive
citizens in our society” (Schoenfeld, 1995, p. 12). The resulting marginaliza-
tion of students particularly affected those in underrepresented groups (e.g.,
Moses & Cobb, 2001) in ways that have propagated to their underrepresen-
tation in STEM fields in general (Museus, Palmer, Davis, & Maramba, 2011).

In recent decades, however, algebra’s status as a gateway to academic
and economic success (Moses & Cobb, 2001) has led to calls for new
approaches to algebra education (e.g., National Council of Teachers of
Mathematics [NCTM] & Mathematical Sciences Education Board, 1998; U.S.
Dept. of Education, 2008). One key recommendation that gained wide-
spread acceptance was to reconceptualize teaching and learning algebra
from a K-12 perspective whereby students would have long-term, sustained
algebra experiences, beginning in elementary grades (e.g., Kilpatrick,
Swafford, & Findell, 2001; NCTM, 1989, 2000). In theory, such an approach
would allow children’s algebraic thinking to develop more organically by
leveraging their natural intuitions about structure and relationships
(Mason, 2008) from the start of formal schooling. In theory, too, the devel-
opment of algebraic thinking in this way would increase children’s success
with more formal mathematics, particularly algebra, as they progressed
into middle grades and beyond.

While this approach promises to address the widespread failure in alge-
bra in the United States, it also entails significant costs. As Kaput (2008)
argues, it “involves deep curriculum restructuring, changes in classroom
practice and assessment, and changes in teacher-education—each a major
task” (p. 6). These costs highlight the need for carefully constructed models
of early algebra instruction that can provide a curricular road map for sys-
tematically developing children’s algebraic thinking. However, such tools
are typically lacking in educational practice in elementary grades. Instead,
we often see fragmented efforts to infuse algebraic ideas into arithmetic-
focused curricula. This is evidenced by instructional materials that might
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address more ubiquitous algebraic tasks (e.g., solving simple linear equa-
tions) but may not reflect an underlying, comprehensive treatment of alge-
bra rooted in empirical research on children’s algebraic understandings.
Moreover, the recent adoption by many U.S. states of the Common Core
State Standards (National Governors Association Center for Best Practices
and Council of Chief State School Officers [NGA Center & CCSSO],
2010)—which rightly reiterates the place of early algebra in school mathe-
matics beginning in kindergarten—has at least implicitly elevated the role
of algebra and, thus, potentially increased its gatekeeper status, leaving stu-
dents vulnerable to a persistent marginalization in school. As such, research-
based models of comprehensive early algebra instruction are urgently
needed to clarify and deepen the role of early algebra in elementary grades
mathematics.

Such models would provide not only an instructional blueprint for
teachers but also a critical means to rigorously study early algebra’s impact.
And while the study of early algebra’s impact alone has substantial merit in
the national discourse on teaching and learning algebra, it simultaneously
addresses a broader concern. The National Mathematics Advisory Panel
Report (U.S. Dept. of Education, 2008), which emphasizes the importance
of student success in algebra, calls broadly for experimental research to
“investigate the effects of programs, practices, and approaches on students’
mathematics achievement” (p. 84). Other scholars have also noted the deficit
of research in evaluating the effectiveness of curricular innovations, particu-
larly for innovations aimed at young populations of learners (Clements &
Sarama, 2008; National Research Council, 2004). Moreover, they point specif-
ically to the need for evaluation studies that employ rigorous, experimental
designs such as randomized field trials (Clements, 2002) and that are situated
within at-risk populations, including in schools with high percentages of stu-
dents categorized as low socioeconomic status (SES; Clements, 2007).

In short, a rigorously tested model of early algebra instruction would
provide not only a much-needed curricular innovation by which elementary
teachers could implement an ambitious early algebra agenda, but also a care-
ful measure of its risks and rewards from which we could better understand
early algebra’s impact. The research reported here addresses this need. We
used a cluster randomized trial design in a large-scale, longitudinal study
to examine the effectiveness of a Grades 3 to 5 early algebra intervention
developed in our prior work. The intervention was taught by classroom
teachers in demographically diverse school settings that included a high per-
centage of low-SES populations. In the study reported here, we compare the
mathematics achievement of students who participated in the teacher-led
intervention as part of their regular classroom instruction to that of students
who had only their regular, arithmetic-centered instruction. We focus on the
following questions:
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Research Question 1: What are differences in students’ performance on measures
of algebraic knowledge?

Research Question 2: What are differences in students’ use of structural (algebraic)
strategies to solve nonroutine problems on measures of algebraic knowledge?

Research Question 3: What are differences in students’ performance and use of
structural (algebraic) strategies among at-risk populations (e.g., low-SES)?

Framework for the Development of the Intervention

We see the design and evaluation of our early algebra intervention as
aligned with Clements’s (2007) Curriculum Research Framework (CRF; see
also Clements & Sarama, 2008). The CRF provides a template for the devel-
opment of research-based curricula that utilizes three categories: a priori
Sfoundations, learning model, and evaluation. The first category, a priori
JSfoundations, includes identifying appropriate subject matter around which
the curriculum will be designed and analyzing relevant research in teaching
and learning, both of which inform the design of the curriculum. Learning
model involves the design and sequencing of activities that align with empir-
ical models of children’s thinking around the content of the curriculum.
Finally, evaluation involves the use of multiple methodologies to evaluate
the appeal, usability, and effectiveness of the curriculum. In the discussion
that follows, we highlight how our conceptual approach to (early) algebra,
the design of our intervention based on this approach, and our evaluation
process for the intervention, aligns with the three dimensions of the CRF.

Our conceptual approach to early algebra is based on Kaput’s (2008)
content analysis of algebra as a set of core aspects across several mathemat-
ical content strands (see Blanton, Brizuela, et al., 2018, for a more detailed
treatment of our framework). A vital contribution of Kaput’s analysis to
our work is its identification of valid subject-matter content and practices
(i.e., ways of reasoning algebraically). This, along with our synthesis of
empirical research on teaching and learning algebra, as well as the canonical
development of algebra as a mathematical discipline (Battista, 2004), served
as an a priori foundation (Clements, 2007) for the design of our interven-
tion. From Kaput’s core aspects—namely, making and expressing general-
izations in increasingly formal and conventional symbol systems and
acting on symbols within an organized symbolic system through an estab-
lished syntax—we derived four essential algebraic thinking practices that
served as organizing principles for the intervention: generalizing, represent-
ing, justifying, and reasoning with mathematical structure and relationships
(see, e.g., Blanton, Brizuela et al., 2018; Blanton, Levi, Crites, & Dougherty,
2011).

Generalizing and representing are deeply symbiotic processes central to
algebraic thinking (Cooper & Warren, 2011). Generalizing as the mental
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activity by which one compresses multiple instances into a single unitary
form (Kaput, Blanton, & Moreno 2008) is conveyed through the action of
representing—that is, symbolizing—the resulting unitary form using an
appropriate notational system (e.g., natural language, variable notation,
graphs, tables, pictures). For example, as students operate on particular
whole numbers, they might notice—either spontaneously or through teacher
scaffolding—that the action of adding two odd numbers results in an even
number. This compression of their observation about multiple instances of
adding two particular odd numbers can be represented in a unitary or gen-
eralized form through natural language (e.g., “The sum of two odd numbers
is even”). In turn, the action of representing a generalization is a socially
mediated process whereby one’s thinking about symbol and referent are
iteratively refined (Kaput et al., 2008), leading to a mediation of the gener-
alization itself.

The practices of justifying and reasoning with mathematical structure
and relationships are themselves actions on a unitary form (i.e., a generaliza-
tion), where those actions are governed by an established syntax. In the case
of justifying, one builds an argument about the validity of a generalization
within a given representational system. For example, consider a representa-
tion-based argument (Schifter, 2009) that students might construct through
either physical objects, such as cubes, or a drawing that depicts such objects.
They might reason that since an odd-numbered set of cubes can be sepa-
rated into pairs of cubes with one cube left over, the combination of two
odd-numbered sets of cubes results in no cube without a “partner” cube.
That is, since the leftover cube in each of the two sets combines to form
a new pair, the resulting sum is even. In later years, students might use alge-
braic syntax to reason formally on symbolic (variable) representations of
odd numbers to construct their arguments. In the case of reasoning with
a generalization, one acts on generalizations as mathematical objects
(Sfard, 1991) themselves in novel situations. For example, students might
reason inductively with the generalization “the sum of two odd numbers
is even” to examine the parity of the sum of three odd numbers. These prac-
tices, too, are socially mediated processes that refine the scope of the gener-
alization and “drive the symbolization process” (Kaput et al., 2008, p. 40).

In designing our intervention, we were interested in the occurrence of
these practices in two of Kaput’'s (2008, p. 11) three content strands (“the
study of structures and systems abstracted from computations and relations”
and the “study of functions, relations, and joint variation”) because of their
close alignment with empirical research on children’s algebraic thinking. As
reported elsewhere (Fonger et al., 2018), we organized key early algebraic
concepts and practices relative to these strands under the “Big Ideas”
(Shin, Stevens, Short, & Krajcik, 2009) of generalized arithmetic; equiva-
lence, expressions, equations, and inequalities; and functional thinking
(see Blanton, Brizuela et al., 2018, for an elaboration of these Big Ideas).
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Using this conceptual approach to algebra organized around essential
algebraic thinking practices within content-based Big Ideas, we drew from
learning progressions research (e.g., Battista, 2004; Clements & Sarama,
2004; Maloney, Confrey, & Nguyen, 2011; Shin et al., 2009; Simon, 1995)
to develop an early algebra learning progression for Grades 3 to 5 that
includes the following four components (Clements & Sarama, 2004): (1)
a curricular framework and associated learning goals that identify core alge-
braic concepts within the Big Ideas and that are organized around the four
algebraic thinking practices, (2) a Grades 3 to 5 instructional sequence
(referred to here as the intervention) designed to address the learning goals,
(3) validated assessments to measure student learning in response to the inter-
vention, and (4) a specification of the increasingly sophisticated levels of alge-
braic thinking students exhibit about algebraic concepts and practices as they
progress through the intervention (see Fonger et al., 2018, for an extensive
treatment of the development of these components). Components 1 to 3
are the basis for the effectiveness study reported here. Table 1 provides an
illustration of these components using the Big Idea of generalized aritbmetic
for Grade 3.

As alluded to earlier, Kaput’s (2008) content analysis of algebra, along
with empirically based research on children’s engagement in core algebraic
thinking practices within the Big Ideas, provided the a priori foundation
(Clements & Sarama, 2008) for the design of the curricular framework, learn-
ing goals, intervention, and assessments. Consistent with the learning model
dimension of the CRF (Clements, 2007), the intervention was designed as
a conjectured route whose sequencing was based on known or hypothe-
sized progressions in children’s thinking about core algebraic concepts
and practices (our targeted subject matter domain). The sequencing of activ-
ities, or lessons, within the intervention was intended to advance students’
understanding of a concept or practice. For example, the significant body
of empirical research on the development of children’s relational under-
standing of the equal sign—which entails interpreting the equal sign as an
equivalence relation indicating two mathematical objects are equivalent
(Jones, Inglis, Gilmore, & Dowens, 2012)—and the type and sequencing
of tasks that support this (Rittle-Johnson, Matthews, Taylor, & McEldoon,
2011) were used to design lesson activities for the intervention that would
advance children’s relational thinking about this symbol.

Moreover, the treatment of core algebraic concepts and practices was
interwoven throughout the 3-year intervention so that their treatment would
not be isolated in instruction. Clements and Sarama (2008) attribute several
reasons to the importance of a distributed approach in the learning model,
including that students’ mathematical learning is naturally incremental,
learning progressions themselves reflect a multiyear process that cannot
be appropriately compressed into units of instruction, and such an approach
improves recall and retention and can mutually reinforce common ideas
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across different learning trajectories. For example, in our intervention gener-
alizing was viewed not as a mental activity that students learned in a given
instructional unit but as a practice in which they were expected to engage
across all the Big Ideas throughout the 3-year intervention.

The evaluation phase (Clements, 2007) of our work has progressed
from the use of classroom-based teaching experiments from which we could
examine the meanings students made of concepts and practices addressed in
the intervention, to more formal small-scale, quasi-experimental studies that
examined the usability and potential efficacy of the intervention when
implemented by a member of our team with expertise in the intervention,
to the current large-scale, randomized study reported here. The prior
small-scale studies included a 1-year, cross-sectional study at each of
Grades 3 to 5 and a 3-year, longitudinal study across Grades 3 to 5 that exam-
ined the potential efficacy of the intervention under the most favorable con-
ditions (O’Donnell, 2008). These studies showed statistically significant
differences favoring students who were taught the intervention in compari-
son to their peers who received only regular instruction (see, e.g., Blanton
et al., 2015; Blanton, Isler, et al., 2018). Early indications of the intervention’s
potential positioned us for the longitudinal, large-scale, randomized effec-
tiveness study (e.g., Mihalic, 2002; Raudenbush, 2007) reported here, where
the intervention was implemented in diverse demographic settings using an
authentic approach involving classroom teachers who were expected to vary
in their fidelity of implementation (FOI; Clements, 2007). Figure 1 summa-
rizes the alignment between the CRF and the development of our
intervention.

Method

Setting and Participants

The study took place in three school districts in one state within the
southeastern United States. All schools within the districts were invited to
participate, although a few schools opted not to do so. For example, some
schools followed a year-round academic calendar and were unable to coor-
dinate this with the implementation timetable.

The districts represented diverse settings with urban, suburban, and
rural populations. Forty-six schools within the districts participated, with
23 schools randomly assigned to the treatment condition and 23 to the con-
trol condition in the summer prior to the September commencement of the
study in Grade 3. All 46 schools participated throughout the study G.e., there
was no school attrition). Although the randomization occurred at the school
level, we blocked by district since schools were demographically similar
within districts but not between districts. This resulted in an equal number
of treatment and control schools within districts (see Table 2 for overall
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a priori foundation

Kaput’s (2008) content
analysis of algebra

Canonical
Empirical research development of
Generalizing, representing, on teaching and algebra as a
justifying and reasoning with learning algebra mathematical
mathematical structure and discipline
relationships across the (Battista, 2004)
Big Ideas of GA, EEEI, and
FT

learning model

Early Algebra Learning Progression
Components:
e Curricular framework and learning goals
e QGrades 3 — 5 instructional sequence (intervention)
e Assessments
e Levels of thinking

evaluation

Classroom teaching experiments (Stage 1)
Small-scale, quasi-experimental study (Stage 2)

Large-scale, randomized study (Stage 3)

Figure 1. Alignment between the CRF (Clements, 2007) and our design and eval-
uation process.
Note. CRF = Curriculum Research Framework; GA = generalized arithmetic; EEEI = equiva-

lence, expressions, equations, and inequalities; FT = functional thinking.
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Table 2
Demographics for Districts Participating in the Study

Distribution of

Total No. of  Condition for Low SES English Minority
Elementary Participating (Free/Reduced- Language (Non-
District Schools Schools Price Lunch), %  Learners, %  White), %
A 7 Treatment: 3; 20 6 36
Control: 3
B 22 Treatment: 6; 54 10 40
Control: 7
C 30 Treatment: 14; 62 20 82
Control: 13

demographics for the participating districts across the study’s 3-year imple-
mentation, as well as the distribution of treatment and control schools within
districts). Data regarding the percent of students receiving free or reduced-
price lunch were collected at the school level and used as a proxy for
SES. Across all participating schools, an average of 63% of students received
free or reduced-price lunch.

Students in treatment schools were taught the early algebra intervention
by their classroom teachers as part of regular mathematics instruction.
Because of early algebra’s deep connections to arithmetic, the intervention
provided opportunities to develop not only students’ algebraic understand-
ing but also their knowledge of important arithmetic concepts and skills. As
such, although concepts addressed in the regular curriculum might have
been realigned at the discretion of the teacher or other school authority,
they did not need to be eliminated to accommodate the intervention.
Students in control schools received only regular instruction.

In Year 1, we collected assessment data from 3,085 treatment and control
students at Grade 3 pretest. The pretest was administered at the start of the
school year (September) prior to the intervention. This student cohort was fol-
lowed across Grades 3 to 5. As shown in Table 3, the number of students
assessed varied from year to year, a common characteristic of longitudinal
studies. Since we could not test the missing data directly, we looked for pat-
terns in the data regarding missingness. A review of the data suggested that
student absences during the administration of the assessment and students
moving out of district were the two primary causes of missingness. Given
that missingness was not found to be related to our outcome measures (stu-
dent performance and strategy use on the assessment), the missing data
were presumed to be missing at random (Little & Rubin, 1987). Full-informa-
tion maximum likelihood was used in the multilevel analyses so as to include
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Table 3
Number of Algebra Assessments Collected by Grade and Treatment Condition
Grade Treatment Control Total
Grade 3 Pretest 1,637 1,448 3,085
Grade 3 Posttest 1,495 1,343 2,838
Grade 4 Posttest 1,341 1,245 2,586
Grade 5 Posttest 1,087 1,079 2,166

all available data in model estimation. Additionally, all multilevel models were
run twice, once with the full data set and once with only the subset of students
who completed all four testing points. The pattern of results for the subsample
paralleled that of the full sample for both outcome measures. Accordingly, in
subsequent analyses, only results from the full sample are reported.

The Intervention

The intervention consisted of 18 one-hour lessons at each of Grades 3 to
5, with lessons taught throughout the school year (approximately September
through March). As noted earlier, lessons were designed to engage students
in the algebraic thinking practices of generalizing, representing, justifying,
and reasoning with mathematical structure and relationships within the
Big Ideas of generalized arithmetic; equivalence, expressions, equations,
and inequalities; and functional thinking.

Lessons began with a 15-minute “Jumpstart” constructed to review previ-
ous concepts or prompt students’ thinking about the concept to be addressed
in the given lesson. They then transitioned into an investigative activity or set
of activities in which students explored the particular lesson focus through
small group work. Finally, lessons concluded with a whole-group discussion
of students’ findings, followed by a brief “Review and Discuss” that served as
a formative assessment. All lessons emphasized developing meaning for math-
ematical ideas by engaging students in explaining their thinking, both orally
and in writing. Table 4 illustrates the lesson structure with Lesson 4 (Grade
3) on the Commutative Property of Addition.

The study was implemented with grade-level teams across participating
schools. Grade 3 teachers from all schools participated in Year 1, Grade 4
teachers from all schools participated in Year 2, and Grade 5 teachers
from all schools participated in Year 3. During each year of the study, teach-
ers implementing the intervention were provided professional development
(PD) to support their FOI. PD, which included a 1-day training session prior
to the start of school and a Y2-day session each month thereafter, had three
primary goals: (1) developing teachers’ knowledge of algebraic thinking
practices and core concepts by engaging teachers in these practices across
the Big Ideas, (2) developing teachers’ understanding of students’ algebraic
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Table 4
Lesson 4 (Grade 3, Generalized Arithmetic)

Lesson 4: Exploring Fundamental Properties (Commutative Property of Addition)

Jumpstart

Small-group
investigation

Review
and discuss

1

A.

. Which of the following equations are true? Explain.
14 —14=0
394 + 0 = 394

17 +5=23+5
30 + (10 + 19) = (30 + 10 + 19
. Marta has 6 pieces of candy. Her friend, Sarah, has 9 pieces of
candy. How would you represent the relationship between the
numbers of pieces of candy they have? Using the same numbers,
can you represent the relationship in a different way?

Which of the following equations are true? Use numbers, pictures,
cubes, or words to explain your reasoning.
17+5=54+17 20+ 15=15+ 20 148 + 93 =93 + 148

. What numbers make the following equations true?
25+ 10 = +25 _ 4+ 237 =237 + 395
38+__=___ +38

. What do you notice about these problems? Write a conjecture about
what you notice in your own words.

D. Write your conjecture as an equation (with variables).

What do your variables represent?
. Can you write your equation in a different way?

F. For what numbers is your conjecture true? Use numbers, cubes,

pictures, or words to explain your thinking.

G. Find the following. Think about how you might use the

1.

properties you have learned in Lessons 3 and 4.
95 +39-39 + 12 68 + 27 + 32 -27

Is 23 + 17 = 17 + 23 true or false? What is a different way
you can write this equation, using only these numbers, so that
the equation is still true?

. 4+0=0+ . What numbers will make this equation

true?

. Kara said that you could use any number in (2) and that she

could represent “any number” with a variable. She represented this
idea in the following way: b + 0 = 0 + b. Marcus agreed but wrote
¢+ 0=0 + b. Do you agree with how Marcus represented

the idea? Explain.

thinking—as identified in both research and in teachers’ own classroom data
collected during their implementation of the intervention—and how to build
on students’ thinking in instruction, and (3) strengthening teaching practices
(such as teacher questioning strategies) that could increase students’ engage-
ment with core algebraic concepts and practices.
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Algebra Assessments

Grade-level algebra assessments were designed and validated to mea-
sure within-grade and across-grade (longitudinal) growth in students’ under-
standing of algebraic thinking practices (e.g., generalizing) and core
algebraic concepts (e.g., relational understanding of the equal sign), as
well as growth in students’ use of structural (algebraic) strategies.

Each grade-level assessment was designed as a 1-hour, written assess-
ment containing 12 to 14 items. Nine of these items were used across the
assessments in order to measure longitudinal growth, with these common
items being most difficult for Grade 3 (see Appendix for common items).
Eight of the common items were open response, with five items containing
multiple subparts. Each of the subparts was coded separately for perfor-
mance and structural strategy use, for a total of 21 subparts across the com-
mon items used to measure longitudinal growth.

In validating the assessments, items went through multiple cycles of
internal reviews by the research team and external reviews by the project’s
advisory board (content experts) and an independent evaluator. Items were
then revised to create grade-level assessments that were administered at
grade level to about 100 students per grade. Student responses were scored
using a coding scheme developed by the project team. The coding scheme
was designed to capture both correctness of student responses as well as the
types of strategies students used. Mean initial agreement was 86%. After
negotiation of the coding scheme, mean agreement after a second round
of coding was 89%.

Under the direction of the project’s quantitative methodologist, the assess-
ments were then tested for psychometric soundness in several ways. First,
internal consistency estimates of reliability (i.e., Cronbach’s alpha) were calcu-
lated for each assessment. Individual items within each assessment were eval-
uated with respect to their contributions to test reliability, as well as other
characteristics such as item difficulty, variance, and item-total correlations.
Items that failed to demonstrate positive contributions to the test (e.g., propor-
tion correct > 0.95 or < 0.05; variance < 0.05; item-total correlations < .10)
were removed or modified. For construct validity, we compared our assess-
ments to external and established assessments such as standardized state tests
based on, for example, Pearson correlations. Using these data to refine the
items, final versions of the Grades 3 to 5 assessments were constructed.

Data Collection and Analysis of Student Responses on Algebra Assessments

In Grade 3, participating students in treatment and control schools were
administered the Grade 3 algebra assessment both as a pretest (baseline)
prior to the start of the intervention and as a posttest. The Grade 4 and
Grade 5 algebra assessments were administered as a posttest in Grades 4
and 5, respectively.
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Coding Student Responses

Student responses to algebra assessment items were coded using coding
schemes developed through multiple refinements in our prior work (e.g.,
see Blanton et al., 2015). Items were coded by trained coders, without
knowledge of students’ treatment condition, in terms of performance (i.e.,
correctness) and students’ strategy use. Strategy codes were developed to
try to capture the variety of ways in which students approached our assess-
ment items and included a wide range of sophistication, some of which
reflected correct thinking and some of which did not. Some strategy codes
indicated evidence of common misconceptions, some indicated engagement
in arithmetic approaches, and others indicated more sophisticated algebraic
thinking.

In analyzing students’ strategies, we were particularly interested in the
degree to which students used strategies we refer to as structural (Kieran,
2007). Structural strategies involve recognizing and acting on underlying
mathematical relationships. This might occur when representing a relation-
ship between two quantities using variables, when making a general argu-
ment that does not rely on specific values, or when reasoning about
equations. For example, on the assessment item for which students were
asked to find the missing value in the equation 7 + 3 = ___ + 4, students
using a structural strategy might argue that the missing value must be one
less than 7 (i.e., 6) because 4 is one more than 3. This approach indicates
an understanding of the relationships among the quantities in the equation
and an ability to view the equation as a whole object. A student using a com-
putational approach, on the other hand, might find the missing value by
adding 7 and 3 and subtracting 4 from the result to find the missing value
(i.e., 6). While both are correct, the first approach (known as a compensation
strategy) demonstrates a type of structural reasoning that is important in
algebraic thinking (Kieran, 2007; Knuth, Stephens, McNeil, & Alibali,
2006). A third, albeit incorrect, strategy for this item is an operational strat-
egy, in which students perform the operation to the left of the equal sign
(writing 10 in the blank) or add all given numbers in the equation (writing
14 in the blank). The full coding scheme for this item is included in the
Appendix to illustrate the variation of strategies captured from student
responses.

Finally, to assess interrater reliability of the coding process, a random
sample of 15% to 20% of assessments at each grade level were double-coded
by a pair of trained coders. Training involved having coders discuss individ-
ual items and coding schemes and then independently code student assess-
ments from previous research as well as hypothetical responses generated
by noncoding members of the research team. Some items were less complex
and thus more straightforward to code than others. Oftentimes, multiple
rounds of training and discussion among coders and other research team
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Table 5
Interrater Reliability (k) for Common Items Across Grade Levels

Correctness Structural Strategy Use

Grade 3 Grade 3 Grade 3 Grade 3
Item Pretest Posttest Grade 4 Grade5 Pretest Posttest Grade 4 Grade 5

1 .98 .99 .98 .96 .90 95 .96 .90
2a .98 .99 .98 95 .84 91 .89 .86
2b 95 97 .96 .96 .85 .89 .84 .86
2¢ 95 97 97 97 .83 .87 .85 .85
3a .84 .89 .79 .76 .76 .84 74 72
3b 94 .96 .97 95 .89 .86 .94 91
4 94 .88 .89 81 .90 .86 .83 .76
5a .97 93 .90 .89 94 .89 .86 .87
S5b .97 94 .92 .88 .94 .86 .86 .80
5c1 .98 97 93 92 95 .90 84 .78
5¢2 .96 .99 97 91 .90 .85 79 .78
8 93 .96 94 .96 .88 .87 .88 84
9a 92 95 93 .98 n/a n/a n/a n/a
9b .95 93 .88 95 n/a n/a n/a n/a
9cl 96 98 93 .96 .88 86 .89 .87
9¢c2 97 97 .89 97 91 .83 .84 .84
9d .97 97 .97 .92 n/a n/a n/a n/a
10a .99 .96 .97 .92 n/a n/a n/a n/a
10b .98 .98 .97 .98 n/a n/a n/a n/a
10c .97 .97 .96 .95 n/a n/a n/a n/a

Note. Structural strategies were not applicable to some items (indicated by n/a).

members were needed to achieve consistency on more complex items
before the coding of the present study’s data could begin. Such discussions
enriched the coding manual by leading to more refined definitions and
examples of particular strategy codes. Results indicated substantial agree-
ment between raters, with all Cohen’s kappa (k) statistics .70 or greater
across each grade level (see Table 5).

Analysis of Performance and Structural Strategy Use

We calculated individual student scores for each outcome measure (i.e.,
performance and structural strategy use) based on the percentage of items
coded as correct (as a measure of performance) or that used a structural
strategy. Using HLM Version 7.01 (Raudenbush & Bryk, 2002), we modeled
performance and structural strategy use using separate three-level longitudi-
nal piecewise growth models, with repeated assessments nested within indi-
viduals nested within schools. Two linear slope factors were modeled. The
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first growth factor examined the initial changes in performance and struc-
tural strategy use during the first year of the intervention (Time 1, Grade 3
pretest to Grade 3 posttest), whereas the second examined the growth
that occurred from the end of Grade 3 through Grade 5 (Time 2, Grade 3
posttest to Grade 5 posttest). These time periods were identified based on
descriptive statistics that suggested a differential effect in the first year of
the intervention as compared to subsequent years. At the school level, we
modeled the effect that the intervention had on student growth and
between-school variability, controlling for SES. The interaction between
SES and treatment condition was also included as a predictor at the school
level to determine if the impact of the intervention was equitable across
the range of SES.

Results

Before we discuss findings on student performance and strategy use, we
briefly address two issues that will provide further context for our findings:
the fidelity with which teachers implemented the intervention and the regu-
lar mathematics curriculum used by teachers in both treatment and control
classrooms.

All districts followed the state’s common standard course of study, based
on the Common Core State Standards for Mathematics (NGA Center &
CCSSO, 2010), which prescribed specific content to address at each grade
level. The districts addressed these content standards through different cur-
ricular materials. One district used a well-known “reform-based” curriculum
that encouraged inquiry and investigation, one district used a more main-
stream curriculum that encouraged computational skill, and one used a cur-
riculum that was a hybrid of the first two. Regardless, when examined using
our conceptual framework for algebra, all three curricula were found to
address algebraic topics but with limited emphasis and frequency. For exam-
ple, the “mainstream” curriculum contained activities such as finding the
missing value in equations (including equations containing a variable), iden-
tifying properties of operations informally using natural language (e.g., fram-
ing the Commutative Property of Addition as “adding in any order”), finding
the recursive rule in a sequence of values, and examining function tables to
look for relationships. Moreover, the curriculum introduced variables as let-
ters representing fixed unknowns in Grade 3 (through equation-solving
tasks such as 7 = n — 8) and variables as varying quantities in Grade 5
through functional relationships. By Grade 5, the curriculum included topics
such as substituting the value of a letter in expressions and equations, find-
ing a (functional) relationship between two quantities in a table, and inter-
preting graphs by constructing a story that could be represented by
a given graph. Not surprisingly, the treatment of algebra in the curriculum
increased across Grades 3 to 5. Given this, we anticipated that control
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students would exhibit some level of success on our algebra assessment,
particularly in Grade 5.

Elsewhere, Stylianou et al. (in press) conducted a full FOI study and
found that while there was variation in fidelity, teachers generally imple-
mented the intervention faithfully. In particular, they found that, overall,
teachers followed the lesson structure: 94% of teachers used the Jumpstart
in their instruction and 73% of teachers placed students in group or individ-
ual formats to investigate the lesson activity, with 77% of these teachers
coded as “actively” interacting with students during this investigative com-
ponent by clarifying ideas and asking questions to challenge students’ think-
ing. Furthermore, they found that teachers scored well on their use of time,
clear presentation of mathematics, engagement of students in instruction,
attention to students’ difficulties, use of students’ ideas in instruction, and
use of precise mathematical language or notation. Moreover, they found
that teachers’ engagement of students in the algebraic thinking practices sig-
nificantly predicted student outcomes at posttest, whereby students in class-
rooms where teachers were rated more highly on their implementation of
core algebraic practices outperformed students whose teachers received
lower ratings. Given that it can take several years of PD for teachers to
develop the necessary expertise to implement a curriculum with high fidelity
(see e.g., Jacobs, Lamb, & Philipp, 2010; Superfine, 2008), we view results of
these teachers’ first-year attempts at implementing the intervention as posi-
tive and reasonable.

Results for Students’ Responses on Algebra Assessments

Descriptive statistics for both performance and structural strategy use are
provided in Table 6. In the sections that follow, we summarize the hierarchi-
cal linear models tested for each outcome measure.

Performance

Figure 2 compares the average student performance (i.e., percentage
correct) on common items on the algebra assessment for the given condi-
tions, across the four testing points. An initial exploratory examination of
the data suggested a sizeable effect in the first year of the intervention, fol-
lowed by a potential leveling off of that effect in subsequent years.
Following a procedure used by Frank and Seltzer (1990) and described in
Raudenbush and Bryk (2002), an inspection of growth plots for a random
subsample of 100 students confirmed this pattern, suggesting a differential
effect in the first year of the study as compared to subsequent years.
According to Raudenbush and Bryk (2002), a piecewise linear growth model
is appropriate when an analysis of the data suggests nonlinearity such that
growth trajectories can be broken into two linear components. Therefore,
given the nature of our data, we employed a piecewise linear growth model
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Table 6
Percentages for Correctness and Structural Strategy
Use on Algebra Assessments

Treatment Control

Outcome Grade 3 Grade 3 Grade 4 Grade 5 Grade 3 Grade 3 Grade 4 Grade 5
Measure Pretest Posttest Posttest Posttest Pretest Posttest Posttest Posttest

Correctness
M 13.64%  40.42% 52.82% 64.67% 14.90% 27.31% 38.84% 47.80%
SD 11.08% 21.56% 22.91% 22.04% 11.54% 15.88% 19.37% 20.31%
n 1,637 1,495 1,341 1,087 1,448 1,343 1,245 1,079
Strategy
M 3.68% 18.39% 27.94% 37.75%  4.17% 7.13%  13.40%  19.09%
SD 5.34%  16.66% 19.67% 22.11%  5.45% 8.00%  13.78%  16.90%
n 1,637 1,495 1,341 1,087 1,448 1,343 1,245 1,079

to explore the impact of the intervention on performance at each distinct
time period.

An unconditional piecewise linear growth model was first fit in order to
assess the variability at each level, as well as to provide a baseline from
which to compare subsequent models. The Level 1 (repeated assessments
within students) model is the following:

Y”/ =Toif +’Tl'117 (Tlme 117]) +’1T21j (Tlme 217]) +€;z‘/,

where Y;; is the observed performance (correctness) score at time ¢ for indi-
vidual 7 in school j, m,; is the performance of student i in school j at baseline
(Grade 3 pretest), m;; is the growth rate for student 7 in school j during the
first year of the intervention (Time 1), m,; is the growth rate of student 7 in
school j over the following 2 years of the intervention (Time 2), and e; is the
Level 1 residual.

Baseline performance and growth rate during the first year of the inter-
vention (Time 1) and the following 2 years (Time 2) were subsequently
modeled at Level 2 (student leveD) and Level 3 (school level). The uncondi-
tional model at Levels 2 and 3 is the following:

Level 2
Wog':f300/+”0y'7
1T11j;:B1oj+7’1;77

2= Bog; T 7247,
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Figure 2. Comparison of overall correctness for common items on algebra
assessments.

Level 3
B()Q;:'YOQ/ + g0y,
B0/ ="Y100 T 110y,

B20;="Y200 T 120/,

where B, is the average performance within school j at pretest; 10, and B¢,
are the average growth parameters at Time 1 and Time 2, respectively,
within school j: 7y, 715, and 7, represent variability between individuals
for pretest performance and growth rates at Times 1 and 2, respectively;
Yooo is the overall average performance across all schools at pretest; Y109
and vy;qo are the average growth parameters at Time 1 and Time 2, respec-
tively, across schools; and uq, 24105, and w5y represent variability between
schools on pretest performance and each growth parameter, respectively.
Across all schools, including both treatment and control, the average
performance at Grade 3 pretest (yoo0) was 14.02% (see Table 7). The average
growth rate in the first year of the intervention was 19.06% (y100), and 9.93%
(y200) in subsequent years. The results of the unconditional model suggest
significant variability to be explained in pretest scores () and growth rates
(4, and ;) at both the student level (Level 2) and school level (Level 3).
Furthermore, we found that 20.3% of the variance in pretest scores, 46.1% of
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variance in growth during the first year of the intervention, and 31.6% of var-
iance in growth in subsequent years lies between schools, which is the level
of our intervention. The results for pretest performance and both growth fac-
tors are on par with findings from cross-sectional research where variability
between schools is approximately 10% to 30% (Raudenbush & Bryk, 2002).
We next considered an explanatory model, with predictor variables
added at the school level. The Level land Level 2 models remained the
same as in the unconditional model, while school-level predictors were
added at Level 3 for pretest performance and each growth rate.
Specifically, we were interested in the impact of the treatment on perfor-
mance, controlling for school-level SES (% of students receiving free or
reduced-price lunch), as well as the interaction between the treatment and
SES. Treatment was dummy coded (0 = control, 1 = treatment), while SES
was grand mean centered. The full level 3 model is specified as follows:

Boo; =Yooo T Yoot (Treatment) +vyqq, (SES) +Y0o3 (Treatment X SES)+1¢q;,
B1o;="Y100 T Y101 (Treatment) +y;, (SES)+y,03(Treatment X SES)+ 1,

B0, ="Y200 T Y201 (Treatment) +7y,9, (SES) +y503 (Treatment X SES) + 12,

where Yoo1, Yooz, Yoos, and so on, represent the effect of the specified predic-
tor variable (treatment, SES, or their interaction) on pretest performance;
Y101, Y102, and 03 represent the effect of the predictors on growth during
the first year of the intervention; and Y51, Y202, and y,93 represent the effect
of the predictors on growth in Grades 4 and 5.

The results of the unconditional piecewise growth model, the full fitted
conditional model, and the final model, with nonsignificant effects removed,
can be found in Table 7. As shown in the final model, students’ performance
score at baseline (Grade 3 pretest) was statistically significantly predicted by
SES, such that students from more affluent schools significantly outper-
formed their peers from less aftfluent schools prior to the start of the interven-
tion. Every 1% increase in the number of students receiving free or reduced-
price lunch was associated with a 0.09% reduction in performance at Grade 3
pretest. Given that free or reduced-priced lunch values ranged from 14% to
100% across schools, this equated to a 7.6% difference in pretest scores
between schools at the highest and lowest levels of SES. Baseline perfor-
mance was significantly predicted neither by treatment condition nor by
the treatment by SES interaction effect, suggesting that our randomization
was effective. Accordingly, these nonsignificant predictors were removed
from the final model.

During the first year of the intervention, holding SES constant, students
in our treatment condition improved at a significantly faster rate than
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students in the control condition, with students in the treatment condition
gaining a 21% advantage over those in the control condition by the end of
Grade 3. We also found a significant main effect of SES, suggesting that stu-
dents at higher SES schools outperformed their peers at lower SES schools.?
Overall, growth rates in performance decreased by 0.08% for every 1%
increase in the number of students receiving free or reduced-priced lunch.
For control schools, this equates to a 6.9% gap between the highest and low-
est SES schools, an effect similar in magnitude to the one found at baseline.

However, the impact of the treatment was attenuated by SES. The signif-
icant treatment by SES interaction term suggests that students in our treat-
ment condition from low-SES schools grew at a significantly slower rate
than students in our treatment condition from relatively higher SES schools.
Specifically, for every 1% increase in the number of students receiving free
or reduced-price lunch, there was a 0.11% decrease in the growth rate. In
combination with the main effect for SES described above, this equates to
a 16.4% difference in growth rate between our highest and lowest SES
schools in the treatment condition.

Importantly, however, regardless of SES, all students benefited from the
intervention. To understand this more fully, consider that 9 out of our 46
schools had 100% of their participating students characterized as having
low-SES backgrounds. Focusing solely on students in these nine lowest
SES treatment and control schools, we found that students in the treatment
condition improved significantly faster than control students, with treatment
students outperforming controls by 9.2% at the end of Grade 3. In the latter 2
years of the intervention, there was a marginally significant difference in the
rate of growth between treatment and control students, with treatment stu-
dents gaining an additional 2.0% above and beyond the growth seen by con-
trol students. Though overall scores are lower and gains are attenuated,
there remains clear evidence of improvement among these treatment stu-
dents, relative to their control peers, due to the intervention (see Figure 3).

When combined, treatment condition, SES, and their interaction
explained 80% of the between-school variability in growth in performance
between Grade 3 pretest and Grade 3 posttest. Though significant between-
school variation remains, the results suggest that the treatment condition
explains a substantial amount of school-level variability in performance.

In the latter 2 years of the intervention (Time 2 of our model, between
Grade 3 posttest and Grade 5 posttest), there was no significant difference in
the rate of growth between treatment and control students. Importantly,
however, the treatment effect seen in the initial year was maintained. That
is, on average, control students did not gain on their peers in the treatment
condition. The SES effect and the treatment by SES interaction were also no
longer significant, suggesting that growth between the end of Grades 3 and 5
for performance on algebraic items was equitable across the range of SES.

1953



Blanton et al.

100%

80%

60%

40%

20%

0%

Gr 3 Pre Gr 3 Post Gr 4 Post Gr 5 Post

=@ Treatment Control

Figure 3. Comparison of overall correctness for lowest socioeconomic status
schools on algebra assessments.

Structural Strategies

Figure 4 compares the average student use of structural strategies on
common items on the algebra assessment for the given conditions, across
the four testing points. Similar to the findings for performance, we employed
a piecewise linear growth model based on the descriptive data coupled with
an inspection of growth plots.

The unconditional piecewise growth model for structural strategy use
was identical to that described above for performance. The results of the
unconditional model revealed significant variability in pretest performance
(m;) and both growth factors (m; and ;) across schools (Level 3).
However, at Level 2, only the growth factors (mry;; and ;) showed signifi-
cant variability across individuals. Therefore, we treated baseline perfor-
mance () as fixed at Level 2. With the random effect removed, the
unconditional Level 1 and Level 3 models remained identical to the perfor-
mance unconditional model, while the Level 2 model is altered as follows:

o =Booy-
Trll'j:BIOjJrrlij'

1T2ij = BZOj + 7"2,']'.
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Figure 4. Comparison of structural strategy use for common items on algebra
assessments.

The results of the unconditional piecewise growth model, the full fitted con-
ditional model, and the final model, with nonsignificant effects removed, can
be found in Table 8.

Across the entire population of student participants, the average pretest
performance (ygo0) was 3.87% for structural strategy use. The average
growth rate was 8.34% (7y1oo) in the first year of the intervention and
6.62% (y200) in subsequent years. The results of the unconditional model
revealed that 31.8% of the variability in growth during the first year of the
intervention was between schools, while 18.7% of the variability in growth
in subsequent years was between schools. These results are, again, on par
with what is typically found in the literature with respect to between-school
variability (Raudenbush & Bryk, 2002).

We subsequently fitted a conditional model that included all school-level
predictors. Other than the fixed random effect at the student level, the full
model was identical to that described previously for performance.
Nonsignificant effects were removed, resulting in the final model.

As shown in the full model, students’ structural strategy use score at
baseline (Grade 3 pretest) was not statistically significantly predicted by
any of the school-level factors. While it is not surprising that the treatment
and interaction terms are nonsignificant at pretest given random assignment
to intervention condition, the lack of an SES effect for strategy use departs
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from the findings for performance. This is likely due to the fact that use of
structural strategies was quite low across all students at the outset of the
intervention (approximately 4%), suppressing any potential impact of SES.

During the first year of the intervention, holding SES constant, students
in the treatment condition again improved at a significantly faster rate than
students in the control condition, gaining approximately 19% above and
beyond gains made by control students. However, similar to results for per-
formance, this effect was attenuated by SES, with students in low-SES
schools gaining at a significantly slower rate than students in higher SES
schools. For control students, there was a 0.03% reduction in the use of struc-
tural strategies for every 1% increase in the number of students receiving free
or reduced-price lunch, equating to a 2.6% gap in growth rates between the
highest and lowest SES schools.

Compared to performance findings, the interaction effect was slightly
larger for structural strategy use. For students in the treatment condition,
every 1% increase in the number of students receiving free or reduced-
priced lunch was associated with a 0.13% reduction in growth rate in the
use of structural strategies during the first year of the intervention. In addi-
tion to the more general SES effect described above, this equates to
a 13.8% gap between schools of the highest and lowest SES in the treatment
condition. However, similar to our findings for performance, an exploration
of the structural strategy use of students at the nine lowest SES schools (100%
free or reduced-price lunch) showed that treatment students from low-SES
backgrounds did in fact benefit from the intervention, in comparison to con-
trol students from similar SES backgrounds.

Combined, treatment condition, SES, and their interaction explained
84% of the between-school variability in growth rate for structural strategy
use in the first year of the intervention. This effect is similar to what was
found for performance and, again, points to the substantial explanatory
power of the predictor variables.

In subsequent years (Time 2), the treatment advantage seen in the initial
year decreased but was still present. This is unlike findings for performance,
where the effect of the intervention leveled off in Time 2. Students in the
treatment condition gained approximately 3% per year above and beyond
the gains made by control students in strategy use. There was also a signifi-
cant effect of SES in the expected direction, with every 1% increase in the
number of students receiving free or reduced-price lunch associated with
a 0.06% decrease in the growth rate. However, there was no significant treat-
ment by SES interaction, suggesting that the treatment was equitable across
the range of SES for structural strategy use gains during this time period.
Treatment and SES combined explained 45% of the between-school variabil-
ity in growth in the latter 2 years of the intervention.
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Table 9
Average Student Score on End-of-Grade Standardized
Assessment at Each Grade Level

Grade Level Treatment Control
Grade 3 449.51 450.33
Grade 4 448.97 450.00
Grade 5 450.68 451.53

Results on State Accountability Assessments

Separate multilevel analyses of students’ performance on the state’s end-
of-grade standardized assessment in mathematics showed no significant dif-
ference between treatment and control students’ performance in any of
Grades 3 to 5. As shown in Table 9, scores were nearly identical between
students in the treatment and control conditions at each grade level. This
finding is not surprising, given that the state assessment is not well aligned
with the intervention and therefore would not be sufficiently sensitive to
changes in students’ understanding of the algebraic content addressed in
the intervention. Further analyses revealed that students’ state assessment
scores and outcomes on the algebra assessment (both correctness and strat-
egy use) were uncorrelated, with Pearson’s 7 statistics ranging from .02 to
.04. This finding provides additional evidence that the two assessments are
measuring different knowledge and skills. However, the implication that
the intervention “did no harm” is an important finding in light of both the
significant gains made in treatment students’ algebraic thinking and the con-
cerns teachers expressed initially that treatment students might not have suf-
ficient time with content in their regular curriculum. In other words, the
intervention only added value to children’s elementary grades experiences
relative to their potential algebra readiness and did not impede their learning
of other mathematical content.

Discussion

Overall, the strong effect of the intervention in Grade 3 as measured by
student performance (i.e., correctness) on common algebra assessment
items resulted in a significant advantage for treatment students that they
maintained throughout the intervention in Grades 4 and 5, placing them sig-
nificantly ahead of control students in their understanding of core algebraic
concepts and practices just prior to entering middle grades. A similar growth
pattern was found in students’ use of structural strategies, where treatment
students were able to achieve a significant advantage over control students
in the growth of their use of structural strategies in the first year of the inter-
vention and even added to those gains in Grades 4 and 5.
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While results for both outcome measures studied here hold important
implications for the impact of early algebra in developing children’s algebra
readiness for middle grades, we particularly emphasize the significant effect
of the intervention on students’ use of structural strategies. Scholars have
long argued that noticing and reasoning with mathematical structure—
activities that we see as implicit in the algebraic thinking practices identified
here—are essential to thinking algebraically (e.g., Kieran, 2007; Knuth et al.,
2006; Pimm, 1995), yet difficult for students to achieve (Linchevski &
Livneh, 1999). To further compound this, arithmetic instruction in elementary
grades has not adequately emphasized attention to structure (Arcavi, Drijvers,
& Stacey, 2017), resulting in opportunities missed for young learners to
engage in structural reasoning.

Our analysis of students’ use of structural strategies points to the impact
of the intervention on students’ “structure sense” (Linchevski & Livneh,
1999) in particular ways. Evidence of this is found, for example, in students’
use of the compensation strategy to reason relationally about the equal sign.
In tasks that required students to find a missing value in an equation or
determine if an equation was true or false, treatment students were more
successful in using a compensation strategy to correctly solve these tasks
than control students.

Some have argued that the ability to notice, represent, and reason with
fundamental properties (e.g., the Commutative Property of Addition) is cen-
tral to structural reasoning (Mason, Stephens, & Watson, 2009). This, coupled
with the view that students’ difficulties with algebraic structure are rooted in
arithmetic, particularly in students’ lack of understanding of the structural
aspects of the number system (e.g., Booth, 1988; Linchevski & Livneh,
1999), underscores the importance of interventions that strengthen students’
understanding of structural properties in arithmetic. We found that treatment
students were more successful than control students in noticing a structural
property of the number system and using it as the basis of an argument.
Treatment students were also better able than control students at building
general arguments to justify arithmetic relationships, particularly with classes
of numbers. Moreover, treatment students were better able to solve equa-
tions using strategies such as “unwinding” (Knuth et al., 2006; Koedinger
& MaclLaren, 2002), a strategy whereby students find the missing value in
an equation by working backwards through inverse operations, rather
than by a numerical (arithmetic) strategy such as “guess and test,” whereby
they guess values for the unknown and work forward to see if the values sat-
isfy the equation.

Linchevski and Vinner (1990) further argue that students’ success in
algebra is predicated on their noticing of “hidden structures” in algebraic
representations and that instruction that includes functional situations can
increase students’ attention to structure. Elsewhere, Blanton, Brizuela,
et al. (2018) found that young children’s inability to represent algebraic

1959



Blanton et al.

quantities was rooted more in their lack of perceiving variable quantities in
mathematical situations rather than in difficulties with symbolic systems.
Collectively, these studies point to students’ challenges in seeing structure
conveyed not just explicitly, in symbolic forms, but also implicitly in math-
ematical situations. We found that treatment students were better able than
control students to perceive variable quantities in mathematical situations
and represent these quantities and the relationships between them with vari-
able notation across contexts where variable plays different roles, including
as a fixed unknown, as a varying quantity, and as a generalized pattern
(Blanton et al., 2011). This conveys treatment students’ advantage over con-
trol students by way not only of structure sense but also of “symbol sense”
(Arcavi, 2005), that is, their ability to represent and reason with variable
notation in different types of mathematical situations.

We note that control students’ performance and strategy use improved
over time as well. This is promising, given the decades-long effort in the
United States to reconceptualize teaching and learning algebra and the
resulting increase in attention to algebraic ideas in elementary grades curric-
ula, including the curricula used by schools participating in the study
reported here. We suggest that the pattern of gains made by control students
across Grades 3 to 5, which were greater in Grades 4 and 5, can be attributed
in part to the increased attention to early algebraic concepts in these grades
in students’ regular curriculum, as noted earlier. However, the significant
advantage treatment students exhibited in this study highlights the opportu-
nities missed in current curricular approaches. Moreover, research shows
that when students learn core algebraic ideas—not just that they do—
matters, with earlier gains in knowledge leading to more success later
(Alibali, Knuth, Hattikudur, McNeil, & Stephens, 2007). This, coupled with
the strong effect of the intervention in Grade 3, suggests that the earlier intro-
duction of algebraic thinking has the potential for significant benefits in
terms of students’ mathematical success.

Finally, we highlight findings relative to performance and strategy use
for socioeconomically disadvantaged students participating in this study
(i.e., treatment and control schools with 100% of student participants desig-
nated as from low-SES backgrounds). We also note that other relevant demo-
graphic data for these particular schools include, on average, a highly
diverse population of students (approximately 94% persons of color, with
42.4% Hispanic and 51.4% Black). Thus, while our findings regarding the
effect of the intervention on students’ capacity to think algebraically are
framed here relative to SES, we suggest that they can be viewed with an
eye toward these other at-risk populations as well.

Research establishes a strong link between SES and student achievement
(Chudgar & Luschei, 2009). By Grade 5, for example, students from lower
SES backgrounds are 2 times more likely to lack the proficiency needed in
math than more advantaged students (U.S. Department of Education,
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National Center for Education Statistics, 2007), placing this population of stu-
dents at particular risk for later difficulties in algebra. Moreover, Grades 3 to
5, the period addressed by our intervention, represent some of the years of
highest risk for students from low-SES backgrounds (Schmidt, McKnight,
Cogan, Jakwerth, & Houang, 1999), making interventions in this grade
band that can mitigate the risk all the more critical.

Since its inception, a primary motivation for early algebra has been to
democratize access to algebra for students who have historically had limited
access to the STEM pipeline due to algebra’s gatekeeper effect (Kaput, 2008).
The long-term implications of the inequity of access for students from low-
SES backgrounds to STEM-related careers, given their already existing under-
representation in the STEM pipeline (Oscos-Sanchez, Oscos-Flores, & Burge,
2008), are significant. Students from lower SES backgrounds are less likely
than their more advantaged peers to complete high school or attend college
and postgraduate school (Halle, Kurtz-Costes, & Mahoney, 1997), sharply
decreasing their access to such careers. Yet research suggests that under-
served students who receive equitable learning opportunities achieve
STEM outcomes comparable to mainstream students (Lee, 2011). Thus, it
was reasonable to expect that disadvantaged participants in our study,
too, might show relative gains in their understanding of core algebraic think-
ing practices and concepts.

In this regard, we found that students from economically disadvantaged
(and ethnically diverse) backgrounds could successfully engage with core
algebraic practices and concepts when given appropriate curricular and
instructional supports. Importantly, the algebra assessments used in this
study were largely composed of nonroutine, open-response items. Results
of standardized testing (e.g., National Assessment of Educational Progress)
suggest that such problems are particularly challenging for students from
low-SES backgrounds, who tend to perform more poorly than students
from high-SES backgrounds on nonroutine problems (Lubienski, 2007).
While we did find that students from high-SES backgrounds outperformed
those from low-SES backgrounds, our findings on students in the most dis-
advantaged cases (i.e., in schools for which 100% of students received free
or reduced-price lunch) showed that treatment students’ responses followed
the same pattern in terms of performance (correctness) and structural strat-
egy use as the overall sample. Specifically, treatment students in the lowest
SES schools showed a clear advantage over their control peers in similar
schools in their ability to solve nonroutine algebra tasks. During the first
year of the intervention, control students increased their overall percentage
of structural strategy use from 3% to 6%, while treatment students jumped
from 3% to 10%. This marks a significant advantage for treatment students.
In Grades 4 and 5, control students, on average, gained 3% per year, while
treatment students gained 6% per year. By the end of the study, control stu-
dents were using structural strategies 12% of the time, while treatment
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students were using them more often, at 22% of the time. These gains by stu-
dents from low-SES schools are particularly encouraging if we are to change
the story on algebra’s gatekeeper effect.

Conclusion

Does early algebra matter? Our findings suggest not only that a system-
atic effort to engage upper elementary grades students in understanding core
algebraic thinking practices and concepts does matter in terms of developing
their algebra readiness for middle grades but also that its effect can be felt
among our most vulnerable populations. Moreover, while our central aim
was to understand the impact of early algebra, there are secondary outcomes
of this study that are important to note as well. In particular, the intervention
used in this study reflects a research-based model of a comprehensive
approach to early algebra instruction whose effectiveness is established
through findings presented here. In this, our design methodology reinforces
the utility of the CRF (Clements, 2007) as a template for developing effective,
research-based curricula. Moreover, the study itself contributes to the body
of experimental research that evaluates the effectiveness of curricular inno-
vations, particularly among young learners and with at-risk populations and,
thereby, addresses the call to “investigate the effects of programs, practices,
and approaches on students’ mathematics achievement” (U.S. Dept. of
Education, 2008, p. 84).

In spite of the positive findings from this study, however, we acknowl-
edge that there was still room for growth in algebraic understanding among
participants (e.g., by the end of Grade 5, overall performance for treatment
students was 65%). We also recognize the need to understand reasons for the
dampened effect of the treatment in Grades 4 and 5 (and, accordingly, how
the intervention or instruction might be modified to accelerate the rate of
growth in students’ algebraic thinking during this phase). To this end, we
close here with some factors that might help us understand limitations in
our results and how we are currently addressing these.

First, we note that the significant growth we observed among treatment
students—including economically disadvantaged and ethnically diverse
students—in comparison to students in business-as-usual, arithmetic-
focused settings resulted after only a relatively small amount of instructional
time (in one sense, about 20 hours of instruction per year for the interven-
tion). The brevity of the intervention raises the question of the extent to
which students’ algebraic thinking might grow in ideal situations, where
algebraic concepts and practices are woven more organically and continu-
ously into mathematics instruction across all of elementary grades by class-
room teachers who have deep expertise in building rich algebraic
discussions around tasks that foster higher level thinking.
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Second, we recognize that teachers in treatment schools were teaching,
largely for the first time, an intervention that had content that was noticeably
different from their more familiar arithmetic-based curriculum. As noted ear-
lier, this is an important factor because it can take several years of PD to
develop the expertise needed to implement an intervention with the highest
fidelity (Jacobs et al., 2010; Superfine, 2008). In our view, the limited amount
of time for the intervention, coupled with teachers’ limited experience in
teaching early algebraic ideas, can help explain what might be viewed as
only modest overall growth among students who received the intervention.

To this end, our study points to the need for further critical research. We
think that part of the answer to how we might further increase student per-
formance lies in better understanding how to support elementary teachers.
Elementary teachers in the United States have been underserved in their
preparation for early algebra instruction (Greenberg & Walsh, 2008), a prob-
lem that is compounded by the fact that a disproportionately large number
of preservice and in-service elementary teachers have deeply rooted anxi-
eties about mathematics (Battista, 1986; Haycock, 2001)—particularly
algebra—that can impede the confidence with which they teach children
(Bursal & Paznokas, 2006). To this end, we are currently examining instruc-
tion for the intervention by teachers who implemented the intervention with
highest fidelity in order to identify more nuanced aspects of instruction that
support students’ engagement with algebraic thinking practices.

Part of the answer also lies in the depth to which early algebra instruc-
tion occurs, both in its duration across all of elementary grades and in its
capacity to engage all learners. In response to this, we are extending our
Grades 3 to 5 work in two important ways. First, we are currently expanding
the intervention into Grades K-2 in order to develop a complete, compre-
hensive approach to early algebra across elementary grades, an approach
that is consistent with calls by the Common Core State Standards for
Mathematics (NGA Center & CCSSO, 2010) that the development of algebraic
thinking begin at the start of formal schooling. Second, we are examining
design principles by which our intervention can better support struggling
learners (e.g., students with learning differences) and be more culturally sen-
sitive to diverse populations. Finally, we are currently exploring how the
performance and strategy use of treatment and control students in the study
reported here change once they enter middle grades and are assimilated into
common classrooms. Understanding retention in treatment students’ knowl-
edge of algebraic concepts and practices, as well as gains or losses for either
group, will be important in identifying what should happen after elementary
grades to keep students on a positive trajectory of development. In our view,
working to address all of these factors can help us continue to find ways to
mediate algebra’s gatekeeper effect.

Designing effective, research-based approaches to the development of
children’s algebraic thinking in elementary grades that align with national
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learning standards is a critical need for STEM education, particularly if cur-
rent college and career readiness standards and practices such as the
Common Core Content Standards and Standards for Mathematical Practice
(NGA Center & CCSSO, 2010) are to be implemented with fidelity. The early
algebra innovation in the study reported here provides an effective curricular
road map that can strengthen the implementation of these standards and
practices relative to children’s algebraic thinking. We are hopeful that such
models can continue to change the national discourse on teaching and learn-
ing algebra and lead to more opportunities for success, for all students.

Appendix

Item No. Common Assessment Items
1 Fill in the blank with the value that makes the number sentence true.

Explain how you got your answer.

7+3= + 4

Circle True or False. Explain how you got your answer.
2-a a) 12+43=10+5 True False
2-b b) 57 +22=58+21 True False
2-C ¢ 39+ 121 =121+ 39 True False

Marcy’s teacher asks her to solve “23 + 15.” She adds the two numbers
and gets 38. The teacher then asks her to solve “15 + 23.” Marcy already
knows the answer without adding.

3-a a) Do you think Marcy’s idea will work for any two numbers? Why or
why not?
3-b b) Write an equation using variables (letters) to represent the idea that

you can add two numbers in any order and get the same result.

4 Brian knows that anytime you add three odd numbers, you will always
get an odd number. Explain why this is true.

Tim and Angela each have a piggy bank. They know that their piggy
banks each contain the same number of pennies, but they don’t know
how many. Angela also has 8 pennies in her hand.

5-a a) How would you represent the number of pennies Tim has?

5-b b) How would you represent the total number of pennies Angela has?

5-cl ¢) (cD) Angela and Tim combine all of their pennies. How would you
represent the number of pennies they have all together?

5¢2 (¢2) Suppose Angela and Tim now count their pennies and find

they have 16 altogether. Write an equation that represents the
relationship between this total and the expression you wrote
above.

8 Find the value of 7 in the following equation. Show or explain how you
got your answer.
10x n+2=42
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Brady is celebrating his birthday at school. He wants to make sure he
has a seat for everyone. He has square desks.

He can seat 2 people at one @ If he joins another desk to the 2&
desk in the following way: %I first one, he can seat 4 people: @ ©

© 006
If he joins another desk to the second one, he can seat 6 people: [ | ]
@ ©
9-a a) Fill in the table below to show how many people Brady can seat at
different numbers of desks.
Number of desks | Number of people
1 2
2 4
3
4
5
6
7
9-b b) Do you see any patterns in the table from part a? If so, describe
them.
¢) Think about the relationship between the number of desks and the
number of people.
9-cl (c1) Use words to write the rule that describes this relationship.
9c2 (c2) Use variables (letters) to write the rule that describes this
relationship.
9-d d) If Brady has 100 desks, how many people can he seat? Show how
you got your answer.
The table below shows the relationship between two variables, & and p.
The rule p = 2 x k& + 1 describes their relationship.
10-a a) Some numbers in the table are missing. Use this rule to fill in the
missing numbers.
k
1 3
2
9
10-b b) What is the value of p when % = 21? Show how you got your
answer.
10-c ¢©)  What is the value of £ when p = 61? Show how you got your
answer.
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12

Answer the following question for the graph given below:

o =2 N w s OO N ®©
°

01 2 3 4 5 6

Which of the following tables could have been used to construct the
graph? Circle the table and explain why you think it is the correct table.

x y x Yy
1 2 1 5
2 4 2 7
3 6 3 9
4 8 4 11

Source. Assessment items were reproduced or adapted from Blanton et al. (2015).
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Coding Scheme for Item 1:

Fill in the blank with the value that makes the number sentence true. Explain how you

got your ansuwer.

7+3= +4

Code

Description

Sample Response

Structural
(Compen-
sation)

Student notices structure in the equation.
Student may or may not additionally
compute.

4 is one more than
3, so the number
in the blank
must be one less
than 7.

Computational

Student adds the two numbers on the left
side and then subtracts the number on
the right side from the result or uses
another computational strategy to
equalize the two sides.

Student states that he/she computed (with
some detail about what was computed).

7+3=10;10-4
=6

7+3=10and 6 +
4=10

6. 1added 7 + 3
and 6 + 4.

Balance

Student makes vague statement about the
equation balancing or the two sides
being equal, but it is not clear how this
conclusion was reached. (If correct, the
strategy was likely S or C but there is just
not enough information to categorize

Both sides are
balanced/not
balanced.

The sides have the
same total/do
not have the

either way.) same total.
The sides are
equal/not equal.
Operational Student shows an operational 7+3=10
understanding of the equal sign by 7+3+4=14
indicating that the missing value is either | 4+3 =7

the sum of the two numbers on the left
side (7 and 3) or the sum of all numbers
(7, 3, and 4). Also applies when student
gives answer of 3 “because 4 plus 3
equals 7”7 (reversing equation and
ignoring the 3 on the left side). An
explanation is required in this case or the
response is coded “answer only.”

Other

Student uses strategy different from those
above or strategy is not discernable.

Answer only

Student gives numerical answer with no
work shown. Includes “T guessed.”

No response

Student leaves the item blank or writes “T
don’t know” or “?” or any other marks not
interpreted as a solution attempt.
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Notes

The research reported here was supported by the U.S. Department of Education
under Institute of Education Sciences Award No. R305A140092. Any opinions, findings,
and conclusions or recommendations expressed in this article are those of the authors
and do not necessarily reflect the views of the U.S. Department of Education.

"We take early algebra to refer to algebraic thinking in elementary grades (i.e.,
Grades K-5). It should not be confused with “pre-algebra” courses offered in middle
grades.

*We emphasize that, here, because the designation of high or low SES is made at the
school level, the reason for lower mean school performance in schools designated as low-
SES may be due to the school having fewer resources.

References

Alibali, M., Knuth, E., Hattikudur, S., McNeil, N., & Stephens, A. (2007). A longitudinal
examination of middle school students’ understandings of the equal sign and
performance solving equivalent equations. Mathematical Thinking and
Learning, 9, 221-247.

Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the
Learning of Mathematics, 25(2), 42—47.

Arcavi, A., Drijvers, P., & Stacey, K. (2017). The learning and teaching of algebra:
Ideas, insights, and activities. London, England: Routledge.

Battista, M. (1986). The relationship of mathematical anxiety and mathematical
knowledge to the learning of mathematical pedagogy by preservice elementary
teachers. School Science and Mathematics, 86, 10-19.

Battista, M. (2004). Applying cognition-based assessment to elementary school stu-
dents’ development of understanding of area and volume measurement.
Mathematical Thinking and Learning 6, 185-204.

Blanton, M., Brizuela, B., Gardiner, A., & Sawrey, K. (2017). A progression in first-
grade children’s thinking about variable and variable notation in functional rela-
tionships. Educational Studies in Mathematics, 95, 181-202, doi:10.1007/
$10649-016-9745-0

Blanton, M., Brizuela, B., Stephens, A., Knuth, E., Isler, I., Gardiner, A., ... Stylianou, D.
(2018). Implementing a framework for early algebra. In C. Kieran (Ed.), Teaching
and learning algebraic thinking with 5- to 12-year-olds: The global evolution of
an emerging field of research and practice (pp. 27-49). Cham, Switzerland:
Springer International.

Blanton, M., Isler, 1., Stroud, R., Stephens, A., Knuth, E., & Gardiner, A. (2018).
Growth in children’s understanding of generalizing and representing mathe-
matical structure and relationships. Manuscript submitted for publication.

Blanton, M., Levi, L., Crites, T., & Dougherty, B. (2011). Developing essential under-
standing of algebraic thinking for teaching mathematics in Grades 3-5
(Essential Understanding Series). Reston, VA: National Council of Teachers of
Mathematics.

Blanton, M., Stephens, A., Knuth, E., Gardiner, A., Isler, I., & Kim, J. (2015). The
development of children’s algebraic thinking: The impact of a comprehensive
early algebra intervention in third grade. Journal for Research in Mathematics
Education, 46, 39-87.

Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A. F. Coxford &
A. P. Schulte (Eds.), The ideas of aigebra, K-12 (pp. 20-32). Reston, VA:
National Council of Teachers of Mathematics.

1968



Effectiveness of Early Algebra Intervention

Bursal, M., & Paznokas, L. (2006). Mathematics anxiety and pre-service elementary
teachers’ confidence to teach mathematics and science. School Science and
Mathematics, 106, 173-179.

Chudgar, A., & Luschei, T. F. (2009). National income, income inequality, and the
importance of schools: A hierarchical cross-national comparison. American
Educartional Research Journal, 46, 626—658.

Clements, D. H. (2002). Linking research and curriculum development. In
L. D. English (Ed.), Handbook of international research in matbematics educa-
tion (pp. 599-636). Mahwah, NJ: Lawrence Erlbaum.

Clements, D. H. (2007). Curriculum research: Toward a framework for “research-
based curricula.” Journal for Research in Mathematics Education, 38, 35-70.

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education.
Mathematical Thinking and Learning, 6, 81-89.

Clements, D. H., & Sarama, J. (2008). Experimental evaluation of the effects of
a research-based preschool mathematics curriculum. American Educational
Research Journal, 45, 443—494. doi:10.3102/0002831207312908

Cooper, T., & Warren, E. (2011). Years 2 to 6 students’ ability to generalize: Models,
representations, and theory for teaching and learning. In J. Cai & E. Knuth (Eds.),
Early algebraization: A global dialogue from multiple perspectives (pp. 187-214).
Heidelberg, Germany: Springer.

Fonger, N. L., Stephens, A., Blanton, M., Isler, 1., Knuth, E., & Gardiner, A. (2018).
Developing a learning progression for curriculum, instruction, and student
learning: An example from mathematics education. Cognition and Instruction,
36, 30-55. doi:10.1080/07370008.2017.1392965

Frank, K., & Seltzer, M. (1990, April). Using the bierarchical linear model to model
growth in reading achievement. Paper presented at the Annual Meeting of the
American Educational Research Association, Boston, MA.

Greenberg, J., & Walsh, K. (2008). No common denominator: The preparation of ele-
mentary teachers in mathematics by America’s education schools. Washington,
DC: National Council on Teacher Quality. Retrieved from www.nctq.org/publi
cations/No-Common-Denominator:-The-Preparation-of-Elementary-Teachers-
in-Mathematics-by-Americas-Education-Schools

Halle, T. G., Kurtz-Costes, B., & Mahoney, J. L. (1997), Family influences on school
achievement in low-income, African American children. Journal of
Educational Psychology, 89, 527-537.

Haycock, K. (2001). Closing the achievement gap. Educational Leadership, 58(6), 6—
11.

Jacobs, V. R, Lamb, L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s
mathematical thinking. Journal for Research in Mathematics Education, 41,
169-202.

Jones, 1., Inglis, M., Gilmore, C., & Dowens, M. (2012). Substitution and sameness:
Two components of a relational conception of the equals sign. Journal of
Experimental Child Psychology, 113, 166-176.

Kaput, J. (1999). Teaching and learning a new algebra. In E. Fennema &
T.A. Romberg (Eds.), Mathematical classrooms that promote understanding
(pp. 133-155). Mahwah, NJ: Lawrence Erlbaum.

Kaput, J. (2008). What is algebra? What is algebraic reasoning? In J. Kaput,
D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 5-17).
Mahwah, NJ: Lawrence Erlbaum.

Kaput, J., Blanton, M., & Moreno, L. (2008). Algebra from a symbolization point of
view. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades
(pp. 19-55). Mahwah, NJ: Lawrence Erlbaum.

1969


www.nctq.org/publications/No-Common-Denominator:-The-Preparation-of-Elementary-Teachersin-Mathematics-by-Americas-Education-Schools

Blanton et al.

Kieran, C. (2007). Learning and teaching of algebra at the middle school through col-
lege levels: Building meaning for symbols and their manipulation. In
F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching
and learning (Vol. 2, pp. 707-762). Charlotte, NC: Information Age.

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children
learn mathematics. Washington, DC: National Academies Press.

Knuth, E. J,, Stephens, A. C., McNeil, N. M., & Alibali, M. W. (2006). Does understand-
ing the equal sign matter? Evidence from solving equations. Journal for Research
in Mathematics Education, 37, 297-312.

Koedinger, K., & Maclaren, B. (2002). Developing a pedagogical domain theory of
early algebra problem solving. Retrieved from http://pact.cs.cmu.edu/pubs/
Koedinger,%20McLaren%20.pdf

Lee, O. (2011, May). Effective STEM strategies for diverse and underserved learners.
Paper presented at the National Research Council’'s Workshop on Successful
STEM Education in K12 Schools, Washington, DC.

Linchevski, L., & Livneh, D. (1999). Structure sense: the relationship between alge-
braic and numerical contexts. Educational Studies in Mathematics, 40, 173-196.

Linchevski, L., & Vinner, S. (1990). Embedded figures and structures of algebraic
expressions. In G. Booker, P. Cobb, & T. N. de Mendicuti (Eds.), Proceedings
of the 14th conference of the International Group for the Psychology of
Mathematics Education (Vol. 2, pp. 85-92). Oaxtepec, Mexico: PME.

Little, R., & Rubin, D. (1987). Statistical analysis with missing data. New York, NY:
John Wiley.

Lubienski, S. (2007). What we can do about achievement disparities. Educational
Leadership, 65(3), 54-59.

Maloney, A.P., Confrey, J., & Nguyen, K. (Eds.). (2011). Learning over time: Learning
trajectories in mathematics education. Charlotte, NC: Information Age.

Mason, J. (2008). Making use of children’s powers to produce algebraic thinking. In
J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 57—
94). Mahwah, NJ: Lawrence Erlbaum/Taylor

Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematics structure for
all. Mathematics Education Research Journal, 21(2), 10-32.

Mihalic, S. (2002, ApriD). The importance of implementation fidelity. Boulder, CO:
Center for the Study and Prevention of Violence.

Moses, R. P., & Cobb, C. E. (2001). Radical equations: Math literacy and civil rights.
Boston, MA: Beacon Press.

Museus, S., Palmer, R. T., Davis, R. J., & Maramba, D. C. (2011). Racial and ethnic
minority students’ success in STEM education. Hoboken, NJ: Jossey-Bass.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation

standards for school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (2000). Principle and standards for
school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics & Mathematical Sciences Education
Board. (Eds.). (1998). The nature and role of algebra in the K—14 curriculum:
Proceedings of a national symposium. Washington, DC: National Research
Council, National Academies Press.

National Governors Association Center for Best Practices & Council of Chief State
School Officers. (2010). Common core state standards for mathematics.
Washington, DC: Council of Chief State School Officers. Retrieved from http://
www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

National Research Council. (2004). On evaluating curricular effectiveness: Judging
the quality of K-12 mathematics evaluations. Washington, DC: Mathematical

1970


http://pact.cs.cmu.edu/pubs/Koedinger,%20McLaren%20.pdf

Effectiveness of Early Algebra Intervention

Sciences Education Board, Center for Education, Division of Behavioral and
Social Sciences and Education, National Academies Press.

O’Donnell, C. (2008). Defining, conceptualizing, and measuring fidelity of implemen-
tation and its relationship to outcomes in K-12 curriculum intervention research.
Review of Educational Research, 78, 33-84.

Oscos-Sanchez, M. A., Oscos-Flores, L. D., & Burge, S. K. (2008). The Teen Medical
Academy: Using academic enhancement and instructional enrichment to address
ethnic disparities in the American healthcare workforce. Journal of Adolescent
Health, 42, 284-293

Pimm, D. (1995). Symbols and meanings in school mathematics. London, England:
Routledge. doi:10.4324/9780203428610

Raudenbush, S. W. (2007). Designing field trials of educational innovations. In
B. Schneider & S.-K. McDonald (Eds.), Scale-up in education: Vol. 2. Ideas in
practice (pp. 23-40). Lanham, MD: Rowman & Littlefiel.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications
and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.

Rittle-Johnson, B., Matthews, P. G., Taylor, R. S., & McEldoon, K. L. (2011). Assessing
knowledge of mathematical equivalence: A construct-modeling approach.
Journal of Educational Psychology, 103, 85-104. doi:10.1037/a0021334

Schifter, D. (2009). Representation-based proof in the elementary grades. In
D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof across
the grades: A K-16 perspective (pp. 87-101). New York, NY: Taylor & Francis.

Schmidt, W. H., McKnight, C. C., Cogan, L. S., Jakwerth, P. M., & Houang, R. T. (1999).
Facing the consequences: Using TIMSS for a closer look at U.S. matbematics and
science education. Dordrecht, Netherlands: Kluwer Academic.

Schoenfeld, A. H. (1995). Report of Working Group 1. In C. Lacampagne, W. Blair &
J. Kaput (Eds.), The algebra colloquium: Vol. 2. Working group papers (pp. 11—
18). Washington, DC: U.S. Department of Education, Office of Educational
Research and Improvement.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on pro-
cesses and objects as different sides of the same coin. Educational Studies in
Mathematics, 22(1), 1-36. doi:10.1007/BF00302715

Shin, N., Stevens, S. Y., Short, H., & Krajcik, J. S. (2009, June). Learning progressions
to support coberence curricula in instructional material, instruction, and assess-
ment design. Paper presented at the Learning Progressions in Science (LeaPS)
conference, Iowa City, IA.

Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist per-
spective. Journal for Research in Mathematics Education, 26, 114-145

Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, S., & Serrano, A. (1999). The TIMSS
videotape classroom study: Methods and findings from an exploratory research
project on eighth-grade matbematics instruction in Germany, Japan, and the
United States (NCES1999-074). Washington, DC: National Center for Education
Statistics.

Stylianou, D., Stroud, R., Cassidy, M., Stephens, A., Knuth, E., Gardiner, A., & Demers,
L. (in press). Putting early algebra in the hands of elementary school teachers:
Examining fidelity of implementation and its relation to student performance.
Infancia y Aprendizaje/Journal for the Study of Education and Development.

Superfine, A. S. (2008). Planning for mathematics instruction: A model of experienced
teachers’ planning processes in the context of a reform mathematics curriculum.
The Mathematics Educator, 18(2), 11-22.

1971



Blanton et al.

U.S. Department of Education. (2008). Foundations for success: The final report of the
National Mathematics Advisory Panel. Retrieved from www.ed.gov/about/
bdscomm/list/mathpanel/index.html

U.S. Department of Education, National Center for Education Statistics. (2007). The con-
dition of education 2007 (NCES 2007-064). Washington, DC: U.S. Government
Printing Office.

Manuscript received July 9, 2018
Final revision received December 17, 2018
Accepted January 24, 2019

1972


www.ed.gov/about/bdscomm/list/mathpanel/index.html

