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Abstract 

If we wish to embed assessment for accountability within instruction, we need to better understand the relative 

contribution of different types of learner data to statistical models that predict scores and discrete achievement 

levels on assessments used for accountability purposes. The present work scales up and extends predictive 

models of math test scores and achievement levels from existing literature and specifies six categories of models 

that incorporate information about student prior knowledge, demographics, and performance within the MATHia 

intelligent tutoring system. Linear regression, ordinal logistic regression, and random forest regression and 

classification models are learned within each category and generalized over a sample of 23,000+ learners in 

Grades 6, 7, and 8 over three academic years in Miami-Dade County Public Schools. After briefly exploring 

hierarchical models of this data, we discuss a variety of technical and practical applications, limitations, and open 

questions related to this work, especially concerning to the potential use of instructional platforms like MATHia as 

a replacement for time-consuming standardized tests. 

 

Notes for Practice 

• Advanced educational technologies, including simulations, games, and intelligent tutoring systems, 
continually assess students in order to provide them with appropriate activities and to determine their 
mastery of the topics presented. 

• The assessment embedded in adaptive systems is a type of formative assessment, but we can also 
use it to make summative conclusions about what a student has learned. 

• We show that process data collected from students using MATHia, an intelligent tutoring system, 
over the course of a year can predict high-stakes test scores over and above the ability of a prior-
year test to predict these scores. 

• Models learned on data from a single academic year can be used to predict outcomes for students in 
other academic years, suggesting that significant predictors of student outcomes remain relatively 
stable from year to year. 

• The ability to predict high-stakes exam scores is a necessary (though insufficient) step towards 
replacing such exams with embedded formative assessments, but even if high-stakes exams remain 
in place, predictive tools can provide important information about learner readiness for such high-
stakes exams. 
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1. Introduction 

Formative and summative assessments differ in their intentions. Black and Wiliam (1998) defined formative assessment as 

“encompassing all those activities undertaken by teachers, and/or by their students, which provide information to be used as 

feedback to modify the teaching and learning activities in which they are engaged.” In contrast, summative assessments 

summarize student achievement to a particular point in time. They are often used for accountability purposes: to determine 

whether students, teachers, schools, or curricula are achieving to desired levels. 

In addition to their differences in intent, they also tend to differ in format and environment (e.g., Harlen & James, 1997). 

Summative assessments are typically given as part of a defined “test time” in an environment designed to remove distractions 

and interactions with other students. This “test time” is intended to be different from instructional time (Heritage, 2010). In 

fact, statistical assumptions used in interpreting summative assessments assume that learning does not take place during the 

exam, and the environment is often structured in order to make that assumption valid. Formative assessments, in contrast, 

may be informal and not clearly distinguished from instruction. In practice, it is common for formative assessments to mimic 

the form of summative assessments (taking the form of a specific set of test items completed individually by students), 

usually with less formal proctoring, but this need not be the case. Wiliam (2011) argues that focusing on the form of a 

formative assessment is a mistake; instead, formative assessment should be thought of as a process for evaluating student 

knowledge in order to modify instruction, rather than the instrument used for that purpose. 

Educational technologies have the potential to change the way we think about formative assessments and their 

relationship to summative conclusions about learning (Shute, Levy, Baker, Zapata, & Beck, 2009). Although some 

educational technologies do distinguish between instructional and assessment environments in a teach–assess–reteach cycle, 

other educational technologies — particularly simulations, games, and intelligent tutoring systems — fully integrate 

formative assessment into the instruction (Mislevy, Steinberg, & Almond, 2003). In a game, for example, students typically 

“level up” by reaching a particular level of proficiency in playing the game itself, rather than using gameplay as a way to 

learn and then later demonstrate proficiency in a test environment. The game is continually formatively assessing the student, 

and the result of this gameplay is a summative conclusion: that the student is ready to advance to a more difficult level (Shute 

& Ke, 2012). Similarly, many intelligent tutoring systems continually assess students for the purposes of picking activities 

that are best suited to individual students and for determining progress along a mastery sequence. 

This opportunity to rethink the relationship between formative and summative assessment comes at a time of increasing 

concern about current approaches to summative assessment and school accountability systems (Perie, Marion, & Gong, 2009; 

Evans & Lyons, 2017). Some of these concerns reflect the disconnect between assessment and instruction (Brookhart, 2009). 

The public sees standardized tests as nothing like the kind of authentic, rich, problem-solving focused activities that they 

believe are at the heart of good instruction. For example, in a recent poll, only 6% of parents see standardized test outcomes 

as being reflective of school quality, as opposed to 36% who saw teaching “co-operation, respect and problem solving” as 

indicative of school quality (PDK/Gallup, 2015). In the same poll, parents ranked testing last as a focus of school 

improvement (behind teacher quality, setting high standards, principal quality, and funding), as a measure of school 

effectiveness (behind student engagement, student hopefulness, graduation rate, college enrollment, and employment after 

graduation) and student academic progress (behind grades, teacher observations, and examples of student work). 

Summative testing environments that are distinct from instructional environments take time away from instruction 

(Lazarín, 2014). Large school districts recently surveyed by The Council of Great City Schools (Hart et al., 2015) reported 

that, over a typical academic year and for all subjects, the average eighth grader spent 25.3 hours taking 10.3 tests. This 

statistic only considers district-administered tests. The time taken for summative testing, when including teacher-

administered tests, is certainly much larger. With respect to high-stakes exams, the time spent preparing for the exam is 

typically much larger than the time to take the test itself. Nelson (2013), for example, studied two midsize urban school 

districts. One district devoted 15 hours per year to district tests and 80 hours preparing for those tests (including only time 

spent taking practice tests and sessions devoted to test-taking techniques). The other spent 55 hours per year taking tests and 

over 100 hours on test preparation. It is hard to say how typical these results are over all schools, but combined test taking 

and preparation times in these districts’ figures represent over 10% of school time. With respect to instruction in highly tested 

subjects like mathematics, the proportion of instructional time may be much higher. Based on administrative and teacher 

reports, we estimate that, in the student population studied here, 40 classroom days (out of a 180-day school year) are 

currently devoted to standardized assessment. Schools in the district we study here are directed to administer 10 benchmark 

exams, each of which takes one class period, plus a class period for preparation and a period going over results. Ten 

additional days are taken for preparation and administration of the end-of-year exam. Thus, in this district, over 20% of 

instructional time in mathematics is spent on preparation, review, and administration of standardized tests. 

Our focus on summative assessments taking time away from instruction is not meant to suggest that summative testing 

can have no role in improving student learning. Indeed, there is good evidence (Roediger & Karpicke, 2006) that testing can 
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improve learning, even when no feedback is given. Such studies, however, emphasize the psychological effect of “testing” 

memory (recalling facts, rather than studying or rehearsing them). While formal summative assessments do require students 

to recall facts, they are not the only (and almost certainly not the most effective) techniques that require students to test their 

memory. Most active learning environments are also tests in this sense. Summative assessments rarely give feedback, for 

example, and, although many studies find that students will learn from testing themselves, even in the absence of feedback, 

most studies find that feedback enhances learning (Pashler, Cepeda, Wixted, & Rohrer, 2005). Our argument, then, is not that 

testing cannot be a valuable educational experience, but that summative testing is not designed to be educational. For this 

reason, they are likely less effective educational experiences than ones designed from the start to help students learn. 

There are other characteristics of high-stakes summative assessments that contradict what we know about how people 

learn (Snow & Lohman, 1989). For example, such tests inherently emphasize the importance of a student’s knowledge at one 

particular time: the day of the test. The implicit assumption here is that maximizing performance on that day equates to 

maximizing what we really care about (performance in the long term). This emphasis on peak knowledge encourages 

cramming for the test, as opposed to distributing practice over a period of time. Concentrated studying produces increases in 

short-term recall, thus helping with immediate performance on the test, but this practice schedule will tend to decrease long-

term retention (Carpenter, Cepeda, Rohrer, Kang, & Pashler, 2012). Thus, the assumption underlying the high-stakes end-of-

course exam is simply not true. Optimizing knowledge for a single point in time is not the same as optimizing knowledge for 

long-term retention. 

A related problem with high-stakes testing is that it presumes that students learn at approximately the same rate. In 

typical school environments, instructional time is (relatively) fixed. A course has a specific number of instructional hours 

(the main time variable is the amount of out-of-class homework and studying time). The student’s job is to learn the required 

amount of that material by the day of the test. But we know that, for various reasons, students will take differing amounts of 

time to learn material. Gettinger and White (1980) found learning rates between students differed by up to a factor of four. 

Zerr et al. (2018) also found strong differences in student learning efficiency. One of the barriers to implementing 

competency-based progression is that the assessments required to progress are so infrequent. An assessment system that 

adjusts to the student’s rate of learning could enable progression at any time. 

The public’s lack of faith in testing, combined with the US education system’s fairly recent emphasis on formal 

summative assessments as a major component of their accountability systems, has led to an urgent focus on accountability 

systems that rely less on high-stakes testing. In New York State (and nine other states in the US), parents are legally entitled 

to have their students forgo some high-stakes exams. In the 2016–2017 school year, 27% of New York parents opted their 

students out of high-stakes testing in math (Moses, 2017). So many students in Minneapolis recently opted-out of state exams 

for 10th and 11th grade math that the state does not recommend relying on exam results (State of Minnesota, 2017). States 

like Maryland and New York have responded by mandating reduced testing time (Walker, 2018), and Georgia has created a 

pilot program focused on reducing summative testing time (Tagami, 2018). 

Recognition of the problems with standardized testing is not new, but the advance of educational technology holds new 

promise to change the way that summative testing gets done. Twenty years ago, Grigorenko and Sternberg (1998) provided 

an extensive review of existing literature on “dynamic testing,” contrasting dynamic tests with “static tests,” and placing 

dynamic testing within the more general framework of dynamic assessment. Such approaches embed assessment within the 

learning process: 
 

[I]nstead of quantifying the existing set of abilities and level of knowledge and viewing them as a basis for 

predicting children’s subsequent cognitive development, dynamic testing has as its aim the quantification of the 

learning potential of the child during the acquisition of new cognitive operations. (Grigorenko & Sternberg, 1998) 
 

Further, they point out historical antecedents for approaches that assess students while they learn going back to at least 

the early 20th century. For example, they point to Binet (1909) as both the creator of what they call static testing and as an 

advocate of process assessment. Grigorenko and Sternberg (1998) summarize Buckingham’s (1921) view to be “that the best 

measure of intelligence is one that takes into account the rate at which learning takes place, the products of learning, or both.” 

Various recent approaches take seriously what Campione and Brown (1985) call metrics for “dynamic testing,” like the 

extent to which students ask for hints and how long it takes students to answer questions, using them as components of 

statistical models to predict outcomes on various standardized tests. Adaptive learning systems already collect such data as 

part of their formative assessment function. If we are able to demonstrate that this instruction-embedded formative 

assessment can provide us with information about student abilities equivalent to that provided by high-stakes summative 

assessments, then maybe we can start to replace summative assessments with continuous adaptive instruction. 

As a first step, demonstrating the validity and reliability of such predictive models is necessary. We begin by briefly 

describing Carnegie Learning’s MATHia instructional platform. Then we review recent approaches to predicting 

standardized test scores with data from the ASSISTments system as well as Carnegie Learning’s Cognitive Tutor technology 
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(Ritter, Anderson, Koedinger, & Corbett, 2007), on which the MATHia platform is based. Next, we explain the dataset for 

the present study and our model specification approach. Finally, we provide our results, discuss these results as well as their 

limitations, and present avenues for future research in predictive modelling to support innovative assessment. 

Our results and discussion focus on the relative contribution of factors that are readily available to a system that is 

expected to provide ongoing formative assessment of student learning versus those factors which are not always available (or 

appropriate) to such a system but that may be available for retrospective analysis (e.g., prior year test scores, 

sociodemographic information, etc.). Importantly, the latter category also includes elements of the inherent hierarchy in data 

like these (e.g., class and school identity), which we consider using appropriate models. 

2. MATHia™ + COGNITIVE TUTOR™ 

MATHia is an intelligent tutoring system that is part of Carnegie Learning’s middle school and high school blended 

mathematics curricula. Based on Cognitive Tutor technology (Ritter et al., 2007), MATHia is a fundamental instructional 

component of the blended mathematics curriculum (for Algebra I) that was the subject of one of the most rigorous 

effectiveness studies ever done with such a mathematics curriculum (Pane, Griffin, McCaffrey, & Karam, 2014). Carnegie 

Learning’s blended model calls for a 60%–40% split between student-centred, non-computer-based instructional time and 

time with the MATHia instructional platform, respectively. 

Students learn in MATHia by solving multi-step, real world problems, which engage a variety of problem solving 

modalities (e.g., equation solving, proofs, graphing, word problems, etc.), organized into topical “workspaces.” MATHia is 

based on the idea of mastery learning (Bloom, 1968); in each workspace, there are multiple, fine-grained knowledge 

components (KCs or skills; Koedinger, Corbett, & Perfetti, 2012) that students master before moving on to the next 

workspace. Students have multiple opportunities to learn each KC within a workspace, and KC mastery is tracked using 

Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1994). 

 

 
Figure 1: Screenshot from Carnegie Learning’s MATHia intelligent tutoring system, based on Cognitive Tutor technology 

(©2019 Carnegie Learning, Inc.). 

3. Prior Work 

Before considering the approach of the present project using MATHia data, we consider similar efforts using data from the 

ASSISTments system to predict mathematics standardized test scores in Massachusetts. Similar efforts to create predictive 

models for innovative assessment in domains outside of mathematics have been pursued in domains like reading (e.g., Beck, 

Lia, & Mostow, 2004) and physics (e.g., Shute & Moore, 2017), but even a brief review of such work is beyond the scope of 

this paper. 

3.1. Using ASSISTments Data 

Numerous papers (Anozie & Junker, 2006; Ayers & Junker, 2008; Feng, Heffernan, & Koedinger, 2006; Junker, 2006; 

Pardos, Heffernan, Anderson, Heffernan, & Schools, 2010) have considered various elements of process data (e.g., percent 

correct on various types of items, metrics like hint-seeking, number of KCs mastered) from the ASSISTments system 

(Razzaq et al., 2005) to incorporate in regression and other predictive models of the Massachusetts Comprehensive 

Assessment System (MCAS) exam for math. More recent work with ASSISTments data has predicted standardized state test 

scores (Pardos, Baker, San Pedro, Gowda, & Gowda, 2014) relying on the predictions of so-called “detector” models of 

behaviour and affective states (Baker et al., 2012). 
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Work by Feng et al. (2006) had access to item-level data for the MCAS and reported predictive accuracy in terms of the 

mean absolute difference (MAD) of predicted values for raw MCAS scores compared to a learner’s actual raw scores. Using 

“online testing metrics” similar to the process variables we consider and a stepwise linear regression approach similar to one 

of our approaches, Feng et al. (2006) report a within-sample MAD of 5.533 points over a sample of 600 ASSISTments 

learners in 2004–2005. This MAD represents an error rate of 10.25% given the 54-point total possible raw MCAS score. In 

the present study, we do not have access to raw, item-level data. However, Pardos et al. (2014) report both MAD and 

correlations of their predicted values on the MCAS to learners’ actual MCAS scores using models that incorporate elements 

of learner behaviour (e.g., gaming the system; Baker, Corbett, Roll, & Koedinger, 2008), affective states (e.g., boredom; 

Baker et al., 2012), and performance (e.g., correctness on ASSISTments items). Reported correlations for models over three 

training and testing regimes range from 0.694 to 0.765. 

3.2. Using Cognitive Tutor Data 

Table 1 provides six sets of variable categories we will consider in this work. This model-labelling schema follows that 

provided by Ritter, Joshi, Fancsali, and Nixon (2013), with one additional category. In general, this previous work 

considered similar sets of variables within a single academic year as predictors of the US State of Virginia’s Standards of 

Learning (SOL) exam over a sample of 2,018 students in Grades 6–8. The Northwestern Education Alliance’s (NWEA) 

Measures of Academic Progress (MAP) computer adaptive test was used as a pre-test in all analyses. Process variables 

(process) in Ritter et al. (2013) are a subset of variables we consider in this work. Demographic variables (demog) are 

broadly similar to those considered in this work as well. 

Table 2 provides for a comparison of the proportion of variance in SOL scores accounted for by linear regression models 

for Grade 7 learners, which rely on different sets of predictive variables. As variables were added from M1 (and M2) through 

M5, the Bayesian Information Criterion (BIC; Schwarz, 1978) decreased, indicating a justification for increasing the 

complexity of the predictive models because of increases in predictive performance achieved. 

Table 1: Variable Sets Considered in This Work 

Model  Variable Sets 

M1 pre-test 

M2 process 

M3 process + demog 

M4 pre-test + demog 

M5  pre-test + demog + process 

M6 pre-test + process 

Note:  Pre-test = pre-test score; process = process variables from MATHia usage; demog = demographic variables); M1–M5 

are also considered by Ritter et al. (2013); all sets include learner grade-level (6–8). 

Table 2: Summary of Model Fits for Predicting Virginia SOL in Grade 7 

Model  # Vars  BIC  R2  

M1 (pre-test)  1  2,041.5  0.50  
M2 (process)  5  2,181.0  0.43  

M3 (process + demog)  7  2,167.8  0.45  

M4 (pre-test + demog)  3  2,030.6  0.51  

M5 (pre-test + demog + process)  8  1,928.4  0.57  

Note: Data based on different sets of variables, reproduced from Table 4 in Ritter et al. (2013). 
 

Ritter et al. (2013) generalized models M1–M5 learned on Grade 7 data by testing these models on data from learners in 

Grade 6 and Grade 8. Perhaps unsurprisingly, model M5, which includes the most information about learners, achieved the 

greatest predictiveness. The authors achieved adjusted R2 values similar to those in Table 2 for Grade 6 data. In fact, Model 

M5 tested on Grade 6 achieved a greater R2 value (R2 = 0.62) than on the training set. Nevertheless, the authors saw 

substantial decreases in predictability of test scores in Grade 8, likely due to the fact that the Grade 8 math population has a 

substantially different makeup than Grades 6–7 as students are tracked into Algebra I classes, leaving relatively weaker 

students taking Grade 8 math rather than Algebra I (data from which were not considered by Ritter et al., 2013). 

Later work by Joshi, Fancsali, Ritter, Nixon, and Berman (2014) adapted this model to data from a school district in West 

Virginia in a single academic year to predict math scores on the WESTEST 2 standardized test. While similar sets of 
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variables were significant in these predictive models, such models did not achieve at levels similar to those achieved by 

previous efforts (Pardos et al., 2014; Ritter et al., 2013; R2 of the best model ~0.32). 

Overall, models reported in Table 2 for the Virginia SOL compare favourably with models reported by Pardos et al. 

(2014) for MCAS. Recall that correlations between predicted and actual MCAS scores in that work ranged from 0.694 to 

0.765, which correspond to approximate R2 values from 0.482 to 0.585, interpreting the R2 of these predictive models as the 

square of observed correlations between predicted and actual MCAS scores. 

While such efforts, including predictive models that explain up to 62% of variability in a held-out test set of standardized 

test scores, are a good start, in what follows, we find models that substantially improve upon these prior examples, both in 

terms of the scope of data considered and predictive performance. 

4. Data 

The data we consider at present allow us to substantially scale up previous analyses, evaluating models by testing them on 

larger samples, in a new state (with a different standardized test), on data across academic years (and two different 

standardized tests used within the state over the time period of interest). We consider data from learners in Grades 6–8 in 

Miami-Dade County Public Schools in the US state of Florida who used MATHia over the course of four academic years. 

Sample sizes are reported in Table 3. Miami-Dade County Public Schools is the fourth largest school district in the United 

States (US Department of Education, 2016). 

In each year, the school district provided, for each student, grade-level (i.e., 6–8), current year standardized test scores, 

previous year standardized test scores (pre-test), and demographic data that could then be mapped to usage data from the 

MATHia system. In 2013–2014, the mathematics component of the Florida Comprehensive Assessment Test (FCAT) 

constitutes the standardized test scale score, while in subsequent years the state adopted the Florida Standards Assessment 

(FSA) as their exam, so that exam constitutes the measure of interest. As in previous work, pre-test and end-of-year FCAT 

and FSA scores are standardized as z-scores for modelling, but we report statistical accuracy in terms of more interpretable 

FCAT and FSA scale score units. 

Table 3: Sample Sizes by Grade-Level (Grade) and Academic Year (13–14 = 2013–2014, etc.) 

Grade 13–14 14–15 15–16 Total 

6 2,914.0

0 

2,471.0 3,542.0   8,927.0 

7 3,827.0 3,596.0 3,505.0 10,928.0 

8 1,200.0 1,301.0 1,018.0   3,519.0 

All 7,941.0 7,368.0 8,065.0 23,374.0 

 

The FCAT exam provides a developmental scale score ranging from 140 to 298 from Grades 3 to 8 (Florida Department 

of Education, 2014), and the FSA exam provides a developmental scale score ranging from 240 to 393 from Grades 3 to 8 

(Florida Department of Education, 2017). Both exams define five achievement levels. Levels 3–5 constitute “passing” the 

exam(s). Ranges of scale scores that are mapped to each achievement level vary from year to year and from grade to grade 

and are generally large for Levels 1 and 5, but the size of the range of scores for Levels 2, 3, and 4, which are important for 

determining whether a student passes or fails the exam, is nearly always between 11 and 15 points across years and grade 

levels. This provides a crude, but useful, benchmark for thinking about the statistical accuracy of models we develop in the 

next section. 

Demographic variables (demog) considered (and most frequently occurring values) include: 

• Ethnic Category (White, Hispanic, Black, and Other) 

• Limited English Proficiency (LEP) Status (Enrolled, Not Enrolled, and Former) 

• Exceptional Student Education (ESE) Status (Gifted, Learning Disability, and Other) 

• Free/Reduced-Price Lunch (FRPL) Status (a rough socioeconomic status indicator: Free, Reduced, and Denied) 

We consider process variables drawn from the set of variables considered by previous work with Cognitive Tutor 

predicting Virginia’s SOL exam (Ritter et al., 2013) as well as several novel variables. As in previous work (e.g. Figure 2 in 

Ritter et al., 2013), process variable distributions often had a long right tail, justifying the use of a log-transformation to make 

distributions (approximately) normal. Further, since there is often wide variability in content and/or features of a workspace 

and corresponding variability in student work within these workspaces, we follow this previous work by standardizing 

several variables: transforming the variable, for each workspace, into a z-score which represents the difference (in units of 

standard deviation) between a particular student’s value of a process variable within a workspace and the mean value of that 

variable across all students who worked in that workspace. For these variables that are “standardized within each 
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workspace,” we calculate a single value for a student by taking the mean of z-scores across the workspaces in which students 

worked. Variables aggregated over the entire academic year are standardized as such (i.e., a z-score is calculated for each 

variable according to a student’s work with respect to the global mean for all students across the entire year). For those 

variables that were both log-transformed and standardized within each workspace, the log-transformation preceded 

standardization (and calculation of a mean z-score across workspaces per student). 

Process variables considered (and transformations applied to them) include: 

• Workspaces mastered per hour: number of workspaces from which learners graduate (by mastering all KCs) 

per hour (log-transformed) 

• Problems per workspace (log-transformed and standardized within each workspace) 

• Number of KCs mastered (log-transformed) 

• Total problem solving time (log-transformed) 

• Assistance per problem (i.e., hints requested + errors committed per problem; log-transformed and standardized 

within each workspace) 

• Workspaces encountered (log-transformed) 

Notably, the amount of learner usage in the 2013–2014 academic year was lower than in the two subsequent years. 

Median learner problem solving in 2013–2014 was approximately 20.7 hours while in 2014–2015 and 2015–2016 median 

usage was approximately 31.6 hours and 30.3 hours, respectively. 

5. Model Specifications, Learning, and Results 

As noted, we consider pre-test scores (pre-test) and categories of process variables (process) and demographic variables 

(demog), progressively, as we specify and learn models, seeking to better understand the relative contributions of these 

categories of variables to (and the significance of individual variables in) successful predictive models of standardized test 

scores. 

In what follows, we describe three methods of specifying and learning non-hierarchical regression models to predict 

standardized test scores as well as two methods for specifying and learning non-hierarchical classification models to predict 

standardized test achievement levels. We consider both regression and classification results before considering using 

additional data about schools in which learners were enrolled to consider hierarchical models of this data. After we discuss 

the predictive success of different sets of variables within these models, we compare and contrast the predictive results and 

practical utility of regression models that account for the inherent hierarchy of this type of data (e.g., students working within 

schools) versus the regression models in this section that do not explicitly do so.1 

5.1. Non-Hierarchical Models: Regression 

Despite the previous success of relatively simple, linear regression approaches to this problem (e.g., Feng et al., 2006; Ritter 

et al., 2013), we compare three approaches to regression: ridge regression (Hoerl & Kennard, 1970), stepwise (ordinary least 

squares) linear regression, and random forest regression (Breiman, 2001). Ridge regression and random forest regression 

represent more sophisticated approaches compared to relatively simple ordinary least squares, stepwise regression. Ridge 

regression is often used in cases in which there are many candidate predictors (as will especially be the case as we consider 

interaction terms and quadratic transformations among possible predictors), and many of these predictors may be correlated 

with each other. Two-way interaction terms are important to include as candidate variables. Consider, for example, the case 

of students with exceptional status like those with a learning disability or with “gifted” status. While students with one or 

more learning disabilities may require more time to complete content, gifted students may take less time, and these 

differences may manifest in models in which two-way interaction terms are statistically significant and contribute to better 

predictions. Including quadratic terms of continuous process variables in the set of candidate variables allows us to consider 

one possible form of non-linear dependence between process variables and high-stakes test performance, indicated by 

several scatterplots considered in initial exploratory analysis of data. Further, interaction and quadratic terms contribute to 

maximizing possible predictive accuracy of models we consider. 

In ridge regression, coefficients for predictors are decreased or “regularized.” This approach decreases the extent to 

which models over-fit the data on which they are trained. The random forest regression approach is likely to be appropriate 

both in cases in which there are a large number of candidate predictor variables as well as when linearity and parametric 

assumptions such as normality fail in data being considered. 

 
1 One might argue that the inclusion of various demographic variables in some of the models provides some limited, implicit representation of this 

hierarchy (e.g., that within a large school district there are often clusters of students with a particular socioeconomic status, etc.). 
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5.1.1. Ridge Regression 

Ridge regression (Hoerl & Kennard, 1970) is a regularized form of linear regression that accounts for multi-collinearity 

inherent to large sets of features (i.e., correlations among predictor variables) like those considered by the present work. The 

approach “regularizes” (biased) slope coefficients in a regression model to lower values (though not to zero as in the related 

least absolute shrinkage and selection operator or LASSO regression; Tibshirani, 19962), decreasing the extent to which 

models are likely over-fit on training data. Suppose there are p slope coefficients in the model and n elements in the data set, 

estimating a ridge regression model minimizes the sum of residual sum of squares with a regularization term: 

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )2 + 𝜆 ∑ 𝛽𝑗

2𝑝
𝑗=1

𝑛
𝑖=1  (Eq. 1), 

where λ is a tuning parameter for the regularization term, which is selected by cross validation. We fit ridge regression 

models using the maximal set of model variables for each of the six candidate sets of variables (M1 through M6). Categorical 

variables such as demographic variables are all dummy coded before ridge regression models are fit. 

5.1.2. Stepwise Linear Regression (SLR) 

In contrast to ridge regression, we also use a stepwise procedure to find the best ordinary least squares regression model for 

six candidate sets of predictors (i.e., for models M1 through M6). For each candidate set of predictors, the maximal set of 

model variables includes all the possible two-way interaction terms and the quadratic terms of process variables if there are 

any. Starting from a model that includes all variables in the set (but no interaction or quadratic terms), a single variable from 

the current model is removed or a single variable from the maximal set of model variables is added at each step that will 

decrease the BIC most, repeating this procedure until no single variable can be added or removed to further decrease the 

BIC. The choice of BIC as a model selection criterion provides for simpler models in terms of the number of variables that 

will be included, while also generally providing for better generalizability for held out data sets (Raftery, 1995). 

5.1.3. Random Forest Regression (RFR) 

Random forest models (Breiman, 2001) are learned by an ensemble machine learning method that pairs decision tree 

learning with bootstrap aggregation (“bagging”; Breiman, 1996) to produce models that are unbiased and achieve better 

accuracy on held-out test data. Such models often perform well even in cases in which relationships among variables are 

non-linear and parametric assumptions like normality may be violated. As such, random forests provide an appropriate foil 

to our relatively simple linear regression methods, and we compare predictive accuracy achieved by each method. 

Since the outcome variable of interest in our case is continuous, the method we deploy is called random forest regression 

(RFR). Learning such an ensemble model proceeds by inferring a large set of decision trees using bootstrap samples with 

replacement of subsets of training data. Predictions made by each individual decision tree are averaged, allowing each 

learned model to contribute to the overall predicted outcome. Individual decision tree learning proceeds by making recursive 

binary cuts on the predictors and dividing the predictor space into a set of hyper-rectangles. Observations that fall within the 

same hyper-rectangle will be assigned the same predicted value of the outcome variable, which is the average of all the cases 

in that hyper-rectangle. The cutting rule is to minimize the total sum of squared residuals across hyper-rectangles. The 

learning process stops when the hyper-rectangles include fewer than five cases. 

5.1.4. Reporting Statistical Accuracy 

We consider the accuracy of the models that predict scale scores selected by the procedures above for the variable sets 

corresponding to M1 through M6 on training data from the 2013–2014 school year in terms of their mean absolute deviation 

(MAD) and root mean square error (RMSE) in predicting learners’ FCAT and FSA scores in terms of raw scale score points: 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝐹𝑆𝐴𝑖 − 𝐹𝑆𝐴̂𝑖| 𝑛

𝑖=0  (Eq. 2) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐹𝑆𝐴𝑖 − 𝐹𝑆𝐴̂𝑖)2𝑛

𝑖=0  (Eq. 3), 

where n is the sample size; 𝐹𝑆𝐴̂𝑖is a particular model’s predicted FSA score for learner i, and 𝐹𝑆𝐴i is the actual FSA score 

for learner i (substituting FCAT for FSA in Equations 2 and 3 when testing on 2013–2014 data). In addition, for its heuristic 

utility as a measure of variability accounted for by a linear model as well as to compare our results to previous work reported 

in §3, we report the R2 values of the models. 

 
2 This is an important feature of ridge regression in the present context since we include both interaction and quadratic terms in our predictive models. Without 

imposing further constraints on model estimation, a LASSO approach may shrink coefficients of main terms to zero while estimating non-zero coefficients for 
corresponding interaction and quadratic terms. Our stepwise linear regression approach is constrained to “keep” main terms if their corresponding interaction 

and/or quadratic terms are elected in the model. 
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5.1.5. Questions for Analysis 

In the context of regression models, we present analytical results addressing the following three questions: 

• RQ1: What are the relative performance characteristics of RIDGE, SLR, and RFR models in predicting test scores 

when models are learned over variable sets M1 through M6? 

• RQ2: What accuracy can be achieved? 

• RQ3: What are the relative contributions of different categories of variables included in these models? 

We focus discussion on models trained on data from the 2013–2014 and 2014–2015 school years, testing such models on 

data from the other two years from which data were available. Results suggest consistent, broad qualitative patterns when 

using 2013–2014 as training data and using 2014–2015 as training data, including approximate accuracy achieved, 

differences in accuracy over models M1 through M6, corresponding differences in BIC scores indicating statistically 

significant differences in models according to heuristics due to Raftery (1995), differences between MAD and RMSE on the 

training and test data sets, etc. This is perhaps surprising given that 2014–2015 data reflected more usage for the typical 

student in general than 2013–2014 data, and the FCAT was used in 2013–2014 while the FSA was used in subsequent years. 

Further, statistical tests comparing performance of these methods over the four held-out data sets on which trained models 

were tested suggest a class of models that are statistically indistinguishable. 

5.1.6. Regression Results 

Tables 4 and 5 provide RMSE and MAD, respectively, as measures of accuracy for the RIDGE, SLR, and RFR models 

learned on 2013–2014 and applied to data from 2014–2015 and 2015–2016. Tables 6 and 7 provide these accuracy measures 

for models trained on 2014–2015 data and tested on 2013–2014 and 2015–2016 data. On both measures and across all four 

test data sets, RIDGE and SLR outperform RFR in all but two cases; RFR outperforms SLR (but not RIDGE) for M5 

learned on 2014-15 data with 2013–2014 test data in Table 4 and for M4 learned on 2014-15 data for 2015–2016 test data in 

Table 6. We also see that accuracy tends to improve in the progression of M1 to M6, but the size of differences along both 

dimensions (i.e., between RIDGE, SLR, and RFR models and between models M1–M6) are relatively small. 

To more rigorously address RQ1, we follow an approach recently advocated by Gardner and Brooks (2018) in this 

journal and by others (Demšar, 2006; García, Fernández, Luengo, & Herrera, 2010) to determine whether there are 

significant differences among these models and, perhaps more importantly, whether there are classes of models that are 

statistically indistinguishable. To do so, we rely on the Friedman Aligned Ranks method and a corresponding post hoc test 

(Hodges & Lehmann, 1962; García et al., 2010), an alternative to the Friedman test (Friedman, 1940) used by Gardner and 

Brooks (2018) that relies on more information than the latter test by making inter-dataset comparisons and by using 

information about performance of each algorithm relative the average performance achieved on a dataset by all other 

algorithms. Following Gardner and Brooks (2018), we consider each model M1 through M6 paired with each of RIDGE, 

SLR, and RFR as an algorithm (for a total of 18 algorithms) and the four test datasets across training regimes in Tables 4 and 

6 (and Tables 5 and 7, as we run the test using RMSE and MAD performance metrics separately). Later, we apply the same 

statistical test regime to the classification task in §5.2.3 

Using the Friedman Aligned Ranks test, we find statistically significant differences between the eighteen candidate 

algorithms over the four datasets when considering both RMSE and MAD (test statistic T = 64.762, p < .00001 for RMSE; T 

= 64.273, p < .00001 for MAD). While this conclusion by itself is not especially informative, post hoc tests allow us to make 

pairwise comparisons to determine whether some models perform in a way that is indistinguishable from the model with the 

greatest accuracy. We use the post hoc procedure suggested for this approach by García et al. (2010), which is the same as 

that of the Kruskal-Wallis test (1952). From the value of this statistic, we can determine a p-value that can be compared to an 

 
3 Our training and testing scheme deviates from those deployed in the existing literature that uses this type of evaluation procedure (Gardner 

& Brooks, 2018; Demšar, 2006; García et al., 2010) in at least two important ways: 1) the two 2015–2016 test datasets (out of four) are not 

independent but rather identical; we train models on different datasets and test them against the same dataset as well as two independent 

datasets, and 2) existing studies focus on cases in which performance is measured in a cross validation scheme with multiple test folds. Cross-

validation naturally returns a sampling distribution of accuracy measures given that each fold is a random sample from the underlying 

population, and such sampling distributions may be used to generalize the results to other test sets that are from the same population as the 

cross-validation data set. With independent and fixed training and test datasets, as in the present case, there are fixed measures of accuracy on 

these test datasets and no sampling distribution from which to derive an accuracy measure, but we assume the measure is appropriately 

“reliable.” To address 1), we checked robustness for the regression case and the RMSE accuracy measure by dropping one of the non-

independent datasets from the set of testing datasets, and the conclusions we reach were identical to the case in which all four testing datasets 

were considered. Given numerous options for evaluating these kinds of models, including those of the frequentist and Bayesian variety 

(Gardner & Brooks, 2018), we take it to be an open question which evaluation methods are most appropriate in this case and other cases. 
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appropriately adjusted p-value to determine whether any pair of algorithms exhibits a statistically significant difference in 

performance. We rely on the simple Bonferroni-Dunn procedure for 153 pairwise comparisons (18 choose 2). 

The comparisons we primarily care about involve determining which models are not significantly different in 

performance from the model(s) with the best-observed accuracy measure. Model M5 with SLR exhibits the best average 

aligned rank in terms of its RMSE performance (M5 + RIDGE receives this honour on MAD results), and post hoc testing on 

RMSE results indicates that the M5 + SLR model is indistinguishable from the other two M5 models as well as all three M6 

models. The results of the same testing regime on MAD results yield the same class of indistinguishable models. Thus, the 

class of M5 and M6 models out-perform those of M1–M4 but are indistinguishable from each other. Given this inability to 

distinguish between M5 and M6 models and the relative simplicity of SLR, we focus on the results of SLR. 

With respect to the accuracy our models achieve (RQ2), we see that both MAD and RMSE are below or within the range 

we indicated for different achievement levels (generally 10–15 points per level) in the FCAT and FSA, which indicates a 

great deal of promise that our models, at worst, can be expected to provide predictions of a student’s achievement level 

within one level of that predicted by the FCAT or FSA. We provide scatterplots of predicted versus actual test score values in 

Figure 2 for the best model M5 on the training set (2013–2014) as well as on the two test sets (2014–2015 and 2015–2016). 

Table 4: Comparison of the Accuracy of Models Learned by RIDGE, SLR, and RFR, expressed as RMSE 

 14–15   15–16  

Model RIDGE SLR RFR RIDGE SLR RFR 

M1 12.730 12.726 13.483 12.955 12.968 13.716 

M2 13.688 13.640 13.872 13.948 13.983 14.431 

M3 13.267 13.161 13.390 13.388 13.384 13.822 

M4 12.066 12.328 12.487 12.264 12.657 12.702 

M5 11.236 11.212 11.282 11.303 11.179 11.508 

M6 11.324 11.278 11.447 11.400 11.256 11.658 

Note: For models learned on 2013–2014 data applied to data from the 2014–2015 (14–15) and 2015–2016 (15–16) school 

year. 

Table 5: Comparison of the Accuracy of Models Learned by RIDGE, SLR, and RFR, expressed as MAD 

 14-15 15-16 

Model RIDGE SLR RFR RIDGE SLR RFR 

M1   9.883   9.888 10.416 10.017 10.023 10.524 

M2 10.539 10.495 10.722 10.693 10.722 11.110 

M3 10.191 10.142 10.327 10.222 10.249 10.604 

M4   9.356   9.541   9.675   9.435   9.729   9.789 

M5   8.657   8.669   8.717   8.696   8.597   8.914 

M6   8.753   8.736   8.847   8.782   8.673   9.028 

Note: For models learned on 2013–2014 data applied to data from the 2014–2015 (14–15) and 2015–2016 (15–16) school 

year. 

 

To qualitatively compare these modelling results to those in the previous literature on predicting standardized test scores 

from similar types of data, we provide test data R2 values for the best performing SLR models (in terms of BIC score) in 

Table 8. These R2 values, especially for M5 and M6, are considerably larger than those reported in prior literature.4  

As noted, Figure 2 provides scatterplots of predicted values of FCAT and FSA scores against learners’ actual or “true” 

values for these models.5 

 
4 Notably, R2 

values were not used as a model selection criterion; they are only provided as a way of comparing these results to those 

from prior literature. 
5 A reviewer points out that Figure 2 indicates that the residuals of our regression models are not strictly homoscedastic, 

especially due to individuals who have a true FCAT or FSA score that is either the maximum or minimum value. How to deal with 

these individuals, especially those with the minimum value, presents an interesting question for future research. Perhaps it is 

possible to develop statistical models that will point out specific characteristics of students who are likely to perform especially 
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Table 6: Comparison of the Accuracy of Models 

Learned by RIDGE, SLR, and RFR, expressed as RMSE 

 13-14 15-16 

Model RIDGE SLR RFR RIDGE SLR RFR 

M1 11.852 11.837 12.658 12.833 12.830 13.513 

M2 12.621 12.601 12.964 14.024 13.955 14.287 

M3 12.466 12.462 12.626 13.585 13.633 13.807 

M4 11.577 11.780 12.000 12.152 12.562 12.494 

M5 10.838 10.893 10.954 11.432 11.436 11.620 

M6 10.746 10.749 10.996 11.524 11.472 11.694 

Note: For models learned on 2014–2015 data applied to data from the 2013–2014 (13–14) and 2015–2016 (15–16) school 

year  

Table 7: Comparison of the Accuracy of Models 

Learned by RIDGE, SLR, and RFR, expressed as MAD 

 13-14 15-16 

Model RIDGE SLR RFR RIDGE SLR RFR 

M1 8.933 8.923 9.455   9.940   9.927 10.434 

M2 9.596 9.572 9.879 10.866 10.805 11.126 

M3 9.611 9.641 9.688 10.526 10.595 10.752 

M4 8.914 8.970 9.170   9.370   9.666   9.687 

M5 8.289 8.396 8.376   8.834   8.846   9.054 

M6 8.152 8.215 8.373   8.923   8.919   9.122 

Note: For models learned on 2014–2015 data applied to data from the 2013–2014 (13–14) and 2015–2016 (15–16) school 

year. 

Table 8: R2 Values for SLR Models 

Learned on 2013–2014 Data (Training: 13-14) and 2014-2015 Data (Training: 14-15) 

 Training: 13-14 Training: 14-15 

Model 14–15 15–16 13–14 15–16 

M1 0.603 0.642 0.601 0.650 

M2 0.544 0.584 0.548 0.586 

M3 0.575 0.619 0.558 0.605 

M4 0.627 0.659 0.605 0.664 

M5 0.692 0.734 0.662 0.723 

M6 0.688 0.730 0.671 0.720 

Note: Applied to test data from 2014–2015 (14–15) and 2015–2016 (15–16) and applied to test data from 2013–2014 (13–

14) and 2015–2016 (15–16), respectively; while not used in model selection, these values provide for comparisons to models 

reported in Ritter et al. (2013) and Pardos et al. (2014). 

 

To address RQ3, we find that relying on pre-test data alone (M1) provides for predictions that are approximately one 

point better (though sometimes less and in some cases slightly more) than relying on process data alone (M2), whether 

models are trained on 2013–2014 data or 2014–2015 data (see Tables 4–7), but post hoc tests for pairwise comparisons 

indicate that the models are mostly indistinguishable from each other. Each of these “minimal” models (only pre-test or only 

 
poorly (or possibly exceptionally well). If so, such models might be useful for targeting intensive intervention. 
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process data) can account for variability in held-out test data at a level comparable to the best models reported by Ritter et al. 

(2013) on training data and to the best models for ASSISTments tested on held-out data reported by Pardos et al. (2014). 

 
Figure 2: Scatterplots of predicted values of FCAT and FSA scores against actual scores from M5 learned using SLR on 2013–
2014 data and applied to test data from 2014–2015 and 2015–2016. The red line is a reference line from the graph origin with 

slope = 1. Table 9 presents details of this model. FCAT and FSA scores are on different scales, but our predictive models 

produce z-scores, which are then transformed to arrive at an appropriate scale score prediction. 

To address RQ3, we find that relying on pre-test data alone (M1) provides for predictions that are approximately one 

point better (though sometimes less and in some cases slightly more) than relying on process data alone (M2), whether 

models are trained on 2013–2014 data or 2014–2015 data (see Tables 4–7), but post hoc tests for pairwise comparisons 

indicate that the models are mostly indistinguishable from each other. Each of these “minimal” models (only pre-test or only 

process data) can account for variability in held-out test data at a level comparable to the best models reported by Ritter et al. 

(2013) on training data and to the best models for ASSISTments tested on held-out data reported by Pardos et al. (2014). 

Adding demographic data to each of these provides for modest improvements in accuracy, but models that include pre-

test, process, and demographic (demog) variables (M5) are found to be in the class of models that perform best on these data,  

along with M6 models that drop demographic data, indicating that demographic data may not be necessary to achieve 

satisfactory models. 

This points to an important opportunity in future work. Not relying on demographic data for predicting test scores is 

important from the standpoint of practical and ethical implementations of these predictive models. We believe it is 

unacceptable for a system to handicap (or boost) a student’s predicted score simply because of their status with respect to 

certain demographic categories (e.g., ethnicity). To do so could “perpetuate the biases and prejudices in cultural, geopolitical, 

economic and societal realities” (Slade & Prinsloo, 2013). At the very least, including demographic data is likely to raise 

serious barriers to adoption of learning platforms, and such data are often not available to learning platform vendors at any 

reasonable scale in any event. In addition to concerns of explicit bias that could be introduced by relying on such 

demographic categories, concerns of other forms of algorithmic bias (e.g., Danks & London, 2017; O’Neil, 2016) must also 

be carefully considered and, if present, remediated to implement fair systems of assessment in the real world. 

Nevertheless, for categories like exceptional student education, there are often various affordances or alternative tests 

made available that may make a different predictive model for some classes of students reasonable. In practical use cases in 

which predictive analytics will be provided to teachers and other stakeholders at scale, it is advantageous to be able to rely on 

models like M2 that only include student process and performance data for the current year, as these data are directly 

available from student usage of a system like MATHia. Other data like demographics and pre-test scores are not generally 

readily available to a system like MATHia. 

Insights from the demog, process, and pre-test variables found to be significant in M5 are worth briefly considering. We 

provide a summary of the regression model M5, including parameter estimates and significance, learned by SLR in Table 9, 
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though we emphasize that our primary interpretive goal in this work is to paint a relatively “big” picture of the variables 

contributing to the model, rather than provide strong specific interpretations of each individual predictor and its significance 

(or lack thereof). 

Consistent with prior work explored in §3, pre-test and many process variables are significant in M5. Process variables 

that represent overall student progress (e.g., Number of KCs mastered) and efficient completion of material (e.g., Problems 

per workspace) are generally in the spirit of variables found by prior work on the Cognitive Tutor and ASSISTments 

platforms. Notably absent from this final model are Workspaces mastered per hour and Assistance per problem, both of 

which are prominent in models reported by Ritter et al. (2013). These models would appear to illuminate a different, though 

related, set of important indicators of progress within the MATHia system compared to this previous work. 

Also consistent with existing literature (e.g., Sirin, 2005), we find that a variety of demographic variables are significant 

predictors of exam score. While variables that encode ethnicity are absent, free/reduced-priced lunch status variables are 

significant, yet are not necessarily of practical help in delivering fair, online predictions to educational stakeholders (e.g., a 

use case in which a predictive model in embedded within a product for progress monitoring). 

Table 9: Estimated SLR Model M5 Learned on 2013–2014 Data 

Variable Coefficient 

Intercept       -1.141*** 

Pre-test        0.488*** 

Grade 7        0.342*** 

Grade 8        0.544*** 

Total problem solving time       -0.250*** 

Problems per workspace        0.304*** 

Number of KCs mastered        0.179*** 

Problems per workspace x Number of KCs mastered       -0.134*** 

Pre-test x Problems per workspace        0.041*** 

Number of workspaces encountered        0.247*** 

ESE: Gifted        0.198*** 

ESE: Learning disability -0.024 

ESE: Other -0.002 

LEP: Enrolled -0.103 

LEP: Former  0.021 

LEP: Not Enrolled -0.023 

Note: Standardized parameter estimates; results of this model applied to data from 2014–2015  and 2015–2016 school years 

reported in Tables 4–5; ***p < 0.001; **p < 0.01; *p < 0.05. 

 

The significance of ESE and LEP status indicators may provide an important pointer to areas for future focus. That these 

indicators are significant predictors of the exam score indicates other possible process variables that describe student progress 

within MATHia but are not yet included in our models. In the future, identifying and including these variables in these types 

of models can help override the predictability of demographic variables such as ESE and LEP, leading us to rely less on such 

status indicators (i.e., to bolster M2 models, which really represent the overall goal of developing these predictive models). 

Construction of separate models for categories of exceptional students may also be feasible. 

5.2. Non-Hierarchical Models: Classification 

Recall that the FCAT and FSA standardized tests have both scale scores and discrete achievement levels from 1 to 5, with 1 

being the lowest score and 5 the highest score (and a score greater than or equal to 3 counts as “passing”). We now consider 

the problem of predicting student achievement levels on these standardized tests, adopting an approach similar to that 

adopted in the previous section, relying on stepwise ordinal logistic regression models as well as random forest classification 

(or classifier) models and the same statistical testing regime to compare models that result. 

5.2.1. Stepwise Ordinal Logistic Regression (SOLR) 

Ordinal logistic regression is a generalized linear model used to model relationships between predictor variables and an 

ordinal response variable. In data sets we consider, the FCAT and FSA exams have five naturally ordered achievement 
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levels. Suppose we have predictor variables, X1, X2, …, Xs. Ordinal logistic regression assumes that the log odds of levels at 

or below level k (in this case k takes integer values from 1 to 5) versus levels above k can be written as a linear function of 

the predictor variables. It also assumes that only the intercept αk varies with level k, and all the slopes in the model do not 

(Equation 4): 

log (
𝑃(𝑌≤𝑘)

𝑃(𝑌>𝑘)
) =  𝛼𝑘 + 𝛽1𝑋1 +  𝛽2𝑋2 + ⋯ + 𝛽𝑠𝑋𝑠, 𝑘 ∈ {1, 2, 3, 4, 5} (Eq. 4) 

We run (stepwise) ordinal logistic regression (SOLR) using the R function poly in the MASS package (Venables & 

Ripley, 2002). 

5.2.2. Random Forest Classifier (RFC) 

In contrast to the RFR approach adopted in §5.1.3, we adopt a random forest classifier approach to predict ordinal 

achievement levels on the FCAT and FSA. Similar to regression trees that are components of RFR models, classification 

trees divide the predictor space into a set of hyper-rectangles. However, the cutting or split rule is to maximize the purity (or 

alternatively, information gain) at each node of the tree. The prediction is determined for each node by choosing the most 

commonly occurring achievement level at that node. 

5.2.3. Reporting Classification Accuracy 

In considering performance of models to predict achievement levels on the FSA and FCAT exams, we denote actual FSA 

achievement level for student i as 𝐹𝑆𝐴𝐿i (or 𝐹𝐶𝐴𝑇𝐿i for the FCAT for student i achievement level on the FCAT in 2013–

2014) and denote predicted achievement levels 𝐹𝑆𝐴𝐿𝑖
̂  (or 𝐹𝐶𝐴𝑇𝐿𝑖

̂  in 2013–2014). We report misclassification rate (MR; 

Equation 5) and define the off-by-one rate (OBOR; Equation 6): 

𝑀𝑅 =
1

𝑛
∑ 𝐼(𝐹𝑆𝐴𝐿𝑖 ≠  𝐹𝑆𝐴𝐿̂𝑖)𝑛

𝑖=1  (Eq. 5) 

𝑂𝐵𝑂𝑅 =  
1

𝑛
∑ 𝐼(|𝐹𝑆𝐴𝐿𝑖 − 𝑛

𝑖=1 𝐹𝑆𝐴𝐿̂𝑖|  ≤ 1) (Eq. 6), 

where n is the sample size of the data set, and 𝐼 is the indicator function that takes the value 1 when its argument is true. 

Both of these measures are more appropriate in the context of the goal of classification of achievement level, providing a 

measure of the predictive success we achieve in getting the achievement level (in)correct and the extent to which we are (at 

most) off-by-one achievement level in our predictions. The statistical performance measures used in regression analyses in 

the previous section, specifically MAD and RMSE, can also be used in developing classification models, but we omit 

extensive reporting of them for the sake of brevity. This omission is reasonable because patterns in the performance of 

classification approaches we consider are consistent across MR, OBOR, MAD, and RMSE. 

5.2.4. Questions for Analysis 

In the context of classification models, we present our results around providing answers to the following three questions: 

• RQ4: What are relative performance characteristics of SOLR models and RFC models in classifying achievement 

levels? 

• RQ5: What accuracy can be achieved? 

• RQ6: What are the relative contributions of different categories of variables included in these models? 

As in §5.1.5 and §5.1.6, we consider models trained on data from the 2013–2014 school year and on data from the 2014–

2015 school year, using data from the other two years for testing; results suggest no significant deviations in the pattern of 

results found using 2013–2014 as training data when considering models learned using 2014–2015 training data when our 

predictive goal is classification instead of regression. This includes the results of Friedman aligned rank statistical testing 

indicating that the class of M5 and M6 models are statistically indistinguishable from one another and represent better 

accuracy than M1–M4 models when considering either of MR or OBOR accuracy. 

5.2.5. Classification Results 

Table 10 provides MR and OBOR measures for the accuracy of models that predict achievement levels on test sets from the 

years 2014–2015 and 2015–2016, with the training set from 2013–2014. We note that, unlike other accuracy measures, 

larger OBOR values indicate better performance. For all measures (i.e., RMSE, MAD, MR, and OBOR), SOLR outperforms 

RF, except in the case of model M1, which includes only pre-test data. Carrying out the same statistical testing regime we 

used for regression results (Friedman aligned rank test + post hoc testing for pairwise comparisons), in this case with twelve 

algorithms over four datasets, we again find that the class of M5 and M6 models are statistically indistinguishable and 

significantly different than M1–M4 models. 

 



 

 

 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 
167 

Table 10: SOLR and RFC Results for Models Learned on 2013–2014 Data Applied to Test Data  

from 2014–2015 (14–15) and 2015–2016 (15–16), Expressed as MR and OBOR 
 

 MR OBOR 

 14-15 15-16 14-15 15-16 

Model SOLR RFC SOLR RFC SOLR RFC SOLR RFC 

M1 0.504 0.503 0.480 0.480 0.933 0.933 0.945 0.944 

M2 0.524 0.553 0.509 0.541 0.936 0.913 0.933 0.911 

M3 0.489 0.531 0.502 0.523 0.943 0.927 0.941 0.925 

M4 0.492 0.496 0.472 0.478 0.941 0.934 0.950 0.946 

M5 0.547 0.471 0.436 0.459 0.964 0.954 0.970 0.953 

M6 0.459 0.477 0.443 0.464 0.964 0.950 0.967 0.952 

Table 11: SOLR and RFC Results for Models Learned on 2014–2015 Data Applied to Test Data 

from 2013–2014 (13–14) and 2015–2016 (15–16), Expressed as MR and OBOR 

 MR OBOR 

 13-14 15-16 13-14 15-16 

Model SOLR RFC SOLR RFC SOLR RFC SOLR RFC 

M1 0.500 0.490 0.503 0.486 0.925 0.950 0.926 0.949 

M2 0.506 0.534 0.512 0.537 0.933 0.905 0.923 0.901 

M3 0.492 0.522 0.484 0.514 0.937 0.919 0.932 0.913 

M4 0.504 0.515 0.468 0.476 0.936 0.923 0.944 0.936 

M5 0.458 0.468 0.431 0.448 0.956 0.947 0.963 0.953 

M6 0.443 0.473 0.435 0.458 0.960 0.947 0.964 0.949 

Considering performance on held-out test sets in Tables 10–11, the SOLR MR measure ranges from approximately 43% 

to almost 53%. However, inspecting RMSE and MAD, we find values that range from 0.75 to 0.86 and from 0.47 to 0.61, 

respectively, which indicates that, on average, the deviation between predicted and actual achievement level is less than one 

level. Rather than extensively report on such RMSE and MAD values, we note that these values are consistent with values of 

OBOR we observe for SOLR, all of which are greater than 0.92 (and greater than 0.90 for RFC); that is, at least 90–92% of 

the students in the test sets are predicted to be within one level of their actual level. While we recognize that there are 

important instances in which being off-by-one represents a failure to accurately predict whether a student will pass or fail the 

standardized test (e.g., when the model predicts 3, a passing achievement level, but the student actually achieves a level of 2, 

a failing achievement level), we take this to be a promising indicator of the success of these models in the classification 

context. More sophisticated classification regimes and models can also be used to develop models that specifically seek to 

avoid making such crucial mistakes, though this remains a topic for future research. 

Results of the Friedman aligned rank test indicate that demographic variables may not provide significant value in 

helping to predict student achievement levels, as M5 and M6 models are not significantly different when compared in post 

hoc pairwise tests. M5 and M6 models both include pre-test and process variables, indicating that an indicator of students’ 

prior knowledge (i.e., pre-test) and process variables together provide sufficient information about student achievement, 

providing what is likely a sufficient substitute for whatever information concerning student achievement is provided by 

demographic characteristics. 

Carefully considering the results of M5, we report the importance of the predictors that contribute to these models, 

similar to our inspection of a particular M5 SLR model in Table 9. Table 12 reports the relative importance of each predictor 

variable measured by the mean decrease in the Gini index (MDG) of each predictor variable when constructing M5 with 

RFC.6 The Gini “impurity” index (G) is calculated as potential “splits” (or “cuts”) are considered that in turn define the 

 
6 Even though SOLR tends to result in better prediction accuracy than RFC, RFC generally provides for similar patterns in performance 
across the six candidate models, and M5 is still the top-performer among RFC models. Since the validity of p-values in ordinal logistic regression 

is dubious (Venables & Ripley, 2002), we focus on interpreting the predictor variables in M5 based on their MDG in constructing RFC models. 
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“decision nodes” (and corresponding hyper-rectangles or regions) of a decision tree. At each cut of the predictor space over a 

given predictor variable, the decrease in Gini index (G; Equation 7) before and after the cut is calculated: 

 

𝐺 = ∑ ∑ 𝑝̂𝑚𝑘(1 − 𝑝̂𝑚𝑘)𝑀
𝑚=1

𝐾
𝑘=1  (Eq. 7), 

 

where 𝑝̂𝑚𝑘 is the misclassification rate of level k (i.e., in this case 1–5) in the mth hyper-rectangle/region defined by the 

current cuts that have been conducted (or may be conducted). Smaller Gini indices indicate higher node purity, which means 

that a particular cut provides greater information about classification with respect to the target outcome. Decreases in Gini  

index are summed up across all the cuts made for this predictor. These summations are averaged across all the classification 

trees to obtain the mean decrease in Gini for each predictor, providing a measure of the importance of a particular predictor 

variable in terms of their contribution to a RFC model. 

In Table 12, we observe that three process variables, including Problems per workspace, Workspaces mastered per hour, 

and Assistance per problem, outperform Pre-test, and all process variables outperform demographic variables. This provides 

further support for the relative lack of importance of demographic characteristics as contributors to these models of 

standardized test performance. 

Table 12: Representative Example of Importance of Predictor Variables  

Variable MDG 

Problems per workspace 883.841 

Workspaces mastered per hour  815.439 

Assistance per problem 737.553 

Pre-test 713.693 

Number of KCs mastered 633.783 

Total problem solving time 571.983 

Workspaces encountered 530.488 

Student grade 142.592 

Ethnicity  138.362 

ESE status 136.895 

FRPL status  133.130 

LEP status 124.331 

Note: As measured by mean decrease in the Gini index of impurity (MDG) in decreasing order (i.e., in order of importance) 

in M5 RFC model learning on 2014-15 data. 

5.3. Hierarchical Models 

Modelling to this point has not explicitly accounted for the inherent hierarchy in educational data of this sort. Students learn 

within schools (and with teachers in classes), so, returning to the goal of regression modelling, we consider explicitly 

modelling this and the extent to which such considerations may improve statistical models of test scores. We only consider 

models that include school identity, as school-level effects could at least plausibly carry over from year to year within a 

district. For example, school culture, classroom expectations, and student background may not drastically vary from year to 

year, but classes (and often teachers) change with sufficient frequency (i.e., in the case of classes, nearly always) that testing 

a model learned on one year’s data with data from subsequent years would be difficult, involving some form of imputation 

or setting of appropriate prior distributions for parameters that would represent as-yet-unseen teachers or classes. Even in the 

present data set, schools present in the 2014–2015 data set were not present in data from 2013–2014, so we use data from 

2014–2015 to infer linear mixed effects models that can account for this school hierarchy. We then test these models on data 

from 2013–2014 and 2015–2016 and compare results to those obtained from SLR to see if explicitly modelling this 

hierarchy provides for significant boosts in accuracy. 

5.3.1. Linear Mixed Effects Models 

Linear mixed effects models take their name from the fact that they include both fixed and random effects, assuming that, 

for random effects, observed subpopulations have different values for coefficients in a linear model. In contrast, typical 

linear models like ordinary least squares regression models do not take subpopulations (or the hierarchical nature of the data) 

into account, and we only estimate a single set of parameter values for so-called fixed effects. Suppose, as is generally 

reasonable in educational data like this, that each school represents a different subpopulation. A random intercept and 
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random slope model with predictors X1, X2, ..., Xs: can be written as, 
 

𝑌𝑖𝑗 =  𝛽0𝑗 + 𝛽1𝑗 𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽𝑠𝑋𝑠𝑖 + 𝜀𝑖 , 

𝛽0𝑗 =  𝛾0 + 𝜇0𝑗 , 

𝛽1𝑗 =  𝛾1 + 𝜇1𝑗 (Eq. 8), 
 

where 𝑌𝑖𝑗 is the outcome variable of student i in school j, 𝛽0𝑗  denotes the intercept of school j and 𝛽1𝑗  denotes the slope of 

school j for predictor 𝑋1. The rest of the predictors, 𝑋2, … , 𝑋𝑠  have fixed effects only. This model has distribution 

assumptions, 𝛽0𝑗  ~ 𝑁(𝛾0, 𝜏00), 𝛽1𝑗  ~ 𝑁(𝛾1, 𝜏11), and 𝜀𝑖  ~ 𝑁(0, 𝜎2). Since we do not intend to provide an exhaustive 

consideration of hierarchical models, we do not estimate the covariance of 𝛽0𝑗  and 𝛽1𝑗  here. 

In the current study, we fit a multilevel linear model for each candidate set of predictors, M1–M6, that has a random 

intercept per school as well as a random slope of previous FSA or FCAT scores (if applicable) to model differential effects of 

learner prior knowledge across schools. Each multilevel model is built upon the corresponding best SLR model to provide 

the strongest comparison possible. That is, the only differences between the multilevel linear models and best SLR models 

are the random effects. 

5.3.2. Results 

Table 13 provides a comparison of model performance between the best SLR model trained on 2014–2015 data and a linear 

mixed effects model that included, as fixed effects, all of the variables in the best SLR model as well as a random intercept  

per school and a random slope for pre-test per school. We see that, in terms of RMSE accuracy, the multilevel or 

hierarchical (i.e., linear mixed effects) models M3 through M6 outperform SLR models on the 2013-2014 test data and on 

models M1 through M4 on the 2015-2016 test data, but SLR models outperform the hierarchical models on M5 and M6 on 

2015-2016 test data, indicating that some combination of pre-test and process variables appear to be promising as 

sufficiently informative to obviate the need to consider hierarchy explicitly. This is a potential boon for the practical 

application of these models, as it is likely not acceptable that school identity be explicitly considered in making predictions 

about learning for accountability. As we have also already noted, in large school districts there can also be variability in 

terms of (the extent to) which schools use a particular platform from year to year, introducing possible difficulties if one is 

to rely on the identities of schools remaining stable across years for modelling. 

Nevertheless, the extent to which linear mixed effects models do outperform SLR indicates that such modeling efforts 

might benefit from this hierarchical approach (or investigations into how to capture these school-level effects with as-yet-

unconsidered process variables). 

Table 13: Comparison of the Accuracy of the Best Models Learned by 

Stepwise Linear Regression (SLR) and Linear Mixed Effects Modelling (LME) 

 13-14 15-16 

Model SLR LME SLR LME 

M1 11.837 12.912 12.830 12.647 

M2 12.601 13.478 13.955 13.795 

M3 12.462 11.992 13.633 13.461 

M4 11.780 11.317 12.562 12.488 

M5 10.893 10.347 11.436 11.507 

M6 10.749 10.461 11.472 11.558 

Note: Trained on data from 2014–2015 and tested on data from 2013–2014 (13–14) and 2015–2016 (15–16) using RMSE; 

cf. Table 6. 

 

6. Discussion and Future Work 

Our results show the potential for using formative assessment, fully integrated into learning, as a replacement for end-of-

year standardized tests, but the ability to predict summative assessments based on MATHia usage has other advantages. In 

particular, the formative information used in these models is available to teachers immediately and diagnoses knowledge 

gaps and misconceptions at a much finer grain size than a standard assessment. Such data can be used to guide instructional 

focus and remediation. With respect to pacing, Carnegie Learning now uses a metric called the Adaptive Personalized 
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Learning Score (APLSE), based on these predictive models, to help teachers, students, and administrators understand 

whether students are on track to pass the end-of-course exam. Carnegie Learning has been able to show that students who 

meet the “on track” criterion on this measure are over 95% likely to receive a passing score on the final exam. Another 

potential use of embedded formative assessment within MATHia would be to provide a kind of Bayesian prior to the 

administration of a more traditional summative assessment. This might be a transitional stage, perhaps allowing a shorter 

summative exam than is currently possible. 

While the ability to predict test outcomes from the types of data we consider is likely necessary to eventually replace 

high-stakes exams, this ability remains insufficient to do so. Nevertheless, when such formative assessment is embedded 

within high-quality, effective instruction, the potential to increase instructional time and enhance learning outcomes is 

substantial. Our best predictions come from the most complete model: M5, using SLR on 2013–2014 training data, achieves 

RMSE of 11.327 on 2015–2016 test data, out-performing both SLR using 2014–2015 training data and the linear mixed 

effects model built on 2014–2015 training data. However, we see excellent results from the non-hierarchical M6, which does 

not take demographics into account (e.g., providing the best accuracy on the 2013–2014 data as a test set when trained on 

2014–2015 data) and reasonable results from M2, a model that knows nothing about the student, other than performance 

within MATHia (achieving accuracy comparable within roughly one point to that of models based on pre-test/prior 

knowledge data alone). 

Many statistical questions remain. Can an omnibus model learned over multiple years of data increase predictive 

accuracy on future data? Rather than include grade-level in the model, should we build separate models for each grade-level? 

Is it possible to use the same model across tests for multiple states (e.g., by calculating an internal score and translating this 

score into an appropriate scale score for each state)? How early in the academic year is it possible to reliably predict test 

scores from student work? If item-level data were available (or possibly more advanced statistics were reported), we could 

begin to establish (or know) upper bounds on predictability of test scores we could expect in the best case by considering 

split-half and other forms of reliability of the underlying standardized test (Feng et al., 2006). 

Practical questions remain as well. To use such predictive models in real products deployed at scale like MATHia, how 

best can we represent an evolving prediction of student test scores based on their work as they make progress throughout the 

year? What is an easily interpretable way to represent uncertainty in those predictions? For instance, the model reported in 

Table 9 featuring a variety of performance variables and interaction terms provides for reasonable statistical accuracy, but it 

is not obviously and easily explainable to the end user of a system, particularly as compared to percent correct on a 

traditional exam. How do we resolve tensions between reporting predictions about standardized test scores with assigning 

students grades based on their work within the instructional platform? 

The benefits of using embedded formative assessment over end-of-year testing may be enormous. Recovering classroom 

time for instruction could have great impact. In addition embedded formative assessment serves a real-time instructional 

purpose of informing both students and teachers of progress towards end-of-year goals. Finally, a system using embedded 

formative assessment better supports personalized learning, in which students are assessed when they are ready, not on an 

arbitrary end-of-year date. Currently, high-stakes assessments are a major barrier to implementation of personalized learning, 

due to the administrative requirement of administering an exam on the school district’s schedule, rather than the student’s 

schedule. 

Perhaps the greatest impact of this vision of assessment may be on perceptions of assessment and learning more 

generally. The message conveyed by the common distinction between instruction and assessment is that the assessment 

environment is somehow a better window into the student’s knowledge than the instructional environment could be. This is 

almost certainly wrong. The instructional environment certainly provides a greater volume of data about student knowledge 

and performance than assessments. Instructional tasks are also typically more varied and rich than the kinds of tasks provided 

within most standardized assessments. Embedding assessment within instruction eliminates any concerns about alignment 

between the curriculum and the exam. Finally, the anxiety invoked by high-stakes assessments may also result in an 

underestimate of student ability (Lehman, Herbert, Jackson, & Grace, 2017). 

Solutions to these open statistical and practical questions have the potential to drive genuine innovation in assessment for 

accountability that can lead to increased instructional time, better personalized learning, and overall improved learning 

outcomes. We look forward to continuing investigations into these solutions 
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