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Article

Multilevel meta-analysis is a promising analysis technique 
used to quantitatively summarize research findings across 
similarly focused studies (Van den Noortgate & Onghena, 
2007). Given the increased number of published studies 
investigating related underlying research questions, and 
the importance of replication studies, the use of multi-
level meta-analysis becomes increasingly important. 
Multilevel meta-analysis is a valuable means to inform 
unbiased evidence-based decisions that are valid and reli-
able (Kratochwill et al., 2010; Ugille, Moeyaert, Beretvas, 
Ferron, & Noortgate, 2012). For instance, in the field of 
education, a practitioner might be interested in whether 
peer-tutoring interventions are effective to improve social 
skills (e.g., number of peer interactions) for students with 
behavior disorders. The quantitative synthesis of all studies 
investigating this research question can provide meaningful 
estimates of the intervention’s anticipated effect on social 
behaviors. It would be unfortunate to ignore research invest-
ments and evidence that is already available in the literature 
given that high-quality meta-analyses can result in impor-
tant insights for policy makers, funding agencies, practitio-
ners in the field, and researchers (Talbott, Maggin, Van 
Acker, & Kumm, 2018).

The multilevel meta-analytic model is particularly useful 
for summarizing hierarchical structured data such as single-
case experimental design studies (SCEDs; Van den 
Noortgate & Onghena, 2003a, 2003b). In SCEDs, the effec-
tiveness of a treatment is usually evaluated across multiple 
participants resulting in multiple dependent effect sizes per 

studies. For example, in the study of Mason et al. (2014), 
the number of communicative acts for three students with 
autism spectrum disorders was measured repeatedly during 
a baseline condition before introducing the peer-tutoring 
intervention (i.e., treatment condition). Therefore, three 
estimates of the effectiveness of peer-tutoring on communi-
cative acts are obtained (see Figure 1). Traditional meta-
analyses synthesize study-specific effect sizes across 
studies, whereas multilevel meta-analyses are capable of 
summarizing participant-specific effect sizes across cases 
and across studies. Therefore, the multilevel meta-analytic 
model is needed to summarize evidence originating from 
SCEDs.

The statistical properties of the multilevel meta-analysis 
method have been intensively studied and validated during 
the last decade using large-scale Monte Carlo simulation 
studies (Moeyaert, Ugille, Ferron, Beretvas, & Van den 
Noortgate, 2013, 2014b; Ugille et al., 2012). However, it is 
used infrequently in practice, perhaps because (a) the analy-
sis may appear overly complex and/or (b) the technique is 
relatively new to the field of education and its potentials 
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and applications are not yet widely understood. Indeed, a 
recent systematic review of meta-analyses of SCEDs 
(including a total of 178 studies) indicated that only a small 
percentages (i.e., 17%) of the meta-analyses used multilevel 

meta-analysis (Jamshidi et al., 2018). Therefore, this article 
is a first attempt to (a) introduce to multilevel meta-analytic 
model to applied researchers, (b) give a basic conceptual 
understanding of the multilevel meta-analytic procedure, 

Figure 1.  Graphical display of a single-case experimental design study in which the effectiveness of a treatment is evaluated across 
three participants.
Note. Raw data for the graphical presentation were retrieved from graphs presented in Mason et al. (2014).
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and (c) enhance the use of the technique by giving a step-
by-step demonstration of the procedure applied to a real 
meta-analytic dataset and providing documented statistical 
software code (SAS 9.4, Copyright © 2017, SAS Institute 
Inc., SAS). The aim is to enhance the field as a whole by 
introducing high-quality synthesis techniques.

Multilevel Meta-Analysis: General 
Introduction

Similar to traditional meta-analyses, multilevel meta-anal-
ysis is a practical and useful tool for systematically evalu-
ating research evidence across primary studies 
investigating the same underlying research question 
(Glass, 1976). Gene Glass is known as the founding father 
of meta-analysis and introduced this technique to the field 
of social sciences. In 1977, he published an article together 
with Smith summarizing the effect of psychotherapy using 
meta-analysis (Smith & Glass, 1977). In general, five 
steps can be followed to successfully conduct a (multi-
level) meta-analysis. First, start with formulating a 
research question of interested. This will inform the inclu-
sion criteria (population, outcomes, interventions, vari-
ables of interest, etc.). Second, relevant literature is 
searched (ideally by multiple independent researchers) 
including publications, dissertations, technical report, the-
ses, and so on. Third, the data are retrieved and variables 
are coded (for post hoc calculation of effect sizes). In this 
step, it is important to gather as much detail as possible. 
Fourth, once all the data are coded, the multilevel meta-
analysis can be conducted. Fifth, the results are reported, 
interpreted, and discussed. The focus in the current article 
is giving guidance on Steps 4 and 5, as the previous steps 
are identical to traditional meta-analyses and systematic 
reviews in general. Details about the traditional meta-ana-
lytic procedure can be found in Borenstein, Hedges, 
Higgins, and Rothstein (2009); Card (2012); Hedges and 
Olkin (1985); Lipsey and Wilson (2001); and Sutton, 
Abrams, Jones, Sheldon, and Song (2000).

The research evidence reported in primary studies can be 
summarized by an effect size measure. There are two pri-
mary classes of effect size measures (Lipsey & Wilson, 
2001), namely, the standardized mean difference—repre-
senting the size and direction of the difference between two 
groups’ sample means expressed in standard deviations, 
δ µ µ σ(( )) /E C− , and the correlation coefficient—repre-
senting the strength and direction of the relationship 
between two variables, ρ . Recently, methods have been 
derived and validated to summarize other kinds of effect 
sizes, such as regression coefficients, proportions, odds 
ratios, standard deviations, and reliability coefficients. 
Depending on your research question (and the primary-
level data that are available), you can choose the most rele-
vant effect size. Alternatively, if the summary statistic of 

interest is not reported in the primary study, it can be calcu-
lated using the raw data reported in the primary study (or 
extracted from the graphical presentation of the raw data, 
which is very common in SCEDs; see below). If a summary 
statistic other than the one of interest is reported, several 
conversion formulae can be applied. For instance, if you are 
interested in summarizing Hedges’s g (a common standard-
ized mean difference effect size) but only the correlation 
coefficient is given, then Hedges’s g can be easily converted 

from correlation coefficient using the following formula: 

g r r=2 1 2/ − . For an in-depth discussion and other con-
version formulae, see Lipsey and Wilson (2001) and 
Rosenthal (1994).

Meta-analysis is also called the analysis of analyses, and 
results in a single best estimate (usually a weighted aver-
age) of the effect size of interest. There are several convinc-
ing reasons to consider meta-analyzing primary studies’ 
effect sizes, including (a) generalizing research findings, 
(b) identifying areas where more research is needed, (c) 
dealing with subjectivity of verbal narrative literature 
reviews, (d) enhancing power for statistical tests (i.e., larger 
sample sizes result in more precise estimates), and as with 
all statistics (e) parsimony. Because we are pooling effect 
sizes together from several studies, a more precise effect 
size estimate is obtained (i.e., smaller standard error [SE]) 
compared with one single effect size estimate. As a conse-
quence, we can be more confident in generalizing the 
research findings. In addition, variability in effect size esti-
mates between studies can be explored by including mod-
erators (e.g., the effectiveness of a treatment might depend 
on gender, or the relation between depression and anxiety 
might be explained by age).

As an example, Raudenbush and Bryk (1985) meta-ana-
lyzed 19 studies investigating how teachers’ expectations 
about their students can influence the actual IQ. The stan-
dardized mean difference was the effect size of interest and 
calculated per primary study. Table 1 contains the standard-
ized mean difference effect sizes per study (Y

i
) with their 

corresponding SE. For instance, Y
3
 refers to the standard-

ized mean difference for Study 3 (i.e., Jose & Cody, 1971) 
and equals −0.14 (SE = 0.16) whereas Y

4
 is 1.18 (SE = 0.37; 

Pellegrini & Hicks, 1972). This illustrates the existence of 
variability in the size, direction, and precision of the esti-
mated relation between teacher’s expectations and IQ. The 
effect size for Study 4 is positive and larger in magnitude 
but less precise compared with the effect size for Study 3. 
Consequently, there is inconsistency in evidence. Depending 
on the study examined, different inferences will be made 
regarding the intervention’s effectiveness. Therefore, 
instead of relying on just one study to draw inferential con-
clusions, the effect sizes of the 19 primary studies can be 
pooled together, weighted by the inverse of the squared SE 
(i.e., studies with a lower SE are more precise and, as a con-
sequence, are given more weight in the meta-analysis). In 
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addition, sources of variability between the effects sizes can 
be explored.

The overall weighted average effect size estimate across 
the 19 studies equals 0.084 (SE = 0.052, Z = 1.621, p = 
.105). This means that the higher the teachers’ expectations, 
the higher the actual students IQ levels. The result is not 
statistically significant (two-tailed testing, α  = .05) and a 
significant amount of between-study variability is found 
(see Raudenbush & Bryk, 1985, for more details). Therefore, 
in a next step, a moderator was added because it can be 
expected that the variability in the relation between teach-
ers’ expectations and student’s actual IQ scores can be par-
tially explained by the number of prior weeks of contact. 
Indeed, if “Weeks” (see Table 1) was added as moderator, 

the standardized mean difference equaled 0.407 (SE = 0.087, 
Z = 4.678, p < .001) and the effect of “weeks” equaled 
−0.157 (SE = 0.036, Z = −4.388, p < .001). This means 
that there is a statistically significant positive relation 
between teachers’ expectations and actual IQ, but the more 
the prior contact, the smaller this relationship becomes.

For the meta-analysis of SCEDs, the regression coeffi-
cient will be used as the effect size given the nature of the 
single-case design (i.e., repeated measures over time during 
control and treatment sessions, see Figure 1). The regres-
sion-based effect size is recommended in this context as it 
can account for data trends, between-phase variability, and 
autocorrelation, and has a known sampling distribution 
(Kratochwill et  al., 2010; Lenz, 2013; Parker & Vannest, 

2008; Shadish, Rindskopf, Hedges, & Sullivan, 2012). 
In SCEDs, the repeated measures across time are graphi-
cally presented as demonstrated in Figure 1, and as a 
consequence, the raw data can be obtained by using a data 
retrieval software programs such as WebPlotDigitizer, 
Datathief, XYit, and Ungraph (Moeyaert, Maggin, & 
Verkuilen, 2016). These data retrieval programs are user-
friendly, point-and-click software. This allows for calculat-
ing the regression-based effect size and SE. As mentioned 
before and illustrated in Figure 1, in the area of SCEDs, the 
effectiveness of an intervention is usually replicated across 
participants resulting in multiple effect size measures per 
study. This is usually not the case in a group-comparison 
design study in which one standardized mean difference 
between the experimental and control condition is reported. 
As such, effect sizes in SCEDs within one study are depen-
dent. If we simply combine effects across cases and ignore 
the study level, we assume that we have more information 
available than there is in reality. As a consequence, the 
effect sizes are estimated more precisely, resulting in SE 
estimates that are too small. Smaller SEs result in larger test 
statistics (and smaller p values), and therefore, it becomes 
more easily to reject a null hypothesis (increasing the likeli-
hood of making Type I errors or falsely rejecting a true null 
hypothesis). Therefore, in contexts of studies containing 
more than one effect size per study, multilevel meta-analy-
sis (as opposed to a traditional meta-analysis) is most appro-
priate and recommended for the quantitative synthesis.

Table 1.  Meta-Analytic Dataset Raudenbush and Bryk (1985).

Study no. Study Weeks Y
i

SE Var Precision

  1 Rosenthal et al. (1974) 2 0.0300 0.1249 0.0156 64.1026
  2 Conn et al. (1968) 21 0.1200 0.1470 0.0216 46.2963
  3 Jose and Cody (1971) 19 −0.1400 0.1670 0.0279 35.8423
  4 Pellegrini and Hicks (1972) 0 1.1800 0.3730 0.1391 7.1891
  5 Pellegrini and Hicks (1972) 0 0.2600 0.3691 0.1362 7.3421
  6 Evans and Rosenthal (1969) 3 −0.0600 0.1030 0.0106 94.3396
  7 Fielder et al. (1971) 17 −0.0200 0.1030 0.0106 94.3396
  8 Claiborn (1969) 24 −0.3200 0.2200 0.0484 20.6612
  9 Kester (1969) 0 0.2700 0.1640 0.0269 37.1747
10 Maxwell (1970) 1 0.8000 0.2510 0.0630 15.8730
11 Carter (1970) 0 0.5100 0.3020 0.0912 10.9649
12 Flowers (1966) 0 0.1800 0.2229 0.0497 20.1207
13 Keshock (1970) 1 −0.0200 0.2890 0.0835 11.9760
14 Henrikson (1970) 2 0.2300 0.2900 0.0841 11.8906
15 Fine (1972) 17 −0.1800 0.1591 0.0253 39.5257
16 Grieger (1970) 5 −0.0600 0.1670 0.0279 35.8423
17 Rosenthal and Jacobson (1968) 1 0.3000 0.1389 0.0193 51.8135
18 Fleming and Anttonen (1971) 2 0.0700 0.0938 0.0088 113.6364
19 Ginsburg (1970) 7 −0.0700 0.1741 0.0303 33.0033

Note. Y
i
 indicates the standardized mean difference, SE indicates the standard error, Var indicates the variance, and Precision is the inverse of the 

variance.
For complete reference information for these studies, see Raudenbush & Bryk, 1985.
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Multilevel Meta-Analysis: Methodology 
and Empirical Illustration

When conducting a multilevel meta-analysis of SCEDs, the 
first step is to calculate participant-specific standardized 
effect sizes. I will start this section discussing how stan-
dardized regression effect sizes can be estimated. This 
involves multiple steps: (a) obtaining raw SCED data, (b) 
running a single-level regression model per participant, (c) 
standardizing the regression coefficients, and (d) correcting 
the standardized regression coefficients for small-sample 
bias. In the second part of this section, I will demonstrate 
how the standardized and bias-corrected effect size esti-
mates can be combined using the multilevel meta-analysis 
model.

Single-Level Analysis: Standardized Regression-
Based Effect Size

Raw data extraction.  I illustrate the procedure for estimating 
the regression-based effect size using the study of Mason 
et al. (2014), displayed in Figure 1, which is part of a bigger 
meta-analytic dataset summarizing the effects of peer-tutor-
ing interventions on academic and social outcome scores 
(Moeyaert, Klingbeil, Rodabaugh, & Turan, 2018). The 
first step involves raw SCED data extraction from the pri-
mary study graphs. This is necessary, as it is unlikely that 
the regression-based effect size together with its SE is 
reported in the primary studies. Indeed, Jamshidi et  al. 
(2018) found that only a small percentage (i.e., 1.90%) of 
SCEDs published between 1985 and 2015 used and reported 
regression-based effect sizes. The free data retrieval 
software program WedPlotDigitizer (Rohatgi, 2014) was 
used for this purpose (and can be downloaded for free: 
https://automeris.io/WebPlotDigitizer/). The graph image 
of the primary study can be imported in the data extraction 
program to get the X values (e.g., session numbers in Figure 1) 
and the Y values (e.g., number of communicative acts per 
10-min session in Figure 1). For this purpose, the axes need 
to be calibrated (e.g., you “tell” the program where the axis 
is and what the minimum and maximum values are). Then, 
you individually select each data point by “clicking” on it 
with a mouse.

Effect size calculation.  The raw data can then be used to esti-
mate the treatment effect(s) per participant (i.e., regression-
based effect size estimate). For this purpose, an ordinary 
least squares (OLS) regression model was built. For 
instance, a researcher might be interested in quantifying a 
change in outcome score between the last measure of the 
baseline and the first measure of the treatment phase (i.e., 
immediate treatment effect) and a change in linear trend 
between the baseline and the treatment phase (i.e., treat-
ment effect on the time trend):

yijk jk jk ijk jk ijk

jk ijk

=

×

β β β

β
0 1 2

3

+ +

+ ′

Time Treatment

Time Treatmeent ijk ijke+ , 	 (1)

where i stands for the measurement occasion ( i I = 0,1, ), 
j for the case ( j J=1,2, ), and k for the study 
( k K=1,2, ). This means that yijk  indicates the out-
come score on measurement occasion i for case j from 
study k. Before running the OLS regression, a design 
matrix is created. A design matrix contains all exploratory 
variables of interest (e.g., Timeijk , Treatment ijk , and 
Time Treatment′ijk ijk× ) and values are assigned to each vari-
able. An example of a possible design matrix for the study 
of Mason et al. (2014) is given in Table 2. Table 2 contains 
three exploratory variables: Treatment ijk  is a dummy coded 
variable indicating whether the measurement occasion 
belongs to the baseline phase (Treatment ijk  = 0) or the 
treatment phase (Treatment ijk  = 1); Timeijk  is a time-
related variable that equals 0 on the first measurement 
occasion of the baseline phase and increases by one unit for 
all subsequent measurement occasions. In addition, an 
interaction variable is created between the centered time-
indicator (Time′ijk ) and the dummy variable (Treatment ijk ). 
Time′ijk  is centered such that it equals 0 on the first 
measurement occasion of the treatment phase (i.e., 
Time Time′ − +ijk ijk Ajn= [ ( )]1 ). Careful attention needs to 
be paid to set up the design matrix accordingly because 
depending on the coding of the design matrix, different 
effect sizes can be calculated (Moeyaert, Ugille, Ferron, 
Beretvas, & Van den Noortgate, 2014a).

Table 2 gives a display of the raw data and design matrix 
for Participant 2 from the Mason et al. study. Note that the 
same coding matrix needs to be created for all the partici-
pants included in the meta-analysis. By setting the design 
matrix up this way, the following regression effect sizes are 
obtained (and can be used afterward for quantitative synthe-
sis): β0 jk  indicating the expected baseline level, β1 jk  equal-
ing the expected linear trend during the baseline, β2 jk  
referring to the expected immediate treatment effect, and 
β3 jk  referring to the expected effect of the treatment on the 
time trend (i.e., a change in slope). By applying Equation 1 
to the raw data of Participant 2, four estimated effect sizes 
are obtained: (a) The estimated initial baseline level at 
the start of the baseline, b jk0 , b jk0  = 5.092, SE = 3.25, 
t(20) = 1.56, p = .13; (b) the linear trend during the base-
line phase, which is estimated to be slightly negative, b jk1  
= −0.049, SE = 0.683, t(20) = −0.071, p = .944; (c) the 
estimated immediate treatment effect, b jk2 , estimated to be 
large, positive, and statistically significant, b jk2  = 22.855, 
SE = 6.166, t(20) = 3.707, p = .001; and (d) the change in 
trend between baseline phase and treatment phase, b jk3 , 
b jk3  = 0.201, SE = 0.201, t(20) = 0.268, p = .792. 
The results indicate that the peer-tutoring intervention 
results in an immediate increase in social skills for Participant 

https://automeris.io/WebPlotDigitizer/
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2 (i.e., b jk2  is statistically significant). The regression coef-
ficients of interest that will be used in the multilevel meta-
analysis (i.e., b jk2  and b jk3 ) are presented in Figure 2 for 
Participant 2 (i.e., Ed). The user-friendly web application 
MultiSCED (Cools et  al., 2017) was used to graphically 
present the estimated OLS regression lines per participant 
of the study of Mason et  al. (2014; see Figure 3). The 
MultiSCED tool (http://52.14.146.253/MultiSCED/) is an 
open source environment and comes with a user guide. The 
user guide provides a step-by-step OLS analysis resulting in 
the regression-based effect sizes of interest. The meta-ana-
lytic dataset of Shogren, Fagella-Luby, Bae, and Wehmeyer 
(2004), which is freely available (https://kuleuven.app.box.
com/v/Shogren2004), is used to demonstrate the two-level 
and three-level meta-analysis to combine regression-based 
effect size estimates. All the steps are supplemented with 
print screens of the environment.

Centering of the time variable.  Depending on the researcher’s 
interest, the time variable can be centered around another 
measurement point in the treatment phase. For instance, if the 
researcher wants to evaluate the effectiveness of the treat-
ment at the third point in the intervention, then the time vari-
able of the interaction term (Time_3′) should be centered 
around that value. This is represented by the variable Time_3′ 
× Treatment in Table 2. The same regression output will be 
obtained as in Equation 1, except from the estimated treat-
ment effect (i.e., b jk2 )  as this is now represented as the 
difference between the predicted outcome score during the 

Table 2.  Raw Data and Coding of the Design Matrix of Participant 1 From Mason et al. (2014).

Participant Session
Y 

(outcome) Time Treatment
Time′ × 

Treatment Time_3′
Time_3′ × 
Treatment

1 1 5.28 0 0 −6 −8 0
1 2 13.38 1 0 −5 −7 0
1 3 5.27 2 0 −4 −6 0
1 4 7.42 3 0 −3 −5 0
1 5 7.75 4 0 −2 −4 0
1 6 7.41 5 0 −1 −3 0
1 7 38.15 6 1 0 −2 0
1 8 20.46 7 1 1 −1 0
1 9 34.18 8 1 2 0 0
1 10 41.45 9 1 3 1 1
1 11 17.31 10 1 4 2 2
1 12 16.31 11 1 5 3 3
1 13 38.12 12 1 6 4 4
1 14 21.25 13 1 7 5 5
1 15 28.19 14 1 8 6 6
1 16 35.12 15 1 9 7 7
1 17 55.10 16 1 10 8 8
1 18 21.20 17 1 11 9 9
1 19 40.19 18 1 12 10 10

third intervention session and the predicted baseline score at 
that point, b jk2  = 24.668, SE = 4.64, t(20) = 5.316, p < 
.001. This is visualized in Figure 4. This demonstrates that 
the regression-based effect size estimate is very flexible and 
allows the effectiveness of the treatment to be estimated at 
different moments during the intervention phase. The 
research interest in this article lies in the immediate treatment 
effect, and therefore, the time variable (labeled as session in 
Figures 2 and 3) in the interaction term is centered on the first 
measurement occasion of the treatment. More information 
about coding the design matrix and the influence of centering 
time on the interpretation of the obtained treatment effect 
estimates can be found in Moeyaert, Ugille, Ferron, Beretvas, 
& Van den Noortgate (2014a). The OLS regression model 
presented in Equation 1 can easily be extended, reflecting 
more complex SCED designs (i.e., reversal designs and alter-
nating treatment designs) and SCED data characteristics (i.e., 
nonlinear trends, autocorrelation), but this is beyond the 
scope of this study.

Standardization and bias correction.  The underlying research 
interest lies in making statistical inferences regarding the 
effect size estimate(s). In this context, we want to evaluate 
whether the treatment effect estimates b jk2  and b jk3  are 
statistically significant. In other words, does the peer-
tutoring intervention result in an immediate increase in 
positive social behavior and how is this changing over 
time (i.e., is the intervention becoming more effective or 
less effective over time)? Therefore, the primary study 

http://52.14.146.253/MultiSCED/
https://kuleuven.app.box.com/v/Shogren2004
https://kuleuven.app.box.com/v/Shogren2004
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summary statistics (i.e., b jk2  and b jk3 ) will be combined 
across participants and across studies to make generaliza-
tions to the broader population. Prior to combining data 
from different studies, the scores need to be standardized, 
as it is likely that outcome variables from different studies 
(and even from different participants within the same 
study) are measured on different scales. Standardized 
regression coefficients are obtained by dividing the esti-
mated regression coefficient by the estimated within-case 
residual standard deviation (i.e., σ ejk  or root mean square 
error [RMSE]) that is obtained by running the OLS regres-
sion as presented in Equation 1. The formulas that can be 
used to standardize effect sizes are

′ = ′ =b b
b b

jk
jk

ejk
jk

jk

ejk
2

2
3

3

σ σ 
 and . 	 (2)

Consequently, the sampling error variance should be divided 
by the estimated residual error variance:

Figure 2.  Graphical representation of the immediate treatment effect estimate ( b jk2 ) and the treatment effect on the time trend 
estimate ( b jk3 ) for Participant 2 (i.e., Ed) from the Mason et al. (2014) study.

σ
σ

σ
σ

σ

σ
r jk

r jk

ejk

r jk
r jk

ejk

2
2

3
32

2

2
2

2

2
′ ′= =

 
 and , 	 (3)

where σr jk2
2′  and σr jk3

2′  indicate the standardized squared 
SEs of b jk2  and b jk3 , respectively. More details about the 
standardization formula for regression-based effect sizes 
can be found in Van den Noortgate and Onghena (2008) and 
Ugille et al. (2012). The meta-analytic dataset that will be 
used for quantitative synthesis is compromised of the esti-
mated standardized effect sizes and associated standardized 
sampling error variance.

There is one extra step to perform specific for combining 
SCED regression effect sizes. Previous methodological 
work (Ugille et al., 2012) has indicated that standardization 
induces some bias when a small number of measurements 
within a participant are obtained, which is usually the case 
in contexts of SCEDs (Shadish & Sullivan, 2011). One 
way to deal with this is correcting the standardized effect 
sizes (i.e., ′bjk  in Equation 2) for small-sample bias by 
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multiplying the standardized effect size by Hedges’s bias 
correction factor (Hedges, 1981; Ugille, Moeyaert, 
Beretvas, Ferron, & Van den Noortgate, 2013), which is 
approximately equal to 1 – [3 / (4m – 1)], with m indicat-
ing the degrees of freedom. In the model discussed in 
Equation 1, m equals the number of measurement occa-
sions (I) minus the number of predictors (p) in the regres-
sion model minus 1 (i.e., m = I – p – 1). The corrected 
standardized immediate treatment effect equals
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Consequently, the sampling error variance should also 
be corrected for small bias:
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The full meta-analytic dataset containing the regression-
based effect size estimates, the standardized regression-
based effect size estimates, and the bias-corrected 
standardized effect size estimates together with the appro-
priate sampling variance (i.e., standardized, bias-corrected) 
can be found in the supplementary materials.

Figure 3.  Graphical display of the estimated ordinary least square regression lines for the participants of Mason et al. (2014) using 
the MultiSCED environment developed by Declercq et al. (2017).
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Multilevel Meta-Analysis: Combining 
Standardized Regression-Based Effect Sizes

The meta-analytic dataset used for the demonstration of the 
multilevel meta-analysis procedure is from Moeyaert et al. 
(2018). Moeyaert et al. coded data from 65 SCEDs investi-
gating peer-tutoring as an intervention to increase academic 
and social outcome scores. We will focus on the studies 
investigating social outcomes (27 SCEDs, with a total of 
130 cases). An overview of the studies included in the mul-
tilevel meta-analysis is included in Supplemental Appendix 
A. SAS Proc Mixed within SAS 9.4 (Copyright © 2017, 
SAS Institute Inc., SAS) was used to perform the multilevel 
meta-analysis. The SAS code together with step-by-step 
descriptions and output tables can be found in Supplemental 
Appendix B. The Kenward–Roger method (Kenward & 
Roger, 1997) for estimating degrees of freedom was cho-
sen as it contains a small-sample bias correction that is 

recommended in single-case contexts (Ferron, Bell, Hess, 
Rendina-Gobioff, & Hibbard, 2009). Ferron et  al. (2009) 
conducted a large-scale Monte Carlo simulation study com-
paring five different methods to estimate the degrees of 
freedom (i.e., residual, containment, between-within, 
Satterthwaite, and Kenward–Roger) in context of multi-
level modeling of SCED data and found that the Kenward–
Roger method resulted in the least biased SEs estimates of 
the regression coefficients and (co)variance components. 
The Kenward–Roger method to estimate the degrees of 
freedom is described in detail elsewhere (Schaalje, McBride, 
& Fellingham, 2001).

As mentioned before, first standardized bias-corrected 
effect sizes and SEs (i.e., root square of the standardized 
bias-corrected sampling error variance) are estimated per 
participant and per study. In a next step, the estimated effect 
sizes of the immediate treatment effect, ′b jk

c
2 , and the treat-

ment effect on the time trend, ′b jk
c
3 , for participant j from 

Figure 4.  Graphical representation of the effect size estimates of the treatment effect at the third session during the intervention 
phase ( b jk2 ) and the treatment effect on the time trend ( b jk3 ) for Participant 2 (i.e., Ed) from Mason et al. (2014).
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study k are modeled as a function of the average effects 
sizes, β2 jk  and β3 jk , respectively, plus random deviations, 
r jk2  and r jk3 , that are assumed to be normally distributed 
with a mean of zero. Level 1 of the three-level meta-
analytic model looks as follows:

′ = + ( )
′ = +
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The sampling error variances of the observed effects, 
σr jk2
2  and σr jk3

2 , are typically reported by default for each 
estimated OLS regression coefficient when performing a 
regression analysis (and we can standardize and bias correct 
them as explained above). In a meta-analysis (and in the 
multilevel meta-analysis), these variances are treated as 
“known” (for more information about this, see Lipsey & 
Wilson, 2001). These variances depend, to a large extent, on 
the number of observations and the variance of these obser-
vations, and therefore can be participant- and study-specific. 
It makes sense to weight effect sizes by their precision, 
assigning more weight to effect sizes that are more precise. 
Precision is defined as the inverse of the sampling error vari-
ances: 1 2

2/ σr jk
c′  for ′b jk

c
2  and 1 3

2/ σr jk
c′  for ′b jk

c
3 . That means 

that estimates with more precision (less variance, typically 
associated with larger sample sizes) are given more weight 
in the computation of the combined (i.e., synthesized, 
pooled) final estimate of the relevant effect size parameter. 
At the second level, the effect sizes β2 jk  and β3 jk  from 
Equation 6 can be modeled as varying across participants 
around the study-specific mean effects, θ20k  and θ30k :
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Figure 5 gives a graphical display of the estimated study-
specific regression lines (i.e., green lines) and how the indi-
vidual participants’ regression lines (i.e., red lines) deviate 
from this for the Mason et al.’s (2014) study (note that the 
regression lines using the original scale are presented in 
Figure 5). These regression lines give an indication of the 
magnitude of the between-case variance in treatment effect 
estimates. In a next step, the effects for studies can be mod-
eled as varying across studies:
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The meta-analyst is typically interested in the estimate of 
γ200 , referring to the average immediate treatment effect 
across participants and studies, and the estimate of γ300 , 
indicating the treatment effect on the time trend.

Fixed effect estimates.  Using the data of the 27 SCEDs 
investigating the effectiveness of peer-tutoring on social 

outcomes scores, γ 200  equals 3.74, SE = 1.09, t(22.6) = 3.44, 

p = .002, and γ300  equals 0.09, SE = 0.19, t(24.4) = 0.49, 
p = .63. Note that these are standardized, bias corrected 
summary estimates. In sum, these results indicate that, 
across all studies, peer-tutoring has a statistically signifi-
cant, positive, immediate treatment effect on social out-
come scores for children with learning disabilities at the .05 
significance level (two-tailed testing). The treatment effect 
on the time trend is not statistically significant, which indi-
cates that the trend during the treatment phase is not signifi-
cantly different from the baseline trend.

Visualization of the overall average, study-specific, and 
case-specific regression lines applied to two participants of 
the Banda, Hart, and Liu-Gitz (2010) study and two partici-
pants of the Barton-Arwood (2003) study is given in Figure 6. 
The green line indicates the overall average regression line 
and is the same for the participants of the Banda et al. (2010) 
and Barton-Arwood (2003) studies. The blue line refers to 
the study-specific estimate and is the same for the partici-
pants from the same study. The red lines are participant-
specific (again, note that the regression lines using the 
original scale are presented in Figure 6). In this way, not 
only the variability in treatment estimates between cases 
within studies is visualized but also how each individual 
study and each individual case deviates from the overall 
average treatment estimates.

Random effect estimates.  In addition to the estimate of the 
treatment effects (i.e., fixed effects), estimates of the vari-
ability in treatment effects between cases and between stud-
ies are obtained as indicated in Equations 4 and 5 (i.e., σv k20

2 , 
referring to the between-study variance for the estimated 
immediate treatment effect; σv k30

2 , indicating the between-
study variance for the estimated treatment effect on the time 
trend; σu jk2

2 , indicating the between-case variance for the 
estimated immediate treatment effect; and σu jk3

2 , referring 
to the between-case variance of the estimated treatment 
effect on the time trend). In this multilevel meta-analysis, 
most variability was found in the estimated immediate 
treatment effect between studies (σv k20

2  = 26.79, SE = 9.47, 
Z = 2.83, p = .002) and between cases ( σu k20

2  = 18.65, 
SE = 2.71, Z = 6.87, p < .001). The between-study vari-
ance of the treatment effect on the time trend (σv k30

2  = 0.50, 
SE = 0.28, Z = 1.79, p = .037) and the between-case variance 
of the treatment effect on the time trend (σu k30

2  = 2.0667, 
SE = 0.33, Z = 6.20, p < .001) are smaller, but still statis-
tically significant. Note that SAS 9.4 (SAS Institute Inc., SAS) 
provides a Z statistic and corresponding p value for statisti-
cal significance testing of the variance components esti-
mates. Therefore, it makes the assumption that the sampling 
distribution of the variances is normally distributed, which 
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is not the case (the sampling distribution is highly positively 
skewed). Therefore, it is more valid to evaluate the size of 
the variability instead of solely relying on the Z statistic and 
p value. Results of a multilevel meta-analysis are typically 
summarized in a table as demonstrated in Table 3.

Study-level and participant-level estimates.  In addition to the 
estimates provided in Table 3, another advantage of the 
multilevel meta-analytic model is that all the case-specific 
and study-specific effect size estimates are obtained. A 
large amount of variability in effect size estimates between 
cases and/or between studies will be reflected by a large 

range of case-specific and study-specific estimates. 
Because 27 studies with 130 cases are included in the anal-
ysis, 27 study-specific immediate treatment effects and 
treatment effects on time trends are estimated in addition to 
130 case-specific immediate treatment effects and treat-
ment effects on time trends. ranges from -9.73 (SE = 0.76, 
for Case 1 from Lorah, Gilroy, & Hineline, 2014) to 21.20 
(SE = 2.33, for Case 3 from Lorah et al., 2014). This 
reflects the large variability between cases in the estimated 
treatment effect. ranges from -10.38 (SE = 0.76, Case 5, 
Trembath, Balandin, Togher, & Stancliffe, 2009) to 4.23 
(SE = 0.79, Case 3 from Plumer, 2007). ranges from -8.21 

Figure 5.  Graphical display of the case-specific and study-specific regression lines the three participants of the study of Mason et al. 
(2014).
Note. The green line indicates the study-specific regression line and the red lines are the participant-specific regression lines.
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(SE = 2.24, Hibbert, Kostinas, & Luiselli, 2002) to 16.47 
(SE = 2.84, Lorah et al., 2014), and has a range from -1.88 
(SE = 0.51, Trembath et al., 2009) to 1.06 (SE = 0.59, Lof-
tin, Odom, & Lantz, 2008).

Moderators.  Because of the large variability (more than 
expected based on random error variance) in study- and 
case-specific effect size estimates (especially for the imme-
diate treatment effect), it makes sense to try to explain the 
source of variability by adding a moderator. To illustrate 
this, we added age as a second-level moderator. The mean 
age is 8.27 years (SD = 2.90) ranging from 3 to 17 years. 
Age was mean-centered to avoid multicollinearity (i.e., by 
adding a moderator, correlation between the moderator and 
the other predictors might be induced). These are the modi-
fied Level 2 equations:

Figure 6.  Graphical display of the overall average, study-specific, and case-specific regression lines applied to the two participants of 
the study of Banda, Hart, and Liu-Gitz (2010) and two participants of the study of Barton-Arwood (2003).
Note. The green line indicates the overall average regression line and is the same for the participants of Banda et al. (2010) and Barton-Arwood (2003). 
The blue line refers to the study-specific estimate and is the same for the participants from the same study. The red lines are participant-specific.
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θ21k  and θ31k  indicate the age effect on the case-specific 
immediate treatment effect and treatment effect on the time 
trend, respectively. The results can be found in Table 3. 
Some notable differences are that the immediate treatment 
effect becomes even more statistically significant, namely, 
γ200  = 3.88, SE = 1.00, t(21.6) = 3.85, p = .001. Age seems 
to moderate the relation between the immediate treatment 
effect and social outcome, γ210  = −0.58, SE = 0.25, 
t(64.1) = −2.28, p = .026. The older the participants, the 
less effective the peer-tutoring intervention. Age does not 
have a statistically significant effect on the treatment effect 
on the time trend. In addition, we found that age succeeds at 
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reducing the between-study variance in immediate treat-
ment effect (σv k20

2  = 22.37). Table 3 indicates that a sub-
stantial amount of variability is remaining and therefore 
further exploration of potential moderator variables is 
recommended.

Publication bias.  Publication bias is a common concern when 
performing a meta-analysis. A funnel plot can be evaluated to 
examine publication bias, as displayed in Figure 7. The fun-
nel plot was created using the “metafor” package in R 3.2.5 
(Viechtbauer, 2010). On the Y-axes the SEs are displayed 

(i.e., the root square of the inverse of the precision) and on the 
X-axes the standardized bias -corrected outcome score is dis-
played (i.e., the effect size). As the SE becomes smaller (more 
precision), less variability in effect size estimates is to be 
expected. As a consequence, ideally all the data points lie 
within the funnel. This general trend is not observed in cur-
rent study, as there remains a substantial amount of variabil-
ity in effect sizes, regardless of the precision. We can also 
deduce that for the larger range of values of the SE, there is a 
lack of studies, and as a consequence, we may conclude that 
there is some evidence for publication bias in the field of 
SCEDs using peer-tutoring as a treatment to increase social 
outcomes. For an in-depth discussion of the funnel plots, we 
refer readers to Sterne and Egger (2001) and Sterne and Har-
bord (2004).

Discussion and Extensions

The aim of this article was to introduce the basic multilevel 
meta-analytic model for the quantitative integration of 
regression-based SCED effect size estimates. The same 
logic can be applied to summarize other effect size esti-
mates. An empirical demonstration together with graphical 
presentations and interpretations of effect size estimates 
was provided together with software code. The purpose was 
to provide applied single-case researchers and research syn-
thesists with the necessary knowledge, conceptual under-
standing, and tools to independently perform the multilevel 
meta-analysis.

Although the focus of this article was on introducing the 
basic multilevel meta-analytic model, straightforward 
extensions can be implemented to model additional data 
and design characteristics. Therefore, I briefly give here an 

Table 3.  Summary Multilevel Meta-Analytic Coefficients Using the Meta-Analysis of Moeyaert et al. (2018).

Model 1 Model 2

  Parameter Estimate SE p Estimate SE p

Fixed effects
  Immediate treatment effect γ

200
3.74 1.09 .0023 3.88 1.00 .0009

  Treatment effect on trend γ
300

0.09 0.19 .6287 0.08 0.19 .6,878
  Age effect on immediate treatment γ

210
NA NA NA −0.58 0.25 .0257

  Age effect on treatment effect on time trend γ
310

NA NA NA 0.079 0.06 .1932
Variance effects
  Study
    Immediate treatment effect σ v2

2 26.79 9.4659 .0023 22.37 8.34 .0036
    Treatment effect on trend σ v3

2 0.50 0.2769 .0368 0.49 0.28 .0403
  Case
    Immediate treatment effect σ u2

2 18.65 2.7149 <.0001 18.65 2.73 <.0001
    Treatment effect on trend σ u3

2 2.07 0.3334 <.0001 2.062 0.33 <.0001
  Residual variance σ e

2 1 1  

Note. Model 1 does not include the moderator variable “age” whereas Model 2 includes the moderator variable. NA = not applicable.

Figure 7.  Funnel plot giving a graphical display of the standard 
error as a function of the effect size (i.e., observed outcome).
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overview of the most common data and design characteris-
tics and refer to relevant literature.

1.	 Continuous outcomes were assumed, but in the 
majority of SCED studies, the outcomes might be a 
sort of a count (Shadish & Sullivan, 2011). As such, 
a Poisson regression might be more appropriate and 
Poisson-based regression effect sizes can be com-
bined (Beretvas & Chu, 2013; Declercq, Beretvas, 
Moeyaert, Ferron, & Van den Noortgate, 2018). A 
Poisson distribution makes sense as it can only take 
on integer values (i.e., the outcome score has values 
of 0, 1, 2, etc.) whereas the OLS regression outcome 
can have any value, integer, or fractional.

2.	 For demonstration purposes, linear trends in the 
baseline and the treatment phases were assumed. 
Whereas it is reasonable to assume linear (and flat) 
trends during the baselines, nonlinear trends might 
be present in the treatment phase (i.e., asymptotic 
trend in case there is a floor or ceiling effect, or qua-
dratic trends). Therefore, functional forms other 
than linearity might be more realistic as suggested 
and further explored by Hembry, Bunuan, Beretvas, 
Ferron, and Van den Noortgate (2015).

3.	 Dependent errors are common in SCED data as 
repeated measures across time are obtained (com-
monly labeled as autocorrelation). Baek and Ferron 
(2013) discuss the issue of autocorrelation.

4.	 In this article, I assumed that the variance in out-
come scores during the baseline phase is the same as 
the variance of the outcome scores during the treat-
ment phase. The assumption of homogeneity might 
be violated as the data in the treatment phase might 
be more variable compared with baseline data. This 
issue of heterogeneity and methods to deal with het-
erogeneity are discussed by Joo, Ferron, Moeyaert, 
Beretvas, and Van den Noortgate (2017).

5.	 The studies were simplified to simple AB phase 
designs, but in reality, more complex SCED studies 
are common (e.g., alternating treatment designs and 
phase change reversal designs). Moeyaert, Ugille, 
Ferron, Beretvas, and Van den Noortgate (2014a) 
gave an empirical demonstration for the quantita-
tive integration of effect sizes from different SCED 
types. A list of methodological work in the context 
of multilevel modeling if SCEDs is provided 
Moeyaert, Manolov and Rodabaugh (in press) for 
readers interested in modeling other complexities 
than the ones discussed in this study.

As is clear from these few examples of additional design 
and data characteristics, it is challenging to assume a priori 
fixed parameters (i.e., one best model) that result in the best 
data fit. Participants and studies are different based on their 

specific data and design characteristics. For instance, for 
some participants, a quadratic model might result in the best 
model fit whereas a linear model is best suited for other 
participants.

One suggestion for determining the best model for one’s 
data is to first explore case-specific models. Afterward, the 
resulting effect sizes can be combined using multilevel 
meta-analysis. One promising approach is Bayesian 
Modeling Averaging (BMA). In the BMA framework 
(Leamer, 1978), we let the data speak for itself by determin-
ing which variables are most appropriate given the data. To 
reduce subjectivity and underestimation of model uncer-
tainty, the decisions are automatically made for the 
researcher, resulting in better predictive ability. BMA 
involves averaging overall possible models (i.e., combina-
tion of parameters) when making inferences. BMA will 
result in the best set of parameters given the data per partici-
pant. This suggestion is an idea for future research.

This study presents a univariate multilevel meta-analysis 
as the focus is on evaluating the effectiveness of peer-tutor-
ing interventions on one dependent variable, namely, aca-
demic outcomes. The original meta-analytic dataset of 
Moeyaert et al. (2018) also includes social outcomes. As it 
is anticipated that social and academic outcomes are corre-
lated, a multivariate multilevel meta-analysis can be con-
ducted. Multivariate multilevel meta-analytic models 
require further methodological investigation.
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