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This rejoinder keeps the original focus on statistical computing pertaining to the 

correlation of student achievement between mathematics and science from the Trend in 

Mathematics and Science Study (TIMSS). Albeit the availability of student performance 

data in TIMSS and the emphasis of the inter-subject connection in the Next Generation 

Science Standards in the U.S., the major TIMSS reports did not consistently include the 

correlational findings of student achievements, nor did the TIMSS macro, JACKREGPV 

per Mirazchiyski’s recommendation, meet the need of correlation computing between 

each pair of plausible values (PV) in mathematics and science. In addition, an inflation of 

Type I error would be inevitable unless a feasible approach is taken to concurrently 

correlate the two sets of PVs from each subject. In this context, we adduced canonical 

correlation analysis (CCA) as a feasible approach that included considerations of both 

sampling weight and standard error adjustment due to complex sampling. More 

importantly, this rejoinder reveals two fundamental issues in the TIMSS literature: (1) 

Incompliance to the multiple imputation rule in reporting the TIMSS 1995 international 

findings (see Beaton et al., 1996a, b); (2) Need of substantially increasing the number of 

PV imputations as illustrated by the mainstream statistical computing in general (e.g., SAS 

Institute, 2015; STATA, 2017), and the recent international large scale assessments 

(ILSA) in particular. 
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It is our great honor to contribute this rejoinder to an article of our esteemed 

colleague, Plamen Vladkov Mirazchiyski, the former Deputy Head of the 

Research and Analysis Unit of the International Association for the Evaluation of 

Educational Achievement (IEA). We appreciate his effort on writing an extensive 

response (we shall brief his article name as "response") that nearly doubled the 

space of our original article. We sincerely accept his criticism on the briefness of 

our report that was originally designed for a 20-minute presentation at the ninth 

Annual International Conference on Statistics (Athens, Greece) in June, 2015. 

In this rejoinder, we are given the opportunity to elaborate our research with a 

clear focus on the potential disagreements we seemed to have with Mirazchiyski. 

To keep it simple, we categorized this article into four parts. First, we will analyze 

the core issues that originated this track of in-depth inquiry. In the second section, 

we clarify what is not the issue. The third section is devoted to coverage of new 

literature beyond the foundation of multiple imputation method Mirazchiyski 
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reviewed from the period of 1970s – 1990s. We conclude this rejoinder in the last 

section to support the momentum of knowledge advancement in comparative 

education. 

 

 

What Is the Issue? 

 

Mirazchiyski raised issues on several fronts, including (1) the incorporation of 

sampling weights and the adjustment of result variance due to stratified, cluster 

sampling, (2) the ignorance of using TIMSS tools, particularly the macro of 

JACKREGPV.SPS, in the statistical computing that involves plausible values, (3) 

the use of design effect that, albeit its candidacy as a viable method for handling 

data with complex sampling in many decades (Kish, 1965), might produce crude 

estimates of the standard errors, (4) the inappropriateness of using the canonical 

correlation method in our original work for computing correlation coefficients.  

All these issues appear to be handled with a simplistic question on what 

works. While it is still legitimate, a more precise question should be on "what 

works in which context." In reviewing the research context of the Trend in 

Mathematics and Science Study (TIMSS), we appreciate Mirazchiyski’s attention 

on other [international] large scale assessments (ILSA)
1
, such as the First 

International Mathematics Study (or FIMS, conducted in 1964), the First 

International Science Study (or FISS, conducted in 1970-1971), the Second 

International Mathematics Study (SIMS), and the Second International Science 

Study (SISS) in the 1980s. He also noted the National Assessment of Educational 

Progress (NAEP) conducted in the United States, which is not an international 

study. However, it was extended in the two phases of International Assessment of 

Educational Progress (IAEP) prior to TIMSS. Further, the NAEP method was 

largely adopted by TIMSS.   

Throughout his response, Mirazchiyski did not pay any attention to the 

context so as to contrast TIMSS with other studies. One special feature of TIMSS 

is the opportunity of analyzing the correlation of student performance between 

mathematics and science that never existed in the past ILSA. Although FIMS, 

FISS, SIMS, SISS, and IAEP covered the subjects of mathematics and science, 

these assessments were conducted on different student samples, and thus, no 

attempt would be appropriate to compute correlation coefficients between 

mathematics and science scores. 

Indeed, the inter-subject connection is important. For instance, the Next 

Generation Science Standards (NGSS) indicated strong needs to connect 

mathematics and science education in the United States (National Research 

Council, 2014). Similar inquiry-based interdisciplinary learning was emphasized 

in the previous version of the U.S. curriculum standards since the mid 1990s. 

TIMSS is unique and unprecedented for surveying mathematics and science 

performance from the same group of students concurrently.  

Despite its 20-year history from TIMSS 1995 to TIMSS 2015, major TIMSS 

                                                      
1
We took the liberty to add "International" because it was missing in Dr. Mirazchiyski’s acronym 
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reports are divided according to the subject boundary, one for mathematics 

(Beaton et al., 1996a; Mullis et al., 2000; Mullis, Martin, Gonzalez, & 

Chrostowski, 2004; Mullis, I.V.S., Martin, M.O., & Foy, 2008; Mullis, Martin, 

Foy, & Arora, 2012a; Mullis, Martin, Foy, & Hooper, 2016a) and the other for 

science (Beaton et al., 1996b; Martin et al., 2000; Martin, Mullis, Gonzalez, & 

Chrostowski, 2004; Martin, Mullis, & Foy, 2008; Mullis, Martin, Foy, & Arora, 

2012b; Mullis, Martin, Foy, & Hooper, 2016b), as if there were no connections 

between them. 

More importantly, TIMSS methods, particularly the JACKREGPV.SPS 

macro adduced by Mirazchiyski, are not prepared for supporting the correlation 

analyses of student achievement between mathematics and science. Because 

TIMSS did not produce a macro for correlation computing, it seems natural to first 

obtain the coefficient of determination (R
2
) from a simple regression that contains 

one dependent variable and one independent variable. The correlation coefficient 

can be subsequently computed from the square root of the R
2
 result. In his 

Discussion section, Mirazchiyski dictated, 

 

[T]he correct approach for correlating the two sets of mathematics and science 

achievement PVs would be to correlate the first PV in mathematics with the 

first PV in science, the second PV in mathematics with the second PV in 

science, and so on, then averaging the obtained estimates to derive the final 

estimate of the correlation. (p. 14) 

 

which concurred the paring approach of using one plausible value (PV) from 

mathematics and another PV from science. For five PVs in each subject, five 

rounds of repetitions are needed prior the result aggregation. 

Nonetheless, to invoke the JACKREGPV.SPS macro from the TIMSS tools, 

researchers are expected to concurrently use all five plausible values (see NPV=5 

below), instead of one PV from each subject
2
. As Foy, Arora, and Stanco (2013) 

acknowledged, "[t]he JACKREGP macro [sic] is used to perform a multiple linear 

regression between a set of plausible values as the dependent variables [italics 

added for emphasis] and a set of independent variables" (p. 52), which does not 

work for paring the PV for correlation computing in Mirazchiyski’s afore-quoted 

suggestion.  

 

                                                      
2
The screenshot here comes from page 163 of https://bit.ly/1sFVLw9. 
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We further question Mirazchiyski’s claim of support for JACKREGPV or 

JACKREGP [sic] application from Foy, Arora, and Stanco (2013) and Statistics 

Canada (2002). Although TIMSS has made a convention of using the macro with 

PV in the name for analyses that involve plausible values (Foy, Arora, & Stanco, 

2013), the macro that can be used for the simple regression analysis with one PV 

as the dependent variable is JACKREG.SPS. In other words, the convention of 

Foy, Arora, and Stanco (2013) does not apply here when we handle correlation 

analyses with a pair of PVs, instead of all five PVs from both sides of mathematics 

and science. For that reason, the computation cannot be supported by the PV 

macros, such as JACKPV and JACKREGPV, from TIMSS.  

In summary, the main issue seemed to hinge on the potential oversight of 

TIMSS colleagues on the unique opportunity to correlate student performance 

between mathematics and science that never occurred in previous ILSA projects. 

Although 20 years have lapsed between TIMSS 1995 and TIMSS 2015, no major 

reports were disseminated on the correlation outcomes, nor did the TIMSS team 

clarify the confusion on which macro to revoke for the computing. By choice, we 

picked TIMSS 1995 data in our study to help track the ongoing disengagement of 

TIMSS reporting on the correlation part since its inception. 

 

 

What Is Not the Issue? 

 

The previous section addressed the issues that are important to us but was 

overlooked in Mirazchiyski’s response. In this section, we intend to reciprocally 

discuss topics that have been considered as issues by him, but not us. 

First, we agree that TIMSS data analyses need to consider both sampling 

weight due to unequal rates of sample selection and variance inflation for using a 

stratified, cluster sample structure. We also agree that canonical correlation 

analysis (CCA) is a method not solely developed to serve TIMSS researchers. For 

the sampling weight part, CCA does not have the issue because standard statistical 

software packages such as SAS allow incorporation of sampling weight in 

computing the coefficient from canonical correlation
3
. We were curious on why 

Mirazchiyski argued that our method "ignores another important design issue, the 

                                                      
3
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complex sampling design of TIMSS 1995, and the necessary use of sampling 

weights" (p. 18).  

The adjustment of variance to address the impact of complex sampling also 

needs to be done. However, it can be considered in multiple ways. For instance, 

SAS PROC SURVEYMEANS offered both design effect and Jackknife options 

for researchers to choose because supporters can be found in either aisle
4
. While 

the variance could be inflated by a factor of k (the design size) due to complex 

sampling (Kish, 1965), our article also clarified the cancellation of the k factor in 

correlation computing because of its involvement at both numerator and 

denominator of the formula. Mirazchiyski did not dispute our special attention for 

the correlation computing. Instead, he seemed to come from the Jackknife aisles of 

practitioners and wrote: "As per the use of design effect itself for estimating the 

sampling variance, it is largely discouraged in the recent years" (p. 17). In terms of 

the reason, he argued without an independent study that it produced "rather crude 

estimates of the standard errors" (p. 17). Nonetheless, even with a crude k value 

estimation as he alleged, little impact could have occurred in our correlation 

computing due to the numerator and denominator parts of the correlation 

configuration noted in our article.  

 

In reviewing the past TIMSS practice, Mirazchiyski acknowledged, 

Following the theoretical developments of Rubin (1987) and Little and Rubin 

(1987, 2002), any analysis of TIMSS 1995 involving PVs will perform the 

computations five times (once with each PV) and the results of these 

computations will be averaged to obtain an unbiased estimate of student 

performance (Gonzalez, 1997). (p. 8) 

 

Indeed, Rubin’s (1987) breakthrough has offered several desirable features, 

including (1) introducing appropriate random errors beyond any deterministic 

single imputation and (2) offering concise rules for combining the results from 

multiple imputations for statistical inference.  

Despite Mirazchiyski’s respect for Rubin’s (1987) requirement on the results 

aggregation, a single PV was used to represent student achievement score in 

TIMSS 1995 result reporting (see Beaton et al., 1996a, b). According to Gonzalez 

and Smith (1997, ch. 6, p. 3), the essential step of Rubin’s (1987) was not taken 

because of a decision to ignore the imputation error. When the imputation error 

was not considered, what was the purpose of spending the precious resources for 

multiple imputation (MI)? Arguing that one set of the imputed plausible scores can 

be considered as good as another (Gonzalez & Smith, 1997, ch. 6, p. 3), the 

TIMSS report fell back to the single imputation result to generate the findings 

from the first PV.  Consequently, the choice of other imputed plausible scores may 

result in alternative findings different from those in the released TIMSS reports 

(Wang, 2001).  

Mirazchiyski did hint on the detailed differences between TIMSS 1995 and 

the subsequent cycles of TIMSS in result reporting: 

 

                                                      
4
https://bit.ly/2qhV4Tr. 
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The presentation here continues with a description of the TIMSS 1995 

proficiency scaling methodology because this is the study and cycle the 

authors of the original article (Wang & Ma, 2016) used. The subsequent 

cycles of TIMSS use the same approach and steps for scaling the cognitive 

data, although some details may differ. (p. 6) 

 

Without his elaboration on the details of the differed steps, we take the liberty 

to clarify one difference in the major international reports between TIMSS 1995 

and its subsequent waves of trend studies. The reporting issue should be treated 

seriously according Mirazchiyski’s following statement, 

 

The contemporary ILSA are tools for policy making in education. The 

decisions made from analysis results have an impact on the [on the] 

implementation of policies and reforms in education. It is a great 

responsibility of researchers using these data to apply appropriate analysis 

methods, taking into consideration the study design and nature of the 

measures. Otherwise, biased results presented to policy makers may lead to 

ineffective policies. (p. 18) 

 

Despite the widespread negative impact of the TIMSS 1995 reports (Beaton et 

al., 1996a, b) against modeling the professional practice in MI application, we no 

longer treat this as a long-lasting issue. Mirazchiyski’s following notes show his 

agreement with us on the PVs as different variables:  

 

The five randomly drawn PVs for each student vary in their values as a result 

of the multiple imputation. When it comes to analysis of PVs, five estimates 

of any statistics are computed with each of the five PVs (or any measure that 

has been imputed multiple times) and they are all different. (p. 8) 

 

More importantly, the incompliance did not repeat itself in other waves of 

TIMSS reporting (e.g., Mullis et al., 2000; Mullis, Martin, Gonzalez, & 

Chrostowski, 2004; Mullis, I.V.S., Martin, M.O., & Foy, 2008; Mullis, Martin, 

Foy, & Arora, 2012a; Mullis, Martin, Foy, & Hooper, 2016a, b). 

Although Mirazchiyski agreed on the "imputation variance" or "imputation 

error" that caused the differences among five PVs, he stressed dimensionality 

considerations that treat PVs as "a set of variables representing unidimensional 

measure of the same construct of interest" (p. 7). In particular, Mirazchiyski 

criticized us for using CCA because "a set of Plausible Values (PVs) does not 

contain multiple different measures on multiple different latent traits as CCA 

would assume" (p. 13). Unfortunately, we still do not think this as an issue because 

CCA does not have the assumption on multiple different latent traits. As Borga 

(2001) pointed out, 

 

Canonical correlation analysis (CCA) is a way of measuring the linear 

relationship between two multidimensional variables. It finds two bases, one 

for each variable that are optimal with respect to correlations and, at the same 
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time, it finds the corresponding correlations. In other words, it finds the two 

bases in which the correlation matrix between the variables is diagonal and 

the correlations on the diagonal are maximized. The dimensionality of these 

new bases is equal to or less than the smallest dimensionality of the two 

variables [italics added for emphasis]. (p. 2) 

 

In theory, if the five PVs have a latent dimensionality equal to 1 for either 

science or mathematics performance, CCA can still generate statistical findings on 

these new bases of the latent traits with unidimensionality. In practice, the 

feasibility was reconfirmed by CCA computing in SAS without any warning or 

error messages pertaining to the dimensionality checking. Built on the relation 

between CCA and factor analysis, Levine (1977) also confirmed that just as one 

(general) factor can occur in factor analysis, so can unidimensionality happen in 

CCA. 

In summary, we agree with Mirazchiyski on the importance of incorporating 

sampling weight to ensure that certain groups are not overrepresented in the 

sample for each education system in ILSA. We also agree that additional 

consideration should be given to the adjustment of variability index due to 

complex sampling. These methods, including the use of design effect and 

Jackknife approaches, are included in standard software such as SAS for survey 

data analyses. Further, the procedure for CCA was well-established in SPSS or 

SAS to allow dimensionality of the latent bases to range from 1 to another integer, 

depending on the vector settings. Therefore, we have clarified the issues that 

seemed important to Mirazchiyski, but not us.  

In summary, our original analyses of the TIMSS data were built on in-depth 

understanding of the sample survey, data imputation, and CCA computing with 

support from standard software packages in the market. Meanwhile, even with the 

identification of an indisputable issue in the TIMSS 1995 reports (Beaton et al., 

1996a, b) for incompliance to the MI application rule established by Rubin (1987), 

we still do not treat it as a permanent issue because the compliance problem has 

been corrected in the other waves of TIMSS reports. From the perspective of 

supporting ongoing improvement for the benefit of our professional community, 

we reviewed additional literature below to sustain the momentum of methodology 

advancement in TIMSS. 

 

 

What Does the Current Literature Say? 

 

The literature indicates that the employment of Multiple Matrix Sampling 

design (as in TIMSS) results in "[t]he relatively small number of items per block 

and the relatively small number of blocks per test booklet" (von Davier, Gonzalez, 

& Mislevy, 2009, p. 11). Because the total number of achievement items in each 

ILSA is large, the task of missing value imputation is not small. The imputation 

model also involves information from background questionnaire to compose 

predictors. Mirazchiyski relied on the past practice to acknowledge that "[t]he 

derivation of PVs from population models relies on Rubin’s multiple imputation 
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methods developed in the period between late 1970s to late 1980s" (p. 5).  

At that time, Rubin (1987) convinced the research community that five 

imputations were adequate for treating missing data in general. Software packages, 

such as SPSS and SAS, accepted this convention to set the number of default 

imputation to 5 in their MI procedures. Allison (2001) applauded that "Like 

maximum likelihood, multiple imputation estimates are consistent and 

asymptotically normal. They are close to being asymptotically efficient" (p. 81). 

More recently, Bodner (2008) illustrated that important quantities (e.g., p 

values, confidence intervals, and estimated fractions of missing information) suffer 

from substantial imprecision with a small number of imputations. Sullivan, Salter, 

Ryan, and Lee (2015) concurred that "increasing the number of imputations entails 

greater precision" (p. 553). Practices of MI computing since the 1990s have led to 

an increase on the number of imputations in major standard software packages. 

For instance, SAS Institute (2015) announced that "the default number of 

imputations in PROC MI has been changed from NIMPUTE=5 to NIMPUTE=25 

in SAS/STAT 14.1" (p. 5921). The STATA software manual also indicated that 

"we recommend using at least 20 imputations to reduce the sampling error due to 

imputations" (STATA, 2017, p. 5).  

Like TIMSS, the MI method implemented by SAS, SPSS, and STATA are all 

grounded on Rubin’s (1987) classic work. However, Wang and Johnson (2018) 

compared the results of SPSS and SAS computing when the number of 

imputations was kept at 5. They found that a predictor variable could be claimed 

both significant and not significant depending on the software being used. As Von 

Hippel (2016) noted, "[n]on-replicable results reduce scientific openness and 

transparency, and the possibility of changing results by re-imputing the data offers 

researchers an opportunity to capitalize on chance by imputing and re-imputing the 

data until a desired result, such as p<.05, is obtained" (p. 2). 

More critically, when more variables are involved in the model setting and a 

large portion of missing information exists in the data set, researchers may 

encounter a high risk of obtaining conflicting MI results because the number of 

imputations is set too small in computer-based analyses (Wang & Johnson, 2018). 

To overcome this kind of problems, Allison (2012) recommended that "if 27% of 

the cases in your data set have missing data on one or more variables in your 

model, you should generate about 30 imputed data sets" (p. 1). Hence, after more 

than 20 years since the completion of TIMSS 1995, the research literature calls 

into question the optimism of the TIMSS guideline to delimit the number of PV 

imputations at 5. Finally, we note that PISA (Program for International Student 

Assessment), another important ILSA project, has already increased the number of 

PVs from 5 to 10 in its recent cycles
5
. 

If more PVs were imputed according to the latest wisdom of the research 

community, a much larger number of PVs would be released in the TIMSS 

database. Consequently, the risk of Type I error would substantially increase in 

computing correlation coefficients from more pairs of PVs between mathematics 

and science. Although this inflation of Type I error is a totally separate issue from 

the non-additive nature of the correlation coefficients, Mirazchiyski insisted that 

                                                      
5
https://bit.ly/2qjBs8B. 
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"The main argument of the authors [i.e., Wang & Ma, 2016] is that if two sets of 

PVs are used in correlation analyses of TIMSS data with the current approach the 

study uses, this can inflate the chance for making Type I error due to the non-

additive nature of the correlation coefficients [italics added for emphasis]" (p. 1-

2). 

In retrospect, this section is built on the latest research literature to urge for 

imputing more PVs in TIMSS and make it conform to the current professional 

practice in statistical computing. Meanwhile, more exploration, such as CCA in 

our original paper, should be encouraged to help control Type I error under the 

new circumstances. As the number of PVs is on the rise in current ILSA, the CCA 

approach may offer more advantage to correlate multiple outcome measures for 

the benefit of computational efficiency and control of Type I error. 

 
 

Conclusion 

 

TIMSS produces rich comparative information, and it is a daunting task to 

comprehensively document correct analytical methods for all data analysts. 

Nonetheless, colleagues in charge of TIMSS data dissemination confronted the 

challenge by providing a user guide for secondary data analysis (e.g., Foy, Arora, 

& Stanco, 2013). It should not come as a surprise that researchers find some 

analytical circumstances that are not clearly articulated by the TIMSS user guide. 

For instance, researchers are advised to perform computations five times (once for 

each PV) and average the results (Gonzalez, 1997). The average mechanism, per 

instruction of Little and Rubin (2002), was an arithmetic average without referring 

to any transformations. TIMSS researchers never cited StatSoft (2000, p. 10) on 

the need for converting correlation coefficients into additive measures. We are 

glad that Mirazchiyski followed a citation from our original article (i.e., StatSoft, 

2000) to amend the part not covered by the TIMSS user guide. As we deal with 

the ongoing knowledge development, there is no need for assuming panacea on 

what worked. Instead, more attention should be given on what works in a specific 

context. 

Accommodating more imputations is another front that imposes technical 

challenges for TIMSS data producers to catch up with the recent advancement in 

statistical computing. The existing tools, including macros such as JACKREGPV 

and the IDB Analyzer (IEA, 2016), are not flexible for supporting correlation of 

student performance between mathematics and science with an adequate number 

of imputations much larger than 5. While we have completely addressed our 

rationale for using CCA and design effect, TIMSS researchers should be allowed 

to continue using the methods of their choice, such as Jackknife computing to 

adjust standard errors that are not delimited to the correlation analyses. 

Furthermore, ongoing exploration is needed to control the inflation of Type I error 

should the number of imputations be increased to a default of 25, as accomplished 

by a standard software package like SAS.  

Finally, we wish to acknowledge that Mirazchiyski’ response demonstrated 

his rich knowledge about TIMSS practices. The entire research community owes 
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him and his colleagues for their persistent effort in producing large-scale 

international data that are important in comparative studies. In terms of the value 

of TIMSS, our rejoinder might have inadvertently made his responses like 

preaching to the converted. Still, his article clearly offered a great opportunity for 

clarifying the details of TIMSS methodology. It has been our privilege to interact 

with this exemplary scholar in the field of ILSA. 
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