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There are some educational interventions aimed at changing the ways in which

individuals interact, and social networks are particularly useful for quantifying

these changes. For many of these interventions, the ultimate goal is to change

some outcome of interest such as teacher quality or student achievement, and

social networks act as a natural mediator; the intervention changes the social

networks of the teachers in schools, and teachers with certain types of social

networks tend to use better teaching practices, for example. Due to lack of

methodology, however, social networks have not been modeled as mediators.

We present a new framework for modeling social networks as mediators in

which a social network model is embedded into a mediation model and both

models are estimated simultaneously. As a proof of concept, we introduce a new

network model for mediation, applicable for interventions that affect subgroup

structure. We provide a small simulation study to demonstrate the feasibility of

this model and explore some potential operating characteristics. Finally, we

apply our model to examine the effects of instructional coaches on teacher

advice-seeking networks and subsequent changes in beliefs about mathematics.

Keywords: evaluation; organization theory/change; research methodology; school/

teacher effectiveness; statistics

1. Introduction

There are some educational interventions aimed at changing the ways in

which individuals interact, whether it is an increase in collaboration among

certain researchers, a push toward small learning communities of teachers, or

breaking up adolescent cliques. Social networks may provide insight into not

only how the intervention affected the ways individuals interact but also the

mechanisms of how networks can affect individual outcomes. In some contexts,

the network can even act as a mediator between the intervention and the outcome.

Of course, the ultimate purpose or theory of action may not be to change only

the social or professional relationships among the individuals in the network,

rather it is more likely that these interactions facilitate or influence individual
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outcomes. In educational studies, for example, changes in the social network are

merely the mechanisms through which teachers become better teachers and

students become better learners. For example, an initiative aimed at increasing

teacher collaboration does so in the hopes of improving teacher quality and

student outcomes.

Social network data in education have been used to measure access to

professional resources such as expertise (Frank, Zhao, & Borman, 2004;

Penuel et al., 2010), connect network structure with collective efficacy

(Moolenaar, Sleegers, & Daly, 2012), link networks with formal organiza-

tional structure within schools (Spillane & Hopkins, 2013; Spillane, Kim, &

Frank, 2012), and link network structure with top-down district policy

(Coburn & Russell, 2008). Studying social networks of students has also

been of interest; for example, networks have been used to investigate aggres-

sive behavior and its relationship to peer networks (Espelage, Holt, & Hen-

kel, 2003), to determine which factors are associated with new friendship ties

(Frank, Muller, & Mueller, 2013), and to even link teacher attitudes about

social behavior to student friendship networks (Gest & Rodkin, 2011). Social

networks have even been considered as part of an intervention, for example,

how networks affect intervention implementation (Daly, Moolenaar, Bolivar,

& Burke, 2010; Moolenaar, Daly, & Sleegers, 2010) or how the intervention

affects networks (Paluck, Shepherd, & Aronow, 2016).

Although social network data are being collected in education and psycholo-

gical research, social network modeling has been largely absent in large-scale

education studies. Further, we do not know of any studies in which networks

have been used as mediators. We believe there are two reasons for this. First,

until recently, there were very few statistical models that could easily accom-

modate multiple school network data inherent in these studies, and second, there

are no known statistical social network models that accommodate a social net-

work as a mediator.

The purpose of this article is therefore to introduce a general framework for

modeling social networks as mediators. As an example, we will introduce the

Hierarchical Mixed Membership Stochastic Blockmodel (HMMSB) for media-

tion, which builds on work by Airoldi, Blei, Fienberg, and Xing (2008); Sweet,

Thomas, and Junker (2014); and Sweet and Zheng (2017). The article is orga-

nized as follows: We begin with an introduction to social network models focus-

ing on network models for experimental interventions. Next, we provide an

introduction to mediation analysis and describe how we can incorporate net-

works into a mediation model. We then introduce our framework, Hierarchical

Network Models (HNMs) for mediation, for building models that accommodate

networks as mediators and illustrate this with the HMMSB for mediation. We

then provide a series of empirical analyses to illustrate how these models can be

used in practice; we also include a real-world application using teacher advice-

seeking network data. We conclude with some future directions for this work.
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2. Social Network Models

The term social network model encompasses a wide variety of statistical

models for modeling relational data. Some of these models consider the network

or collection of network ties as the outcome, whereas others incorporate network

data into the model to predict some other outcome. One issue with modeling

social network data is that network ties are not mutually independent; that is, the

likelihood that a tie exists from node i to node j is not independent of the other

ties that may exist in the network. Intuitively, it is reasonable to assume that the

probability of such a tie likely depends on whether there is a tie from j to i as well

as the other ties i and j have with other nodes. Thus, models that assume inde-

pendent observations should not be applied.

The purpose of this section is to first introduce the reader to social network

models so that we can then augment them to model networks as mediators.

Therefore, our overview will focus on social network models that will be used

to build our network mediation models.

There are two broad classes for predicting social networks: models that

specify the dependence structure among ties explicitly and models that accom-

modate tie dependence implicitly through the use of latent variables. The for-

mer class includes exponential random graph models (Robins, Pattison, Kalish,

& Lusher, 2007; Wasserman & Pattison, 1996) in which the probability of

observing a network is modeled as a function of network statistics and node

covariates. The latter class is often called conditionally independent tie (or

dyad) models in which each tie (or dyad) is modeled as independent conditional

on some set of latent variables. Stochastic blockmodels (Anderson & Wasser-

man, 1992; Holland, Laskey, & Leinhardt, 1983), mixed membership stochas-

tic blockmodels (MMSBs; Airoldi, Blei, Fienberg, & Xing, 2008), and latent

space models (Hoff, Raftery, & Handcock, 2002) are examples of conditionally

independent tie models.

We will focus on conditionally independent tie models for the purposes of this

article, but these methods likely extend to exponential random graph models. We

now define a conditionally independent tie model. Let A be an adjacency matrix

where Aij is the value of a tie from node i to node j. If these ties are binary, Aij ¼ 1

indicates the presence of a tie, and we write the model as

PðAjZ;X ;fÞ ¼
Y

ij

PðAijjZij;Xij;fÞ

logitP½Aij ¼ 1jXij; Zij;f� ¼ f ðf;Xij; ZijÞ;
ð1Þ

where X is a collection of covariates at the node or dyad level, f is the set of

model parameters, and Z is a collection of latent variables. Thus, each tie Aij is

conditionally independent of every other tie given latent variables Z. The specific

form the latent variables Z take depends on the model, although Z generally

represents information about the individual nodes in the network.
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Our proposed framework for modeling networks as mediators assumes that

the network is the unit of observation; that is, we assume an intervention or

experiment affects the entire network which in turn affects some outcome of

interest. Thus, we require models that accommodate more than one network.

Generalizing across some specific examples of multilevel models (e.g., Snijders

& Kenny, 1999; Templin, Ho, Anderson, & Wasserman, 2003; Zijlstra, van

Duijn, & Snijders, 2006), Sweet, Thomas, and Junker (2013) introduced a frame-

work termed HNMs for modeling multiple networks. Specifically, this modeling

framework assumes that networks are independent but not identically distributed

as each network is generated by its specific network model.

Given an independent sample of networks A ¼ ðA1; . . . ;AKÞ, covariates

X ¼ ðX1; . . . ;XKÞ, latent variables Z ¼ ðZ1; . . . ; ZKÞ, and modeling parameters

F ¼ ðf1; . . . ;fKÞ, we can extend Equation 1 using the notation similar to that

presented by Sweet et al. (2013). An HNM is given as

PðAjX;Z;FÞ ¼
Y

k

PðAk jXk ; Zk ;fkÞ

Y
k

PðAk jXk ; Zk ;fkÞ ¼
Y

k

Y
ij

PðAijk jZijk ;Xijk ;fkÞ

logitP½Aijk ¼ 1jZijk ;Xij;fk � ¼ f ðfk ;Xijk ; ZijkÞ;

ð2Þ

where each fk is sampled from some super population. Similar hierarchical

distributions can be specified for each network’s set of latent variables Zk as well.

Note that several multilevel extensions of conditionally independent tie net-

work models have been introduced and versions of these models have been used

in the education sciences. Sweet et al. (2013) introduced a multilevel extension to

the latent space model which has been used to compare the effects of English-

language learner (ELL) teachers versus non-ELL teachers on forming advice and

instructional ties (Hopkins, Lowenhaupt, & Sweet, 2015), to examine whether

beliefs about mathematics predict advice and instructional ties (Spillane, Hop-

kins, & Sweet, 2018), and to estimate the effect of proximity on workplace

network ties (Spillane, Shirrell, & Sweet, 2017). Similarly, Sweet et al. (2014)

and Sweet and Zheng (2018) extended the MMSB for multiple networks, and

Sweet and Zheng (2018) presented an example relating teacher classroom man-

agement strategies with the level of integration among peer subgroups in that

class.

3. Mediation Analysis

Mediation analysis refers to statistical models that accommodate a mediating

variable, which is a variable involved in a causal process from independent

variable to mediating variable and from mediating variable to dependent vari-

able. An example of such a process could be an intervention on student social
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skills (independent variable) which creates a sense of community (mediating

variable) that subsequently improves class achievement (dependent variable).

The purpose of a mediation analysis is to determine the extent to which the

relation between the independent variable and dependent variable is attributed to

this third variable. The mediation analytic framework was first introduced by

Baron and Kenny (1986) to properly disentangle the concept of mediation from

that of moderation and has since grown to be not only an active area of research

(e.g., Imai, Keele, Tingley, & Yamamoto, 2011; Krull & MacKinnon, 1999;

MacKinnon & Fairchild, 2009; Yuan & MacKinnon, 2009) but also a standard

topic for instruction (MacKinnon, 2008).

The single mediator model as introduced by Baron and Kenny (1986) is

summarized in Figure 1. In this figure, X is the independent variable, M is the

mediating variable, and Y is the dependent variable. This model can also be

written as a series of three equations:

Y*Nðb1 þ tX ;s1
2Þ

M*Nðb2 þ aX ;s2
2Þ

Y*Nðb3 þ t0X þ oM ;s3
2Þ;

ð3Þ

where t is often called the direct effect (of X on Y ). The effect of the X on the

mediating variable is a and the effect of M on Y is o. The parameter t0 represents

the effect of X on Y controlling for M .

Thus, if X predicts Y and M predicts Y , then when Y is regressed on both X and

M , the effect of X is likely reduced when controlling for M . The mediated effect

can be estimated by using either âô or t̂� t̂0; in an ordinary least squares (OLS)

framework, these are mathematically equivalent (Yuan & MacKinnon, 2009).

According to the model given in Equation 3, any statistically significant

association between X and M and M and Y can result in significant mediation

effect. Moreover, associations among X , Y , and M are also found in models of

moderation, and these are also present if M is a confounding variable. Thus, we

need additional assumptions to prove that M is a mediating variable. The rela-

tionships among X and M and Y are causal; X causes M and M causes Y as

shown in Figure 1. That these relation are causal defines mediation, and there are

X

M

Y

α

τ

ω

FIGURE 1. A mediation model with independent variable X, dependent variable Y, and

mediator M; causal paths from X to M, from X to Y, and from M to Y are denoted with an

arrow. The regression coefficients ða;o; tÞ align with those given in Equation 3.
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a variety of ways to assess whether these associations are causal. For the purposes

of our article, we assume that these relationships are causal based on the social

theory connecting our variables.1

Consider the effect of a professional development program for teachers on

instructional quality. Teachers who participated in this program had higher rat-

ings of instructional quality than teachers who did not participate. While it is

certainly interesting that this program appears to improve instructional quality,

one wonders why or how this program causes this improvement. A mediating

variable in this example might be teacher efficacy. Suppose the program pro-

moted building self-efficacy (stronger beliefs about their capabilities) so that

participating teachers had higher levels of efficacy than nonparticipating teach-

ers. Similarly, teachers with higher self-efficacy provide higher quality lessons.

Thus, mediation models not only explain causal relations among a number of

variables, they can also illuminate possible mechanisms to explain the reason

behind the relationship between independent and dependent variables.

4. Modeling Networks as Mediators

Given the causal path from X to M to Y in Figure 1, there are a number of

different ways to augment Equation 3 to accommodate a social network as a

mediator. Before we introduce these, we present a running example to provide a

context for these methods. Consider a school-based intervention such that parti-

cipating in the intervention changes the way teachers in that school interact, and

suppose the outcome of interest is also at the school level, such as a school-level

measure of average teacher quality. In this context, the school is the unit of

observation (or randomization in a randomized-controlled trial), so that Xk is

an indicator for whether school k participates in the intervention and Yk is the

school-level outcome measure for school k. Then we propose using the school’s

network as the mediating variable M . It is important to note that since the unit of

observation is the school (or network), our proposed methodology requires a

collection of school networks; for the purposes of our example, assume there

are K schools.

We consider two approaches to defining a network as a mediator. First, define

the social network for school k using an adjacency matrix Ak , defined such that

Aijk is the value of a tie from individual i to individual j in school k.2 The most

obvious method of embedding A into M is to use a variable that can represent the

social network as the mediating variable; that is, we substitute a network-level

summary statistic of Ak for M (see top of Figure 2). A common network statistic

is density, the proportion of observed ties out of all possible ties. In a binary

network, we define density as d ¼
Pn

i;j¼1 Aij

nðn�1Þ , where n is the number of individ-

uals in the network. Then our mediating variable is the network density for each

school, M ¼ ðd1; d2; . . . ; dKÞ. Returning to our example, we might assume that
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our intervention increases the density of teacher networks which then improves

teacher quality since teachers who are well-connected have access to more

instructional resources.

One disadvantage with using a single network statistic is the fact that a single

measure often fails to capture the full structure of the network. Similarly, a

network summary statistic may be difficult to compare across networks, espe-

cially those that vary in size. On the other hand, if social theory is driving the

analysis, using a single network statistic can be advantageous in that it can target

a very specific aspect of the network. For example, if an intervention is hypothe-

sized to increase collaboration among teachers across grades, the density of ties

among teachers in different grades could be an important variable to include in

the analysis. Another advantage of using a network statistic as a mediating

variable is that standard statistical software can be used to fit these models.

The second approach, which is the focus and contribution of this article, is to

use a parameter from a social network model for M (see bottom of Figure 2). Not

only do social network models commonly account for the structure of the entire

network (and its many interdependencies), these models can also identify net-

work structures and social phenomena that may be difficult to capture with a

network statistic. By embedding a social network model into a mediation model,

we have not only created a new way to model networks as mediators but also an

organizational framework with which to build mediation models for networks.

We formally introduce this framework in the next section.

5. HNMs for Mediation

We propose a framework for modeling networks as mediators in which we fit

a statistical social network model and use the parameter from that model as the

FIGURE 2. Two methods of incorporating a network A into a mediation model are shown;

use a summary statistic of the network by taking some function of the network f ðAÞ as the

mediating variable (top) or fit a statistical social network model and use a parameter from

that model as the mediator (bottom).
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mediator in a mediation model. Because we are interested in the effect of an

intervention on a network, our unit of observation is at the network level, so

social network models that accommodate multiple, independent networks are

required. Therefore, our framework, HNMs for Mediation, extends the HNMs

framework introduced by Sweet et al. (2013). To formally define an HNM for

Mediation, let A1; . . . ;AK represent a collection of independent networks such

that Ak represents network k with a corresponding network model PðAk jnkÞ.
Suppose our mediator is a parameter M such that Mk is contained in nk . We

denote Y and X as the associated dependent and independent variables, and a, o,

and t0 are the causal effects defined in Equation 3. Then, a general form for an

HNM for Mediation is given as

PðAjX ; nÞ ¼
YK
k¼1

PðAk jnkÞ

Mk*FðMk jXk ; aÞ
Yk*GðYk jMk ;Xk ;o; t0Þ;

ð4Þ

where G and F are generic distributional assumptions. To better align with

Equation 3, we can specify Mk in Equation 4 as having a normal distribution;

that is, we could specify Mk*Nðb2 þ aXk ;s2
MÞ. Similarly, we can write

Yk*Nðb3 þ t0Xk þ oMk ;s2
Y Þ.

Note that Equation 4 is purposively general to highlight the variability in

models that can be built from this framework, in terms of the network model,

the mediating network model parameter as well as how the mediation model is

specified. That said, we are not claiming that any model fitting this form is a

feasible mediation model, only that this is a general way of specifying a media-

tion model and that network mediation models can be written in this form.

To better understand Equation 4, let us return to our school-based intervention

such that X is the treatment condition indicator. Then we believe that something

about the network changes due to participating in the experiment, and this some-

thing can be measured byM. Finally, we also hypothesize thatM differentially

impacts some school-level variable such as average teacher quality. We further

specify this example in the next section.

5.1. HMMSBs for Mediation

As a proof of concept, we introduce the first HNM for Mediation and call this

model the HMMSB for Mediation; the long name points to the various compo-

nents used in building the model. We will briefly introduce these components

before we present the full model.

Stochastic blockmodels are social network models that represent the prob-

ability of observing a network tie between two individuals as a function of their

respective block memberships; the common assumption is that if the two

Sweet

217



individuals are in the same block or group, they are more likely to share a tie than

if they are in different blocks. These models are particularly useful for networks

with some kind of subgroup structure such as friendship ties among adolescents

or workplace ties among teachers. A simple stochastic blockmodel (for a binary

network) is given as

Aij* Bernoulli gT
i Bgj

gi* Multinomial ðpÞ
B‘m* Beta ða‘m; b‘mÞ;

ð5Þ

where Aij is the indicator of a tie from i to j, and gi and gj are sampled from a

multinomial distribution and denote the block memberships for i and j, respec-

tively. The parameter B represents a block–block tie probability matrix such that

B‘m is the probability of a tie from a node in block ‘ to a node in block m. Prior

distributions for the elements in B can be specified such that within-block ties are

more likely than between-block ties; that is, the shape parameters a‘m and b‘m are

chosen to place more probability on values near 0 or near 1.

Mixed membership refers more generally to larger class of mixture models in

which group assignment is not fixed but instead parameterized by a probability

vector (Airoldi, Blei, Erosheva, & Fienberg, 2014). The concept of mixed mem-

bership has been applied in a number of statistical models across a wide variety

of disciplines ranging from science publications (Erosheva, Fienberg, & Lafferty,

2004) to predicting trends in disability (Manrique-Vallier, 2014) to problem-

solving strategies (Galyardt, 2012).

MMSBs were originally introduced by Airoldi et al. (2008) as an extension of

stochastic blockmodels. Block membership is no longer limited to a single block;

each node belongs to all blocks with nonzero probability. An MMSB can be

written as

Aij* Bernoulli ðSij
T BRjiÞ

Sij* Multinomial ðyiÞ
Rji* Multinomial ðyjÞ
yi* Dirichlet ðxgÞ

B‘m* Beta ða‘m; b‘mÞ;

ð6Þ

where yi represents the probability that node i belongs to each block. This

membership vector y also determines the block membership for each interaction

from i to j; that is, yi affects the distributions of Sij and Rji, the vectors indicating

the block membership of i and j, respectively, when i is sending a tie to j. Thus,

the probability of a tie from i to j depends on both the specific membership for

that interaction as well as B. Note that the distribution for yi in Equation 6 differs

from that in Airoldi et al. (2008); we use the paramerization proposed by Ero-

sheva (2003) such that x determines the relative center of the Dirichlet
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distribution and g determines the shape of the Dirichlet distribution. In practice,

we can think of x as a vector that shows the relative probability of belonging to

each subgroup such that equal entries of x generally result in similar subgroup

sizes. On the other hand, g determines how extreme the membership probability

is; small values of g result in nodes belonging to only one block with probability

near 1 and the other blocks with probability near 0.

We now consider the following extensions to the MMSB. First, Sweet et al.

(2014) introduced a multilevel extension of the MMSB termed the HMMSB. One

way to specify this model is given as

Aijk* Bernoulli ðSijk
T BRjikÞ

Sijk* Multinomial ðyikÞ
Rjik* Multinomial ðyjkÞ
yik* Dirichlet ðxgkÞ
gk* Gamma ðc; dÞ

B‘mk* Beta ða‘mk ; b‘mkÞ;

ð7Þ

where k indexes the network. Not only do these multilevel extensions now

accommodate multiple, independent networks, but they also estimate a

network-level (network-specific) parameter gk .

Further, Sweet and Zheng (2017) proposed g as a measure of subgroup integra-

tion. Networks generated from MMSBs with values of g < 0:1 tend to have very

insular subgroups, whereas networks generated from models with g > 0:5 have

very integrated networks.3 Sweet and Zheng (2018) then proposed a new model in

which g for each network is regressed on some network-level covariate. This

model is the same as Equation 7 except for the distribution of g which is given as

gk*expðb0XkÞ
b*Nðc; dÞ;

ð8Þ

where X is a network-level covariate.

Note that in Equation 8, we assume that the value of g for each network—that

is, the measure of subgroup integration for that network—covaries with some

network attribute. For example, consider elementary school teacher advice-

seeking networks. These tend to have subgroup structure since teachers tend to

cluster based on grade assignment. However, there is variability in how insular

these clusters might be. We might relate subgroup insularity of these teachers

with the vision of the administrative leaders. If the administration believes that

vertical alignment is a priority (X in Equation 8), they likely will take steps to

have teachers interact with teachers who do not teach the same grade, resulting in

less insular teacher networks.

Moreover, we argue Equation 8 could be also used in the context of an

intervention such that X is a binary or categorical variable indicating assignment
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to an experimental condition. It is also possible that X is a continuous variable

measuring some kind of intervention dosage. We then look at the effects of such

an intervention on subgroup insularity g.

We now present the HMMSB for Mediation. Let X be an intervention that

affects the level of subgroup insularity g which in turn affects some other

network-level outcome Y . The full mediation model is given as

Aijk* Bernoulli ðSijk
T BRjikÞ

Sijk* Multinomial ðyikÞ
Rjik* Multinomial ðyjkÞ
yik* Dirichlet ðxgkÞ

B‘mk* Beta ða‘mk ; b‘mkÞ
gk*Nðb01 þ aXk ;s1

2Þ; gk > 0

Yk*Nðb02 þ t0Xk þ ogk ;s2
2Þ

b01*Nðmb01
;s01

2Þ

b02*Nðm02;s02
2Þ

a*Nðma;sa
2Þ

t0*Nðmt0 ;st0
2Þ

o*Nðmo;so
2Þ

s1
2*Inv� Gammaða; bÞ

s2
2*Inv� Gammaðc; dÞ;

ð9Þ

where a, t0, and o are defined as in Equation 3; a is the effect of the intervention

on the network; t0 is the conditional effect of intervention on the outcome vari-

able; and o is the conditional effect of the network on the outcome. As in

Equation 3, we define the mediated effect as ao. First, note that our distribution

for g differs from the distribution proposed by Sweet and Zheng (2018) in that we

use a truncated normal distribution. We found that a truncated distribution gen-

erated more appropriate values of g given a nominal covariate X ; Sweet and

Zheng (2018) used a continuous predictor in their model.

Note also that in Equation 9, we include prior distributions for the entries of Bk

across all networks, but in practice, we do not recommend estimating B. In fact,

Sweet and Zheng (2017) discussed an identifiability issue between the values of

B and g and suggested that B remained fixed across networks to optimize the

precision in estimating each gk . This also means that g is a relative parameter;

each gk depends on that network’s values of B so the value for each gk is not

meaningful when taken alone.

Returning to our running example, suppose now that our intervention X is a

professional development program that promotes teacher collaboration across
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grades, subjects, and levels of experience. As a result, teachers who participate in

this program are more likely to form professional relationships with teachers

outside of their instructional area than teachers who do not. Thus, treated net-

works have larger values of g. Further, integrated networks result in larger spans

of resource sharing and improved instructional quality Y . Therefore, instructional

quality is predicted by both participating in the professional development X and

having integrated subgroups g.

5.2. Estimation

To estimate the parameters in Equation 9, we developed an MCMC algorithm

(Gelman, Carlin, Stern, & Rubin, 2013) in which parameters are updated using

Gibbs, Metropolis, or Metropolis–Hastings (M-H) updates and estimated using R

(R Core Team, 2018). The joint likelihood is given as

Pðo;a;t0 ;s2
1 ;s

2
2 ;y;S ;R;x;B;X ;Y ;AÞ

¼
Y

k

Y
i6¼j

�
PðAijk jSijk ;Bk ;RjikÞPðSijk jyikÞPðRjik jyjkÞ

�Y
k

Y
i

�
Pðyik jxk ;gkÞ

�
Y

k

PðYk jXk ;b02 ;t
0 ;gk ;o;s

2
2Þ
Y

k

�
Pðgk jXk ;a;b01 ;s

2
1ÞPðBkÞPðxkÞ

�

Pðb01ÞPðb02ÞPðaÞPðoÞPðt0ÞPðs2
1ÞPðs2

2Þ:

ð10Þ

The parameters y, S, R, and B can be updated using Gibbs updates. The

complete conditionals for each parameter in network k are

Pðyik j . . .Þ / Dirichlet xkgk þ
X

j

Sijk þ
X

j

Rijk

 !

PðSijk j . . .Þ / Multinomial ðpÞ

ph ¼ yikhBh‘Ø
Aijk ð1� Bh‘ØÞð1�Aijk Þ

PðRjij . . .Þ / Multinomial ðqÞ

qh ¼ yikhBmØh
Aijk ð1� BmØhÞð1�Aijk Þ

B‘mk / Beta
�

a‘k þ
X
ðijkÞØ

Aijk ; bmk þ
X
ðijkÞØ

Aijk

�
;

ð11Þ

where lØ and mØ are the group membership indicated by Rjik and Sijk , respec-

tively, and ðijkÞØ is a specific subset of ði; jÞ in network k such that Sijk indicates

block ‘ and Rjik indicates block m.

The remaining parameters require Metropolis or M-H updates. To update xk

for a given network, we use a Dirichlet proposal distribution centered at the

current value of xk . Then, we propose xk
ðsþ1Þ*Dirichlet ðuxk

gxk
ðsÞÞ, where uxk
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is a tuning parameter and g is the number of blocks, which is chosen a priori.

Similarly, gk can be updated using the following proposal distribution Gðugk
;

ugk

gk
Þ

such that ugk
is a tuning parameter.

For parameters with normal priors, b01, b02, a, t0, and o, we update using

random walk M-H updates. Finally, s2
1 is updated using a Metropolis update

using an Inv-Gamma
u2
s

s2
1

; u2
s

� �
proposal distribution with tuning parameter u2

s,

and s2
2 is updated via Gibbs with an Inv-Gamma complete conditional with

hyperparameters given as cþ K
2
; d þ 1

2

P
kðYk � ðb02 þ t0Xk þ ogkÞÞ2

� �
.

The MCMC algorithm summarizes how one would fit a HMMSB for Media-

tion in theory. In practice, we require several constraints. Sweet and Zheng

(2017) recommend fixing B along with specifying the number of blocks to be

the same across networks. They found that g is actually a relative measure and

that identifiability issues exist when B and the number of blocks vary across

networks. They also found that g is best recovered when g is between 0.05 and 1

so we directly constrain g > 0 through the use of a truncated normal distribution

(see Equation 9).

Finally, we discuss our choice for estimating the HMMSB for Mediation as

one large Bayesian model as opposed to estimating the HMMSB in two stages.

First, our measure of subgroup insularity is a parameter from the MMSB, so there

is estimation error associated with gk for each network. We need to include that

error in our mediation model so that the posterior variance for our mediation

effect is not misleadingly small, which would increase type I error rates as well as

overinflate power. Second, estimating the full mediation model is not much more

computationally expensive than estimating the MMSB for each model and then

using OLS to estimate a, t0, and o. Given the advantages of incorporating

estimation error for g into the model, it is worth the minimal computational cost

to include these parameters in the MCMC.4

6. Empirical Analyses

6.1. Simulation Studies

We present a small simulation study to demonstrate fitting the HMMSB for

Mediation in practice. We simulate network and outcome data for a variety of

network sizes, numbers of networks, and various mediation and direct effects. A

summary of the simulated data sets is given in Table 1.

For each simulated data set, we construct a binary variable X such that exactly

half of the networks are treated (X ¼ 1). We fix the number of blocks in each

network to be three, and for simplicity, we fix x ¼ ð1
3
; 1

3
; 1

3
Þ, which generates

three subgroups that are approximately equal in size. We then use the following

data generating model:
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gk*Nð0:05þ aX ; 0:25Þ; gk > 0; k ¼ 1; . . . ;K

Yk*Nðt0Xk þ ogk ; 0:25Þ
yik* Dirichlet ðgkxÞ; i ¼ 1; . . . ; n

Sijk* Multinomial ðyikÞ; i; j ¼ 1; . . . ; n

Rjik* Multinomial ðyjkÞ; i; j ¼ 1; . . . ; n

Aijk* Bernoulli ðSijk
T BRjikÞ;

ð12Þ

such that K is the number of networks and i; j index is the n nodes in each

network. In addition, we fix B to be a 3� 3 matrix with diagonal entries of

0:6 and off-diagonal entries of 0:005.

To better understand the data generating model, we plot the simulated net-

works from Simulation 1 (Table 1) for which there were 20 networks of 15

nodes each. Figure 3 shows the effect of a ¼ :5 on network subgroup structure;

the 10 control networks (top two rows of networks) have more insular sub-

groups than the 10 treated networks (bottom two rows of networks). Specifi-

cally, gk for the treated networks are generally larger than the gk for the control

networks. Recall that small values of g generate block membership probabil-

ities such that most of the probability mass is in a single block and larger values

of g generate block probabilities that are less extreme. As a result, nodes in the

treated networks are more likely to belong to multiple blocks, and the networks

that result appear to have more integrated networks. In Figure 3’s treated net-

works, some of the subgroups are so integrated that the three blocks are no

longer distinguishable.

Simulation 1 also assumes a positive effect of the mediator on the outcome

variable. Figure 4 shows a scatterplot of the outcome Y versus g; the positive

association is visually apparent when o ¼ 1.

TABLE 1.

Summary of Simulated Data Sets

Simulated Data Set Number of Networks Network Size t0 o

1 20 15 .5 1

2 20 30 .5 1

3 40 15 .5 1

4 40 30 .5 1

5 20 30 0 0.5

6 20 30 0 1

7 20 30 .5 0.5

Note. All data sets have a ¼ :5.
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For each simulation setting described in Table 1, we generated 50 data sets5

and fit the HMMSB for Mediation given in Equation 9. The priors used for each

model fit are given as

b01*Nð0; 0:01Þ
b02*Nð0; 9Þ
a*Nð0; 9Þ
t0*Nð0; 9Þ
o*Nð0; 9Þ
s2

1*Inv� Gammað10; 0:5Þ
s2

2*Inv� Gammað6; 2Þ:

ð13Þ

There are some important things to note regarding how one specifies prior

distributions. Because prior distributions are often seen as subjective, uninfor-

mative priors are preferred in the absence of prior knowledge. However, using

prior distributions that are flat does not necessary achieve the goal of a non-

informative prior. Consider, for example, the distribution of g, which is best

estimated when g is between 0 and 1 (Sweet & Zheng, 2017). Then, a prior

distribution on b01 or a that is completely flat is actually very informative as

b01 should be quite small and a should also be less than 1. Our aim was to

choose weakly informative prior distributions; the probability distribution for

each prior covers what we considered to be a reasonable range of parameter

values. We further explore the effects of prior distribution specification in

Section 6.1.1.

Because the purpose of this simulation study is to show that the HMMSB for

Mediation is both feasible and useful, we examine both parameter recovery of the

0.1 0.2 0.3 0.4

γ

0.5 0.6 0.7

0.
0

0.
5

1.
0

1.
5

Y

FIGURE 4. Plot of the simulated outcome Y versus g shows a positive effect of the

mediator on the outcome variable.
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mediation effect (ao) and how the network size, number of networks, and oracle

values of the parameters affect estimation and recovery.

We begin by discussing the first simulation set consisting of 20 networks, each

with 15 nodes, and a mediation effect of ð0:5Þð1Þ ¼ 0:5. For each of the 50

replications, we ran our MCMC sampler twice using overdispersed starting

points, and we examined traceplots to assess convergence and calculated auto-

correlation to determine optimal thinning. Tossing the first 2,000 samples and

retaining every 150th subsequent draw, we have posterior samples of size 374.

The posterior mode and 95% equal-tailed credible interval for the mediated

effect (ao) is shown in Figure 5.

There are several things to note about Figure 5. First, the credible intervals

cover the true value of the mediated effect for all 50 replications. Second, there

are some instances where the credible intervals are extremely wide. In these

replications (e.g., replications 25, 26, 42, and 43), we found that the posterior

distribution of a had extremely high variance. In retrospect, we should have not

chosen such an informatively weak prior distribution for a since this prior allows

values of a much larger than 1.

Figure 6 shows posterior summary information for the mediated effect (ao) for

all seven simulations. The scale of the y-axis is the same across all plots so that we

can easily compare them. As the network size increases (while the number of sub-

groups is fixed, effectively increasing block size), we find more precise estimates of

the mediation effect and it appears that the posterior modes become more accurate.

This makes sense since large block sizes generally improve our ability to estimate g.

Posterior variances similarly decrease when we increase the number of networks; the

number of networks is effectively our sample size. Thus, posterior variance is mini-

mized when both the number of networks and the network size (or block size)

increase. As a result, we find that in Simulations 2 through 7, we have fewer replica-

tions with extremely large posterior variances than we had in Simulation 1.

Regarding the effect of t0, we fixed the number of networks and network size

to 20 and 30, respectively, and compared t0 ¼ 0 with t0 ¼ 0:5. Figure 6 shows

0 10 20 30 40 50

-3
-1

1
2

3

Replication

FIGURE 5. Posterior summaries of the mediated effect ao from 50 simulated data sets

each with 20 networks and 15 nodes; maximum a posteriori (MAP) estimates are plotted

as points and segments represent the 95% equal-tailed credible intervals.
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very little effect of the value of t0 on estimating ao; that is, full mediation and

partial mediation do not differ in terms of mediating parameter recovery.

6.1.1. Prior sensitivity analysis. The simulation study suggests that how one

specifies prior distributions may affect posterior samples of the mediated effect.

Recall in Figure 6 that larger sample sizes resulted in fewer replications with

large posterior variance, which suggests that our choice of prior distribution for

Simulation 1 may have been too informative. In our attempt to use a weak prior

distribution for a of Nð0; 9Þ, we essentially implied that we believed a would

likely be between �3 and 3 and that values as small as �6 or as large as 6 would

also be plausible, which was actually very informative.

Therefore, we present a small sensitivity study to explore how different prior

distributions impact the posterior distribution of the mediated effect ao. Table 2

presents the prior distribution for Simulation 1 along with four other conditions.

Because a and b01 largely determine g as well as s2
1, we first explore how each

prior distribution specification affects the posterior distribution for ao. We

tighten the prior distribution so that jaj < 2 with probability near 1, followed

by a less informative prior for s2
1 and a less informative prior on b01. Finally, we

0 10 20 30 40 50
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1.

5

Replication
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-1
.0

0.
5

1.
5

(20, 15, τ' = 0.5, ω = 1) (20, 30, τ' = 0.5, ω = 1)

(40, 15, τ' = 0.5, ω = 1) (40, 30, τ' = 0.5, ω = 1)

(20, 30, τ' = 0, ω = 0.5)

(20, 30, τ' = 0.5, ω = 0.5)

(20, 30, τ' = 0, ω = 1)

FIGURE 6. MAP estimates and 95% equal-tailed credible intervals for all seven simula-

tions for various numbers of networks, numbers of nodes, and values of t and o; a ¼ :5 for

all simulations (see Equation 9).
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explore weaker priors on the parameters in outcome model: b02, t0, o, and s2
2.

For each row in Table 2, we use the same 50 data sets used in Simulation 1 and fit

models using the prior distributions indicated.

Figure 7 shows the 95% equal-tailed credible intervals and posterior modes

for each set of prior distributions. With a more appropriate prior on a (Figure 7,

top right), we no longer see extremely large posterior variances on ao although

some simulations have larger variance than others. Note that the prior distribu-

tion a*Nð0; 0:25Þ is not extremely informative; the distribution is not centered

at the truth but simply includes our prior belief that a is between �1 and 1. A

weaker prior on s2
1 has little effect on the posterior variance of ao, and as the

prior distribution on b01 accommodates the belief for larger absolute values of

b01, we find very slight decreases in the posterior variances of ao, due to an

increased posterior variances of b01. Finally, even rather large changes in the

priors of the other parameters, b02, t0, o, and s2
2, have very little effect on the

posterior distribution of ao.

These results are mostly comforting in that model estimation for the HMMSB

for Mediation is impacted very little by priors. The only exception is using

informatively weak or incorrect priors for a, and this appears to be an issue only

when network size is small (n ¼ 15).

6.1.2. Misspecified models. We also briefly explore whether mediation effects

can be recovered when different parts of the HMMSB for Mediation are mis-

specified. We consider two examples, one in which we expect a small impact and

one in which we expect a large impact.

The first misspecification example involves the number of blocks or sub-

groups, which is selected by the user. In the examples above in Section 6.1, our

data generating model and our fitted model both used three blocks. In this

example, our data generating model is similar but assumes there are six blocks

in each network. The fitted model still assumes three blocks.

We chose this example to highlight the ability of the HMMSB for Mediation

to estimate the mediated effect when the number of blocks is misspecified. As

TABLE 2.

Specified Prior Distributions for Sensitivity Analysis

Prior Specification b01 a s2
1 b02; t

0;o s2
2

Simulation 1 Nð0; 0:01Þ Nð0; 0:5Þ G�1ð10; 0:5Þ Nð0; 9Þ G�1ð6; 2Þ
Stronger prior on a Nð0; 0:01Þ Nð0; 0:25Þ G�1ð10; 0:5Þ Nð0; 9Þ G�1ð6; 2Þ
Weaker prior on s2

1 Nð0; 0:01Þ Nð0; 0:25Þ G�1ð5; 1Þ Nð0; 9Þ G�1ð6; 2Þ
Weaker prior on b01 Nð0; 0:5Þ Nð0; 0:25Þ G�1ð10; 0:5Þ Nð0; 9Þ G�1ð6; 2Þ
Weaker priors on b02,

t0, o, and s2
2

Nð0; 0:01Þ Nð0; 0:25Þ G�1ð10; 0:5Þ Nð0; 100Þ G�1ð3; 1Þ
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discussed by Sweet and Zheng (2017), there is an identifiability issue among the

number of blocks, the entries of the block–block tie probability matrix B and g.

Since we fix B when estimating the model and the fix the number of blocks to be

the same across networks (even though it is the incorrect number of blocks), gk in

one network is still estimated accurately relative to the other networks.

The posterior samples for the mediated effects ao are given in Figure 8 (left).

The posterior samples recover the true effect with similar posterior variance and

posterior modes.

The second example is a much stronger misspecification. In this model, the

value of g no longer affects the subgroup structure of the network and in fact is

not a mediator in the model at all. The data generating model for the network is a

multilevel latent space model (see Hoff et al., 2002; Sweet, Thomas, & Junker,

2013) such that treated networks are more dense than control networks. The

outcome variable is therefore a function of the intervention and a randomly

generated g, so that g is independent of both X and Y .

Thus, in this example, g no longer mediates the relationship between the

intervention and the outcome and this is evident in the figure summarizing the

posterior distribution for ao in Figure 8 (right). As expected, we find no evidence

of an effect of the intervention on the network subgroup insularity, and we find
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01~N(0.05, 0.1), 02~N(0,3), ~N(0.5, 0.5), '~N(0.5, 3), ~N(1, 3)

FIGURE 7. MAP estimates and 95% equal-tailed credible intervals for the mediated effect

ao under a variety of prior distribution specifications suggest that the prior specification

for a can impact the posterior distribution for ao but priors for other parameters have

little or no impact.
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no evidence of an association between subgroup insularity and the outcome. The

posterior modes are all very close to 0 and the posterior variance in each replica-

tion suggests that each gk was estimated with more error than usual; this is

unsurprising as we purposely generated networks without subgroup structure.

These examples further illuminate how the HMMSB for Mediation would

behave in practice. Under user misspecification, such as the number of blocks,

the model is still able to recover the true mediated effects which is important

since one rarely knows the number of blocks to choose a priori. Further, when

subgroup insularity is not a mediator, the estimated mediated effect is near 0, so

the model is not finding effects that do not exist.

6.2. Coaches and Mathematics Beliefs

We present an application examining whether teacher advice-seeking net-

works mediate the effect of introducing coaches into schools on changes in

beliefs about instruction. We use data from elementary schools in a school

district that come from a series of studies on distributed leadership and have

been used in education (Spillane & Hopkins, 2013; Spillane, Hopkins, & Sweet,

2015, 2018).6 These data contain survey items collected from staff members in

14 schools regarding teaching practices and beliefs as well as advice-seeking

nominations collected each spring over the course of 5 years (2010–2013, 2015).

Throughout the data collection period, eight schools received mathematics

coaches to support and improve mathematics instruction. Although we do not

have data on the quality of instruction, we do have data on beliefs about mathe-

matics instruction. We expect that beliefs about instruction move in a more

positive direction in schools with math coaches. One reason may be that coaches

have resources and when presented with these new resources, teachers change the

way they think about mathematics instruction. However, there is also evidence

that instructional coaches are not only providing instructional support but are also

poised to act as brokers within and across schools (Hopkins, Ozimek, & Sweet,

2017). Thus, we are interested in how the presence of an instructional coach

0 10 20 30 40
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Misspecifying No. Blocks

0 10 20 30 40
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Misspecifying Subgroup Insularity

FIGURE 8. Simulations in which the model was misspecified. The number of blocks in the

generative model was more than in the fitted model (left) and the generative model did not

account for g as the network was generated from a different network model (right).
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changes network structure and whether that leads to changes in teacher

outcomes.

While we do not have a randomized intervention, we can still use a HMMSB

for Mediation to model the effect of introducing a math coach to a school. There

are eight schools who received mathematics coaches: two schools were assigned

a coach in 2011, five additional schools received coaches in 2012, and one final

school received their coach in 2013. We are interested in the effects that these

coaches had on the structure of the mathematics advice-seeking networks and

whether these network structures mediated changes in beliefs about mathematics.

The eight schools in the year they were assigned a coach are considered our

treated schools; the eight control schools are schools of similar size from the

same year who did not receive a coach.

We have two measures of beliefs about mathematics; both are constructed

from a set of survey items. One measure targets beliefs about how focused

mathematics instruction should be on procedures and skills (vs. inquiry). The

other measure concerns beliefs about how student centered (vs. teacher centered)

the classroom should be. Because we are interested in whether a coach caused

these beliefs to change, our outcome variables will be denoted change in proce-

dural beliefs and change in student-centered beliefs. For each school, we com-

pare the belief (procedural or student centered) collected in the end of the year

prior to receiving a coach with the belief collected after having had a coach. We

do the same for our control networks. For example, for the two schools that

received coaches in 2011, we compared beliefs in 2010 with beliefs in 2011 and

then compared beliefs in 2010 and 2011 for two control schools.

For social networks, we use survey items in which teachers nominated

those to whom they sought information and advice regarding mathematics

instruction throughout the school year. These nominations were used to

construct binary, directed networks for each school; we also assume that

schools constitute separate networks and ignore the very small percentage

of ties that occurred across schools.

Figure 9 shows the mathematics advice-seeking networks in the eight schools

in each condition. The networks in the top two rows come from schools in their

first year of having a mathematics coach and the bottom two rows show the

matched networks who did not receive a coach. What may at first seem surprising

is the number of isolated nodes in each network. These are nodes that responded

to the survey but did not nominate any teachers to whom they sought advice

regarding mathematics instruction, nor were they nominated as providing such

advice. This is not surprising, given that these staff members work in elementary

schools; the advice-seeking networks around language arts had fewer isolated

nodes and generally more ties. Further, there appear to be more isolated nodes in

the treated networks than the control networks. This may in part be due to how

those schools were selected for coach assignment; these schools may have had

lower math achievement scores or lower fidelity in general regarding district
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policies, in which case, a nontrivial number of teachers who are not seeking

advice around mathematics even when assigned a coach is not that

surprising.

Thus, we define Yk to be the change in procedural or student-centered beliefs

about mathematics instruction in 1 year. Xk is an indicator for whether that school

received a coach. The fitted HMMSB for Mediation is given as

Aijk* Ber ðSijk
T BRjikÞ

Sijk* Multi ðyikÞ
Rjik* Multi ðyjkÞ
yik* Dir ðxgkÞ
gk*Nðb01 þ aXk ;s2

1Þ; gk > 0

Yk*Nðb02 þ t0Xk þ ogk ;s
2
2Þ

b01*Nð0; 0:01Þ
b02*Nð0; 9Þ
a*Nð0; 9Þ
t0*Nð0; 9Þ
o*Nð0; 9Þ
s2

1*Inv� Gammað10; 0:5Þ
s2

2*Inv� Gammað2; 2Þ;

ð14Þ

where a positive Yk value indicates that beliefs became more procedural (or

student centered) during that year. As written, a is the effect of having a coach

on subgroup integration and for this model, we specify B to be a 6� 6 matrix

with diagonal entries of 0.7 and off-diagonal entries of 0.005. Further, t0 is the

effect of adding a coach on the change in beliefs conditional on the network. A

positive t0 suggests that adding a coach is positively associated with beliefs

becoming more procedural or more student-centered controlling for the network

(subgroup insularity). Similarly, o is the association between network structure

(subgroup insularity) and the change in belief; a positive value of o indicates that

more integrated subgroups are related to beliefs becoming more procedural/

student centered.

To estimate our model given in Equation 14, we run three chains of our

MCMC algorithm described in Section 5.2 and toss the first 5,000 as burn-in

and retain every 500th steps for a posterior sample size of 408.

Figure 10 shows the summaries of the posterior samples for the parameters of

interest. Figure 10 (top left) indicates there is a positive effect of introducing a

coach on subgroup integration; schools with coaches have more integrated sub-

groups than schools without coaches. There is also evidence for a direct effect of
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adding coaches on changes in procedural beliefs but not changes in student-

centered beliefs (Figure 10, top right); that is, teacher beliefs became less pro-

cedural in schools with coaches and there is not evidence that this is related to the

network subgroup structure. Similarly, there is a significant association between

how integrated the teacher subgroups are and change in student-centered beliefs.

Teachers with more integrated subgroups became more student centered in their

beliefs. Finally, Figure 10 (bottom right) shows the effect of the network as a

mediator. Network subgroup insularity does appear to mediate—if we treat 95%
credible intervals in the same way that we consider 95% confidence intervals—

the effect of adding a coach on changes in student-centered beliefs. Network

subgroup structure does not appear to significantly mediate the relationship

between introducing coaches and changes in procedural beliefs.
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FIGURE 10. Posterior summaries for Hierarchical Mixed Membership Stochastic Block-

model for Mediation parameters of interest. Posterior modes and 95% equal-tailed cred-

ible intervals are given. Results suggest a positive effect of adding coaches on subgroup

integration, but subgroup structure acts as a mediator on the effect of coaches on changes

in student-centered beliefs only.
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To summarize, we found that introducing mathematics coaches affects teacher

mathematics advice-seeking networks; networks with coaches generally have

more integrated subgroups. This subgroup structure mediates changes in

student-centered beliefs; teachers in more integrated subgroups (as a result of

introducing a coach) become on average more student centered in their beliefs.

Teachers with coaches also tend to become less procedural in their beliefs but

there is not evidence that these changes are related to network structure.

We note that this example serves as a proof of concept but that readers should

interpret our inference with caution. These data do not come from an experiment

but an observational study, and although we have longitudinal data, there may be

other variables to consider before concluding that coaches are the sole or even

primary cause for changes in network subgroup structure or changes in beliefs.

7. Discussion

There are often studies involving multiple classrooms, schools, or other work-

place organizations whose aim is to change the way people interact to ultimately

change some other outcome of interest either at the individual or organization-

level. In these studies, social networks operate as a natural mediator and can

provide insight into the mechanisms through which these studies are effective.

Motivated by this work, we proposed several ways to incorporate social networks

in mediation models, so that researchers can further understand the relations

between treatment and outcome.

Moreover, we extended an established statistical framework, HNMs, to

include modeling networks as a mediator. We introduced the idea of incorporat-

ing networks as mediators by using parameters from a statistical social network

model as the mediating variable in a standard mediation model. This generalized

framework of combining social network models with mediation models will

hopefully guide future methodologists in developing more models.

As a proof of concept, we also introduced the HMMSB for Mediation to both

provide an example of how the HNM for Mediation framework can be used to

build a model and create a model that can help researchers model interventions

on networks with subgroup structure. The HMMSB for Mediation is most useful

for interventions aimed at changing the level of subgroup integration in networks

and those whose theory of change hypothesize that subgroup integration affects

the outcome of interest.

We also provided evidence of both the feasibility and utility of the HMMSB

for Mediation through a series of examples with simulated data. We found that

mediation effects are recovered when the number of networks is small (20) and

even when the number of nodes in each network is small (15), which suggests

this model could be useful for even the small studies often observed in the social

sciences. We also found that even with the addition of a rather complicated social

network model, the mediation model still performs as expected.

Sweet

235



Finally, we applied the HMMSB for Mediation to examine the effects of

coaches on instructional beliefs and network structure. Practitioners generally

believe that adding math coaches to a school improves the quality of mathematics

instruction but the HMMSB for Mediation allows researchers to better under-

stand the mechanisms at play. We found evidence that schools with coaches have

more integrated teacher subgroups (in their advice-seeking networks) and that

these integrated subgroups are also associated with teachers becoming more

student centered in their beliefs about instruction. Armed with this information,

researchers can better understand how instructional coaches help teachers as well

as design future interventions involving coaches.

In addition, we present the HMMSB for Mediation as a first step in what we

envision as a larger body of research. First, we presented a very specific model

for mediation in which an intervention affects network subgroup structure.

Experimental interventions may affect the ways in which individuals interact

in a myriad of ways, and we argue that a large number of models can be built to

explore the hypothesized changes in networks. Consider this alternative example,

we might expect an intervention to shape social norms throughout a school or

classroom. We therefore expect the intervention to increase the number or fre-

quency of interactions among individuals and the increase in interaction/connec-

tions causes individuals in that system to become more similar to each other,

resulting in a decrease in the variance of the outcome variable. Similarly, an

intervention may impact certain individuals, such as new teachers, and we can

model changes to this subset of the network using this framework.

Future work also includes the idea of extending these models to account for

node-level outcomes. Even though the unit of observation (or randomization) is

at the network level, we are ultimately interested in individual differences and

incorporating information about the nodes and their position within their school’s

network as well as a node-level outcome variable is a natural next step in this

work. Finally, we note that this article does not focus on causal mediation, even

though mediation models are actually causal in nature. Our models have the

capability of estimating causal processes, and another next step in this work is

to fit these models within a potential outcomes perspective (Rubin, 2005), adapt-

ing the methods proposed by Imai, Keele, Tingley, and Yamamoto (2011) for

social networks.

We conclude by situating this work into an even broader body of quantitative

methodology, that is, the idea of treating a social network as the unit of observa-

tions to help address questions in the social sciences. Assuming these methods

are useful to social science researchers, other analogous methods exist which also

have the potential to advance social science research.
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Notes

1. For readers interested in more rigorous statistical methods for estimating

causal inference, we suggest Holland (1986) or Rubin (2005) for the potential

outcomes framework and Pearl (2009) for the directed-acyclic graph

perspective.

2. Note that social network ties can have any scale of measurement. We focus on

binary ties, but these models apply to any type of tie.

3. As discussed in Sweet and Zheng (2017), we use g as our measure of subgroup

insularity over other measures since g is not impacted by node membership.

Measures of subgroup insularity such as the E-I index (Krackhardt & Stern,

1988) or modularity (Newman & Girvan, 2004) depend on node assignment

to subgroups; in fact, one way to detect communities is to assign nodes to

clusters to optimize modularity. When node membership is not clear, how

these nodes are assigned impacts subgroup insularity measures; the parameter

g is independent of node assignment since nodes belong to all clusters with

varying probability.

4. R code is available upon request; an R package with more efficient code is in

preparation. Note that these models currently take approximately 2 hours on a

standard desktop to fit.

5. Note that a single data set consists of multiple networks.

6. For more details about these data, see www.distributedleadership.org.
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