
International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3  

ISSN 2513-8359  
 

Teaching Computer Science Concepts through Robotics to 
Elementary School Children*1 

 

Mor	Friebroon-Yesharim1		

Mordechai	Ben-Ari1	
	

1Weizmann	Institute	of	Science	

 
DOI: 

 
Abstract 
Studying computer science (CS) in elementary schools has gained become popular in recent years. 
However, students at such a young age encounter difficulties when first engaging with CS. Robotics 
has been proposed as a medium for teaching CS to young students, because it reifies concepts in a 
tangible object, and because of the excitement of working with robots. We asked: What CS concepts 
can elementary-school students learn from the participation in a robotics-based CS course? We used 
two theoretical frameworks to explain possible difficulties in learning: the Jourdain effect, and 
constructs vs. plans. A taxonomy of six levels was created to characterize levels of learning. The levels 
were measured using four questionnaires that were based on the taxonomy. In addition, field 
observations of the lessons were recorded. The population consisted of 118 second-grade students (ages 
7-8). Lessons on CS concepts using Thymio educational robot and its graphical software development 
environment were taught during normal school hours, not in a voluntary extracurricular activity. The 
syllabus was based on existing learning materials that were adapted for the young age of the students. 
The analysis showed that the students were very engaged with the robotics activities. They did learn 
basic CS concepts, although they found it difficult to create and run their own programs. We concluded 
that the Jourdain effect was not demonstrated because the students understood concepts and constructs 
of CS; however, they were unable to plan and construct their own programs from the basic constructs. 
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1 Introduction 
 
1.1. Research goals and research framework 

Studying computer science (CS) in elementary schools has gained become popular in recent years. The 
goal of teaching CS at a young age is primarily to increase self-efficacy and motivation when engaging 
with science and technology. However, students at such a young age face difficulties when first 
engaging with CS. One approach to overcome these difficulties is to use robotics activities, because 
they reify abstract CS concepts in a tangible object and because of the excitement of working with 
robots. The goal of our research is to distinguish between the performance of a task and the 
understanding of the concepts. 
The phases of the research were: 
1) The development of an age-appropriate syllabus partially based on existing learning materials for 

the educational robot. 

                                                             
* Preliminary results of this research were presented at the International Conference on Robotics in 
Education, April 2017, Sofia, Bulgaria.	
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2) A quantitative and qualitative assessment to determine if the use of a robot-based syllabus enables 
young students to understand CS concepts. 

3) The development of taxonomy appropriate for specifying the levels of understanding of young 
students who learn CS. 

Section 1 presents a review of existing literature. The methodology, including the new taxonomy, is 
described in Section 2. The findings are presented in Section 3, discussed in Section 4 and summarized 
in Section 5. 
 
1.2. Review of existing literature 

The literature review is divided into five sections: (a) learning CS concepts by elementary school 
students, (b) learning CS by robotics, (c) learning CS with robotics in elementary school, (d) the 
Jourdain effect, (e) near transfer. 
 
1.2.1. Learning CS concepts by elementary school students 

Papert was among the first to propose teaching programming to young children (Papert, 1980). He 
coined the term constructionism for learning by constructing artifacts such as computer programs. 
Research has shown that CS studies had some positive effects on cognitive development, thinking 
skills, problem-solving strategies, creativity, intrinsic motivation, or even social development 
specifically at young ages (Liao & Bright, 1991; Clements, 2002; Clements & Sarama, 2003).  Duncan 
and Bell (2015) explored and analyzed CS curricula for elementary schools; they found that some 
countries have already incorporated formal studies as part of the curriculum, while others are limited to 
informal classes and clubs. Seiter and Foreman (2013) explored the development of computational 
thinking by elementary school students using Scratch. They found that basic proficiency of algorithmic 
thinking started in second grade. Clements and Sarama (1997) studied learning with LOGO and 
concluded that it can provide an evocative context for young children’s explorations of mathematical 
ideas and CS concepts. 
Duncan et al. (2014) raised the question: Should eight-years-old students learn to code? They proposed 
three parameters to establish effective learning: (1) the teachers must be confident and motivated; (2) 
the learning objectives should be realistic for the age of the students; (3) the development environment 
should be age-appropriate. They found that the age at which programming should be taught depends on 
many factors among them the software tools and learning aids, the context and the teachers' training. 
Armoni and Gal-Ezer (2014) and Duncan et al. (2014) claimed that the advantages of learning CS at 
such a young age include the capability: to learn quickly, to shape attitudes to programming, to support 
learning outside of just programming, and to prepare students for future endeavors in computing. The 
disadvantages of engaging with CS at a young age include the possibility that students will be less 
confident in their abilities regarding CS or will receive a negative impression of the subject. 
Furthermore, the students may study fewer hours in core subjects such as mathematics, science and 
language skills (Duncan & Bell, 2015). The limited time available and the lack of resources could 
cause problems in the allocation of school resources (Duncan et al., 2014).  
 
1.2.2. Learning CS via robotics 
Since the 1980s, both curricular courses and outreach programs on robotics have been developed. A 
pioneering successful tool for teaching CS with robotics was the environment Karel the Robot (Pattis, 
1981). Anderson et al. (2011) claimed that robotic activities are very exciting for the students and that 
they reify the abstract behavior of algorithms and programs. Robotics provides hands-on experience 
with real-world problems and can also reduce the level of intimidation that students can encounter. 
Ben-Bassat-Levy and Ben-Ari (2015) showed that robotic activities can influence both the motivation 
and the self-efficacy of young students. They found that robotics encourages positive intentions to 
choose STEM  (science, technology, engineering, mathematics) subjects in high school. Markham and 
King (2010) investigated attitudes and motivation among CS1 students, they found that students who 
studied with robots had more positive experiences than those who studied without robots. Kaloti-Hallak 



 
 
 

 
 

 
 
 

et al. (2015) investigated young students who participated in the FIRST® LEGO® League 
competitions. Their research showed that students demonstrated meaningful learning in computer 
science and engineering, and that most of the students demonstrated high positive attitudes and 
motivation for learning robotics. Kay (2011) showed that CS learning by high-school and 
undergraduate students really improve when robots are used. 
 
1.2.3. Learning CS with robotics in elementary school  

Barker and Ansorge (2007) taught 9–11 year-old students and found that the LEGO Mindstorms® 
robotics kit was effective for teaching STEM concepts. Magnenat et al. (2014) ran a workshop for 
students aged 8–9 using the Thymio educational robot. They found that while students successfully 
used trial and error when writing programs that controlled the robot, they only understood a subset of 
the CS concepts that appeared in their programs. Both these projects involved extracurricular activities. 

Several research projects addressed learning with robotics by young children. Martinez et al. (2015) 
taught robotics to students of a variety of age groups from 3 to 11. They showed that the older students 
were capable of understanding and applying CS concepts such as loops, parameters, conditions and 
sequencing, while preschool students understood fewer concepts. Sullivan and Bers (2016) 
implemented a robotics curriculum in preschool through second grade. They found that younger 
children were able to master basic concepts of robotics and programming, while older children were 
able to master more complex concepts. Bers et al. (2014) engaged 4–6 year-old children in robotics 
activities in order to guide age-appropriate curriculum development. Wyeth (2008) showed that 
children can learn simple programming concepts related to input and output, and the impact of logic on 
program behavior. Common to all these research projects is the use of robots specifically designed for 
young children, in particular, Bers' group used tangible programming (programming using physical 
blocks), which can no longer be used for older students. 
 
1.2.4. The Jourdain effect 

Guy Brousseau proposed the theory of didactic situations as a framework for investigating learning, in 
particular, mathematics (Brousseau, 1997). We were influenced by his discussion of the Jourdain 
effect, the conflation of the performance of a task with understanding the underlying concepts. Here is 
an example from the New Math curriculum: 

[A] model of this group can be constructed using some transformations of the position of a 
cup of yogurt … As children were playing with the cups of yogurt, they were performing such 
transformations … from this, the ‘structurally minded’ observers were concluding that the 
children ‘have constructed’ the group of Klein. But what the children were actually doing had 
nothing to do with the identification of the group structure in their manipulations. … [T]hey 
would not have been able to identify the part of their activity called ‘construction of the group 
of Klein’ … and they would not be able to produce …, further examples of their activity, now 
sanctified by a scientific term (Sierpinska, 2003, no page numbers). 
 

1.2.5. Near transfer 
It is frequently claimed that learning certain subjects results in transfer of knowledge: a general 
improvement of cognitive and problem solving abilities. Such claims have recently been made for 
computational thinking (see the analysis by Tedre and Denning (2016)). Such claims have been 
repeatedly debunked (Guzdial, 2015) and we make no such claims for learning CS with robotics. 
However, a classic investigation by Gick and Holyoak (1980) showed that learning in one domain can 
aid in solving analogous problems in a different domain; this is called near transfer. While our 
research is not a comprehensive study of near transfer, we did investigate whether the students were 
able to transfer their knowledge of robotics commands to a hypothetical command somewhat different 
from the actual commands. 
 



 
 
 

 
 

 
 
 

2 Methodology 
2.1. Rationale for the research 
There were three aspects to the rationale for this research: 

1) The robotics activities were taught in the non-voluntary, non-selective environment of a normal 
classroom during school hours with just one teacher and one assistant. In previous work (Ber et al, 
2014), several research assistants were able to help individual groups of students. Finally, a general 
purpose educational robot was used, not one specifically developed for the project. 

2) We developed a questionnaire based on a taxonomy of learning in order to attempt to distinguish 
performance from understanding (the Jourdain effect). 

3) We wanted to demarcate what this specific age group was able to learn from concepts that were 
too difficult for them. 
 

2.2. Research question 
What CS concepts can elementary school students understand from participation in a robotics-based CS 
course? 
 
2.3. Population 
The research was carried out in four second-grade classrooms of a public school (ages 7–8 years). All 
the students in these classes participated during normal school hours, so we had no control over the 
actual ages, genders or abilities of the students. There were 118 students, 72 boys and 46 girls. The first 
author taught the lessons aided by a research assistant from our department. The class teachers were 
present, but we did not have time to train them in robotics and CS so they were not involved in 
teaching. However, they remained in the classrooms, primarily to deal with behavioral problems that 
occasionally arose. 
 
2.4. The robot and its software environment 
The Thymio educational robot (Figure 1) is small, self-contained and very robust with differential 
drive, nine infrared proximity sensors, five touch-sensitive buttons, a 3-axis accelerometer, dozens of 
LEDs, a speaker and a microphone (https://www.thymio.org/en:thymio). 
Figure 1. Thymio robot 
 

 
The robot is programmed using the Visual Programming Language (VPL) environment (Figure 2) 
(Shin et al., 2014). Programs are constructed by drag-and-drop of graphical blocks. VPL supports one 
programming construct: event-action pairs. Event handling is a core CS concept, which has been 
proposed as the basis of teaching introductory programming (Bruce et al., 2006). In addition to the 
basic blocks shown in Figure 2, there is an advanced mode that supports additional blocks and 
advanced versions of basic blocks. 
Figure 2. The VPL environment. The events are on the left, the actions are on the right and the central 
area is used for constructing programs 



 
 
 

 
 

 
 
 

 

 
 
2.5. The robotics class 

The course was taught for one hour a week for 21 weeks during normal school hours. Thirty students 
shared ten robots. Each lesson began with a short video that introduced a concept. Then the students 
received a worksheet. 

The syllabus was based on existing learning materials for the Thymio (Ben-Ari, 2011; Magnenat et al., 
2012), by selecting age-appropriate activities from this material. The first tasks were based on the 
predefined behaviors of the robot and were intended to familiarize the students with the events 
generated by the proximity sensors and the buttons, and with the actions of changing the colors of the 
LEDs. Then the students were introduced to the VPL graphical programming environment. Many of 
their tasks were to implement Braitenberg creatures (Braitenberg, 1984), which were developed during 
the Programmable Brick project (Hogg et al., 2000) that was the inspiration for LEGO Mindstorms®. 
Later, the students explored combinations of several actions per event and blocks from the VPL's 
advanced mode: timer events and actions, accelerometer events and music actions.  
In addition to the concepts explicitly expressed in the Thymio robot and VPL, the following CS 
concepts that appeared only implicitly were taught: 

1) Concurrent execution of event-action pairs: for example, in the line-following program, the 
program simultaneously checks if the robot is leaving the left edge or the right edge of the line. 

2)  Parameters: setting the color of the LEDs and the power applied to each motor. 
3) Writing an algorithm and implementing it in a program. 
Table 1 presents the topics and activities that took place in each lesson. 

Table 1. The content of the lessons 

Content Lesson 

Pre-programmed behaviors. 1 

Pre-programmed behaviors in groups. 2 

The VPL user interface. 
Events (buttons, sensors) and actions (top and bottoms colored LEDs). 
First experience programming. 

3 

The VPL user interface. 
Programming five exercises. 

4 



 
 
 

 
 

 
 
 

First questionnaire (four questions). 5 

The motor action. 
Programming the Braitenberg creatures.  

6 

First questionnaire (two questions). 
Second questionnaire (two questions). 
Checking the exercises from the previous class. 
Multiple actions for one event. 

7 

Second questionnaire (two questions). 
Braitenberg creatures with multiple actions per event. 

8 

Checking the Braitenberg creatures exercises. 9 

The clap and tap sound events and the sound action. 10 

Second questionnaire (two additional questions). 
Bottom sensors. 

11 

Programming with the bottom sensors. 12 

Programming with the bottom sensors. 13 

Programming with the bottom sensors (summary). 14 

Third questionnaire (two questions). 
The advanced mode. 

15 

Accelerometers. 16 

Fourth questionnaire (four questions). 
Timer blocks. 

17 

Fourth questionnaire (two questions). 
Exercises with the timer blocks. 

18 

Exercises with the timer blocks. 19 

Group projects.  20 

Group projects.  21 

 
2.6. The taxonomy 
Our method for investigating performance vs. understanding was based on a taxonomy of levels of 
learning. We developed a new taxonomy appropriate for the context of learning CS concepts. 
 
2.6.1. Justification for developing a new taxonomy 
There are several existing taxonomies of levels of learning:  SOLO (Biggs & Collis, 1982), Bloom 
(Bloom et al., 1956), Lister et al. (2004) and the CS-specific taxonomy of Fuller et al. (2007). 
Meerbaum-Salant et al. (2013) combined the Bloom and SOLO taxonomies, producing a new scale 
with three categories (unistructural, multistructural and relational) each containing three sub-categories 
(understanding, applying, and creating). Magnenat et al. (2014) based their work on learning with the 
Thymio robot on the combined taxonomy. They investigated two age groups: 8-9 and 10-15 years old. 
They checked the levels of understanding using questionnaires. While most of the students of the older 
group achieved the level of unistructural understanding, the young age group found it hard to answer 
the questions because of their limited ability to read. The difficulties they encountered led us to develop 
a new taxonomy. 
 



 
 
 

 
 

 
 
 

2.6.2. The new taxonomy 

A student demonstrating the follow behaviors will be considered to have achieved a corresponding 
level of learning. In ascending order they are: 
1) Predicting the behavior of a given program. 
2) Choosing the program that gives rise to a given output of an algorithm. 
3) Characterizing the difference in the behavior of two similar programs. 
4) Completing a partial program in order to achieve a given output.  
5) Using a modified programming construct to complete a program with a given goal. 
6) Creating a program from scratch when the goal of the program is given. 

The different types of behaviors can be classified into two categories (Table 2) based on Fuller et al. 
(2007): 

1) Interpreting: to give or provide the meaning of; explain. 
2) Producing: to bring into existence by intellectual or creative ability. 
The interpreting category includes only behaviors for which the code is given, as oppose to the 
producing category whose behaviors require code completion. This enabled us to distinguish between 
students who can only read and understand programs but cannot necessarily write or complete one on 
their own.  
 
Table 2. The classification into two categories 

                                       

                                                              

2.6.3. Secondary classification: The interpreting category 
The ordering of the three behaviors in the interpreting category can be justified as follows. 
Lister et al. (2004) claimed that the ability to predict the behavior of a given program while tracking 
and following its instructions is the lowest cognitive level required for a CS student. The second type of 

Predicting	the	behavior	of	a	
given	program.

Choosing	the	program	that	
gives	rise	to	a	given	output	of	

an	algorithm.

Characterize	difference	in	the	
behavior	of	two	similar	

programs.

Completing	a	partial	program	
in	order	to	achieve	a	given	

output.	

Using	a	modified	segment	of	
code	to	complete	a	program	

with	a	given	goal.

Creating	a	program	from	
scratch	when	the	goal	of	the	

program	is	given.
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category 

The producing 
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question differs from the first type in that the students are required to choose the right program from 
several slight different programs. Lister et al. (2004) claimed that students showed less success in this 
type of questions then in questions predicting the behavior of a program. 

Differentiating between two programs is similar to comparing, but it adds the requirement to predict the 
purpose of the programs. Differentiating also requires analytical skills to identify similarities and 
differences, which is a higher cognitive process than just predicting, according to the revised Bloom’s 
taxonomy (Anderson et al. 2001). Therefore, this is the most challenging behavior in this category. 
 
2.6.4. Secondary classification: The producing category 

In this category, the student is asked to complete a program. Even if the questions are multiple-choice, 
this category requires the student to analyze the purpose of the program and to choose the most suitable 
completion. The student must understand the functionality of the missing parts, and then to understand 
how each possible completion will affect the program.    
The second behavior and the question refer to it; the students are presented with modified block whose 
functionality is explained. They need to complete a given segment of code correctly using this modified 
block. The cognitive stages are very similar to the first behavior in this category, but, in addition, the 
student needs to show proficiency in the material he has already learned in order to understand the 
purpose of the modifications. We consider this process to be near transfer of knowledge and this type   
of behavior is harder than the first one. 

The most challenging type of behavior in this category asks the students to create a program from 
scratch when the goal of the program is given. This requires the student to use all of the knowledge he 
has gained so far and to create a new artificat. Both the Bloom (Bloom et al., 1956) and SOLO (Biggs, 
& Collis, 1982) taxonomies rate this cognitive skill as the most challenging one.              
                                             
2.6.5. Constructing questions according to the taxonomy  

Magnenat el al. (2014) found that elementary school students had difficulty understanding long 
passages of text; this led them to use graphics and video clips in their questionnaires. We followed their 
lead in constructing our questionnaires. Graphics is particular appropriate in this context since the VPL 
programming environment uses graphical elements only with no text. Here is a description of the 
format of the questions associated with each level of the taxonomy: 

1) Predicting the behavior of a given program: The students received a code segment and four photos 
of the robot and they had to choose the photo that demonstrated the behavior of the robot caused 
by the code segment. 

2) Choosing the program that gives rise to a given output of an algorithm: The students received a 
short video and had to choose the code segment that gives rise to this behavior. 

3) Characterizing differences in the behavior of two similar programs: The students watched two 
short videos displaying behaviors of the robot and they had to choose among four descriptions the 
one that describes the difference between the behaviors.  

4) Completing a partial program in order to achieve a given output: The students were given a short 
segment of code and a goal that the program needs to achieve. The students had to complete the 
missing parts of the code in order for the program to achieve the goal.  

5) Using a modified segment of code to complete a program with a given goal: The students were 
given a modified block whose meaning was explained in the question and they had to complete the 
code segment in order to implement the behavior demonstrated in a short video or explained in 
words. 

6) Creating a program from scratch when the goal of the program is given:  The students were given 
several event-action blocks and they had to choose and arrange the blocks needed in order to 
achieve a given goal.  
 

2.7. Conjectures 

We proposed three conjectures to explain why some students might achieve only lower levels of 



 
 
 

 
 

 
 
 

learning, together with criteria to accept or reject the conjectures: 

1) They really don’t understand The simplest possibility is that young students don’t understand 
most of the CS concepts that they are exposed to, and that the success reported in previous 
research has been misinterpreted. This conjecture will be supported if we find that less than 50% of 
the students succeed in answering questions even for the lowest levels of learning. 

2) Jourdain effect The students will demonstrate the Jourdain effect if they successful answer the 
predicting and choosing types of questions, partial succeed in the answering difference questions, 
and are unable to answer any of the questions from the second category. 

3) Constructs vs. plans Soloway and  Spohrer (1986) suggest that there is a gap between the ability 
of novice programmers to understand individual constructs and their ability to plan and implement 
a functioning program. This conjecture will be supported if students are only able to answer 
questions from the interpreting category and the first question of the producing category. Students 
demonstrating the ability to implement plans will be able to answer questions from all the 
categories. 
 

2.8. Research Instruments  

Four questionnaires of six multiple-choice questions each were administrated during the regular 
lessons. They looked like the usual worksheets and the students willingly participated in solving the 
problems. After the first experience with the class assignments, it was decided that the maximum 
number of questions that these young students could deal with in one lesson is four, so the 
questionnaires were split over two or more lessons. The questionnaires can be found at 
https://goo.gl/peKBpp. 
The topics asked about in the questionnaires are as follows: 
1) The first questionnaire  

CS concepts: simple event-action pairs. 
New events and actions blocks: sensors, buttons, top and bottom colors. 

2) The second questionnaire 
CS concepts: advanced event-action pairs. 
New events and actions blocks: motors. 

3) The third questionnaire  



 
 
 

 
 

 
 
 

CS concepts: multiple actions in one event-action pairs. 
New events and actions blocks: tap and clap detection. 

4) The fourth questionnaire  
CS concepts: line following, concurrent execution. 
New events and actions blocks: ground proximity sensors. 

After each lesson, the first author recorded her observations and solicited impressions from the research 
assistant and the class teacher.  

In order to fully investigate the ability of students to plan and implement a program, during the final lessons they 
were asked to come up with their own ideas for writing a program. The programs and observations of the 
programming process were recorded. 

After the final lesson, the first author met with the teachers to discuss their impressions of the students' ability to 
learn CS and robotics.  

 

2.8.2 Example questions from the questionnaires 
Question 2 from questionnaire 2 
Watch the video: https://youtu.be/okoLamAY9ac. Which of the following programs causes the 
behavior of the robot that is shown in the video? 
Question 2 from questionnaire 3 

Look at the video: https://youtu.be/Vhc33fxR3co. Which of the following programs causes the 
behavior shown in the video? 

 
Question 5 from questionnaire 1 

We invented a new event: The center button is touched and at the same time an object is detected by the center 
front sensor. Here is the block for the new event: 

 
Use the new event to construct a program that does the following: 

1) Detecting an object only by the front center sensor causes the top light to display blue. 
2) Touching only the center button causes the top light to display yellow. 
3) Touching the center button and at the same time detecting an object by the front center sensor 

causes the top light to display green. 
Choose the correct program: 

 



 
 
 

 
 

 
 
 

 
Question 5 from questionnaire 4 
We want a program that causes Thymio to follow the edge between a white area and a black area: 
 
 
 
 
 
 
 
 
Here is a description of the program: 

1) If Thymio detects white under the right bottom sensor and it detects black under the left bottom 
sensor, then Thymio moves forwards. 

2) If Thymio detects white under both bottom sensors, then Thymio turns left. 
3) If Thymio detects black under both bottom sensors, then Thymio turns right 
Choose the correct program: 

 
2.9. Data Analysis 

The findings from the observations will be integrated with a description of the syllabus, in order to 
show how the students reacted to each individual topic. The analysis was influenced by Glaser and 
Strauss (1967) and was done as follows: 
1) Collate the observations of the four classes with the same lesson plan. 
2) Identify the important events, and the similarities and differences among the four classes.  
3) Unify similar events and important concepts. 
4) Link the different categories in order to understand the students' capabilities. 

The discussion of the focus group with the teachers was recorded and transcribed. The analysis of this 
focus group was identical to the analysis of the observations of the students.  

The project lessons were analyzed in order to find the CS concepts that the students used and to 
discover the level of understanding that the students achieved. 
The questionnaires were analyzed quantitatively using Pearson's chi-squared test, which is used to 
determine whether there is a significant difference between the expected frequencies and the observed 
frequencies in one or more categories. Since each question was asked in all of the four classes, and 
every question had four options, we found the chi-squared test most appropriate for the research needs. 
The chi-squared test was used to determine whether there was a significant difference between the 
expected frequencies and the observed frequencies in one or more of the four classes. For each 
questionnaire, a table is given which indicates the uniformity of the success rates of the four classes. 
The first column is the question number and the second column is the success rates.  

For every question of the questionnaires, the null hypothesis was that there were differences among the 
four classes; the alternate hypothesis was that there were no differences in the success rates. Questions 
that did not negate the null hypothesis were marked with a gray background, and the success 
percentages for those questions will be presented separately for each of the four classes. 

When the percentage of the students who answered a question correctly passed 50% were marked with 
bold face, we took that as evidence that the level of the taxonomy corresponding to that question was 
achieved by the majority of the students.  
In the presentation of the findings, we will emphasize the questions that didn’t negate the expected 
frequencies and provide explanations in cases of discrepancy.  



 
 
 

 
 

 
 
 

2.9.1 Reliability 

Since the students had no previous background in CS, there was no reason to administer a pre-test. 
Colleagues were asked to judge that the curriculum and research methods involve well-known CS 
concepts and are age-appropriate. To check the reliability of the knowledge questionnaires, both 
colleagues and the teachers examined the questionnaires and expressed their opinions regarding their 
difficulty.  
 
3 Findings 
3.1. Initial experience with the robot 
The first two lessons with the robot were designed to give the students an easy start, so they were 
conducted without a computer. During the lessons the students worked in groups. Each group had to 
perform several activities using the robot's pre-programmed behaviors 
(https://www.thymio.org/en:thymiostarting). In the second lesson, the students performed tasks with the 
help of a discovery kit (https://www.thymio.org/en:thymiodiscoverykitotter).  

The students were excited; some girls said that the robot was "cute," while the boys described it as 
"cool" and indicated that Thymio is "fun." During the performance of the tasks, the students followed 
the instructions while correcting each other. When they were given open questions, they kept asking 
"what to write?" It seemed as if they wanted to be correct at every single question. 

During class, the students managed to manipulate the robot and to switch between the robot's pre-
programmed modes, but they found it hard to describe the differences between the modes. However, 
they were able to describe the different behaviors, as shown by their terminology:  "it made a sound 
when I put both of my hands," "Thymio drove forward in the direction of the doll!" The students were 
not able to memorize the different modes, but they knew how to describe the modes during the 
activities. 
 
3.2. Initial experience with programming  

During the third and fourth lessons the students started to program. They were introduced to the VPL 
environment and used it to learn how to write programs.  
The first worksheet with VPL included the following events: pressing the buttons, detecting objects 
with the front and back sensors, and the following actions: turn on the top and the bottom LEDs. The 
students were thrilled by their first experience writing programs, they were highly motivated to succeed 
and readily proceeded from one exercise to the next. The students easily implemented the three tasks 
with a single event-action pair in this lesson. All the students seemed engaged with the class activities 
and the worksheet, asking questions and exploring the capabilities of the robot and VPL. 

The students frequently asked "where to put it?" with regard to an event or an action; sometimes they 
used the buttons event without indicating which button, so they tended to ask many questions of the 
form "why isn't it working?" or "what am I doing wrong?" All the students wanted to be the ones with 
hands on the robot or the computer. 

During the fourth lesson, the students were introduced to exercises that included more than one event-
action pair. Initially, the students had difficulty understanding that they should be placed one after 
another on the screen. Although this was explained to the students, they found it unnatural, and asked 
"where to put this event?" or they just started a new program for each event-action pair. After sufficient 
practice they felt more confident with the concept of a program containing multiple event-action pairs.  
 
3.3. The first questionnaire 

The success rates of the first questionnaire (administered during lessons 5 and 7) are shown in Table 3. 
The first questionnaire investigated whether the students could associate an event with an action.  
Table 3. First questionnaire, % of students who gave correct answers for each question 



 
 
 

 
 

 
 
 

Question Success Rate 

1 82 

2 87 

3 69 

4 93 

5 74 

6 51 

 

For question 1, the 𝛼 obtained from the chi-squared test was 0.0039; this result is greater than the 
likelihood ratio chi-squared, which is 0.0009, therefore the null hypothesis (that there were differences 
among the four classes as explained in section 2.9) cannot be rejected. Question 1 asked about the 
behavior of a given program. Although different success rates were obtained for the three classes, the 
success rates of all classes were greater than 50% (Table 4). 
Table 4. The success rates of questionnaire number 1, question number 1 in the different classes 

 Class A Class C Class D 

Success 
Rate 

100 85 64 

 

From Table 3 we see that the students answered questions at levels 1 to 5 quite easily: (1) they could 
understand what a given program does, (2) match a program to an output, (3) characterize the 
difference in the behavior of two similar programs, (4) complete a partial program, (5) use a modified 
programming construct. However, for question 6, creating a program from scratch, their success rate 
was relatively low, but still reached 50%. 
 
3.4. Programming the Braitenberg creatures 

During the sixth lesson the students explored the motor block on their own. They copied programs 
given in the worksheet into the VPL environment, ran the programs and explained the behavior of each 
program: moving forwards, moving backwards and turning right and left. After understanding the 
motor block, the students wrote programs to implement the Braitenberg creatures. During the activities 
with the creatures, it was observed that these exercises helped the students "bond" with the robot and 
gave it some human qualities. The students began to refer to the robot as a living: "Thymio didn't do 
what I asked him!", "I miss Thymio," "I love Thymio." 
 
3.5. The second questionnaire 

Questionnaire 2 (administered during lessons 7, 8 and 11) investigated if the students can associate an 
event with an action, but this time they had more blocks at their disposal, which made the programs 
more complex. The success rates for the second questionnaire are shown in Table 5. 
Table 5. Second questionnaire, % of students who gave correct answers for each question 

Question no. Success Rates 

1 52 

2 46 

3 49 



 
 
 

 
 

 
 
 

4 76 

5 70 

6 46 

 

The first two questions of the questionnaires were given to the students just after their initial experience 
with the new motor block, while the next four questions were given after they had much more practice 
and experience with the robots. 

The high success rates for questions four and five compared with those of questions one and two can be 
explained by the additional practice that the students had, which enabled them to answer questions at 
the higher levels. The students encountered difficulties answering question 3: it was hard for them to 
identify the difference between a pair videos showing behaviors of the robot. Nevertheless, in three of 
the four classes, a majority of the students successfully answered the question. The success rates for 
question number 6 were low: the students found it difficult to write a program from scratch given the 
desired behavior of the robot. 
The heterogeneity between the four classes was more significant in this questionnaire. For questions 3, 
5 and 6, the 𝛼 obtained from the chi-squared test were greater than the likelihood ratio chi-squared, so 
the null hypothesis could not be rejected. 

Table 6 shows the 𝛼 obtained from the chi-squared test and the likelihood ratio chi-squared for each of 
the questions.  

Table 6.  𝜶 from the chi-squared test and the likelihood ratio chi-squared for each of the questions in 
questionnaire 2 

Question The 𝛼 result obtained The likelihood ratio chi-squared 

1 0.1089* 0.05 

2 0.0890 0.0862 

3 0.0133 0.0105 

4 0.5188* 0.5061  

5 0.0506 0.05 

6 0.0312* 0.05 

 
*Because these three questions contained more than one section, the 𝛼 obtained is the average of the 
differences between the four classes and actually represents the Generalized Linear Model (GLM) test.  

It can be seen that the differences between the 𝛼 obtained and the likelihood ratio chi-squared obtained 
are very small, so we unified the success rates of the four classes.  

Table 7 shows the success rates of the different classes and where there were differences between the 
𝛼 and the likelihood. 
Table 7. The different success rates of questions 3,5 and 6 in the different classes 

 Class A Class B Class C Class D 

Question 3 63 52 58 22 

Question 5 71          93 83 33 

Question 6 42 64 58 26 
 
The low success rates for class D can be explained by significant discipline problems that occurred. 
3.6. Event handling with multiple actions 

During lessons 7 through 9, the students were taught how to associate multiple actions with an event 



 
 
 

 
 

 
 
 

using two simple examples. In lesson 8 the students practiced this construct by implementing additional 
Braitenberg creatures. The students found the transition from one action to multiple actions difficult. 
Frequently, they duplicated the event and associated it with the second action, asking: "where to put 
it?" or "what to do with…?". They tended to associate the position of a button with the direction of a 
movement, for example, they selected an event of touching the front button and then they were 
disappointed that the robot didn't move forward. 

 During the ninth lesson, the teacher solved questions together with the students. This facilitated 
bringing most of the students to a uniform level of understanding and, furthermore, helped clear up the 
difficulty of multiple actions associated with one event. They readily volunteered to come to the board 
to solve questions and were proud when they gave correct answers. 
During the tenth lesson, the students learned about tap detection, clap detection and the music event 
blocks. They composed their own tunes and were enthusiastic about the feature of tapping and the 
clapping, which this facilitated practicing more advanced event handling. 
 
3.7. The third questionnaire 
The third questionnaire (administrated in lessons 14 and 15) involved questions regarding multiple 
actions per event. The success rates are shown in Table 8. 
Table 8. Third questionnaire, % of students who gave correct answers for each question 

Question no. Success Rates 

1 75 

2 61 

3 68 

4 34 

5 61 

6 48 

 
The success rates of questionnaire 3 were mixed: while the students were relatively successful on 
questions 1, 2, 3 and 5, they were less successful on questions 4 and 6, which required the students to 
complete a partial program and to create a program from scratch. Question 4 was hard since it required 
them to seek both an event and an action of a pair appropriate for the behavior that was given. The 
distractors made it difficult because they involved an incorrect ordering of an action before an event, 
incorrect direction of movement and irrelevant blocks. The fifth question investigated whether the 
students can perform near transfer of their existing knowledge. 

The fifth question investigated whether the students can perform near transfer of their existing 
knowledge. The success rates in this question were not uniform for the four classes. The 𝛼 obtained 
from the chi-squared test was 0.0467, which is greater than the likelihood ratio chi-Squared 0.0383; 
therefore, the null hypothesis could not be rejected. 

The success rates of the four classes on question 5 of questionnaire 3 are presented in Table 9. The 
students achieved high success rates (>50%) in three of the four classes.  
Table 9. The success rates of questionnaire number 3, question number 5 in the different classes 

 Class A Class B Class C Class D 

Success Rates 59 81 59 44 

 

The table shows that class B obtained very good success rates, while the success rate of classes A and D 
was much less though still greater than 50%. Class D did not achieve the desired success rate. 



 
 
 

 
 

 
 
 

3.8. The bottom sensors and the line following algorithm 

During lesson 11, the students explored the bottom sensors of the robot. The exploration activity 
included painting stripes of different colors and experimenting to see how the robot reacted to the 
different colors. The elementary physical principles of light sensitivity were explained. The exploration 
activity prompted some creativity on the part of the students, but it would have been preferable to 
supply the students with stripes in different colors, so that the students could readily identify the 
differences between the robot behavior to bright colors and dark colors. They kept asking: "Is it dark 
enough?" or "Is it bright enough?" 
During lesson 12, the students received a detailed explanation of the bottom sensors and the differences 
between them and the front and back sensors. The students were a bit confused on this issue.  The task 
required them to build a white track and a black track, and to execute different line-following 
algorithms. While the students enjoyed constructing lines using white and black tapes, they were 
confused by the execution of the algorithms. They kept asking questions regarding the bottom sensors 
block such as: "Should it be black?" or "What does the red frame mean?" The students invested much 
effort into building the tracks instead of attempting to understand the meaning of the bottom sensors 
event.  

Lesson 13 started with a review on how the bottom sensors operate and how to use the bottom sensors 
event block in VPL. The students used the tracks they created during the previous lesson and once 
again implemented the line-following algorithms. Additionally, the students executed a program in 
which the robot had to stop at the edge of the table by sensing the edge with the bottom sensor. Again, 
the students had difficulties executing these algorithms and they needed more assistance about 
adjusting the bottom sensors.   

During lesson 14 the students repeated the exercises they solved in the previous lessons; the repetition 
was helpful because it summarized the topic and tied up loose ends. 
The learning difficulties might have been avoided if each event-action pair had been written and 
executed as a separate program before integrating them into a single concurrent algorithm. 
 
3.9. The fourth questionnaire 
The fourth questionnaire (administrated in lessons 17 and 18) contained questions on the line following 
algorithm and the bottom sensors. The success rates are shown in Table 10. 
Table 10. Fourth questionnaire, % of students who gave correct answers for each question 

Question no. Success Rates 

1 51 

2 48 

3 33 

4 43 

5 50 

6 38 

 
The success rates are significantly lower than the success rates of the the other questionnaires. The 
questions asked about advanced concepts: concurrent execution of event action pairs, implementing a 
relatively complex algorithm, and using the bottom sensors, which were confusing because of their 
similarities and differences with the front and back sensors. 

In this questionnaire, there were no differences in the success rates on all question among the four 
classes. Therefore, the null hypothesis is rejected and we could accept the alternate hypothesis that the 
classes were similar. 



 
 
 

 
 

 
 
 

3.10. The advanced mode lessons 

The students were enthusiastic about learning and understanding the new blocks in the advanced mode 
and they were curious regarding the new possibilities that the blocks provided.  
During lesson 16 the students studied the accelerometer events. In order to explain the functionality of 
the accelerometers, the teacher showed them a short video that illustrated how the robot was able to 
maintain its balance on a moving ball. The initial lesson on the accelerometers took place in their 
normal classroom, not in the computer lab. During the lesson they learned about left/right tilt and 
forward/backward tilt, and explored how to detection falling by using the accelerometers. Moreover, 
they explored how different angles can be identified by the accelerometers. The students loved to guess 
the number of the angles that the robot can detect. The robot was programmed to display a different 
color for color for each angle and the students grasped the idea rapidly. 

In lesson 17 the students practiced exercises with the accelerometers. One problem we encountered was 
that in advanced mode the events are associated with states, a topic that was not taught, and this caused 
them to ask a lot of questions and to make mistakes. They solved the exercises quite easily and 
understood the functionality of the accelerometers. 

During the lesson 18, the students learned about the timer event and the timer action. They found the 
concept exciting and learned how to use the timer to cause the robot to change its color and the 
direction of its motion after a period of time. 
During the next two lessons, the students practiced with these blocks. They encountered some problems 
and were a little confused on how to write programs that used the timer event and action. It was 
unnatural for them to put the blocks in different event-action pairs and they kept asking where to put 
the timer blocks. 

During the last class they received an exercise that summarized the entire content of the syllabus. The 
exercise was not easy for the students and they didn't always volunteer to come to the board to help 
find a solution.  
 
3.11. The teachers' focus group 

The principal and the four teachers of the classes were very receptive to our suggested activities, 
because the school had been established only a few years previously and the staff was open to new 
initiatives. The teachers were cooperative and helped us understand the cognitive abilities and the 
affective aspects of the students. The focus group was held after the classes ended, so that the teachers 
would have a perspective on the entire course. 

The first question was: What do they think about the content of the syllabus? The teachers agreed that 
the students understood the content of the lessons; they succeeded in their tasks and were able to 
answer the questionnaires. Moreover, they mentioned that the subject was "fun and cool for the 
students, and helped the students to bond and to perform the tasks." The teachers believed that the level 
of understanding students increased throughout the course and that they fully cooperated with us. As in 
every class, the students showed different levels of understanding, but they helped each other overcome 
the obstacles they encountered. 
The second question was: How did the students profit from the course beyond learning the CS 
concepts? The teachers indicated that the students cooperated while working in groups. The students 
had to know how to share their work. The teachers indicated that while most of students were 
enthusiastic about the class, there were some who were not so excited. Unexpectedly, the teachers 
noted that most of the students who didn’t like the robotics class were boys, while the girls were more 
enthusiastic and curious. 

The teachers added that the classes helped the students become more motivated about CS and robotics. 
The opportunity to work by trial and error helped them overcome difficulties and study the subject in a 
"fun way." 
 
 



 
 
 

 
 

 
 
 

3.12. The project lesson 

During the project lesson the students had to come up with their own ideas for programs they wanted to 
create. The first step was for them to think about the purpose of the program they wanted to create. The 
second step was to specify the program's steps, which required the students to analyze the purpose of 
the program and then to decompose it small steps of event-action pairs. We provided a worksheet with 
several ideas; however, they did not use these ideas and insisted on creating something of their own. 
The problem was that they wanted to create a program from scratch, but they didn’t look at it as an 
opportunity to make a program with a purpose; instead they looked at it as a just fun activity. The result 
was that they created programs that showcased the VPL constructs, for example by using a large variety 
of blocks, but that had no purpose. 
Most of the groups managed to create event-action pairs and to explain what the program performs 
when asked, but some used the advanced blocks incorrectly. For example, they used the states 
incorrectly, or used the timer event and action in the same pair, which is not meaningful. Most of the 
students included in their programs "cool" blocks (in their words), such as music, tapping and clapping. 
They tended to use buttons more than sensors, which are more fundamental in robotics. Most students 
managed to create a program that functioned correctly.  
 
4 Discussion 
The research goal was to characterize the learning outcomes of young second-grade students who took 
part in a CS through robotics course. We first discuss the findings from the observations and then 
discuss the achievement of the students in terms of the new taxonomy. Finally, we discuss the three 
conjectures and present the students' capabilities as measured by the questionnaires. 
 
4.1. Observations  
After the 21 lessons that included both frontal instruction and computer labs, the students appeared to 
like their experience with robotics. Most of the students seemed engaged throughout the lessons and 
were motivated to succeed in their assignments. They willingly participated in the class demonstrations 
and worked on the lab assignments, creating meaningful programs. 

The robot was perceived by the students as an integral part of the learning, making their first 
experience with CS a positive one. The robot made CS more tangible, allowing the students to have 
hands-on interaction with the abstract concepts that they learned. The students tended to imagine that 
the robot had human qualities. They bonded with the robot, which helped them to overcome difficulties 
and to be even more engaged during the lessons. In particular, the Braitenberg creatures formed a 
bridge between the abstract and the tangible, allowing the students to implement complex event 
handling even with multiple actions. 
 
4.2 Learning of CS concepts 

The students had difficulties with the transitions between one event-action pair and several event-action 
pairs, and between one action per event and multiple actions per event. These difficulties were resolved 
up with more practice. As they learned more blocks, confusion arose as to which block should be used 
for which purpose. Furthermore, there was confusion between the bottom sensors and the horizontal 
sensors, which impaired the students' ability to understand the line following algorithm. 

A partial explanation of these difficulties could be that they arose from the sharing of a robot by groups 
of three students, which resulted in friction within the groups. The students were not allowed to take the 
robots home, so they were not able to practice creating and executing programs on their own. The latest 
version of the VPL environment can be run in a software-only simulation, so that programming can be 
practiced even in the absence of a physical robot. 
When compared with previous work such as Bers et al. (2014), which only checked the success of the 
assignments that the students worked on in class, our work investigated their ability to go beyond what 
was presented within the framework of the class in order to demarcate what the students of this age can 



 
 
 

 
 

 
 
 

learn. 
 
4.2. The taxonomy  
Question 1 showed that the students are capable of correctly predicting the output of a given program. 
In all of the questionnaires most of the students answered this question correctly, in particular, the 
success rates were very high in the first and third questionnaires. This shows that even young students 
are able to analyze programs.  

Question 2, which required the students to choose the program that gives rise to a given output, showed 
that the students are also capable of identifying a program that can give rise to a given output. Most of 
the students correctly answered this question in questionnaires 1 and 3, but had difficulties with 
questionnaire 2. This was probably due to premature testing of the students' capabilities, before they 
had enough experience with the blocks and with multiple event-action pairs. The low success rates for 
questionnaire 4 will be discussed in section 4.3.  
The students encountered difficulties coping with questions of type 3, which required the students to 
watch two videos and to choose the statement that correctly described the difference between them. The 
low success rates were significant for questionnaires 1, 2 and 4. They found it difficult to identify 
behaviors shown in the videos and memorize them in order to answer the question. It is possible that if 
the two programs were given in addition to the two videos, the students would not have had to 
memorize the content of the videos and their success rates would have been higher.  

The success rates of the students for questions of type 4 were high in both the first and second 
questionnaires, but were low in the third and the fourth questionnaires. This question required the 
students to complete a partial program in order to achieve a given output; this is the first type of 
question in the producing category. The results indicated that the students knew how to use the different 
blocks and they understood the functionality of the blocks, in addition to being able to analyze the 
given code, understand the functionality of the missing parts and how to use them to complete a 
program. 

The success rates of the students were high for questions of type 5 except in the fourth questionnaire. 
This result is interesting because it means that the students were capable of using the knowledge they 
gained during the lessons in order to build new knowledge. This is consistent with near transfer of 
knowledge (Gick & Holyoak, 1980). 
Question 6, which required the students to create a program from scratch when the goal of the program 
is given, showed low success rates in all of the questionnaires. While the students were able to write 
programs during class using trial and error, and with the help of the teaching staff, they found it 
difficult to write programs outside the context of the robot and the VPL environment. (Recall that the 
questionnaires were administered offline.) Moreover, when asking the students to build a program of 
their own during the project lesson, the students were not able to give a purpose to the programs; 
instead, they just paired events and actions.  
 
4.3. Interpreting the results in terms of the conjectures 
The students' success in the class assignments where they wrote programs for the robot, together with 
the results of the first, second and third questionnaires, showed that the students are reaching relatively 
high levels of the taxonomy. This provides evidence that the students are capable of understanding and 
execute simple programs. In addition, the teaching staff observed the success of the students on the 
assignments. The students showed proficiency in using the relatively advanced construct of multiple 
actions per event. Given that event handling is considered to be a relatively advanced core concept of 
computer science, we conclude that the students were capable of understanding CS constructs. 

On the other hand, when the students were asked about these concepts in the questionnaires or the 
worksheets (in particular in the fourth questionnaire), they encountered many difficulties and struggled 
to answer the questions and to describe the goal of a program. These difficulties also appeared during 
the project phase. The contrast between the performance in class and the difficulties with the 
questionnaires leads me to conclude that the students demonstrated the Jourdain effect: performance 



 
 
 

 
 

 
 
 

does not necessarily imply understanding. 

The inability of the students to specify and implement their own projects showed that while the 
students were able to understand constructs, they were not capable of creating plans as defined by 
Soloway and  Sphorer (1989). 
 
5 Conclusions 

Robotics activities enable even young students to learn basic CS concepts and they are capable of 
writing and running programs. Students performed well in answering questions on basic programming 
constructs and the VPL environment enabled the students to create programs graphically, thus 
overcoming the linguistic barriers to programming. Robotics activities can be successfully used with 
very young students to increase their interest and possibly motivation to become engaged with STEM 
in general and CS in particular.  
However, our results showed that young students find it difficult to go from learning concepts and 
individual programming constructs to being able to create programs of more than a few lines. Another 
important conclusion is that students only functioned well when using the physical robot and with the 
help of the teaching staff. 

Further research is needed in order to map CS concepts to the cognitive capabilities of students at 
various ages, in order to guide age-appropriate curriculum development for elementary schools. 
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