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Abstract 

Computational Thinking (CT) is pervasive in our daily lives and is useful for problem-solving. Decision-making 
is a crucial part of problem-solving. In the extant literature, problem-solving strategies in educational settings 
are often conveniently attributed to intuition; however, it is well documented that computer programmers might 
even have difficulty describing about their intuitive insights during problem-solving using natural language 
(such as English), and subsequently convert what has been described using words into software code. Hence, a 
more analytical approach using mathematical equations and descriptions of CT is offered in this paper as a 
potential form of rudimentary scaffolding, which might be useful to facilitators and learners of CT-related 
activities. In the present paper, the decision-making processes during an unplugged CT activity are delineated 
via Grey-based mathematical equations, which is useful for informing educators who may wish to explain to 
their learners about the various aspects of CT which are involved in the unplugged activity and simultaneously 
use these mathematical equations as scaffolds between the unplugged activity and computer code programming. 
This theoretical manuscript may serve as a base for learners, should the facilitator ask them to embark on a 
software programming activity that is closely associated to the unplugged CT activity. 
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1. Introduction 

In computer programming education, there might be an overemphasis on students' acquisition of the 
syntax of a programming language; often at the expense of development of problem-solving skills (McGill & 
Volet, 1997). Somers (2017) notices that programmers do not work on a problem directly. He quoted Nancy 
Leveson, a professor at the Massachusetts Institute of Technology who has been studying software safety for 35 
years, who explains, "The problem is that software engineers don't understand the problem they're trying to 
solve, and don't care to. The reason is that they're too wrapped up in getting their code to work. The serious 
problems that have happened with software have to do with requirements, not coding errors." Hence, 
development of problem-solving skills should be a high priority for computer programming education. 

Griffin (2016) points out that it is important for computer programmers to develop a mental model of a 
notional machine (du Boulay, O’Shea, & Monk, 1981), which is a rudimentary model that describes the 
instructions of a computer program for problem-solving. Strong interest in how the computer programmer could 
develop this mental model (by researchers such as Grover, Pea, & Cooper, 2015; Hu, 2011; Selby, 2013; Wing, 
2008), have more precisely explicated this mental model of a notional machine into what is now known as 
Computational Thinking (CT). A generally accepted definition of CT is still developing (Selby, 2013); even the 
very definition of individual constituents of CT such as the concept of abstraction is still evolving (Cetin & 
Dubinsky, 2017). Nevertheless, in the present paper, for the purpose of “operationalising” CT concepts for 
utilisation of mathematical equations in decision-making and problem-solving using a computer programming 
language, we follow the conceptual framework offered by Gouws et al. (2013) who have more concisely 
elucidated CT concepts specifically for the field of education. The constituents of this mental model of CT 
offered by Gouws et al. (2013) include decomposition, algorithmic thinking, abstraction of data and 
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functionality, evaluation, and generalisation. Decomposition refers to the process of breaking down a problem 
into multiple steps, in order to solve it. Algorithmic thinking refers to the repetitive execution of patterns of 
instructions, which might involve loops for iteration or recursion. Abstraction of data and functionality refers to 
the notion of representations in data storage and the manipulation of those data in functions. Generalisation 
refers to the ability to create adaptable solutions that are reusable for a wider range of problems. Evaluation is 
the ability to select the best solution for a given problem, as well as to identify and correct errors.  

CT is pervasive (Bundy, 2007); in our daily tasks, CT is particularly useful for problem-solving (Barr, 
Harrison, & Conery, 2011). Indeed, CT is indispensable to problem-solving in the real world, and is also 
considered to be essential in education (Wing, 2008). Efforts have already been made in many studies to 
delineate which aspects of CT might be explicitly learnt by a person who has participated in screen-based 
activities (by researchers such as Grover, 2015; Israel, Pearson, Tapia, Wherfel, & Reese, 2015; Monteiro, 
Salgado, Mota, Sampaio, & de Souza, 2016; Selby & Cynthia, 2015).  

Visualisation of code can also be in the form of physical or kinaesthetic activities (also referred to as 
unplugged activities); not just on screen-based devices. Zagami (2012) posits that the computer programmer 
could understand programming concepts better from visualisation of how code works. Research into non-screen 
based unplugged activities (by researchers such as Bell et al., 2009; Cortina, 2015; Paul Curzon et al., 2014; 
Feaster, Segars, Wahba, & Hallstrom, 2011; Rodriguez, 2015; Taub, Armoni, & Ben-Ari, 2012; Taub, Ben-Ari, 
& Armoni, 2009; Thies & Vahrenhold, 2012; Thies & Vahrenhold, 2013) have demonstrated that they might 
potentially help learners to understand computing concepts kinaesthetically as they solve problems in the real 
world. 

Research Problem 

In the extant literature, decision-making strategies in problem-solving used by learners in educational 
settings might often just be conveniently assumed by educators to be naturalistic (Zsambok, 2014), or simply 
intuitive (Metcalfe & Wiebe, 1987; Pretz, 2008). However, it is well documented that computer programmers 
might have difficulties in describing about their intuitive insights during problem-solving using natural language 
(such as English), and subsequently convert what has been described using words into software code. In a 
previous study by Kordaki, Miatidis, and Kapsampelis (2008), the students constructed an algorithm intuitively 
in an activity using coins, but most of them had problems describing the procedure which they had used, when 
they tried to express it in natural language (English) and pseudocode. Boticki, Barisic, Martin, and Drljevic 
(2013) also observed that students might have difficulties translating their thoughts into a form that could be 
used in computers.  

Decision making is that thinking which results in the choice among alternative courses of action; 
problem solving is that thinking which results in the solution of problems (Taylor, 2013, p. 48). Further, Taylor 
(2013) also points out that the processes in decision-making are also important to problem-solving (p. 48). In the 
extant literature, besides the seminal work into computational models of decision-making done by Busemeyer 
and Johnson (2004), far too little attention has been paid to decision-making in problem-solving skills for 
computer programming education, and in particular for CT. 

 Wing (2008) proffers that CT is a form of analytical thinking which shares with mathematical thinking, 
engineering thinking, and scientific thinking in similar ways in which we might approach the understanding and 
modelling of real world phenomena, in order to solve problems. She points out that many sciences and 
engineering disciplines also rely on simulations of mathematical models of physical processes found in nature. 
Mathematical modelling has also been utilised in the field of education by educators, students, and researchers 
(Stillman, Blum, & Biembengut, 2015). In education, mathematical modelling has been employed as a strategy 
for building up systems of knowledge (D’Ambrosio, 2015), for students who do not solve problems 
independently to share and refine mathematical models through dual modelling teaching (Kawakami, Saeki, & 
Matsuzaki, 2015), for exploring interconnections between real-world and application tasks (Ng & Stillman, 
2015), and as visualisation tactics for solving real-world tasks (Brown, 2015).  
	

The authors of the present paper do concede that using mathematical equations to model a phenomena 
and subsequently converting those mathematical equations into computer programming code is nothing new; in 
fact, it is a part of Computational Science (Humphreys, 2004). In computational science, computational models 
are usually presented as mathematical models because they can be analysed and even run as simulations using 
computers to better understand the characteristics of the phenomenon being studied. For example, computational 
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fluid dynamics (Chung, 2010) refers to the computational modelling of fluid dynamics. Computational finance 
(Ugur, 2008) refers to the computational modelling of financial-related systems. Computational biology 
(Waterman, 1995) refers to the computational modelling of biological-related systems. In the same token, 
computational thinking (Wing, 2006) could be construed as the computational modelling of thinking. Laudable 
efforts have been made by computational thinking researchers (such as Lu & Fletcher, 2009; Weintrop et al., 
2016) to illustrate key concepts in computational thinking which involved the use of mathematical equations; 
however, these studies seem to be solely focused on which aspects of computational thinking were involved 
when a person encounters a mathematical formula or algorithm. Currently, there is a dearth of computational 
models about the “thinking” part of computational thinking in the extant literature. The present paper purports to 
explore this “thinking” part of computational thinking via the decision-making portions of problem-solving; first 
from the perspective of a human learner playing with the programmable toy mouse in an unplugged 
computational thinking activity, and subsequently from the perspective of a computer programmer who is 
programming the software version of a self-navigating mouse that can autonomously reach its objectives. 

Since CT purports to enable humans to analyse problems, and to communicate the corresponding 
solutions using computational terms that are ultimately meant for computers to comprehend and execute, it 
follows that mathematical modelling might be well suited for understanding the decision-making processes 
involved during an unplugged CT activity. The mathematical model can also be utilised as a valuable resource 
should the facilitator choose to ask the learners to implement a software programme to describe the decision-
making strategies that might be involved. 

In the present paper, the decision-making processes during an unplugged activity, which utilises a 
programmable toy mouse as a simple example, are depicted via mathematical equations, to elucidate which 
aspects of CT might be involved in decision-making during problem solving. The analytical approach of using 
mathematical equations and descriptions of CT is offered in this paper as a potential form of rudimentary 
scaffolding between CT concepts and software programming, which might be useful to facilitators and learners 
of CT-related activities. 

The rest of this paper is organised as follows: in the next section, the basic building blocks for the 
mathematical modelling of decision-making during the unplugged CT activity will be presented. Using the 
conjectures from these mathematical equations, the aspects of CT involved, together with some examples of 
Python programming code that correspond to the mathematical equations, will be presented in the discussion 
section. In the present paper’s hypothetical scenario, the programmer needs to implement parts of the Python 
code to create a software-based self-navigating mouse that can avoid obstacles and autonomously move towards 
its goals. Finally, the direction of future research will be presented in the conclusion section. 

 

2. Mathematical modelling of decision-making in unplugged ct activity 

In the context of this research, a simple case of an unplugged CT activity which involves a 
programmable toy mouse (see Figure 1) will be used. In this unplugged CT activity, the learner operating the 
programmable mouse must evaluate the possible consequences when trying to achieve the pre-determined 
objectives. Since computational modelling usually involves the use of mathematical models, it follows that 
using mathematical models to depict decision-making in problem-solving might allow us to clearly see the 
aspects of computational thinking involved. A grey-based approach (Deng, 1989; Liu & Lin, 2010; Liu, Yang, 
& Forrest, 2016) of mathematical modelling is utilised in this paper, because it excels in modelling phenomena 
in situations where there might be uncertainty, scarcity of quantitative data, or incomplete information; 
situations which learners often find themselves in during problem-solving exercises. Further, although the entire 
maze could be easily observed by a human, a software-based self-navigating mouse that the programmer is 
trying to create – having sensors only on its front, left, right, and rear – can only detect whether there is any 
object in its immediate vicinity. It does not have a “bird’s eye view” of the entire maze. Also, the programmer 
might need to implement the features to enable the software-based mouse to "decide" whether an object is an 
obstacle or a goal it is trying to reach. It might also need to learn from its previous attempts and “predict” the 
next step that it needs to take. Accordingly, we use the conceptual notion of “black” to indicate completely 
unknown information, “white” to indicate completely known information, and “grey” to indicate partially 
known and partially unknown information (Liu & Lin, 2010, p. 15). Grey-based mathematical equations are 
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used because they could potentially be used to address issues of uncertainty that might be countered when a 
programmer is trying to implement the self-navigating features of the software-based mouse in computer code. 

 
Figure 1: Unplugged activity which uses a programmable toy mouse 

The basic building blocks for modelling decision-making during problem-solving, which is adapted 
from the Grey Models of Decision Making, first developed by Liu & Lin (2010, p. 197) into the context of the 
programmable toy mouse in this unplugged CT activity, is presented as follows: 

Let the four key elements of decision-making be events, countermeasures, effects, and objectives. Let 
the totality of all events which might be encountered by the programmable toy mouse in the unplugged activity 
be denoted as  

E = {e1, e2, … en}      (1) 

where ei represents the ith event within the set of events, where i = 1, 2, 3, …, n, such that the event e1 precedes 
e2 and e2 precedes e3 and so forth.  

A countermeasure (Oxford Living Dictionaries, 2017) is an actionable process or choice that could be 
taken (or conversely, not taken) to mitigate the effects of an event. The term “countermeasure” is used instead of 
“action” because of the implication that it could be taken or not taken after considerations during the decision-
making process. The totality of all countermeasures is defined as the set of countermeasures, denoted as  

C = {c1, c2, … , cm}      (2) 

and cj represents the jth countermeasure within the set of countermeasures, where j = 1, 2, … m. Actions taken 
by the programmable mouse (see Figure 2) can be considered as countermeasures, with the action “forward” 
denoted as c1, “rotate left” denoted as c2, “rotate right” denoted as c3, and “reverse” denoted as c4. Thus, the set 
of countermeasures for the programmable toy mouse is denoted as  

C = { c1, c2, c3, c4 }     (3) 

 

 

 
Figure 2: Buttons on the programmable toy mouse 
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The set of decision schemes S = E × C can be represented by the Cartesian product  

E x C = { (ei, cj) | ei ∈ E, cj ∈ C }      (4) 

of the set of events E, and the set of countermeasures C, where each pair of decision scheme sij = (ei, cj), for any 
ei ∈ E, cj ∈ C. Hence, a set of decision schemes for the programmable toy mouse, which represents the totality 
of all the various combinations of moves it can make, is denoted as 

S = E × C = Sij = (ei, cj) = { S11 , S12 , … , S14, S21, … , S24 , S31, … , S34 , …}  (5) 

 

A set of decision schemes not only can be used to represent the totality of the various ways the 
programmable toy mouse can move that an individual learner has considered, if there is only one learner. 
Especially noteworthy is, it can also be used to represent the totality of the various ways of solving the problem 
that a group of learners has discussed about together, if there is more than one learner involved, such in this 
instance, where many learners are involved in the decision-making process to discuss how best to move the 
programmable toy mouse. 

In this unplugged activity, the facilitator can first explain to the learners that at each step, the 
programmer must decide whether to make the mouse move forward, or to rotate left or right, or to move in 
reverse. In our mathematical model, however, each “step” that the mouse takes can be technically considered to 
be an event. For example (see Figure 3), each step shall be technically referred to as an event in the 
computational model, and in each step, there is a corresponding countermeasure, which can be Forward, or 
Rotate Left, or Rotate Right. 

For example, at event e1, the programmable toy mouse might not be blocked by any obstacle in front, 
behind, or on its sides, so the programmer can choose to deploy countermeasure c1 to move the mouse one 
square forward. At event e2, the programmable mouse might encounter an event where the goal (the cheese) is 
located to its left, so the programmer needs to deploy the countermeasure c2 to rotate left, and so forth.  

 

Figure 3: Example of a path utilised by a learner for the programmable toy mouse 

 
Effect values of decision schemes 

To encourage the learners to participate in this unplugged activity, the facilitator might like to consider 
explaining to them that there will be a competition where each team is required to discuss about the best steps 
for the mouse to take, before using the mouse. The rules of the competition can be presented to them in a slide 
(see sample slide in Figure 4). 
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Figure 4: Rules of the competition for the teams of learners participating in the unplugged CT activity 

Effect value of decision scheme 

Let a set of decision schemes be denoted as  

S = { Sij  = (ei, cj) | ei ∈ E, cj ∈ C }     (6) 

 

Further, let 𝑢!"
(!) represent the effect value of the set of decision scheme Sij with respect to the objective k, where 

R represents the set of all real numbers. If we suppose that 𝑢!"
(!): 𝑆⟼ 𝑅, that is, the effect value  𝑢!"

(!) can be 
mapped from the set of decision schemes to a set of real numbers with respect to the objective k, it follows that a 
particular decision scheme 𝑠!" can also be mapped to an effect value, which can be denoted as 𝑠!" ⟼ 𝑢!"

(!). For 
example, in the context of the points award system of the competition in this unplugged CT activity (see Figure 
4), the learners in each team are encouraged to discuss among themselves to propose a solution (a particular 
decision scheme which is selected from a set of decision schemes) for their team and try it on the programmable 
toy mouse. Hence, the effect values of the teams’ decision schemes can be directly manifested in the real values 
of the points that they score (or lose). 

 

Equivalent countermeasures 

 If two different actions (also referred to as countermeasures) of the programmable toy mouse can 
contribute to achieving the same objective, we can denote it as follows: if the countermeasures 𝑐! and 𝑐! are 
equivalent with respect to objective k, it can be denoted as 𝑐! ≅ 𝑐!. Hence, the set with equivalence class of 
countermeasure 𝑐! to the event 𝑒!  with respect to objective k can be denoted as 

    𝐶!
(!) = { c | c ∈ C, c ≅ 𝑐! }     (7) 

 

Suppose the two effect values 𝑢!"
(!) and 𝑢!!

(!)are equivalent, then this effect equivalence can be denoted 

as 𝑢!"
(!) = 𝑢!!

(!). For example (see Figure 5), the effect value in Decision Scheme A can be considered to be 
equivalent to the effect value in Decision Scheme B, because the mouse takes the same number of 
countermeasures to reach the cheese. 
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Figure 5: Example of equivalent effect values 

Superiority of a countermeasure 

 If a countermeasure is considered to be better than another countermeasure for the programmable toy 
mouse, it can be denoted as follows: if the effect value 𝑢!"

(!) is greater than the effect value 𝑢!!
(!), it can be 

denoted as 𝑢!"
(!) > 𝑢!!

(!) . If the countermeasure 𝑐!  is superior to 𝑐!  in response to event 𝑒!  with respect to 
objective k, it can be denoted as 𝑐! ≻ 𝑐!. Hence, it follows that the superior set of countermeasures 𝑐! to the 
event 𝑒!  with respect to objective k can be denoted as 

    𝐶!!
(!) = { c | c ∈ C, c ≻ 𝑐! }    (8) 

 

Superiority of a decision scheme 

 After discussion amongst the learners in their respective teams, if a set of emergent decision scheme is 
considered to be superior by the team members, it can be expressed as follows: if the effect value 𝑢!"

(!) must be 

greater than the effect value 𝑢!!
(!) to achieve the objective, it can be denoted as 𝑢!"

(!) > 𝑢!!
(!). If the decision 

scheme 𝑠!" is superior to 𝑠!! with respect to objective k, it can be denoted as 𝑠!" ≻ 𝑠!! and hence the set of 
superior decision scheme can be denoted as 

    𝑆!!
(!) = { s | s ∈ S, s ≻ 𝑠!! }     (9) 

For example (see Figure 6), if decision scheme A is contributed by Learner A, decision scheme B is 
contributed by Learner B, and decision scheme C is contributed by Learner C, and suppose in the group 
discussion, the three learners come to a decision that decision scheme A is superior because the programmable 
toy mouse would be able to reach the cheese if this is chosen, we can say that decision scheme A is superior 
compared to decision schemes B and C. 

 

Figure 6: Example of a superior decision scheme 
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Threshold values of decision effects 

 In the competition within this unplugged activity, the teams of learners are motivated to discuss and 
present their perceived solution quickly, so that they can score higher points; however, if their solution of the 
algorithm is incorrect, they might be penalised too, so this can be expressed as follows: let 𝑑!

(!) be the upper 
threshold value (the points that the team can score if its solution is correct), and 𝑑!

(!) be the lower threshold 
value (the points that the team can score if its solution is incorrect) of the decision scheme 𝑠!" with respect to the 
single objective k, and r be the value between the range of 𝑑!

(!) and  𝑑!
(!). It follows then that the one-

dimensional grey target for objective k can be denoted as 

    𝑆! =  𝑟  𝑑!
(!) ≤ 𝑟 ≤  𝑑!

! }    (10) 

 

and a satisfactory effect value with respective to objective k can be denoted as 

    𝑢!"
(!)∈ [𝑑!

(!),𝑑!
(!)]      (11) 

 

Decision-making with multiple objectives 

Suppose 𝑢!"
(!) represents the effect value of decision scheme 𝑠!" with respect to a single objective k. If 

𝑠!" is a feasible decision scheme which can contribute to achieving the objective k, it can be denoted as 𝑠!"∈𝑆!. 
This applies to situations which involve a single objective.  

 For grey targets of decision-making with multiple objectives, if there are two objectives for instance 
(see Figure 7), we can assume that 𝑑!

(!) and 𝑑!
(!) to be the lower and upper threshold values of the decision 

effects of objective 1, where 𝑟(!) represents the value between the range of 𝑑!
(!) and  𝑑!

(!). We can also assume 
𝑑!
(!)and 𝑑!

(!) to be the lower and upper threshold values of the decision effects of objective 2 , where 𝑟(!) 
represents the value between the range of 𝑑!

(!) and  𝑑!
(!). Hence, the grey target of two-dimensional decision-

making can be denoted as 

   𝑆! =  𝑟(!), 𝑟(!)  𝑑!
(!) ≤ 𝑟 ! ≤  𝑑!

! ,𝑑!
(!) ≤ 𝑟 ! ≤  𝑑!

! }  (12) 

 

 

Figure 7: Multiple objectives of the programmable toy mouse 
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If this effect vector of 𝑠!" satisfies the effect value 𝑢!" such that 𝑢!" = {𝑢!"
! , 𝑢!"

! } ∈ 𝑆!, then 𝑠!" can be 
considered to be a superior decision scheme with respect to objectives 1 and 2. It also follows that 𝑐! can be 
considered to be a superior countermeasure for event 𝑒! with respect to objectives 1 and 2. 

  Suppose 𝑑!
(!), 𝑑!

(!), 𝑑!
(!), 𝑑!

(!), … where 𝑑!
(!) and 𝑑!

(!) represent the lower and upper threshold values of 
decision effects with respect to objectives 1, 2, … , s. A grey-target with a s-dimensional decision-making 
scheme can be denoted in Euclidean space as 

 𝑆! =  𝑟(!), 𝑟(!),… , 𝑟(!)  𝑑!
(!) ≤ 𝑟 ! ≤  𝑑!

! ,𝑑!
! ≤ 𝑟 ! ≤  𝑑!

! ,… ,𝑑!
! ≤ 𝑟 ! ≤  𝑑!

! }  (13) 

 

Hence, if 𝑠!" is a superior decision scheme, where 𝑢!"
!  represents the effect value of the decision 

scheme 𝑠!" with respect to the objective k, and k = 1, 2, …, s, then effect vector can be denoted as 

 𝑢!" = {𝑢!"
! , 𝑢!"

! ,… , 𝑢!"
! } ∈ 𝑆!     (14) 

 

These grey-targets of decision-making represent the locus of superior effects. In reality, however, it 
might be almost impossible to achieve absolute optimization of an outcome. Nevertheless, in analysis we 
endeavour to strive for the quasi-optimal outcome, where the decision scheme and its corresponding 
countermeasures are quasi-optimal; which is to say, they are the best choices among the available decision 
schemes and their corresponding countermeasures. As a cautionary note, however, the quasi-optimal solution 
presented by a team of learners might not always be the correct solution; in fact, it could even be incorrect. 

 
Time Series: Memories of Sets of Decision Schemes 

So far, the discussion has focused only on static decision schemes with a fixed moment in time. Grey-
based decision-making can also focus on changes of the decision effect over time (Liu et al., 2016). Let us 
suppose that in a hypothetical scenario, the facilitator might wish to consider asking the learners to develop a 
software-based self-navigating mouse that can perform autonomous problem-solving in a series of different 
maze challenges, not just in one maze challenge. Instead of static decision schemes, the concept of time can now 
be included; as time advances forward, the changing decision effects can also be considered.  

Memory plays an important role in problem solving (Reber & Kotovsky, 1997). In the software-based 
self-navigating mouse’s multiple attempts at problem-solving, which involves the notion of time, it  has to 
“remember” the consequential effects of its previous attempts, before another attempt is made to solve a similar 
problem in the future. As such, the facilitator might also consider asking the learners to implement a 
rudimentary type of memory into the software-based self-navigating mouse, so that it can “remember” its 
previous moves in the form of a time series. Suppose a set of events is represented by E = { e1, e2, e3, …, en }, a 
set of countermeasures is represented as C = { c1, c2, …, cm }, and the set of decision schemes is represented by 
S = { sij = (ei, cj) | ei ∈ E, cj ∈ C }, then it follows that the time series of decision effect of the decision scheme 
𝑠!" with respect to the objective k can be denoted as 

    𝑢!"
!  = (𝑢!"

! 1 , 𝑢!"
!  (2), … , 𝑢!"

! (ℎ))   (15) 

This section has described some mathematical equations that might be used to depict the decision-
making processes that might be involved in the programmable toy mouse in the unplugged CT activity. The next 
section will present some of the CT concepts and their corresponding Python programming code that might be 
useful as scaffolds for the teacher in the facilitation of a discussion with the students about CT concepts in 
decision-making and problem-solving, and how to implement them using computer programming code. 
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3. Discussion 

 So far, these grey-based mathematical equations have tried to depict the decision-making processes that 
might be involved in the unplugged CT activity to educe (meaning: to draw out) the problem-solving abilities of 
the learners. Sometimes, after an unplugged CT activity has been conducted, the facilitator might wish to 
continue with a code writing activity for the learners, if they already have experience in software programming. 
For example, the facilitator might consider asking the learners to write code to implement the mouse in software, 
in such a way so that it has autonomous decision-making abilities. Besides text syntax-based programming 
languages such as Python, C++, and Java, software programmes can also be developed using mathematical 
equations. Currently, a software which utilises symbolic computing and can accept mathematical symbols as 
part of its programming syntax to create simulations is Mathematica (Wolfram Research Incorporated, 2017). 
Should the facilitator choose to explicitly explain the CT concepts involved in the unplugged CT activity to the 
learners, so that by analogous association, they can programme decision-making capabilities in the software-
based autonomous self-navigating mouse, the following information might be useful for the programmers, 
regardless of the choice of programming language to be used. In the current section, some suggested snippets of 
computer programming will be offered as illustrations to show how the afore-mentioned mathematical equations 
of decision-making can be used as scaffolds by the teacher for possible discussions of computer programming 
with the students. The Python programming language is used in the present paper, because it has become quite 
popular for learning programming in schools. It had also gained traction as a programming language for 
development work in machine learning, deep learning, and artificial intelligence. In the present paper, the 
Python code snippets are not intended to be complete solutions; they merely serve as scaffolds for the teacher to 
discuss about programming concepts and CT concepts with the students. This section purports to make explicit 
the CT concepts for implementing decision-making capabilities in the software-based self-navigating mouse. 

Computational Thinking in Decision-making: Abstraction 

The CT concept of abstraction of data can be applied to the events (see Table 1) which can be 
represented as lists or arrays in the software-based self-navigating autonomous mouse. For the purpose of 
keeping this example simple, the number of events is assumed to be 5. It is also assumed that in this game, the 
self-navigating mouse is not allowed to reverse. The values inside each event are assumed to be some data 
“sensed” by the software version of the self-navigating mouse, perhaps via machine-vision or via proximity 
sensors. Let us assume that this software-based self-navigating mouse has three sensors, one on its front, one on 
its left side, and one on its right side. In each event that the mouse encounters, the event ei can be represented as 
an array with 3 values, each from its front, left, and right sensor respectively. For example, if there is a cheese in 
front of the mouse, its value would be: 2, if there is an obstacle on its left, its value would be: -1, if there is no 
object on its right, its value would be: 0. Hence, it can be represented as an array in Python code e1  = [2, -1, 0]. 
Therefore, if it encounters 5 events, it can be represented in Python code as follows: 

 Table 1: Mathematical equation of an array of events and its corresponding Python code 

From Equation 1: A set of events 
 
          E = {e1, e2, … e5}  

Example of corresponding Python code 
 

 
 

The CT concept of abstraction of data can be applied to the events (see Table 2) by representing them 
as an immutable tuple or alternatively as an array in the software-based self-navigating autonomous mouse. For 
the purpose of keeping this example simple, the number of events is assumed to be 4, where actions taken by the 
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self-navigating autonomous mouse can be considered to be countermeasures, with the action “forward” denoted 
as c1, “rotate left” denoted as c2, “rotate right” denoted as c3 and “reverse” denoted as c4. For ease of 
computation by the software-based self-navigating autonomous mouse, the value of c1 is 1, the value of c2 is 2, 
the value of c3 is 3, and the value of c4 is 4. 

Table 2: Mathematical equation of an array of countermeasures and its corresponding Python code 

From Equation 3:  
A set of 4 countermeasures 
 

C = { c1, c2, c3, c4 }  
 

Example of corresponding Python code 
 

 
 

Besides representing data as variables in lists or arrays, data can also be presented in the form of a 
Cartesian structure in Euclidean space during the decision-making process (see Equation 5) in the software-
based self-navigating autonomous mouse. This Cartesian structure can be easily created using Python; it 
involves the usage of vertically stackable arrays to create a multi-dimensional matrix (see Table 3). Multi-
dimensional matrices are also referred to as tensors, which could be used to store data of different data-types 
“sensed” by the software-based self-navigating autonomous mouse from its sensors. In real-world practical 
applications, tensors – which are useful for storing massive amounts of digital data from pixels of images, audio 
data, spatial data, and so forth – are the cornerstone of data structures in artificial intelligence programming-
related software such as TensorFlow, Theano, and Keras. 

Table 3: Mathematical equation of a multi-dimensional matrix and its corresponding Python code 

From Equation 5:  
An E by C dimension Cartesian 
structure formed from the equation 
which represents Events and 
Countermeasures. 
 
E × C = Sij   
= { S11 , S12 , … , S14, S21, … , S24 , 
S31, … , S34 , …} 
 

Example of corresponding Python code 
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Computational Thinking in Decision-making: Evaluation 

The CT concept of evaluation could potentially be applied in this manner: let us suppose that the 
software-based self-navigating mouse has autonomous decision-making capabilities to select the best quasi-
optimum solution using the decision-making process to determine the superiority of a countermeasure (see 
Equation 8). The following is a simple contrived example of using Python code to calculate the magnitude of an 
array of possible countermeasures, so that a “superior” countermeasure can be determined: 

Table 4: Python code to calculate the magnitude of an array to determine which direction the self-
navigating mouse should take 

From Equation 8:  
Superiority of a Countermeasure 
 
𝐶!!
(!) = { c | c ∈ C, c ≻ 𝑐! } 

Example of corresponding Python code to calculate and 
compare the magnitudes of three arrays of events data 
collected by the self-navigating mouse’s sensors on its 
front, left, and right, to determine which is the superior 
way to be taken by the self-navigating mouse; that is, the 
superior countermeasure (direction) that would allow that 
higher value to be manifested. 
 

 
 

The CT concept of evaluation can also be applied by the software programmer to determine the 
superiority of a decision scheme (see Equation 9). Usually, in a self-navigating autonomous machine, the 
evaluation is not determined by the human programmer, but by the machine itself using algorithms that are 
useful for machine vision, image pattern recognition, path finding, and so forth. In practical terms, the 
programmer might simply need to “feed” the data (most probably contained in the data structure of a matrix) to 
the machine learning or deep learning algorithm. Comparison of numerous multi-dimensional matrices (multiple 
decision schemes) can then be performed by the machine learning or deep learning algorithm inside the self-
navigating autonomous mouse to determine the “superiority” of a decision scheme (one single matrix) in a set of 
decision schemes (numerous matrices).  

Computational Thinking in Decision-making: Decomposition 

The CT concept of decomposition could be applied in decision-making with multiple objectives (see 
Equation 12) in the software-based self-navigating mouse. For instance, if there are two objectives, and if the 
self-navigating mouse is required to reach the Action symbol, as well as the cheese symbol on the board, it 
would be required to break down the steps to be taken to achieve those two objectives.  

Computational Thinking in Decision-making: Algorithmic Thinking 

In addition to the CT concept of decomposition in decision-making for multiple objectives, the CT 
concept of algorithmic thinking, in conjunction with the concept of utilising the threshold values of decision 
effects (see Equation 13) could be applied to the software-based self-navigating mouse so that it can “think” 
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about using similar methods for reaching multiple objectives, even though the objectives may look different. For 
example, the same method that the software-based self-navigating autonomous mouse can use to reach the 
Action symbol, that is, by comparing countermeasures to determine which one is superior (for instance, one path 
which uses fewer steps), can also be applied to reach the cheese. In terms of practical application, the software 
programmer might wish to consider using a Time Series (see Equation 15) so that the events, countermeasures, 
decision schemes, and decision effects considered and taken (or considered but not taken) by the software-based 
self-navigating mouse can be “stored” for analysis to determine which next step to take (forward, left, or right). 

Table 5: Python code to utilise a Time Series and make a one-step prediction 

From Equation 15:  
Data stored in a Time Series 
 
𝑢!"
!  = (𝑢!"

! 1 , 𝑢!"
!  (2), … , 𝑢!"

! (ℎ)) 

Example of corresponding Python code which utilises the concept of Time 
Series to apply the CT concept of generalisation to analyse the pattern in 
the data, and subsequently make a one-step prediction  
 

 
 

Computational Thinking in Decision-making: Generalisation 

Finally, the CT concept of generalisation in decision-making might be implemented in the software-
based self-navigating mouse in a manner that can combine the sets of events, countermeasures, decision 
schemes, and objective effects into a decision-making algorithm, so that they can be utilised in problem solving, 
for example, to autonomously predict the best route to take in new mazes. Practically, one of the ways might be 
for the programmer to consider implementing a LSTM (Long Short-Term Memory) recurrent neural network, 
which is a cornerstone of Machine Learning/Deep Learning for predicting new sequences (and in this context: 
paths) based on older data. The programmer may wish to consider implementing code to develop persistence (a 
form of memory) and perform analysis on the data from events, countermeasures, decision schemes, and 
decision effects, so that the self-navigating mouse can develop its own algorithmic thinking. More information 
about coding LSTM recurrent neural networks in Python can be perused at Brownlee's (2016) website. 

 

4. Conclusion and future research 

Grey-based mathematical equations have been utilised in the present paper to depict what might be 
involved in decision making during an unplugged CT activity. Mathematical modelling of decision-making 
might contribute to addressing a gap in the extant literature of CT research that has insofar not been studied 
much. An analytical approach using mathematical equations and descriptions of CT has been offered in this 
paper as a potential form of rudimentary scaffolding, which might be useful to facilitators and learners of CT-
related activities. The mathematical equations of the decision-making processes posited in this theoretical 
manuscript may serve as a base for programmers, regardless of the programming language they prefer, should 
the facilitator wish to ask the learners to embark on a software programming activity that is closely associated to 
the unplugged CT activity. 

Indeed, teachers/instructors might not need the mathematical equations in the present paper to teach an 
activity such as navigating in the maze. They might, however, find them to be useful as scaffoldings if software 
programming by the learners is involved after the conclusion of the unplugged CT activity. The hypothesis is 
that, if the teachers are exposed to a math model, they can be made aware of what the decision options are, and 
how to interpret the actions and results provided by students. Further, they might be more aware of the 
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ramifications of the unplugged activity through its representation as a mathematical model. We hope future 
research can explore this hypothesis. Better still, if some instructors can create the model or fragments of the 
model, they can become even more conversant of the content knowledge to be taught and can build on the 
model to do the programming of the algorithm. 

The existence of the problem-solving conceptual framework that has come to be referred to as 
computational thinking cannot be in doubt; however, what that structure is, might be another matter that is 
worthy of further research and exploration. As researchers seek to understand more about the various aspects of 
computing education, the utilisation of mathematical modelling might play a significant role in CT by, for 
example, describing it in more formal terms via mathematical equations to uncover aspects of CT that might be 
useful for programmers; should the need arise to implement them systematically in software code. 
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