
Information Systems Education Journal (ISEDJ) 17 (1)

ISSN: 1545-679X February 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 40
https://isedj.org/; http://iscap.info

What! No GUI? – Teaching A Text Based

Command Line Oriented Introduction to
Computer Science Course

Ira Goldstein
igoldstein@siena.edu

Department of Computer Science
Siena College

Loudonville, NY 12211 USA

Abstract

Computer Science students need to acquire knowledge about both the hardware and software aspects
of computing systems. It is necessary for them to understand how each layer interacts with one another.
However, since Graphical User Interfaces have become ubiquitous, the opportunities to interact with the
computer via a command prompt as part of their course offerings are few and far between. The result
has been that an intuitive understanding of this interplay has been lost. This paper describes an
Introduction to Computer Science course that utilized the Raspberry Pi Linux based computer in a text

based, command line environment for all programming assignments. The students edited their programs
using the Nano text editor. They submitted their programming assignments using SFTP. They configured
and managed their Raspberry Pis, including installing and configuring the Apache web server, from the
command line.

Keywords: Computer Science Education, Introduction to Computer Science, Raspberry Pi, Linux,
Pedagogy, Command Line.

1. INTRODUCTION

The Introduction to Computer Science (CS)
course (CSIS110) at Siena College is a blend of

CS0 and CS1 topics, with an even split between
CS concepts and programming. It is a required
course for both CS majors and Information
Systems minors, as well as for students majoring
in Computational Science and Actuarial Science.

In order to attract students with varying

interests, several variations of the course, each
with its own focus (flavor), have been offered in
recent years. The offerings have included flavors
in Alice, graphics and games, multimedia, music,
and scientific computing, with the last three being
offered using the Python programming language.
While all of the sections utilize the Dale and Lewis

(2013) text and cover the same CS concepts,
each of the flavors utilizes a second textbook
appropriate to its focus.

Over the years, as operating systems have
evolved, we have moved away from using a
command line interface, thereby abstracting how
a computer operates. As the desktop Graphical

User Interface (GUI) became the de facto
standard, we have been graduating CS students
who, at most, were vaguely aware of the
existence of an operating system’s command line
interface. This runs contrary to the need for CS
students to understand how hardware and
software layers interact with one another.

Kendon and Stephenson (2016) report the results
of a non-credit course that provided hands-on
Linux command line instruction. The course
covered file management, text editing, piping and
redirection, and compiling and running programs.
The authors report that the course was well

received, and based upon post-instruction
surveys, the students found the hands-on labs

Information Systems Education Journal (ISEDJ) 17 (1)

ISSN: 1545-679X February 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 41
https://isedj.org/; http://iscap.info

and learning about the command line to be

valuable.

While examining CS faculty’s perception of the

instructional use of Unix, Doyle and Lister (2007)
found that faculty believed that it should be part
of the CS curriculum since it allows you to
“interact with [the computer] more directly than
using something like windows which has a GUI on
top of it” (p 21). They also found support for the
idea that working at the command line provides a

more powerful environment than working in
Window’s GUI. When reporting on the use of a
treasure hunt game to motivate learning Unix,
Moy (2011) found that the command line forces
students to better understand the task at hand.

The Raspberry Pi is a credit card sized affordable
single-board computer developed in the United
Kingdom by the Raspberry Pi Foundation, and is
capable of running a number of different
operating systems, including Debian Linux. The
foundation’s goal is to put computing power into
people’s hands “so they are capable of

understanding and shaping our increasingly
digital world, able to solve the problems that
matter to them, and equipped for the jobs of the
future” (Raspberry Pi Foundation 2018).

Incorporating hands-on activities in an
introductory CS course has been shown to

augment a student’s understanding of the course
material (Wu, Hsu, Lee, Wang & Sun 2014). The

Raspberry Pi has been used successfully in
providing hands-on instruction in a number of
fields, from bioinformatics (Barker, Ferrier,
Holland, Mitchell, Plaisier, Ritchie, & Smart 2013)

to building a microscope as part of a Life Sciences
course (Rajani, Markus, Ward, McLean, Gell, &
Self 2017) to Chemistry (Geyer 2014), and
Physics (Singh & Hedgeland 2015), as well as in
CS (Jaokar 2013; Frydenberg 2017; Black &
Green 2017).

Having had some experience with the then new
Raspberry Pi, I proposed offering a flavor that
focused on Linux for the Fall 2014 semester,
providing students with a number of command

line, text based labs and homeworks. In order to
not inflate the textbook cost for the course, the
students purchased their own Raspberry Pi as

their second “textbook.” Open source and on-line
material were used for supplemental readings.

2. BACKGROUND

The primary goal of the Linux flavor was for the

students to feel comfortable in a command line
environment, which, to the uninitiated, can seem

intimidating. Being able to use the command line

is often more efficient than point and click; can
give the user greater control over the computer,
especially when performing administrative

functions; allows the user to install programs that
may not be available as an application; and can
automate repetitive tasks.

The course consisted of two one-hour lectures
each week, as well as eleven labs. I created five
new labs in order to cover the new topics. Using

material from the other existing flavors, I
modified three existing labs, such as enhancing
the operating systems lab, and reused three of
the labs that covered topics, such as exploring
object oriented programming using ALICE. Labs
were run following the paired programing

paradigm (Bevan, Werner, & McDowell 2002;
Simon & Hanks 2008).

Knowing that I wanted the students to be able to
write programs that generated dynamic web
pages via Common Gateway Interface (CGI), I
selected Perl (Wall 2000) based on how

commonly Perl is used for this purpose. While not
currently in vogue as a first programming
language, Perl seemed like an obvious choice for
teaching programming in a strictly text based
environment. In addition, given that Perl has
weakly (dynamically) typed variables, the
students did not need to worry about declaring

variable data types.

Following the Dale and Lewis (2013) text, the
course covered a breadth of topics. One topic was
data representation: binary, octal, hexadecimal,
signed magnitude, text compression, colors,

images, and audio. Another topic included
Boolean expressions, gates, truth tables, and
circuits. The computing components topic
covered how to calculate disc seek, latency, and
transfer times, and von Neumann architecture,
which serves as an introduction for assembly and
machine language. It also touched on concepts

from operating systems, programming
languages, and artificial intelligence. While
required for CS majors and minors, a wide
spectrum of students enroll in CSIS110 since the

course can be used to fulfill the college’s
quantitative analysis graduation requirement.

The students’ Perl code needed to follow a set of
standards. First, the code needed to follow
perlstyle as described in the Perl Programming
documentation (Perldoc 2018). Programs needed
to contain the program’s name, the author or
authors’ names, and a short description, each as

comments at the top. Each section of code
required descriptive comments. Pragmata were

Information Systems Education Journal (ISEDJ) 17 (1)

ISSN: 1545-679X February 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 42
https://isedj.org/; http://iscap.info

used to control runtime behavior of Perl. The

students were required to include two pragmata.
The strict pragma disabled certain Perl
constructs that could behave unexpectedly. The

warnings pragma enabled Perl’s optional
warnings, which would help debugging programs.
When writing backend web programs, Perl
programs needed to use the CGI core module.

3. ENVIRONMENT AND SETUP

For each offering, we used the most recently
released version of the Raspberry Pi model B.
Initially, we used the Raspberry Pi 1 B+ that had
a single core ARM 32-bit processor running at
700MHz, 512MB memory, 4 USB ports, and
10/100 Ethernet. The Raspberry Pis ran the

Raspbian OS, based upon the 3.12 Wheezy
release of Debian. In addition to the Raspberry Pi,
the students needed to purchase a power supply,
keyboard, micro-SD card, case, and a USB
wireless Ethernet (Wi-Fi) adapter. More recent
offerings have used the Raspberry Pi 3B which
has a quad core 1.2GHz processor, 1GB memory,

and built-in Wi-Fi (eliminating the need for the
students to purchase a USB Wi-Fi adapter).
Unfortunately, the campus bookstore was not,
and is still not, able to order Raspberry Pis.
Therefore, the students were given links to
multiple on-line vendors from whom they could
purchase either the individual components or kits.

The cost for a fully configured Raspberry Pi was
less than a typical textbook.

Since each student would have their own
Raspberry Pi that they would use in and out of
class, they would need to be able to access it not

only in lab, but also at other locations. The
Information Technology Services (ITS) group is
very focused on ensuring that faculty has access
to all necessary resources. Working together, we
determined that the best way to connect the
Raspberry Pis in lab would be via Wi-Fi, and added
an HDMI cable to the secondary monitor on each

of the lab’s Windows PCs. While a bit cramped at
a given workstation, this allowed the students to
get to their e-mail and other resources while also
directly connecting to their Raspberry Pi’s

console.

By using the college’s Wi-Fi, the Raspberry Pis

could connect to the network from any location
on campus (Figure 3). As students became more
comfortable with using their Raspberry Pi via the
network, many students opted to leave their
Raspberry Pi in their dorm room and connect from
the lab using PuTTYi. Instructions were also

provided on how to configure the Raspberry Pi to

work on other Wi-Fi networks for those students

who lived off-campus.

Figure 3 – Campus network environment

In order to get the students up and running as

quickly as possible several customizations were
made to the base Raspbian operating system,
using the then most recent release of Raspbian.
The first several customization items related to
the wireless network. The college Wi-Fi network

was added to the WPA supplicant configuration
file. In addition, a shell script was added as part

of the boot sequence that automatically sent out
an e-mail with the system’s network information
(ifconfig), which included the current IP address.
This enabled the student to remotely access their
Raspberry Pi even if their IP address changed. In
order to enable e-mail, an SMTP relay was
configured to use a common Gmail account that

was created for the course. Email utilities
(ssmtp, mailutils, and mpack) and Lynx (a
text based web browser) were installed. The
system was then configured to boot to the
command line interface, and to use US English.
Finally, since there was no way to recover a lost

password, a “csprof” account with full root access

was added. This account would allow me to log in
and perform any administrative tasks, including
resetting the student’s password. The students
were informed of the existence of this account,
and they were reassured that the account would
not be used to access their system without their

explicit consent. The students were then given
until the beginning of the second lab to copy the
customized version of Raspbian to their micro-SD
card.

Information Systems Education Journal (ISEDJ) 17 (1)

ISSN: 1545-679X February 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 43
https://isedj.org/; http://iscap.info

Students were given read-only access to the

materials for each lab via a shared Windows
drive. The materials included instructions, sample
code, and support files. Students would copy the

material to a lab folder on their own Windows
home directory. ITS has a secure Linux server
that automatically maps a user’s home directory
upon login. Using SFTP, students would then
copy any necessary files from their lab folder
under their home directory to their Raspberry Pi.
At the end of the lab, the students would use SFTP

to copy their work back to their lab folder. This
provided two benefits. The first benefit relates to
disaster recovery. Since all files that the student
modified on the Raspberry Pi were copied to their
lab folder, if there was a catastrophic failure of
their Raspberry Pi, recovery simply consisted of

imaging a new micro-SD card, resetting the
system password and name, and copying all of
their files back to the Raspberry Pi. The second
benefit relates to printing. Rather than having to
configure the Raspberry Pis to work with the
network printers, students were able to print off
their work from the Windows PCs using

Notepad++ii.

4. LABS

The students needed to complete eleven labs over
the course of the semester (Table 4). Labs were
run with students working in pairs. The lecture

prior to each lab provided the students with
scaffolding for each of the lab topics. In addition,

the students needed to complete a pre-lab for all
but the final lab.

Pre-labs (Appendix A) typically consisted of

several readings followed by a short on-line
multiple choice quiz on the reading material. In
preparation for later labs, the pre-lab had the
students install software packages, such as the
Apache web server. A number of the labs
(Appendix B) ended with reflection questions that
were meant to make the students think critically

and creatively about some aspect of the lab.
Three of the labs, von Neumann (lab 7), Python
(lab 10), and Artificial Intelligence (lab 11), were
common to all flavors of Introduction to CS and

were not modified. The discussion that follows
and the appendices are limited to the labs, or
portions of the labs, where the students used

their Raspberry Pis.

Lab

Number
Description

1 Linux command line

2 Configure individual Raspberry Pi

3*
Gates and Circuits – Standard
input via Perl

4 Loops and conditional logic

5 Arrays and subroutines

6 Apache and dynamic HTML

7** von Neumann architecture

8* Alice - ping/traceroute - CGI

9* Operating Systems - Processes

10** Python

11** Artificial Intelligence

Table 4 – Lab Descriptions
* Modified common lab
**Common lab across all sections.

The first lab was run with the students connecting

to one of several Raspberry Pis that I had placed
on the network. This ensured sufficient time for
the students to procure their own Raspberry Pi
and to copy the course’s version of Raspbian OS
to their micro-SD card before they needed to use
them in lab. In this lab, the students learned basic
Linux commands and about the network

environment that they were using. The flow of
Lab one is summarized in Table 5. Objectives for
this lab included the ability to identify the

components of the networking environment, and
to demonstrate how shell scripts can be
customized to perform specific tasks.

1. Connect to a remote Raspberry Pi via
PuTTY

2. Interact with the Linux BASH command
line
a. List the contents of a directory

b. Display files
c. Change file permissions
d. Run shell scripts

3. Use GNU Nanoiii text editor to modify an
existing shell script (Figure 4)

4. Use sftp to transfer files

5. Use man to access the Linux on-line
reference manuals to discover various
options for system commands

Table 5 – Lab 1 Flow

Information Systems Education Journal (ISEDJ) 17 (1)

ISSN: 1545-679X February 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 44
https://isedj.org/; http://iscap.info

Figure 4 – Nano editor

The second lab began by having the students set
up their own Raspberry Pis. Depending upon the

number of upgrades issued since I created that

semester’s course’s version of Raspbian, the
students then patched their systems with the
most recent update using the Advanced
Packaging Tool apt-get. If the upgrade would
take a significant amount of time, the students
were instructed to perform the upgrade before

the next lab. The flow of Lab two is summarized
in Table 6. Objectives for this lab included having
to describe the steps necessary to set up a
Raspberry Pi, and to explain how arguments are
passed to a shell script.

1. Use the raspi-config utility to
a. Change the default password
b. Set the host name

c. Expand the filesystem to use all of the
space on their micro-SD card

2. Customize a provided shell script to send
the system’s network information to their
e-mail account

3. Register the system on the campus Wi-Fi
4. Use the Lynx text based web browser to

perform a Google Search (Figure 5)
5. Patch the system

6. Use BASH pipes and redirection

Table 6 – Lab 2 Flow

During lecture, programming examples were
provided in Perl. Starting with the third lab, the

students began modifying and writing simple Perl

programs on their Raspberry Pis. The fourth lab
built on this and introduced loops and conditional
expressions. The fifth lab introduced one
dimensional arrays and subroutines. Some Perl
programming topics, such as string manipulation,
were covered in lecture and homework, and were

not standalone lab topics.

Figure 5 – Text based view of Google

Lab six had the students set their Raspberry Pi up
as a web server. So as not to take up excessive

lab time, the students installed Apache2 as part

of the pre-lab. By the end of the lab they had
created their own CGI program that displayed the
current date and time as a dynamic web page.
The flow of Lab six is summarized in Table 7.
Objectives for this lab included the ability to
identify the directories used by Apache, and to

demonstrate how to manage Apache.

1. Configure Apache
2. Setup directories for

a. HTML files

b. Images
c. CGI programs

3. Edit HTML using nano
4. Create CGI program

5. Monitor Apache’s processes

Table 7 – Lab 6 Flow

Lab eight found the students building upon Lab

six. The lab had the students look at how packets
transverse the network using the ping and
traceroute commands. They then explored how
HTML forms pass data to backend programs.

Building upon Java applet simulations for process
management which was common to all flavors of

Introduction to CS, Lab nine allowed the students
to interactively explore how CPU prioritization of
a given process impacts other processes running
on a system. Table 8 summarizes the flow of Lab

nine.

1. Manage concurrently running jobs with
a. kill

b. fg
c. bg

2. Monitor running processes with
a. ps
b. top

3. Adjust process priority with nice

Information Systems Education Journal (ISEDJ) 17 (1)

ISSN: 1545-679X February 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 45
https://isedj.org/; http://iscap.info

Table 8 – Lab 9 Flow

The primary objective of this lab was for the
students to compare and contrast how processes

ran under contention and when set with varying
priorities. The students were provided with two
shell scripts: timehog.sh and longloop.sh. The
timehog.sh script repeatedly copied blocks of
1024k zeros to the null device. Left unchecked,
this script could utilize all available CPU cycles.
The longloop.sh script repeatedly calculated 1000

MD5 checksums. The students noted how long it
took longloop.sh to run with and without
timehog.sh running in the background, and by
changing the priority of the two scripts with the
nice command.

5. HOMEWORK ASSIGNMENTS

While lab assignments were team efforts, all of
the homework assignments were individual
efforts. There were a total of five homework
assignments. In order to emphasize that CS is not
just coding, the “programming” portion of the

first homework provided the students with
specifications for several projects, and they were
tasked with developing algorithms for each one.
Several of the projects appeared as coding tasks
in subsequent homework assignments. Rather
than the typical situation where students struggle
as they attempt to write code from their heads,

the students were able to code from the
graded/corrected copy of their algorithms.

The homework assignments reinforced the
students’ lab work. The second homework
assignment had the students write a program to

print out a multiplication table using nested loops.
The third homework assignment required the
students to use a one dimensional array to
compare two compound interest scenarios. In the
fourth homework assignment students created
their own subroutines to manipulate strings.

Their final programming homework assignment
was to develop an application that used a simple
HTML frontend to pass data to their Perl CGI
backend for manipulation, and then displayed the

results as an HTML document. The students were
given the choice of several scenarios to choose
from. These choices included taking a name and

producing output based on the lyrics of Shirley
Ellis’ Name Game song, taking an order for a
cookie shop, or translating text into Pig Latin.

6. STUDENT REACTION

Given that the text based environment used in
this flavor of the course was drastically different

than the GUI environment used by any of the

other flavors, I was interested in determining how
well the course prepared them for subsequent CS
classes. An on-line survey was sent to the 128

students who had taken this flavor of the course
more than a year previously in order to find out if
they would be interested in participating in a
focus group discussion about their experience.
Six students participated, all of whom had also
taken at least one other CS course. Two of the six
were Accounting majors, and the other four were

CS majors. Three were male and three were
female.

The general consensus was that initially the
course was intimidating. For most of the students
this was their first formal computer science

course. However, they all agreed that it was a
worthwhile experience, and its benefits extended
beyond the classroom. The following are excerpts
of the discussions.

“The Linux portion of it was such a foreign
concept to me. It ended up being the most

rewarding part because my internship; and every
other interview that I've been in on they've asked
me if I am comfortable on a Linux terminal and
things like that and I've used it a lot. So, although
it was the most, you know, it was the most
anxious part for me for the course, it pays
dividends.”

“I actually know and kind of use it (the Raspberry

Pi) now. Yeah, I use it for some like home
automation stuff, making a home homebridge like
certain products that didn't talk to each other.”

“I came in with no knowledge and I was a nervous
wreck the whole time. But I made it through and
it was probably the course that made me decide
on what major I wanted to choose which ended
up being computer science.”

“You know, I’ve even used the Nano editor again

because, you know, working in a terminal you
have the VIM or the Nano one, so it's like that
part was very helpful.”

“I thought it was a good basis because even
before going in I heard that it was the hardest
110 actually, just concept wise. So I think going

in with that kind of structure of like a harder 110
it ended up helping me with my further courses.”

7. REFLECTIONS AND NEXT STEPS

By and large, the Linux flavor of Introduction to

CS was well received. As with any journey, there

Information Systems Education Journal (ISEDJ) 17 (1)

ISSN: 1545-679X February 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 46
https://isedj.org/; http://iscap.info

were some bumps in the road. Thankfully they

were all navigable.

One of the first bumps relates to the use of Wi-Fi.

By its nature, Wi-Fi is a shared medium. This
makes it very difficult to guarantee bandwidth.
ITS does an admirable job maintaining the
network. However, periodically situations, such
as an iOS update or the World Cup, would spike
demand and slow down access to the Raspberry
Pis. Given that rewiring the lab to double the

number of Ethernet drops for this one course is
not a practical solution, we have continued to use
Wi-Fi. On the rare occasion when the networks
slowed down, it provided an opportunity to
discuss networking with the class, and the pros
and cons of wired and wireless environments.

The students used SFTP to transfer sample code
and finished programs between their lab folder on
their own Windows home directory and their
Raspberry Pi. This worked well once the students
understood the difference between the bash shell
prompt and SFTP prompt. However, several

students in the focus groups mentioned that
during job interviews they were asked about their
experience with version control. Therefore, while
I would still introduce SFTP at some point in the
course, it may be beneficial for the students to
use GitHub instead of SFTP. I could then treat
each lab and homework assignment as its own

project.

After the first offering, I was fortunate to be able
to have lab assistants who had previously taken
the course and were able to assist the current
students. These positions were offered to

students who had excelled in the class, and had
been the “go to” for other students. I used them
to run through the labs ahead of time to look for
bugs, typos, and for any items that were not
clearly explained. While they assisted in
answering questions during the lab, they neither
gave formal instruction nor graded any of the

material.

Several of the other flavors of the course use
Finch robotsiv to teach programming concepts. In

these, the students manipulate the color of the
Finch’s beak and write a program that uses the
Finch’s sensors to avoid obstacles. Giving

students the ability to control real world objects
with their programs can be a very powerful
learning experience. I am planning to integrate
the Finch into several of the existing labs.

8. REFERENCES

Barker, D., Ferrier, D., Holland, P., Mitchell, J.,

Plaisier, H., Ritchie, M., & Smart, S. (2013).
4273 π: Bioinformatics education on low cost

ARM hardware. BMC bioinformatics, 14(1),
243-248.

Black, M., & Green, R. (2017). Server on a USB
Port: A custom environment for teaching
systems administration using the Raspberry
Pi Zero. Information Systems Education
Journal, 16(6), 31-38.

Bevan, J. , Werner , L., & McDowell, C. (2002).
Guidelines for the Use of Pair Programming in

a Freshman Programming Class, Proceedings

of the 15th Conference on Software
Engineering Education and Training, 100-
107.

Dale, N. & Lewis, J. (2013). Computer Science
Illuminated. Jones & Bartlett Learning.

Doyle, B., & Lister, R. (2007). Why teach Unix?.

Proceedings of the Ninth Australasian
Conference on Computing Education, 66,
19-25.

Frydenberg, M. (2017). Ding Dong, You’ve Got
Mail! A Lab Activity for Teaching the Internet
of Things. Information Systems Education

Journal, 15(2), 20-31.

Geyer, M. (2014). Mole Pi: Using New Technology
To Teach the Magnitude of a Mole. Journal of
Chemical Education, 91(11), 2005-2006.

Jaokar, A. (2013). Using Raspberry Pi to Teach
Computing 'Inside Out'. Educational
Technology, 53(2), 37–40.

Kendon, T., & Stephenson, B. (2016). Unix
Literacy for First-Year Computer Science
Students. Proceedings of the 21st Western
Canadian Conference on Computing
Education (WCCCE '16), 14-17.

Moy, M. (2011). Efficient and playful tools to
teach Unix to new students. Proceedings of

the 16th annual joint conference on
Innovation and technology in computer
science education, 93-97.

Perldoc. perlstyle – perldoc.perl.org
https://perldoc.perl.org/perlstyle.html,
retrieved 7/8/18.

Information Systems Education Journal (ISEDJ) 17 (1)

ISSN: 1545-679X February 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 47
https://isedj.org/; http://iscap.info

Rajani S., Markus R., Ward, I., McLean D., Gell

C., & Self T. (2017). Build your own
Raspberry Pi Microscope. infocus Magazine,
(46), 46-52.

Raspberry Pi Foundation. About Us.
https://www.raspberrypi.org/about/
retrieved 7/9/18.

Simon, B., & Hanks, B. (2008). First-year
students' impressions of pair programming in
CS1. Journal on Educational Resources in
Computing (JERIC), 7(4), 5.

Singh, P., & Hedgeland, H. (2015). Special
relativity in the school laboratory: a simple

apparatus for cosmic-ray muon detection.

Physics Education, 50(3), 317-323.

Wall, L. (2000). Programming Perl (3rd ed.). Mike
Loukides (Ed.). O'Reilly & Associates, Inc.,

Sebastopol, CA, USA.

Wu, H. T., Hsu, P. C., Lee, C. Y., Wang, H. J., &
Sun, C. K. (2014). The impact of
supplementary hands-on practice on learning
in introductory computer science course for
freshmen. Computers & Education, 70, 1-8.

Information Systems Education Journal (ISEDJ) 17 (1)

ISSN: 1545-679X February 2019

©2019 ISCAP (Information Systems and Computing Academic Professionals) Page 48
https://isedj.org/; http://iscap.info

Appendix

Appendices can be found on-line:

Appendix A – Pre-Lab
https://drive.google.com/open?id=1UjCdDDX82QLUCmKeetHMkvInjzy3liEv

Appendix B - Lab
https://drive.google.com/open?id=1EcrKZo9yLYY5-iVuWAH-ZGNS50XDk97T

