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Abstract  This simulation study was conducted to 
compare the performances of Frequentist and Bayesian 
approaches in the context of power to detect model 
misspecification in terms of omitted cross-loading in CFA 
models with respect to the several variables (number of 
omitted cross-loading, magnitude of main loading, number 
of factors, number of indicators per factor and sample size) 
and (to) investigate the efficiency of BSEM approach to 
detect cross-loadings. BSEM approach allows including 
and estimating certain number of cross-loadings by 
specifying informative piror with small-variance for 
cross-loadings in the model. By this way, BSEM approach 
enables researchers to come up with models that better 
represent the substantive theory. At this simulation study, 
model misspecification was considered as major 
misspecification (cl=0.3) and minor misspecification 
(cl=0.1) according to the amount of omitted cross-loading. 
Results of this study revealed that Frequentist approach 
was so sensitive to minor model misspecification whereas 
Bayesian approach with non-informative prior was so 
sensitive to the major model misspecification. Finally, it 
was concluded that the power of BSEM approach to detect 
cross-loading varied according to the both amount and 
number of cross-loadings and for large amount of 
cross-loading the performance of this approach was so 
well.  

Keywords  Model Misspecification, Confirmatory 
Factor Analysis, Frequentist Approach, Bayesian 
Approach, BSEM Approach 

1. Introduction
It is assumed that educational and psychological 

measures reflect underlying and non-observable latent 
construct(s). The information about these latent constructs 

can be obtained through their effects on observed variables. 
Observed variables here are the measures or indicators of 
the relevant constructs [1,2,3]. Examining the factor 
structure of measures in terms of exploring and describing 
the connections between the educational and psychological 
measures and latent variables underlying these measures is 
quite important in making accurate and appropriate 
decisions related to the measured construct. The oldest and 
most common models known in specifying the 
relationships between observed variables and underlying 
latent constructs are factor analytic models [1]. As in cited 
Bollen [4], factor analytic models are built upon the model 
which was developed on the basis of Spearman’s (1904) 
studies and then named “common factor model”. There are 
two factor analysis techniques based on the common 
factor model: Exploratory Factor Analysis (EFA) and 
Confirmatory Factor Analysis (CFA) [5]. EFA and CFA 
adopt different approaches and assumptions. Whereas EFA 
is a data-driven approach, CFA is a theory-grounded 
approach. The main aim in EFA is to specify the number of 
the underlying factors and nature of the variables in an 
observed variable set according to the relationships 
between these variables [1,6]. In EFA, it is allowed that all 
observed variables load into all the factors, and all factor 
loadings are freely estimated [1,4]. In CFA, unlike EFA, a 
priori factor structure is specified for the relationships 
between the latent factors and observed variables/measures, 
and the level of fit between this factor structure and sample 
data is examined. The basic equation of a CFA model is as 
follows:  

yi =τ +Ληi +εi     (1) 

In this equation, yi (i denotes person) indicates the vector 
of observed indicators with p×1 (p: number of measured 
variables) dimension, and ηi indicates the random vector of 
interrelated factor scores with q dimension. Λ represents 
the factor loading matrix with p×q dimension, εi represents 
a vector of residual scores, which are peculiar to each 
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observed variable with p dimension, and τ represents a p×1 
vector including the constants related to observed variables. 
In this study, it was assumed that ηi and εi were 
independent of each other, and these parameters were 
normally distributed (ηi ~ Nq(0, Φ); εi ~ Np(0, Ψ) [7,8].  

In order to specify a CFA model, it is required to make q2 
restrictions on Λ and Φ (factor variances-covariance  
matrix) in the model. On the basis of theory and empirical 
findings, a specific number of components in Λ matrix in 
equation (1) are fixed to 0. This is made to reflect a 
hypothesis that only specific factors affect the specific 
indicators [9,10,11]. Traditionally in CFA, a simple factor 
structure, in which each indicator is affected by only one 
factor, and an indicator’s loading in another factor is 
restricted to 0 (zero), is specified. This represents a model 
which does not include any cross-loadings; however, in 
practice, psychometric indicators are rarely the perfect 
indicators of the pure structure. Indicators are mostly in a 
complex factor structure [11,12]. Cross-loading models the 
significant connections between indicators and non-target 
factors. Thus, allowing the estimation of cross-loadings in 
a CFA model will make explicit these connections. Relying 
on such a type of CFA model will be a more realistic 
approach than relying on CFA models in which these 
cross-loadings are not taken into account [13]. Reference 
[11] state that generally in CFA practices, more 
cross-loadings than what is required are fixed to 0 in order 
to specify the model. Besides that, the researchers 
emphasize that specifying cross-loadings incorrectly as 0 
in CFA models causes overestimation of factor correlations, 
obtaining distorted factors, and then distorted structural 
relations.  

Reference [14] expressed that a model is 
under-parametrized misspecified model if one or more 
parameters, the population value of which is non-zero, are 
specified as 0; and a model is over-parametrized 
misspecified model if one or more parameters, the 
population value of which is “0” (zero), are freely 
estimated. Accordingly, that a cross-loading, the real value 
of which is non-zero, is fixed to “0” indicates a model 
misspecification [14]. Especially in CFA models which 
contains weak indicators, even little misspecification of 
model has relatively a considerable impact on the other 
parts of the model. Model misspecification may lead to the 
convergence of the parameter estimates into incorrect 
values, and this case can make a serious threat to the 
validity of the measures [15,16,17]. The misspecification 
of CFA models increases the possibility that the 
researchers make Type I and Type II errors in the process 
of testing structural models, and these errors constrains the 
ability of theory development/improvement [18,19]. CFA 
is commonly used in order to provide evidence on the 
reliability and validity of educational and psychological 
measures. In this respect, the specification of a model, 
which is appropriate to the factor structure of educational 
and psychological measures, has importance in terms of the 

validity and practicality of the relevant measures [20]. 
These measures provide a basis for making inferences and 
important decisions about individuals in the educational 
setting. However, there is always a risk of making 
inaccurate inferences about the reality when the models are 
misspecified [21]. Accordingly, the researchers carry out a 
model modification sequence as an option by using 
Modification Indices (MI) in order to detect 
misspecification in CFA models. And by this way they try 
to find a model which shows good fit to the data [22]. 
However, sometimes, theoretical, reasonable and sufficient 
basis for modifications carried out in this approach may not 
be found, and this case may cause the researchers to get 
away from the theory and lead them to an incorrect model 
[12,13,23]. 

These problems and strict assumptions in CFA 
conducted in Frequentist approach restrict the researchers’ 
ability to examine cross-loadings and correlated residuals 
parameters [13]. Bayesian SEM (BSEM) approach 
suggested by Muthen and Asparouhov [11] on the basis of 
Bayesian approach solves these problems. The basic 
difference between Bayesian approach and Frequentist 
approach is related to the nature of the unknown population 
parameters in the model. In Frequentist approach it is 
assumed that there is only one constant and unknown 
parameter in the population. But in Bayesian approach, 
model parameters are regarded as random variables. 
Instead of trusting null hypothesis in Frequentist approach, 
the posterior distributions are evaluated in Bayesian 
approach. In Bayesian approach, posterior distributions are 
obtained for model parameters through updating the 
researcher’s prior knowledge with the observed data. 
Besides that, it provides an opportunity to test the models, 
which will be under-identified in Frequentist approach, 
through the estimation of cross-loadings and residual 
covariances [24,25,26]. Also, ML-CFA estimation in 
Frequentist approach is based on the large sample normal 
theory; on the other hand, Bayesian approach is not based 
on this theory; that’s why it is efficiently used in small 
samples [11,25]. Finally, while model modifications are 
made by using MI in Frequentist approach. But there is no 
need to make sequential modifications in Bayesian 
approach since model parameters can be freely and 
concurrently estimated in this approach [11,13]. 

1.1. Bayesian Approach 

The aim of Bayesian approach is to combine data 
likelihood and prior knowledge, which is obtained from 
theory, previous studies and experiences, for getting 
posterior distributions for the unknown model parameters. 
In this approach, it is considered that model parameters 
include an uncertainty, and each parameter has a 
distribution to capture the uncertainty related to this 
parameter value. Bayes Theorem is explained with the 
following equation by means of the probability 
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distributions terms: 

f (θ|data) = f (𝑑𝑎𝑡𝑎|θ).  f (θ) 
f(data)

             (2) 

In this equation, f (θ|data) indicates posterior distribution 
for population parameter (θ), f (data|θ) represents sampling 
density, and f(data) denotes marginal distribution [24,27]. 
Prior distribution (f(θ)), is a key element in Bayesian 
analysis, and it is based upon prior beliefs about the 
possible values of a parameter. Priors may be informative 
or non-informative. Non-informative prior expresses a 
prior distribution with a high variance, which includes a 
large amount of ambiguity about the population parameter. 
In another words, non-informative prior contains a little of 
information (or no information). On the other hand, 
informative prior is a prior distribution with low variance 
which includes a large amount of information and low level 
of ambiguity about the population parameter [11,24]. In 
Bayesian approach, Markov Chain Monte Carlo (MCMC) 
algorithms are generally used to obtain posterior 
distributions based on priors and data likelihood. Posterior 
estimations for the parameters are provided as the mean, 
mode and median values of these distributions [28,29]. In 
MCMC sampling, convergence should be achieved to end 
iteration and get posterior distributions [11]. In order to 
assess whether the convergence is achieved or not, 
Potential scale reduction (PSR) is calculated by using 
Gelman-Rubin convergence diagnostic. PSR values lower 
than 1.1 show that convergence is achieved [11, 29]. 
Assessing model fit in Bayesian analysis is carried out with 
posterior predictive checking. The main logic here is that 
the difference between the data generated by the model and 
the real data should be very small. Any possible deviation 
between two data sets will point out the model 
misspecification. Accordingly, posterior predictive 
p-values (ppp-values), which show the degree of model fit, 
are calculated. Although there are no theoretical cutoffs, it 
is seen that different cut of values as 0.01, 0.05 and 0.10 are 
suggested in the literature [28,29]. In this study, 0.01 cut of 
value was considered. An approach proposed within the 
context of Bayesian approach and SEM framework [11] 
provides the ways of examining the possible sources of the 
differences between the specified model and data. But in 
Frequentist approach instead of this examination, it is 
given suggestions on model modifications to increase the 
model fit by carrying out only model test. Since this study 
is conducted on the basis of BSEM, BSEM approach is 
explained in the next section.  

1.2. Bayesian Structural Equation Modelling (BSEM) 

The existence of the significant cross-loadings and 
correlated residuals, which are included in population 
model in fact but may not be captured with a CFA 
conducted within Frequentist framework. However, it can 
be explored by means of Bayesian Structural Equation 
Modeling (BSEM). By this way, more appropriate and 
accurate inferences about the relevant structures could be 

made by specifying and testing the models, which reflect 
the theory better. BSEM is quite useful in terms of 
providing opportunities to test a model, which will be 
under-identified when a parameter is added to a CFA 
model. In this approach, the models, which include more 
parameters, could be estimated effectively in even small 
samples. BSEM approach in this context is more flexible; 
for that reason, it has been more commonly used in Social 
and Behavioral Sciences. In BSEM, models are not tested 
by using the parameter specifications with “exact zero” or 
“exact equation” as it is done in Frequentist approach. 
Instead of this, in BSEM approach estimations are obtained 
by using “approximate 0” and “approximate equations” in 
accordance with the informative priors with low variance. 
As in EFA, this approach is highly important in terms of 
both allowing the estimation of cross-loadings and 
providing model specification which reflects the theory 
better since it is still based on theory [11,13]. BSEM 
approach can be used for both structural models and 
measurement models since it can be applied to any 
constrained parameter in SEM. This study focused on the 
estimation of CFA model within the frame of BSEM 
because CFA models were studied in this research. When θ 
is considered as a collection of the parameters (τ, Λ, Φ and 
Ψ ), which will be estimated, for a CFA model within the 
frame of BSEM, the posterior distribution for θ is obtained 
through the following equation:  

p(θ |Y) = p(Y| θ)p(θ)/p(Y) ∝ p(Y| θ)p(θ)     (3) 

In equation (3), the term of p(θ |Y) shows the posterior 
distribution for θ, and the term of p(Y| θ) indicates data 
likelihood and p(θ) prior distribution. Various prior 
distributions can be specified here for the parameters 
included in θ. Generally, Inverse-Gamma (in case of 
univariate distribution) and Inverse-Wishart (in case of 
multivariate distribution) distributions are specified for 
variance and covariance parameters. In addition, normal 
distribution is specified for mean, intercepts and slopes 
parameters as conjugate priors: 

Φ~Inv-Wishart (Φ0, d), 

ψjj ~ Inv-Gamma (υψ/2, υψψ0/2) ,        (4) 

τj ~ N (μτ, στ
2 ) 

Here Φ0 and d (hyperparameters) are the parameters of 
Inverse-Wishart distribution, and Φ0 reflects the 
researcher’s prior beliefs about the elements of Φ. On the 
other hand, d (d≥p+4, p: number of observed) is 
manipulated to set the informativeness of the prior [11, 20, 
30]. In this study, as in Lu, Chow and Loken’s [20] study, it 
was assumed that factor covariance matrix is an (Φ) 
positive definite matrix, and residual covariance matrix (Ψ) 
is a diagonal matrix (off-diagonal elements are fixed to 0). 
Accordingly, Inverse-Gamma was specified as prior 
distribution for only residual variances (ψjj). Within the 
frame of BSEM, the elements (λjk) in Λ can be considered 
as two group in estimating m-factor CFA models. Main 
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loadings, which are specified according to substantive 
theory and freely estimated in Frequentist approach, are 
included in the first group. A prior distribution with σλ

2 

variance is specified for those in the way allowing main 
loading values to differ considerably from 0.  

λjm ~ N (μλ, σλ
2)                    (5) 

The second-group elements in loading matrix (Λ) are 
cross-loadings which specify the relationships between an 
indicator and other non-target factors. Cross-loadings are 
fixed to 0 and not estimated in the context of model 
specification in testing CFA models within Frequentist 
framework whereas BSEM approach allows their 
estimation [11,30]. Reference [11] specified three main 
fields of study for CFA models within the context of 
BSEM approach, and one of these fields is cross-loadings 
in CFA. Other two fields are (a) residual correlations in 
CFA and (b) examination of measurement invariance with 
MIMIC modelling. As this study focused on cross-loadings 
in CFA models, only this field of study was taken into 
account in this research.  

1.3. Cross-loadings in BSEM  

Unlike the structure of main loadings based on the 
requirement of “0” cross-loadings in Frequentist approach, 
flexible cross-loading structure is allowed in the estimation 
of CFA models in BSEM approach as in EFA models. In 
this context, not only does BSEM provide the estimation of 
non-zero cross-loadings in reality, but also allows other 
cross-loadings to approximate “0”. In BSEM, a specific 
number of cross-loadings with moderate magnitude can be 
added to the model. The key point here is to choose the 
variance of the prior distribution to be specified for 
cross-loadings. The specification of a prior with very low 
variance to cross-loadings may cause cross-loadings to not 
adequately differ from “0” which is the prior mean. This 
case may result in getting worse of ppp-values in terms of 
the model fit. On the other hand, high value of a prior 
variance may cause cross-loadings to have considerably 
high values. This also may cause a model to approximate a 
non-identified model. In this case, MCMC algorithm may 
not be convergence for the relevant parameter estimations. 
With a prior with “0 mean” and “low variance” to be 
specified for cross-loadings, a researcher reflects a prior 
belief that the probability of cross-loadings around “0” is 
higher [8,11,13]. Reference [11] elucidated the values of 
variance which can be chosen for “a normal prior with 0 
mean”. Accordingly, 0.01 prior variance will result in 
cross-loadings located between -0.2 and +0.2 with 95%. 
This is a highly informative prior and points out that 
cross-loadings are close to zero but not exactly zero. In 
BSEM approach, for a CFA model in which all parameters 
are freely estimated, it could be gathered information about 
model modification by examining 95% Bayesian 
Credibility Interval (95% BCI) for cross-loadings. When 
95% BCI related to a λ parameter which is cross-loadings 

does not include 0, it is considered that this cross-loading 
points out a significant relationship between the relevant 
indicator and factor. Therefore this cross-loading should be 
specified and estimated in the model. That 95% BCI 
includes 0 is regarded as MI, and this case shows that the 
relevant cross-loadings is non-significant, and it may not 
be taken into consideration. In this regard, it was stated that 
BSEM performs better than ML-CFA in detecting model 
misspecification in terms of cross-loadings [8,11,13]. 

It is seen that there are studies carried out through Monte 
Carlo simulation and studies based on the real data in 
relation to cross-loadings in factor analysis within the 
frame of BSEM approach [8, 11, 20, 22, 25, 26, 31]. In 
these studies, generally, the methods based on BSEM 
approach and methods based on Frequentist approach were 
compared. The comparisions were made from the 
perspectives of exploring the existence of cross-loadings 
and correlated residuals and evaluating model 
modifications in this context [11,25,26], variable selection 
methods [8] and various model selection criteria [20], the 
impact of various prior distributions for cross-loadings 
(BSEM with Spake and Slob Prior: BSEM-SSP, BSEM 
with Ridge Proir: BSEM-RP) on factor solutions [8,11]. In 
these studies, the number and magnitude of cross-loadings 
[8,11,20], sample size [8, 11, 22], violations of 
assumptions on the distributions [20], magnitudes of factor 
loadings, factor correlations and residual correlations (Pan, 
Ip, & Dube, 2017) were manipulated. The performance of 
two approaches was examined under those conditions. The 
research results [8, 11, 20, 22, 25, 26] generally point out 
that when informative priors for factor analytic models are 
used, BSEM approach-based methods outperform 
Frequentist approach-based methods in terms of model fit, 
detection of cross-loadings, rejection of incorrect models. 
Simulation studies reveal that the power to detect 
cross-loadings in BSEM changes according to the 
magnitude of cross-loadings and sample size when 
informative priors are used [8,11,20]. In addition it has 
been found that the effects of different prior distributions 
(BSEM-SSP and BSEM-RP) according to the magnitude 
of cross-loadings and sample size differ [8] in terms of 
RMSEA and cross-loadings within the context of 
true-positive rates and false positive rates. Accordingly, the 
current study comparatively examines the performance of 
BSEM approach and performance of Frequentist approach 
in detecting model misspecification in view of 
cross-loadings in CFA. For that reason, next section is 
about the detection of model misspecification.  

1.4. Detection of Model Misspecification 

This study mainly examines the performance of 
Bayesian approach and performance of Frequentist 
approach comparatively in detection of “model 
misspecification” in CFA models in terms of 
cross-loadings. In the literature [14, 15, 16, 17, 32] it is 
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seen that “model misspecification” in CFA within the 
Frequentist approach is studied within the contexts of the 
association of an indicator with an incorrect factor, number 
and magnitude of cross-loadings, misspecification of factor 
structure. In a study conducted by French and Finch [15], it 
was observed that Type I error rate, fit indexes (CFI, 
RMSEA) and power to detect misspecification in terms of 
the association of the indicators with incorrect factors 
change according to the some variables: Sample size, 
number of factors, and number of indicators; and generally 
for more complex models, this error is lower and, the 
power is higher. Simulation studies on the detection of 
model misspecification in terms of cross-loadings point out 
that the power to detect misspecification differs in 
accordance with the number of cross-loadings and sample 
size [32]. Also the decisions on accepting or rejecting 
misspecified models may change as a function of sample 
size [14]. In a study [16] it was found that RMSEA is 
mostly insensitive to multiple omitted cross-loadings. 
However, RMSEA sensitivity to misspecification increases 
when factor loadings increase; on the other hand, this 
sensitivity decreases when model size increases [16]. It is 
seen that in the literature [11,22,33] related to BSEM 
approach, Frequentist approach and BSEM approach were 
compared for CFA and EFA models under the various 
conditions. These conditions were changed according to 
the number and magnitude of the cross loadings, number of 
the factors, sample size, violence of the assumptions on the 
distribution, magnitude of main-loadings factor 
correlations and residuals by examining “model 
misspecification” with regard to “cross-loadings” and 
“correlated residuals” [11,22,33]. The simulation study 
carried out by Muthen and Asparauhov [11] showed that 
ppp-values within the condition of low level 
misspecification in large samples were more robustness by 
comparison with p values in Frequentist CFA. The 
researchers stated that 95% coverage changes accordance 
with the magnitude of the cross-loadings, and the impact of 
cross-loading magnitude on ppp-values differs according 
to the sample size. In parallel with this finding, it was found 
in the study carried out by Pan, Ip and Dube [22] that the 
power to detect model misspecification and Type I error 
rates change in accordance with the magnitude of factor 
loadings and factor correlations. The results of a study [20] 
in which the methods of selecting variables were compared, 
point out that Bayesian model selection criteria (Bayesian 
Information Criteria: BIC, Bayes Factor: BF) equilibrates 
well, by comparison with EFA, between TP-Rates and 
FP-Rates. Also it was observed that the differences 
between Bayesian MCC and LRT estimations depend on 
the sample size and magnitude of cross-loadings. In 
another study [33] it was found that the rejection rates for 
the models with minor misspecification increased in 
accordance with the levels of misspecification and sample 
size in both frequentist CFA and Bayesian CFA.  

When the results in all these studies [11, 20, 22, 33] are 
holistically evaluated, it can be understood that the power 

to detect model misspecification differs according to the 
number and magnitude of the cross-loadings, number of 
factors and number of indicators for per factor, magnitude 
of the factor loadings, level of misspecification and sample 
size. However, in the result of reviewing the related 
literature, when model misspecification is taken into 
account in terms of the cross-loadings, any studies that 
compare CFA conducted in the Frequentist framework and 
CFA conducted in the Bayesian framework under the 
conditions of sample size, number of factors, number of 
indicators per factor and magnitude of factor loadings 
could not be reached. On the other hand, simulation studies 
[14,16,32], point out that misspecified models can produce 
model fit indexes in a way that they will indicate the 
models which show good fit. In addition, it is stated that 
model size is an effective factor in detecting model 
misspecification. These cases may lead to the rejection of a 
model which includes misspecification at a negligible level 
or acceptance of a model, which includes important 
misspecification level, as a valid model. However, finding 
a correct model related to the factor structure of 
psychological and educational measures has a considerable 
importance in making appropriate decisions especially in 
educational settings and getting accurate results in the 
research studies. For these reasons, it is considered that it is 
important to compare the performance of these approaches 
in detecting “model misspecification” and specify a more 
accurate way in view of what approach is adopted, and 
under what condition this approach is adopted. 
Accordingly, a simulation study, in which misspecification 
was regarded as the magnitude of “omitted cross-loadings”, 
and the level of misspecification was considered as “minor 
misspecification” and “major misspecification”, 
[111,32,33] was carried out. In this simulation study, the 
power to detect model misspecification in CFA models of 
Frequentist and Bayesian approaches and BSEM (in terms 
of rejection of incorrect models) was compared under 
various conditions specified for the number of factors, 
number of indicators for each factor, sample size. In 
addition, the power of BSEM approach to detect 
cross-loadings was investigated. 

2. Methods 

2.1. Simulation Design and Data Generation 

In this study, various simulation settings were designed 
in order to compare the classic ML CFA and CFA within 
Bayesian framework in terms of the power to detect model 
misspecification. Accordingly, power of these two 
approaches to detect model misspecification was examined 
under the conditions of the number of different factors, 
number of different indicators for per factor, different 
factors’ loadings, magnitude of different cross-loadings 
(indicates misspecification level) and number of different 
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cross-loadings, and size of different samples. In this study, 
on the basis of the literature review [11,33], for the level of 
misspecification, the conditions, in which cross-loadings 
are specified as 0.1, are considered as “minor 
misspecification”, and the conditions, in which 
cross-loadings are specified as 0.3, were considered as 
“major misspecification”. For each level of model 
misspecification, in terms of cross-loadings two conditions 
(single cross-loading: one omitted cross-loading and 
multiple cross-loadings: 3 omitted cross-loadings), two 
factor numbers (3 and 4), two conditions in terms of the 
number of indicators for per factor (3 and 4 indicators), two 
sample size (200 and 500), and magnitude of two factor 
loadings (λ=0.3 and λ=0.8) were considered, which results 
in 2 (cross-loading number) ⅹ  2 (sample size) ⅹ  2 
(factor number) ⅹ 2 (number of indicator for per factor) 
ⅹ 2 (factor loading magnitude)=32 conditions (in total 64 
conditions). Accordingly, under the conditions of model 
misspecification, different factor structures were specified 
in accordance with the factor number, number of indicator 
for per factor, and number of cross-loadings. 

In Figure 1, those denoted by “X” indicate main loadings, 
and those denoted by “x” indicate cross loadings. For these 
factor structures, data were generated for each condition 
(with continuous indicators) by manipulating the 
magnitudes of main loadings and cross-loadings. In this 
simulation study, both for data generation and model 
testing processes, factor variances were fixed at 1.00 for 
identification purposes, and for simplicity, the indicators’ 
intercepts were fixed at 0. All factor correlations and all 
residual variances for indicators were 0.3. First of all in this 
process, data sets were generated on the basis of the factor 
structures in which cross-loadings were not found for the 
relevant sample size under the conditions (3 factors-9 
indicators, 3 factor 12 indicators, 4 factors with 12 
indicators) specified on the basis of the number of factor 
and number of indicator. Afterwards, 500 iterations were 
used for each condition in accordance with the factor 
structures specified in the study, level of misspecification, 
and sample size. Conditions, which were studied separately 
both for minor and major misspecification levels in this 
research, are presented in Table 1 below. 

 

Figure 1.  Factor structures tested in this study 
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Table 1.  Conditions studied both for minor misspecificaton and major misspecification levels at this research 

 
 
2.2. Estimation and Prior Specification 

In this study, ML estimation method for Frequentist 
CFA and Bayesian estimation method for BSEM approach 
were used. In this study, as in a study [20], it was assumed 
that factor covariance matrix (Φ) positive definite matrix 
and residual covariance matrix (Ψ) are a diagonal matrix 
(off-diagonal elements are zero). For identification purpose, 
the factor variances of the tested models were specified at 1, 
and latent means were specified at 0. Accordingly, within 
the Bayesian framework, conjugate priors were specified 
for main loadings, cross-loadings, residual variances and 
factor covariances in CFA. Default priors in Mplus 7 were 
taken into consideration as priors for the parameters except 
for cross-loadings. Accordingly, N (0, ∞) for main loadings, 
IG (-1,0) for residual variances (ψjj), and IW (0.000, -4) for 
factor variances and covariances were specified as prior 
distributions. For prior specifications for cross-loadings 
parameters, Muthén and Asparauhov’s [11] study was 
taken into account. Researchers states that a normal prior 
with 0 mean and 0.01 variance will enable cross-loadings 
to approximate 0; however, this prior is evaluated as a 
strong informative prior since it is not exactly 0. 
Accordingly, in this simulation study, an informative prior 
as λ ~ N (0, 0.01) for cross-loadings parameters was 
specified. Default settings in Mplus were used in the 
estimation of all models examined in the study [11, 34]. 

2.3. Analytic Strategy 

In this study, the performance of CFA based on Bayesian 
approach and the performance of CFA based on 
Frequentist approach were compared in terms of the model 
fit, power to reject the incorrect model (indicates power to 
detect model misspecification), parameter coverage and 

power to detect cross-loadings. Accordingly, in the first 
stage, ML-CFA and Bayes CFA were conducted on the 
basis of the data sets which are generated according to the 
model which does not include cross-loadings for each 
condition specified in the simulation design. Afterwards on 
the basis of the data sets generated under the conditions of 
cross-loading=0.1 and cross-loading=0.3, ML-CFA and 
Bayes CFA were carried out by ignoring cross-loadings 
(not estimated) and without specifying informative prior. 
In the second stage, CFA models were tested within the 
frame of BSEM by specifiying informative small-variance 
priors for cross-loadings specified under each condition 
[11, 34]. In Bayesian approach, MCMC sampling was 
utilized to sample posterior distributions related to 
parameters. During MCMC sampling, it was assessed 
whether convergence was achieved or not on the basis of 
PSR value. PSR values smaller than 1.1 indicate that 
convergence is achieved [28,29]. Fit of the models, which 
were tested on the basis of both two approaches within the 
context of the simulation study, were compared on the 
basis of RMSEA and SRMR values for Frequentist CFA 
and ppp-values for Bayes CFA. The power to detect model 
misspecification of Bayesian approach with 
non-informative prior and Frequentist approach was 
examined based on ML LRT rejection rates and 
ppp-rejection rates, respectively. In order to make 
comparison related to parameter estimations, the 95% 
coverage values were taken into consideration. Within 
Frequentist approach, these values are considered as 95% 
coverage of the related parameters. However, these values 
indicate at what percentage (%) of the simulation iterations 
in Bayesian approach BCI covers the population 
parameters utilized in data generation. Besides that, 
average estimates, standard deviations, standard error and 
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mean-square-error values related to parameter estimations 
based on both two approaches were examined. % 
Significant Coefficient (%Sig Coeff) was utilized in 
evaluating BSEM approach’s power to detect 
cross-loadings [11, 34]. 

3. Results 
In this section, firstly convergence results in all analyses 

carried out in the simulation studies are presented and 
interpreted. Following that, Frequentist and Bayesian 
approaches are compared in terms of the findings related to 
model fit and parameter coverage for all models tested 
respectively in the conditions with no-cross-loadings, in 
which cross-loading is not estimated (minor and major 
misspecification), and BSEM with formative priors for 
cross-loadings. After that, the findings related to power of 
both approaches to detect model misspecification are 
presented and comparatively interpreted for both two 
approaches. Finally, the findings related to BSEM 
approach’s power to detect cross-loadings are presented 
and interpreted.  

3.1. Convergence Assessment 

PSR values for convergence were assessed for each 
analysis conducted on the basis of Bayesian approach. It 
has been seen that convergence was achieved for all 
models tested on the basis of Bayesian approach. PSR 
values for the models with no cross-loadings varied 
between 1.041 and 1.09, for the models with minor 
misspecification varied between 1.036 and 1.093 and for 
the models with major misspecification varied between 
1.035-1.093. It has been observed that convergence was 
quickly achieved for the models with no-cross loading 
whereas the convergence was more slowly achieved for the 

models with major misspecification. PSR values in the 
analyses based on BSEM approach changed between 1.041 
and 1.098. 

3.2. Model fit and Parameter Coverage 

Initially, the analyses were carried out for the data sets 
generated on the basis of the models with no cross-loadings 
in order to control the performance of the both two 
approaches for the models with no-cross loadings. Model 
fit indexes (RMSEA=0.008- 0.044, SRMR=0.020- 0.048) 
calculated at the end of testing these models with ML-CFA 
indicate that the relevant models showed a good fit to the 
data. When model fit was assessed on the basis of posterior 
predictive p-values (in Bayes-CFA with non-informative 
priors), it was seen that ppp-values were higher than 0.1 
cutoffs (ppp-values varied between 0.010 and 0.026) for all 
conditions in a way that would indicate acceptable model 
fit. It has been observed that there was not a considerable 
change in the model fit according to the number of factors 
and indicators, magnitude of factor loading, and sample 
size when the relevant models were tested on the basis of 
Frequentist approach. However, generally higher 
ppp-values were obtained for more complex models when 
Bayes CFA was conducted (with non-informative priors). 
In view of model fit assessment, it has been understood that 
ML-CFA performed better in comparison with Bayes CFA 
in testing models with no cross-loadings. ML-CFA based 
on Frequentist approach and Bayes CFA based on 
Bayesian approach were compared in terms of parameter 
estimations and parameter coverage in addition to model fit. 
Because of the space limitation, only factor loading value 
related to y3 indicator for main loadings parameters, and 
average estimations and 95% coverage values related to the 
correlation calculated for the relationship between 
factor1-factor3 for factor correlations were calculated and 
presented here in Table 2. 
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Table 2.  ML-CFA and Bayes CFA Results: No Cross-Loading 

 

 
When Table 2 is examined, it has been understood that 

coverage values, which were very close to 95% related to 
main loadings and factor correlation parameters, were 
obtained for both ML-CFA and Bayes CFA. Also there 
was not a considerable difference in parameter coverage 
values between conditions and between Frequentist and 
Bayesian Approaches.  

Fit indexes (RMSEA=.012- .041 and SRMR =.024- .050) 
calculated based on Frequentist approach for models with 
minor misspecification indicate a good fit. However, it was 
observed that all models with major misspecification tested 

in single cross-loading conditions (number of omitted 
cross-loading=1) showed a good fit to the data 
(RMSEA= .030- .068 and SRMR= .034- .053). But many 
of the models with major misspecification (except 
condition 26) tested in multiple cross-loadings conditions 
(number of omitted cross-loadings=3) showed a poor fit to 
the data (RMSEA= .055- .121 and SRMR= .047- .111). In 
order to compare two approaches in terms of parameter 
estimates, initially average estimates and 95% coverage 
values obtained on the basis of ML-CFA are given in Table 
3 below and interpreted.  
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Table 3.  ML-CFA Results for Minor Misspecification and Major Misspecificaton Levels 
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When ML-CFA was conducted, coverage values very 
close to 95% were obtained for the estimations related to 
main loadings parameters at both minor and major model 
misspecification levels. Also a considerable difference has 
not been found in 95% coverage values in accordance with 
the level of model misspecification. When Table 3 is 
examined, it has been understood that 95% coverage values 
related to main loadings parameters did not differ 
significantly according to the number of omitted 
cross-loadings, factor loading values, sample size, number 
of factors, and number of indicators per factor. In relation 
to factor correlation parameter, low coverage values were 
obtained when the models only with 3 factors and 9 
indicators were tested at minor model misspecification 
level in the condition of n=500 (conditions 6 and 8). But 
coverage values very close to 95% were obtained in all 
other conditions. It has been seen that the estimations that 
were very close to the population value (0.30) for factor 
correlation parameter were obtained for the models with 
minor misspecification. For the models with major 
misspecification, 95% coverage values for factor 
correlation parameter changed between the conditions 
tested in the simulation study. There was no systematic 
change for coverage values for this parameter according to 
the sample size. However, at the multiple cross-loadings 
conditions in which models tested with large samples 
(n=500) lower coverage values were obtained. Also 
generally coverage values very close to 95% were 
obtained for single cross-loading conditions related to 
factor correlations parameters whereas it has been 
observed that coverage values were low for multiple 
cross-loadings conditions. Especially, a considerably low 

coverage value was obtained in the condition in which the 
most complex model (4 factors with 16 indicators) was 
tested with the strong indicators (λ=.7), n=200 people. 
This finding shows that biased parameter estimations 
related to factor correlations can be obtained when the 
more complex models are tested in small samples even if 
they have strong indicators. It has been generally observed 
that factor correlations were over-estimated in multiple 
cross-loading conditions at the level of major model 
misspecification. These findings reveal that when 
ML-CFA was conducted, minor model misspecification 
generally did not affect significantly the estimation of the 
correlations between factors. On the other hand, major 
model misspecification significantly affected the 
estimation of correlations between factors in accordance 
with the number of omitted cross-loading. It has been 
found that ppp-values (varied between 0.014 and 0.106) 
calculated for the models with minor misspecification at 
single cross-loading conditions indicate acceptable model 
fit in Bayes CFA. However, it has been observed that 
ppp-values (varied between 0.032 and 0.538) for models 
with minor misspecification tested at multiple 
cross-loading conditions were high in a way that would 
indicate better model fit. For models with major 
misspecification, higher ppp-values (varied between 0.106 
and 1.00) were obtained. At both minor and major model 
misspecification levels it has been found that the 
performance of Bayes-CFA in terms of model fit changed 
according to the number of omitted cross-loadings. 
Average estimates and 95% coverage values, which were 
obtained when the models were tested through Bayes CFA, 
were given in Table 4 below and interpreted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Universal Journal of Educational Research 7(2): 494-514, 2019 505 
 

Table 4.  Bayes CFA Results for Minor Misspecification and Major Misspecificaton Levels 
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When Table 4 is examined, it has been understood that 
coverage values that were very close to 95% were obtained 
for the estimations related to main loadings parameter in all 
the conditions on the basis of Bayes CFA. Similar to the 
table emerged when ML-CFA was conducted, 95% 
coverage values here did not differ significantly according 
to the level of model misspecification, number of omitted 
cross-loadings, factor loading value, sample size, number 
of factors, and number of indicators per factor. It has been 
understood that 95% coverage values related to factor 
correlation parameter were lower in the multiple 
cross-loadings conditions in which the models with minor 
misspecification were tested with generally large samples 
(n=500). On the other hand, they were high in other 
conditions. For the models with major misspecification, 
coverage values which were generally very close to 95% 
were obtained for single cross loading conditions. But low 
coverage values related to factor correlation parameter 
were obtained for all multiple cross loadings conditions. It 
has been found that the lowest coverage value related to 
factor correlation parameter estimated on the basis of 
ML-CFA was obtained in the condition (condition 28) in 
which the most complex model was tested with strong 
indicators and small sample. And as for model testing 
with Bayes CFA, the lowest coverage value for the 
relevant parameter was obtained in the condition 
(condition 24) in which the model with 4 factors and 12 
indicators was tested with strong indicators and large 
sample. For the models with minor misspecification, 
similar to the results of ML-CFA, average estimations 
which were close to the population value (0.30) for factor 
correlation parameter were obtained in all conditions in 
Bayes CFA. For the models with major misspecification, 
the findings, which were similar to those in ML-CFA 
again, were obtained, and factor correlations resulted in 
over-estimation in multiple cross-loading conditions 
(except condition 28) in Bayes CFA.  

It has been observed that ppp-values calculated on the 
basis of BSEM approach (ppp<.01) indicated poor fit 
except for three conditions: For the conditions in which the 
model with 3 factors and 12 indicators tested with small 
samples (condition 10 for cl=0.3, condition 12 for cl=0.1 
and cl=0.3), obtained ppp-values (varied between 0.000 
and 0.014) indicated acceptable model fit. In order to 

compare BSEM approach with ML-CFA and Bayes CFA 
in terms of parameter estimations and parameter coverage, 
average estimates and 95% coverage values for main 
loading and cross-loading parameters were given in Table 
5 below. Because of the space limitation again, the values 
related to only y3 indicator for main loading and y1 
indicator for cross-loading were presented here. It has been 
observed that factor correlation parameters were 
over-estimated only in the situations in which the model 
with 3 factors and 9 indicators was tested in multiple 
cross-loading conditions with cl=0.3 (for conditions 2,4 
and 6 average estimates for factor correlation varied 
between 0.443 and 0.474). Except for these conditions, it 
has been observed that average estimates (varied between 
0.244 and 0.380), which were close to the ones (0.30) that 
used to generate data related to factor correlation parameter, 
and high coverage values (varied between 0.920 and 0.988) 
were obtained.  

When Table 5 is examined, it has been understood that 
coverage values, which were close to 95%, for all 
conditions related to main loading parameter were obtained. 
It has been observed that, for cross-loading parameter, high 
coverage values (very close to 95% or higher) were 
obtained in all conditions (when other factors are fixed) 
with cross-loading=0.1. Also, these values did not differ 
significantly between the conditions. For all conditions 
with cross-loading=0.3, lower coverage values related to 
cross-loading parameter were obtained. It was understood 
that there was not a considerable change in coverage values 
for cross-loading parameter in terms of number of 
cross-loading (single cross-loading vs. multiple 
cross-loadings). When the magnitude of main loadings and 
sample size increased, the coverage values related to factor 
correlation parameter also increased. It has been generally 
observed that there is an amount of increase in coverage 
values related to cross-loading parameter along with the 
increase in the number of factors for large samples (n=500) 
and conditions with cl=0.3. When the comparisons were 
made between the conditions, it has been generally 
understood that coverage values related to cross-loading 
parameter were higher in the conditions in which the 
models including a lot of indicators (4 indicators per factor) 
were tested with large samples.  
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Table 5.  Results of Bayesian analyses with informative priors 

 
 

3.3. Detection of Model Misspecification 

The power to detect model misspecification of CFA 
based on Frequentist approach and CFA based on Bayesian 
approach has been examined in terms of rejection of 

incorrect model. In this context, ML LRT rejection rates 
and ppp-rejection rates have been taken into consideration 
in order to compare ML-CFA and Bayes CFA (with 
non-informative priors), and these are presented in Table 6 
below. 
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Table 6.  Rejection rates for Bayes CFA and ML-CFA for minor misspecification and major misspecification levels 

 

 
Rejection rates for ML-LRT presented at Table 6 

indicate that the power of ML-CFA to detect minor model 
misspecification is high, whereas it’s power to detect major 
model misspecification is so much lower. However, it has 
been observed that at the minor model misspecification, in 
single cross-loading conditions rejection rates are high and 
generally in multiple cross-loading conditions these 
rejection rates are lower. At minor model misspecification 
level, ML-CFA rejected approximate 44% of the models in 
the single cross-loading conditions in which the simplest 
factor structure with strong indicators was tested with small 
samples. At major model misspecification level, in general, 
the rejection rates are low. It has been understood that there 
is no considerable change according to the number of 
omitted cross-loadings. However, Bayes ppp-rejection 
rates indicate that the power of Bayes CFA to detect minor 
model misspecification is low, but it’s power to detect 
major model misspecification is so much higher. For both 
minor and major misspecified models, at the single 
cross-loading conditions ppp-rejection rates were lower, 
whereas at multiple cross-loading conditions these rates 
were slightly higher. It has been found that the power to 
detect major model misspecification of Bayes CFA was 
low at the four conditions in which the related models were 
tested with weak indicators and small samples (conditions 
1,9,17 and 25). However, at the all other conditions the 
power of Bayes CFA to detect major model 
misspecification was so much higher. The striking finding 

is that at the major model misppecification level for 11 
conditions, ML-CFA does not reject any of the incorrect 
models (ML-LRT=0.000). But for these same conditions 
Bayes CFA rejects all of the incorrect models 
(ppp-rejection rate=1.000). Besides this, in case of the 
major model misspecification, ML-CFA does not reject 
any of the incorrect models in another seven conditions. 
These findings reveal that ML-CFA is so sensitive to the 
minor model misspecification, especially in single 
cross-loading conditions and Bayes CFA is so senstitive to 
the major model misspecification, especially in multiple 
cross-loading conditions.  

When the models were tested with ML-CFA, according 
to magnitude of main loadings, a systematic difference has 
not been observed for single cross-loading conditions at 
minor model misspecification level and for multiple 
cross-loading conditions at major model misspecification 
level in terms of the rejection rates. However, it could be 
said that the rejection rates decreased when the magnitude 
of factor loadings (λ=.7) increased for multiple 
cross-loading conditions at minor model misspecification 
level and single cross-loading conditions at major model 
misspecification level. In all conditions in Bayes CFA, it 
has been observed that there was an increase in ppp 
rejection rates along with the increase in magnitude of 
factor loadings. According to the increase in sample size, 
power of ML-CFA to reject the incorrect model and power 
of Bayes CFA to reject the incorrect model did not differ 
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only at major model misspecification level for multiple 
cross-loading conditions. Whereas the rejection rates 
showed a decrease in all other conditions in model testing 
with ML-CFA for large samples (n=500), ppp rejection 
rates showed an increase in model testing with Bayes CFA. 
It has been found that this change was much more for the 
conditions with strong indicators (λ=.7) for both ML-CFA 
and Bayes CFA. 

In accordance with the increase in the number of factors, 
power of ML-CFA to reject the incorrect model showed an 
amount of increase only at minor model misspecification 
level for multiple cross-loadings conditions .But power of 
Bayes CFA to reject the incorrect model showed an amount 
of decrease at both minor and major model 
misspecification levels. For other conditions, according to 
the number factors, a considerable difference has not been 
observed in terms of both two approaches’ power to reject 
the incorrect model. Finally, a systematic and considerable 
change has not been found according to the number of 
indicators per factor in terms of both ML-CFA’ power to 
reject the incorrect model and Bayes CFA’s power to reject 
the incorrect model.  

3.4. Power to Detect Cross-loadings in BSEM 

Power of BSEM approach to detect cross-loading has 
been evaluated on the basis of %sig coeff values given in 
Table 5. It has been understood that the power to detect 
cross-loadings was considerably low when informative 
prior with low variance was specified for cross-loading 
parameter, and it was cross-loading=0.1. However, it has 
been observed that BSEM approach had sufficient power 
(power higher than 0.8) to detect cross-loading for 17 
conditions when it was cross-loading=0.3 [11]. The 
analysis results show that when it was cross-loading=0.3, 
power of BSEM approach to detect cross-loading was 
higher for some conditions: For the conditions in which 
each factor was generally represented by more indicators 
(conditions 11-16 and conditions 27, 29, 30, 31, 32) and six 
conditions including large samples (conditions 6-8 and 
22-24). Since power of BSEM approach to detect 
cross-loading was too low when it was cl=0.1, the 
comparisons between the conditions were made only for 
the conditions in which it was cl=0.3. It has been observed 
that when it was the same in terms of other factors, power 
of BSEM approach to detect cross-loading was generally 
lower for single cross-loading conditions. However, the 
power showed an amount of increase for multiple 
cross-loading conditions. When the change in the power to 
detect cross-loading is examined according to magnitude 
of main loading, it has been understood that the power 
increased when there were strong indicators.  

4. Discussion and Conclusions 
Since most psychological constructs are complex in 

nature, the indicators, which are chosen to represent those, 
may be mostly related to more than one factor of the 
construct [35]. Therefore, when the relationships between 
the constructs and their indicators are modelled by 
considering that each indicator is only related to one 
factor of the construct but not certainly related to other 
factors, this leads the researchers to misspecified 
measurement models. Although biased parameter 
estimations are obtained as the consequence of testing a 
misspecified measurement model, fit indexes, which will 
indicate that this model is a “valid” model, can be obtained. 
In fact, this case means the specifications of the 
measurement models which do not reflect the theory well. 
But unfortunately this may cause a problem in the 
researchers’ theory development process since it may 
hinder the accuracy of the inferences made on the basis of 
these models in further studies [12, 32].  

There are various ways of dealing with the 
misspecification of the measurement model. In line with 
the theory, some of these ways are: (a) the specification of 
bifactor model in relation to the construct examined, (b) the 
specification of higher order factor model in an appropriate 
condition, and (c) allowing an indicator to load into more 
than one factor or the specification of the relationships in 
the model among the specific variances related to 
indicators [10, 32]. Allowing a specific indicator to load 
into more than one factor in the measurement model means 
the specification and estimation of cross-loading in the 
model in fact. In Frequentist approach, in specification of 
CFA models, an indicator’s loadings for other factors are 
fixed at “0”; in other words, cross-loadings are not allowed. 
The departure point of BSEM approach is the idea that 
underlying theory in educational and psychological 
measures is reflected better when the specifications as the 
absolute “0” in CFA models in Frequentist approach are 
replaced by the approximate “0” by using an informative 
prior with small variance. In BSEM approach, it is allowed 
to both cross-loadings and use of prior information in 
addition to the information in data [22,34]. Accordingly, a 
simulation study has been conducted to examine the power 
of BSEM approach to detect cross-loading and to compare 
the performances of Frequentist and Bayesian approaches 
in the existence of model misspecification. In this study, 
model misspecification was considered in terms of 
omitted-cross loading. In the study, firstly the performance 
of ML-CFA and the performance of Bayes CFA were 
compared for the models with no cross-loading (correctly 
specified models). As in Muthen and Asparouhov’s study 
[11], this study has found that Frequentist approach 
showed a better performance in comparison with Bayesian 
approach with non-informative priors in terms of the model 
fit for CFA models with no cross-loading. However, in 
reality, an idea that the indicator of a psychological 
construct is related to only a factor but not certainly related 
to other factors will reflect an imaginative case. Hence, it 
will be a more realistic approach to evaluate both these 
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approaches’ performance in the existence of cross-loading. 
For that reason, this research has been needed and carried 
out accordingly.  

For misspesified models, expectedly, it has been found 
that the levels of model fit differed in accordance with the 
level of misspecification as a consequence of the analyses 
conducted on the basis of both two approaches. At minor 
misspecification level, both two approaches lead the 
researchers to a decision pointing out that these models 
show a good/acceptable fit to the data. When the 
misspecification was ignorable, it has not been observed 
that there was a considerable difference between 
conditions in terms of the model fit levels in Frequentist 
approach. But in Bayesian approach (with non-informative 
priors), it has been observed that the levels of model fit 
changed according to the number of omitted cross-loading. 
From the perspective of parameter estimations, Frequentist 
approach was resulted in the insubstantial backing of factor 
correlation parameters in the condition in which the 
simplest factor structure examined in this study was tested 
with large sample (just for multiple cross-loadings 
conditions). Bayesian approach (with non-informative 
priors) approach was resulted in the insubstantial backing 
of factor correlation parameters in generally large sample 
conditions (just for multiple cross-loadings conditions). It 
is considered that the fact that the average standard errors 
in relation to factor correlation parameter estimations in the 
relevant conditions were higher in both two approaches 
than those in other conditions might cause these results. 
When the findings related to model fit assessment and 
parameter estimates are evaluated together, it has been 
understood that at low misspecification level, the 
performance of Bayes CFA and the performance of CFA 
within Frequentist framework are comparable in terms of 
the model fit and parameter estimation.  

At major model misspecification, in both two 
approaches, the levels of model fit differed in accordance 
with the number of omitted cross-loading. When there is a 
model misspecification at this level, both Frequentist and 
Bayesian approaches will lead to a decision pointing out 
that the model is accepted as “a valid model” when there is 
only one omitted-cross loading. However, the value 
considered as the amount of omitted cross-loading (cl=0.3) 
at major model misspecification is taken into account as an 
evidence, which indicates that an indicator represents the 
underlying factor appropriately/sufficiently, in the 
literature [36]. Accordingly, the current simulation study 
findings implied that in both two approaches, the 
researchers should not relate an indicator to its underlying 
factor in an incorrect way. Because this may cause a 
problem related to the representation of the relevant factor. 
When more than one cross-loading are not modelled, 
Frequentist approach causes that most of the relevant 
models (except for condition 26) are rejected. On the other 
hand, Bayesian approach causes that all these models are 
incorrectly accepted as “valid model”. In both two 

approaches, major model misspecification caused the 
overestimation of factor correlation parameter only in the 
conditions with multiple omitted cross-loadings. 
Accordingly, it has been understood that the evaluation of 
the model fit on the basis of RMSEA and SRMR is 
appropriate within the framework of Frequentist approach 
in the conditions in which there are doubts (based on theory) 
indicating that more than one indicator may have a 
significant relationship with non-target underlying factors. 
However, this approach may lead the researchers to 
incorrect results within the context of the relationships 
between the factors. 

When the literature [11,13,15,16,1737,38] is examined, 
it has been seen that the model fit has been evaluated on the 
basis of overall goodness of fit indexes for various types 
and levels of model misspecification under various 
conditions. Unlike the results in this study, in a study [16] it 
was stated that RMSEA was generally insensitive to 
multiple omitted cross-loadings and changed in accordance 
with the sample size when it was studied with strong 
indicators. Reference [37] reported that RMSEA changed 
in accordance with the magnitude of factor loadings when 
the misspecification was introduced as omitted 
cross-loading in CFA models. In another study [38], in 
which they examined the model misspecification within 
the context of omitted cross loading, that the decrease in 
RMESA was a function of the model size, and this decrease 
was higher for the smallest models.  

However, in aforementioned studies and in the current 
study, the sensitivity of RMSEA to the model 
misspecification was examined under different conditions 
in terms of the magnitude and number of omitted 
cross-loading, sample size, number of factors and 
indicators per factor, magnitude of main loading and factor 
correlations. When the findings of all these studies and 
current study are evaluated together, it has been understood 
that RMSEA actually performed differently at different 
types and levels of model misspecification under more 
various model sizes and parameter values. In addition it 
could be concluded that the sensitivity of RMSEA changed 
according to the number of omitted cross-loading even if, 
in the current research, the sensitivity of RMSEA to model 
misspecification at both misspecification levels did not 
show a systematic change in terms of the factors examined 
in the research. In the literature [15] it is emphasized that 
goodness of fit index especially for misspecified models 
was affected by other features of model (number of factors 
and indicator and etc.) and data (like sample size and 
normality) in addition to model misspecification. 
Accordingly, a model with little misspecification may be 
rejected since a fit index is very sensitive for a type and 
level of model misspecification under specific conditions. 
Besides that, a major misspecified model may be accepted 
as “valid model” since a fit index is not sensitive enough 
for the relevant type and level of model misspecification. 
Therefore, it has been seen that when the model fit for 
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misspecified models is assessed on the basis of overall 
goodness of fit indexes, the accuracy levels of decisions to 
be made on the model validity change in accordance with 
the fit index utilized and the quality of model and data. 
From this point of view, it is suggested to examine the 
parameter estimations in addition to the utilization of 
multiple fit indexes in evaluating whether a model is a 
valid model or not. Accordingly, an examination was also 
conducted in the current research in terms of the parameter 
estimates and parameter coverage. 

In this study, it has been found that whereas generally 
factor correlations are effectively estimated at ignorable 
model misspecification, factor correlations are 
overestimated in the conditions with multiple omitted 
cross-loading at major misspecification level. These 
findings indicate that the analyses based on Frequentist 
approach may lead the researchers to incorrect results 
about identifying the nature of underlying construct in 
educational and psychological measures correctly in the 
conditions with omitted multiple cross loading at major 
misspecification level. As in a study [11], similarly, it was 
observed that factor correlations had a tendency to be 
overestimated along with the increase in the magnitude of 
omitted cross-loading.  

The results, which were similar to those in Muthen and 
Asparouhov’s [11] study, were obtained for both two levels 
of misspecification on the basis of Bayesian approach (with 
non-informative priors) in terms of the model fit and 
parameter estimation. When it has been found that the 
models showed an acceptable/good fit to the data (based on 
ppp-values) at both two misspecification levels; the 
decrease in factor correlation parameter coverage 
according to the level of misspecification and number of 
omitted cross-loadings actually indicates the sensitivity of 
Bayesian approach to model misspecification in this 
context. Accordingly, it is considered that the fact that two 
approaches lead the researchers to different decisions 
within the context of the model fit for the important level 
of misspecification may stem from the difference in the 
nature of the criteria used in the evaluation of the model 
fit in these approaches. It is stated that RMSEA is 
sensitive to the model misspecification error especially 
when the model misspecification is related to factor 
loadings since it indicates the degree of difference 
between the population covariance matrix and covariance 
matrix generated by the model again [14,32]. However, 
the evaluation of the model fit according to ppp-values in 
Bayesian approach is based on the validity for further 
observations of the model [24]. As supporting this idea, it 
is stated in the literature [13,33] that Bayesian variant of 
RMSEA (BRMSEA) and Deviance information criteria 
(DIC) are more appropriate in the comparison of 
Frequentist and Bayesian approaches in terms of the 
evaluation of model fit in testing CFA models. 
Accordingly, in further studies, it can be suggested to 
examine the performance of DIC and the performance of 

BRMSEA for both correctly specified models and 
misspecified models in the evaluation of model fit for CFA 
models.  

In BSEM approach, the fact that low ppp-values 
(indicate a poor fit) are obtained shows that the evaluation 
of ppp-values within the context of the model fit is not 
appropriate as mentioned above. The estimation of factor 
correlation parameter except for three conditions and main 
loading parameter efficiently on the basis of BSEM 
approach is qualified as supporting this idea. Similarly, 
Muthen and Asparouhov [11] reported in their study that 
BSEM performed well for misspecified models. Therefore, 
it can be also suggested in BSEM approach to carry out the 
studies about the evaluation of the model fit on the basis of 
aforementioned criteria.  

Following the comparison of Frequentist and Bayesian 
approaches in terms of the model fit and parameter 
estimation, the power of these two approaches to detect 
model misspecification has been evaluated. It has been 
seen that in Frequentist approach, the power of detecting 
ignorable model misspecification was very high when 
there was only one omitted cross-loading. On the other 
hand, this power had a tendency to decrease when the 
number of omitted cross-loading increased. An inference 
that Bayesian approach with non-informative prior 
generated more reasonable results due to the fact that its 
sensitivity to this misspecification increased in accordance 
with number of omitted cross-loadings may be made. 
When both magnitudes of cross-loading and number of 
omitted cross-loading are low, misspecification is 
evaluated as ignorable misspecification at this level. 
Therefore it is considered that the fact that this 
misspecification leads to an inference in a way that model 
is invalid will not be appropriate. Also, it is understood that 
the misspecification at this level did not affect significantly 
the model fit levels and parameter estimations, and the 
model might be accepted as a valid model. In line with 
these findings, in a study [11] it was observed that whereas 
ML-CFA was highly sensitive to ignorable 
misspecification, Bayes CFA performed better in this 
context. In consistency with Muthen and Asparauhov’s [11] 
study, the results of the current study (especially in the 
conditions with multiple cross-loadings) show that the 
power of Bayes CFA to detect misspecification was high. 
However, unlike the relevant study, the results of the 
current study put forward that the power of ML-CFA to 
detect misspecification was very low.  

The most important thing is, for the deviations from the 
correct model at ignorable level (ignorable model 
misspecification) the acceptance of the models at and the 
rejection of the models at important level of 
misspecification [17]. Accordingly, it has been found that 
ML-CFA, which was conducted within Frequentist 
framework, was highly sensitive to minor model 
misspecification, and Bayesian approach performed better 
at this level of model misspecification. For the important 
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level of model misspecification, ML-CFA based on 
Frequentist approach was insufficient to detect model 
misspecification, and Bayes-CFA based on Bayesian 
approach was highly sensitive to misspecification. The 
most remarkable finding of this study is that for the 
important level of misspecification, none of incorrect 
models are rejected in eleven conditions on the basis of the 
analyses conducted within Frequentist framework. On the 
other hand, all incorrect models are rejected as the 
consequence of the analyses conducted within Bayesian 
framework under the same conditions. When these eleven 
conditions are examined in terms of the variables 
manipulated in the research, only one common point has 
been found: All of them are the multiple cross-loadings 
conditions. Therefore, it has been understood that 
Frequentist approach may lead the researchers to incorrect 
results in this subject when there are theoretical and 
empirical bases about the significant relationship between 
more than one indicator and non-target factors in the 
specification of the correct/appropriate model related to the 
factor structure of a measurement tool; Bayesian approach 
is robust in revealing the existence and level of model 
misspecification. It has been found that the power of both 
two approaches to detect model misspecification changed 
in accordance with the factor loading values, number of 
factors and sample size in addition to the number of 
omitted cross-loadings. It has been found that the power of 
Frequentist approach to detect model misspecification 
decreased for some conditions in the existence of strong 
indicators. But it has been observed that the power of 
Bayesian approach to detect model misspecification 
generally increased in the existence of strong indicators. 
This case indicates that it may be resulted in the fact that 
model misspecification is ignored when there are strong 
indicators in Frequentist approach.  

Since the power of detecting model misspecification has 
been examined in this study by using chi-square test of 
exact fit in Frequentist approach and it has been evaluated 
on the basis of ppp-rejection rates in Bayesian approach, it 
is expected that this power shows change in both two 
approaches according to sample size [32]. In this study, it 
has been found that the power of ML-CFA to reject the 
incorrect model decreased in accordance with the increase 
in sample size as it was observed in a study [33]. However 
the power of Bayes CFA to reject the incorrect model 
increased as it is similar to Muthen and Asparouhov’s [11] 
study. The high rejection rates which were found when the 
models with minor misspecification were tested with small 
samples in Frequentist approach (these are single 
cross-loading conditions) can be explained with the small 
sample bias of ML χ2 test (Muthen & Asparouhov, 2012). 
That the rates of rejecting incorrect models were found as 
high in the condition in which these models were tested 
with large samples in Bayesian approach (these are 
multiple cross-loadings conditions) can be explained with 
the fact that ppp-rejection rates were very sensitive to the 

deviations from the correct model at ignorable level in 
large samples as it is stated in the literature [34]. It has been 
found that the number of factors in Frequentist approach 
affected the power of detecting model misspecification to 
some extent only when there were the deviations from the 
correct model at ignorable level (tendency to increase). The 
number of factors in Bayesian approach affected to some 
extent for each level of misspecification (tendency to 
decrease).  

In this study, finally, the power of BSEM approach to 
detect cross-loading was examined. In ML-CFA conducted 
within Frequentist approach, sometimes the first model 
show a poor fit, and the researchers have doubts on the fact 
that various meaningful cross-loadings might be different 
from “0”. In these situations it is required to carry out a 
large number of model modifications by releasing a 
cross-loading in each time, but this might cause a problem. 
On the contrary, it may be estimated freely and 
concurrently within BSEM framework with the addition of 
cross-loadings, considered as meaningful on the basis of 
theoretical and empirical findings in BSEM approach, to 
the model and without the requirement of model 
modification sequentially [34]. In line with these 
explanations, the current study results show that for the low 
value of cross-loading, BSEM was insufficient to reveal 
the existence of cross-loading required to be specified in 
the model. However, for the high level of cross-loading, it 
could effectively reveal the cross-loadings required to be 
specified in the model. The power of BSEM to detect 
cross-loading is especially higher when some indicators 
were affected by the factors, which are more than one, at 
the high level (cl=0.3), and the factors were represented by 
more indicators, and generally in the conditions in which 
the models were tested with large samples. Along with that, 
it has been understood that the power of BSEM to detect 
cross-loading increased for the models having strong 
indicators. However, in the literature [8,34] it is stated that 
both BSEM approach’s power to detect cross-loading and 
its effectiveness in parameter estimations are quite 
sensitive to the variance of prior identified for 
cross-loading. In a study [8] it was examined the 
performance of BSEM approach (they called this approach 
as BSEM-RP) by identifying different priors with low 
variance for cross-loading. The researchers have reached 
the result that this approach performs better for low values 
of cross-loading when a prior with 0.001 variance is 
identified. However, in parallel with the results of the 
current study, it has been found that this approach performs 
better for high values of cross-loading when a prior with 
0.01 variance is identified. When a variance with 0.01 prior 
is compared with a variance with 0.001 prior, it may cause 
that the posterior estimations related to cross-loading move 
far away from “0”. Therefore, it is considered that the fact 
that for 0.1 value of cross-loading, the power of detecting 
cross-loading was found as lower may stem from the 
variance of prior identified in this study for cross-loading. 
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That the sensitivity analyses could not be carried out by 
identifying the priors including different variances for 
cross-loading becomes an important limitation of this 
study.  

In light of these explanations and discussion, it is 
considered that RMSEA, which is used in Frequentist 
approach in the evaluation of the model fit for misspecified 
models (even if it leads to appropriate decisions in 
specifying “valid model” in this study), should not be used 
alone in the evaluation of the model fit since the 
contradictory results were obtained in this subject in the 
literature. It has been understood that in Bayesian approach, 
the evaluation of the model fit on the basis of ppp-values 
especially for misspecified models might lead the 
researchers to incorrect results. Within the context of 
rejecting the incorrect model, namely the detection of 
model misspecification, it has been found that Bayesian 
approach performed better in comparison with Frequentist 
approach. It has been seen that BSEM performed well 
especially for high level of cross-loading and in the 
conditions with multiple cross-loading. For that reason, 
especially within the context of omitted cross-loading, it is 
considered that it may be used effectively to avoid model 
misspecification.  

In practice, a researcher using CFA in the Frequentist 
framework represents the underyling theory of the 
measures through imposing exclusion restrictions on Λ. 
But it is a rigid specicification and primarily, in general, it 
insinuates a loss of information in the sense of applying 
more exclusion restrictions than required for the model 
identification. Besides this specification, in which each 
item in the measurement instrument is related to just a 
certain dimension of the construct measured, may purport 
to omission errors and may lead to researchers to an 
unrealistic assumption that the items measure factorilly 
pure structure. In addition, such a specification may trigger 
the emergence of bias in the estimation of free parameters 
in CFA model. It is stated that in some way these matters 
could be related to widely-encountered case that the factor 
structures obtained through exploratory techniques are not 
confirmed by CFA (van Prooijen & van der Kloot, 2001). 
Accordingly it could be suggested to researchers and 
practitioners in the field of Behavioral Sciences to apply 
CFA based on BSEM approach along with EFA to 
examine the factor structure of the educational and 
psychological measures. As the priors chosen for the 
paramaters in CFA model affect the results in BSEM 
approach, one should be elaborately investigate related 
literature especialy with regard to the results of former 
exploratory factor analyses and expert opinions to specify 
priors for model parameters when applying CFA based on 
BSEM approach. By this way, it is believed that it could 
be avoided from making inferences and decisions based 
on misspecified model (as possible). 

It is considered that the results of this research are 
important within the context of the evidences related to the 
validity of the measures since high-stake decisions are 

made on the basis of educational and psychological 
measures. In order to make correct decisions in educational 
settings on the basis of educational psychological measures, 
it is necessary to provide appropriate evidences on the 
psychometric qualities of these measures. In this context, 
model misspecification may lead the researchers to 
incorrect results in terms of the evidences on the validity of 
measures. Besides that, that the correct evidences on the 
validity of educational and psychological measures are 
obtained will support the use of these measures in view of 
educational accountability. In the literature [15, 26], it is 
pointed out that model misspecification will also have an 
impact on the results directly in testing invariance of 
measures between groups. Accordingly, it may lead the 
researchers to the incorrect inferences in the comparisons 
between the groups. Thus, when the measurement models 
are misspecified, further examinations, inferences and 
decisions based on these measures will be doubtful. For 
that reason, the effectiveness levels of Frequentist and 
Bayesian approaches were compared in this study, under 
more realistic and various conditions, in terms of the 
specification of the valid model related to educational and 
psychological measures and estimation of model 
parameters appropriately. It is considered that the results of 
this research will have the quality to guide the practitioners 
and researchers, who take various decisions on the basis of 
the educational and psychological measures, in the process 
of obtaining evidences to support these decisions.  
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