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Abstract This simulation study was conducted to
compare the performances of Frequentist and Bayesian
approaches in the context of power to detect model
misspecification in terms of omitted cross-loading in CFA
models with respect to the several variables (number of
omitted cross-loading, magnitude of main loading, number
of factors, number of indicators per factor and sample size)
and (to) investigate the efficiency of BSEM approach to
detect cross-loadings. BSEM approach allows including
and estimating certain number of cross-loadings by
specifying informative piror with small-variance for
cross-loadings in the model. By this way, BSEM approach
enables researchers to come up with models that better
represent the substantive theory. At this simulation study,
model misspecification was considered as major
misspecification (cI=0.3) and minor misspecification
(cl=0.1) according to the amount of omitted cross-loading.
Results of this study revealed that Frequentist approach
was so sensitive to minor model misspecification whereas
Bayesian approach with non-informative prior was so
sensitive to the major model misspecification. Finally, it
was concluded that the power of BSEM approach to detect
cross-loading varied according to the both amount and
number of cross-loadings and for large amount of
cross-loading the performance of this approach was so
well.

Keywords Model Misspecification, Confirmatory
Factor Analysis, Frequentist Approach, Bayesian
Approach, BSEM Approach

1. Introduction

It is assumed that educational and psychological
measures reflect underlying and non-observable latent
construct(s). The information about these latent constructs

can be obtained through their effects on observed variables.
Observed variables here are the measures or indicators of
the relevant constructs [1,2,3]. Examining the factor
structure of measures in terms of exploring and describing
the connections between the educational and psychological
measures and latent variables underlying these measures is
quite important in making accurate and appropriate
decisions related to the measured construct. The oldest and
most common models known in specifying the
relationships between observed variables and underlying
latent constructs are factor analytic models [1]. As in cited
Bollen [4], factor analytic models are built upon the model
which was developed on the basis of Spearman’s (1904)
studies and then named “common factor model”. There are
two factor analysis techniques based on the common
factor model: Exploratory Factor Analysis (EFA) and
Confirmatory Factor Analysis (CFA) [5]. EFA and CFA
adopt different approaches and assumptions. Whereas EFA
is a data-driven approach, CFA is a theory-grounded
approach. The main aim in EFA is to specify the number of
the underlying factors and nature of the variables in an
observed variable set according to the relationships
between these variables [1,6]. In EFA, it is allowed that all
observed variables load into all the factors, and all factor
loadings are freely estimated [1,4]. In CFA, unlike EFA, a
priori factor structure is specified for the relationships
between the latent factors and observed variables/measures,
and the level of fit between this factor structure and sample
data is examined. The basic equation of a CFA model is as
follows:

Vi =T +AN; T (D

In this equation, y; (i denotes person) indicates the vector
of observed indicators with px1 (p: number of measured
variables) dimension, and n; indicates the random vector of
interrelated factor scores with q dimension. A represents
the factor loading matrix with pxq dimension, g; represents
a vector of residual scores, which are peculiar to each
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observed variable with p dimension, and t represents a px1
vector including the constants related to observed variables.
In this study, it was assumed that n; and g were
independent of each other, and these parameters were
normally distributed (n; ~ Nq(0, @); & ~ Ny(0, V) [7,8].

In order to specify a CFA model, it is required to make g
restrictions on A and @ (factor variances-covariance
matrix) in the model. On the basis of theory and empirical
findings, a specific number of components in A matrix in
equation (1) are fixed to 0. This is made to reflect a
hypothesis that only specific factors affect the specific
indicators [9,10,11]. Traditionally in CFA, a simple factor
structure, in which each indicator is affected by only one
factor, and an indicator’s loading in another factor is
restricted to 0 (zero), is specified. This represents a model
which does not include any cross-loadings; however, in
practice, psychometric indicators are rarely the perfect
indicators of the pure structure. Indicators are mostly in a
complex factor structure [11,12]. Cross-loading models the
significant connections between indicators and non-target
factors. Thus, allowing the estimation of cross-loadings in
a CFA model will make explicit these connections. Relying
on such a type of CFA model will be a more realistic
approach than relying on CFA models in which these
cross-loadings are not taken into account [13]. Reference
[11] state that generally in CFA practices, more
cross-loadings than what is required are fixed to 0 in order
to specify the model. Besides that, the researchers
emphasize that specifying cross-loadings incorrectly as 0
in CFA models causes overestimation of factor correlations,
obtaining distorted factors, and then distorted structural
relations.

Reference [14] expressed that a model is
under-parametrized misspecified model if one or more
parameters, the population value of which is non-zero, are
specified as 0; and a model is over-parametrized
misspecified model if one or more parameters, the
population value of which is “0” (zero), are freely
estimated. Accordingly, that a cross-loading, the real value
of which is non-zero, is fixed to “0” indicates a model
misspecification [14]. Especially in CFA models which
contains weak indicators, even little misspecification of
model has relatively a considerable impact on the other
parts of the model. Model misspecification may lead to the
convergence of the parameter estimates into incorrect
values, and this case can make a serious threat to the
validity of the measures [15,16,17]. The misspecification
of CFA models increases the possibility that the
researchers make Type I and Type II errors in the process
of testing structural models, and these errors constrains the
ability of theory development/improvement [18,19]. CFA
is commonly used in order to provide evidence on the
reliability and validity of educational and psychological
measures. In this respect, the specification of a model,
which is appropriate to the factor structure of educational
and psychological measures, has importance in terms of the
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validity and practicality of the relevant measures [20].
These measures provide a basis for making inferences and
important decisions about individuals in the educational
setting. However, there is always a risk of making
inaccurate inferences about the reality when the models are
misspecified [21]. Accordingly, the researchers carry out a
model modification sequence as an option by using
Modification Indices (MI) in order to detect
misspecification in CFA models. And by this way they try
to find a model which shows good fit to the data [22].
However, sometimes, theoretical, reasonable and sufficient
basis for modifications carried out in this approach may not
be found, and this case may cause the researchers to get
away from the theory and lead them to an incorrect model
[12,13,23].

These problems and strict assumptions in CFA
conducted in Frequentist approach restrict the researchers’
ability to examine cross-loadings and correlated residuals
parameters [13]. Bayesian SEM (BSEM) approach
suggested by Muthen and Asparouhov [11] on the basis of
Bayesian approach solves these problems. The basic
difference between Bayesian approach and Frequentist
approach is related to the nature of the unknown population
parameters in the model. In Frequentist approach it is
assumed that there is only one constant and unknown
parameter in the population. But in Bayesian approach,
model parameters are regarded as random variables.
Instead of trusting null hypothesis in Frequentist approach,
the posterior distributions are evaluated in Bayesian
approach. In Bayesian approach, posterior distributions are
obtained for model parameters through updating the
researcher’s prior knowledge with the observed data.
Besides that, it provides an opportunity to test the models,
which will be under-identified in Frequentist approach,
through the estimation of cross-loadings and residual
covariances [24,25,26]. Also, ML-CFA estimation in
Frequentist approach is based on the large sample normal
theory; on the other hand, Bayesian approach is not based
on this theory; that’s why it is efficiently used in small
samples [11,25]. Finally, while model modifications are
made by using MI in Frequentist approach. But there is no
need to make sequential modifications in Bayesian
approach since model parameters can be freely and
concurrently estimated in this approach [11,13].

1.1. Bayesian Approach

The aim of Bayesian approach is to combine data
likelihood and prior knowledge, which is obtained from
theory, previous studies and experiences, for getting
posterior distributions for the unknown model parameters.
In this approach, it is considered that model parameters
include an uncertainty, and each parameter has a
distribution to capture the uncertainty related to this
parameter value. Bayes Theorem is explained with the
following equation by means of the probability
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distributions terms:

f(datal®). f(8)

f (0|data) = Hdata)

2

In this equation, f (8]data) indicates posterior distribution
for population parameter (0), f (data|0) represents sampling
density, and f(data) denotes marginal distribution [24,27].
Prior distribution (f(8)), is a key element in Bayesian
analysis, and it is based upon prior beliefs about the
possible values of a parameter. Priors may be informative
or non-informative. Non-informative prior expresses a
prior distribution with a high variance, which includes a
large amount of ambiguity about the population parameter.
In another words, non-informative prior contains a little of
information (or no information). On the other hand,
informative prior is a prior distribution with low variance
which includes a large amount of information and low level
of ambiguity about the population parameter [11,24]. In
Bayesian approach, Markov Chain Monte Carlo (MCMC)
algorithms are generally used to obtain posterior
distributions based on priors and data likelihood. Posterior
estimations for the parameters are provided as the mean,
mode and median values of these distributions [28,29]. In
MCMC sampling, convergence should be achieved to end
iteration and get posterior distributions [11]. In order to
assess whether the convergence is achieved or not,
Potential scale reduction (PSR) is calculated by using
Gelman-Rubin convergence diagnostic. PSR values lower
than 1.1 show that convergence is achieved [11, 29].
Assessing model fit in Bayesian analysis is carried out with
posterior predictive checking. The main logic here is that
the difference between the data generated by the model and
the real data should be very small. Any possible deviation
between two data sets will point out the model
misspecification.  Accordingly, posterior predictive
p-values (ppp-values), which show the degree of model fit,
are calculated. Although there are no theoretical cutoffs, it
is seen that different cut of values as 0.01, 0.05 and 0.10 are
suggested in the literature [28,29]. In this study, 0.01 cut of
value was considered. An approach proposed within the
context of Bayesian approach and SEM framework [11]
provides the ways of examining the possible sources of the
differences between the specified model and data. But in
Frequentist approach instead of this examination, it is
given suggestions on model modifications to increase the
model fit by carrying out only model test. Since this study
is conducted on the basis of BSEM, BSEM approach is
explained in the next section.

1.2. Bayesian Structural Equation Modelling (BSEM)

The existence of the significant cross-loadings and
correlated residuals, which are included in population
model in fact but may not be captured with a CFA
conducted within Frequentist framework. However, it can
be explored by means of Bayesian Structural Equation
Modeling (BSEM). By this way, more appropriate and
accurate inferences about the relevant structures could be

made by specifying and testing the models, which reflect
the theory better. BSEM is quite useful in terms of
providing opportunities to test a model, which will be
under-identified when a parameter is added to a CFA
model. In this approach, the models, which include more
parameters, could be estimated effectively in even small
samples. BSEM approach in this context is more flexible;
for that reason, it has been more commonly used in Social
and Behavioral Sciences. In BSEM, models are not tested
by using the parameter specifications with “exact zero” or
“exact equation” as it is done in Frequentist approach.
Instead of this, in BSEM approach estimations are obtained
by using “approximate 0” and “approximate equations” in
accordance with the informative priors with low variance.
As in EFA, this approach is highly important in terms of
both allowing the estimation of cross-loadings and
providing model specification which reflects the theory
better since it is still based on theory [11,13]. BSEM
approach can be used for both structural models and
measurement models since it can be applied to any
constrained parameter in SEM. This study focused on the
estimation of CFA model within the frame of BSEM
because CFA models were studied in this research. When 0
is considered as a collection of the parameters (t, A, ® and
¥), which will be estimated, for a CFA model within the
frame of BSEM, the posterior distribution for 0 is obtained
through the following equation:

p(B [Y) = p(Y| 6)p(6)/p(Y) cc p(Y| O)p(6)  (3)
In equation (3), the term of p(0 |Y) shows the posterior
distribution for 0, and the term of p(Y| 0) indicates data
likelihood and p(0) prior distribution. Various prior
distributions can be specified here for the parameters
included in 0. Generally, Inverse-Gamma (in case of
univariate distribution) and Inverse-Wishart (in case of
multivariate distribution) distributions are specified for
variance and covariance parameters. In addition, normal
distribution is specified for mean, intercepts and slopes
parameters as conjugate priors:

®~Inv-Wishart (®y, d),
yjj ~ Inv-Gamma (v,/2, v, y/2) ,
T~ N (ur, (512)

(4)

Here @, and d (hyperparameters) are the parameters of
Inverse-Wishart  distribution, and @, reflects the
researcher’s prior beliefs about the elements of ®. On the
other hand, d (d>pt4, p: number of observed) is
manipulated to set the informativeness of the prior [11, 20,
30]. In this study, as in Lu, Chow and Loken’s [20] study, it
was assumed that factor covariance matrix is an (®)
positive definite matrix, and residual covariance matrix (V')
is a diagonal matrix (off-diagonal elements are fixed to 0).
Accordingly, Inverse-Gamma was specified as prior
distribution for only residual variances (y;). Within the
frame of BSEM, the elements () in A can be considered
as two group in estimating m-factor CFA models. Main
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loadings, which are specified according to substantive
theory and freely estimated in Frequentist approach, are
included in the first group. A prior distribution with o,
variance is specified for those in the way allowing main
loading values to differ considerably from O.

Am ~ N (W, 6,7) &)

The second-group elements in loading matrix (A) are
cross-loadings which specify the relationships between an
indicator and other non-target factors. Cross-loadings are
fixed to 0 and not estimated in the context of model
specification in testing CFA models within Frequentist
framework whereas BSEM approach allows their
estimation [11,30]. Reference [11] specified three main
fields of study for CFA models within the context of
BSEM approach, and one of these fields is cross-loadings
in CFA. Other two fields are (a) residual correlations in
CFA and (b) examination of measurement invariance with
MIMIC modelling. As this study focused on cross-loadings
in CFA models, only this field of study was taken into
account in this research.

1.3. Cross-loadings in BSEM

Unlike the structure of main loadings based on the
requirement of “0” cross-loadings in Frequentist approach,
flexible cross-loading structure is allowed in the estimation
of CFA models in BSEM approach as in EFA models. In
this context, not only does BSEM provide the estimation of
non-zero cross-loadings in reality, but also allows other
cross-loadings to approximate “0”. In BSEM, a specific
number of cross-loadings with moderate magnitude can be
added to the model. The key point here is to choose the
variance of the prior distribution to be specified for
cross-loadings. The specification of a prior with very low
variance to cross-loadings may cause cross-loadings to not
adequately differ from “0” which is the prior mean. This
case may result in getting worse of ppp-values in terms of
the model fit. On the other hand, high value of a prior
variance may cause cross-loadings to have considerably
high values. This also may cause a model to approximate a
non-identified model. In this case, MCMC algorithm may
not be convergence for the relevant parameter estimations.
With a prior with “0 mean” and “low variance” to be
specified for cross-loadings, a researcher reflects a prior
belief that the probability of cross-loadings around “0” is
higher [8,11,13]. Reference [11] elucidated the values of
variance which can be chosen for “a normal prior with 0
mean”. Accordingly, 0.01 prior variance will result in
cross-loadings located between -0.2 and +0.2 with 95%.
This is a highly informative prior and points out that
cross-loadings are close to zero but not exactly zero. In
BSEM approach, for a CFA model in which all parameters
are freely estimated, it could be gathered information about
model modification by examining 95% Bayesian
Credibility Interval (95% BCI) for cross-loadings. When
95% BCI related to a A parameter which is cross-loadings
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does not include 0, it is considered that this cross-loading
points out a significant relationship between the relevant
indicator and factor. Therefore this cross-loading should be
specified and estimated in the model. That 95% BCI
includes 0 is regarded as MI, and this case shows that the
relevant cross-loadings is non-significant, and it may not
be taken into consideration. In this regard, it was stated that
BSEM performs better than ML-CFA in detecting model
misspecification in terms of cross-loadings [8,11,13].

It is seen that there are studies carried out through Monte
Carlo simulation and studies based on the real data in
relation to cross-loadings in factor analysis within the
frame of BSEM approach [8, 11, 20, 22, 25, 26, 31]. In
these studies, generally, the methods based on BSEM
approach and methods based on Frequentist approach were
compared. The comparisions were made from the
perspectives of exploring the existence of cross-loadings
and correlated residuals and evaluating model
modifications in this context [11,25,26], variable selection
methods [8] and various model selection criteria [20], the
impact of various prior distributions for cross-loadings
(BSEM with Spake and Slob Prior: BSEM-SSP, BSEM
with Ridge Proir: BSEM-RP) on factor solutions [8,11]. In
these studies, the number and magnitude of cross-loadings
[8,11,20], sample size [8, 11, 22], violations of
assumptions on the distributions [20], magnitudes of factor
loadings, factor correlations and residual correlations (Pan,
Ip, & Dube, 2017) were manipulated. The performance of
two approaches was examined under those conditions. The
research results [8, 11, 20, 22, 25, 26] generally point out
that when informative priors for factor analytic models are
used, BSEM approach-based methods outperform
Frequentist approach-based methods in terms of model fit,
detection of cross-loadings, rejection of incorrect models.
Simulation studies reveal that the power to detect
cross-loadings in BSEM changes according to the
magnitude of cross-loadings and sample size when
informative priors are used [8,11,20]. In addition it has
been found that the effects of different prior distributions
(BSEM-SSP and BSEM-RP) according to the magnitude
of cross-loadings and sample size differ [8] in terms of
RMSEA and cross-loadings within the context of
true-positive rates and false positive rates. Accordingly, the
current study comparatively examines the performance of
BSEM approach and performance of Frequentist approach
in detecting model misspecification in view of
cross-loadings in CFA. For that reason, next section is
about the detection of model misspecification.

1.4. Detection of Model Misspecification

This study mainly examines the performance of
Bayesian approach and performance of Frequentist
approach comparatively in detection of “model
misspecification” in CFA models in terms of
cross-loadings. In the literature [14, 15, 16, 17, 32] it is
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seen that “model misspecification” in CFA within the
Frequentist approach is studied within the contexts of the
association of an indicator with an incorrect factor, number
and magnitude of cross-loadings, misspecification of factor
structure. In a study conducted by French and Finch [15], it
was observed that Type I error rate, fit indexes (CFI,
RMSEA) and power to detect misspecification in terms of
the association of the indicators with incorrect factors
change according to the some variables: Sample size,
number of factors, and number of indicators; and generally
for more complex models, this error is lower and, the
power is higher. Simulation studies on the detection of
model misspecification in terms of cross-loadings point out
that the power to detect misspecification differs in
accordance with the number of cross-loadings and sample
size [32]. Also the decisions on accepting or rejecting
misspecified models may change as a function of sample
size [14]. In a study [16] it was found that RMSEA is
mostly insensitive to multiple omitted cross-loadings.
However, RMSEA sensitivity to misspecification increases
when factor loadings increase; on the other hand, this
sensitivity decreases when model size increases [16]. It is
seen that in the literature [11,22,33] related to BSEM
approach, Frequentist approach and BSEM approach were
compared for CFA and EFA models under the various
conditions. These conditions were changed according to
the number and magnitude of the cross loadings, number of
the factors, sample size, violence of the assumptions on the
distribution, magnitude of main-loadings factor
correlations and residuals by examining ‘“model
misspecification” with regard to “cross-loadings” and
“correlated residuals” [11,22,33]. The simulation study
carried out by Muthen and Asparauhov [11] showed that
ppp-values within the condition of low level
misspecification in large samples were more robustness by
comparison with p values in Frequentist CFA. The
researchers stated that 95% coverage changes accordance
with the magnitude of the cross-loadings, and the impact of
cross-loading magnitude on ppp-values differs according
to the sample size. In parallel with this finding, it was found
in the study carried out by Pan, Ip and Dube [22] that the
power to detect model misspecification and Type I error
rates change in accordance with the magnitude of factor
loadings and factor correlations. The results of a study [20]
in which the methods of selecting variables were compared,
point out that Bayesian model selection criteria (Bayesian
Information Criteria: BIC, Bayes Factor: BF) equilibrates
well, by comparison with EFA, between TP-Rates and
FP-Rates. Also it was observed that the differences
between Bayesian MCC and LRT estimations depend on
the sample size and magnitude of cross-loadings. In
another study [33] it was found that the rejection rates for
the models with minor misspecification increased in
accordance with the levels of misspecification and sample
size in both frequentist CFA and Bayesian CFA.

When the results in all these studies [11, 20, 22, 33] are
holistically evaluated, it can be understood that the power

to detect model misspecification differs according to the
number and magnitude of the cross-loadings, number of
factors and number of indicators for per factor, magnitude
of the factor loadings, level of misspecification and sample
size. However, in the result of reviewing the related
literature, when model misspecification is taken into
account in terms of the cross-loadings, any studies that
compare CFA conducted in the Frequentist framework and
CFA conducted in the Bayesian framework under the
conditions of sample size, number of factors, number of
indicators per factor and magnitude of factor loadings
could not be reached. On the other hand, simulation studies
[14,16,32], point out that misspecified models can produce
model fit indexes in a way that they will indicate the
models which show good fit. In addition, it is stated that
model size is an effective factor in detecting model
misspecification. These cases may lead to the rejection of a
model which includes misspecification at a negligible level
or acceptance of a model, which includes important
misspecification level, as a valid model. However, finding
a correct model related to the factor structure of
psychological and educational measures has a considerable
importance in making appropriate decisions especially in
educational settings and getting accurate results in the
research studies. For these reasons, it is considered that it is
important to compare the performance of these approaches
in detecting “model misspecification” and specify a more
accurate way in view of what approach is adopted, and
under what condition this approach is adopted.
Accordingly, a simulation study, in which misspecification
was regarded as the magnitude of “omitted cross-loadings”,
and the level of misspecification was considered as “minor
misspecification” and  “major  misspecification”,
[111,32,33] was carried out. In this simulation study, the
power to detect model misspecification in CFA models of
Frequentist and Bayesian approaches and BSEM (in terms
of rejection of incorrect models) was compared under
various conditions specified for the number of factors,
number of indicators for each factor, sample size. In
addition, the power of BSEM approach to detect
cross-loadings was investigated.

2. Methods

2.1. Simulation Design and Data Generation

In this study, various simulation settings were designed
in order to compare the classic ML CFA and CFA within
Bayesian framework in terms of the power to detect model
misspecification. Accordingly, power of these two
approaches to detect model misspecification was examined
under the conditions of the number of different factors,
number of different indicators for per factor, different
factors’ loadings, magnitude of different cross-loadings
(indicates misspecification level) and number of different
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cross-loadings, and size of different samples. In this study,
on the basis of the literature review [11,33], for the level of
misspecification, the conditions, in which cross-loadings
are specified as 0.1, are considered as ‘“minor
misspecification”, and the conditions, in which
cross-loadings are specified as 0.3, were considered as
“major misspecification”. For each level of model
misspecification, in terms of cross-loadings two conditions
(single cross-loading: one omitted cross-loading and
multiple cross-loadings: 3 omitted cross-loadings), two
factor numbers (3 and 4), two conditions in terms of the
number of indicators for per factor (3 and 4 indicators), two
sample size (200 and 500), and magnitude of two factor
loadings (A=0.3 and 2=0.8) were considered, which results
in 2 (cross-loading number) X 2 (sample size) X 2
(factor number) X 2 (number of indicator for per factor)
X 2 (factor loading magnitude)=32 conditions (in total 64
conditions). Accordingly, under the conditions of model
misspecification, different factor structures were specified
in accordance with the factor number, number of indicator
for per factor, and number of cross-loadings.
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In Figure 1, those denoted by “X” indicate main loadings,
and those denoted by “x” indicate cross loadings. For these
factor structures, data were generated for each condition
(with continuous indicators) by manipulating the
magnitudes of main loadings and cross-loadings. In this
simulation study, both for data generation and model
testing processes, factor variances were fixed at 1.00 for
identification purposes, and for simplicity, the indicators’
intercepts were fixed at 0. All factor correlations and all
residual variances for indicators were 0.3. First of all in this
process, data sets were generated on the basis of the factor
structures in which cross-loadings were not found for the
relevant sample size under the conditions (3 factors-9
indicators, 3 factor 12 indicators, 4 factors with 12
indicators) specified on the basis of the number of factor
and number of indicator. Afterwards, 500 iterations were
used for each condition in accordance with the factor
structures specified in the study, level of misspecification,
and sample size. Conditions, which were studied separately
both for minor and major misspecification levels in this
research, are presented in Table 1 below.
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Figure 1. Factor structures tested in this study
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Table 1.

Conditions studied both for minor misspecificaton and major misspecification levels at this research
Conditions Number of MNumber of Number of Magnitude ™N
cross-loadings factors indicators of main
per factor loadings

1 Single 3
2 Multiple 3
3 Single 3
4 Multiple 3
5 Single 3
o Multiple 3
7 Single 3
8 Multiple 3
9 Single 3
10 Multiple 3
11 Single 3
12 Multiple 3
13 Single 3
14 Multiple 3
15 Single 3
16 Multiple 3
17 Single 4
18 Multiple 4
19 Single 4
20 Multiple %+
21 Single 4
22 Multiple %+
23 Single %+
24 Multiple 4+
25 Single 4
26 Multiple %+
27 Single 4
28 Multiple %+
29 Single 4
30 Multiple %+
31 Single 4
32 MMultiple %+
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2.2. Estimation and Prior Specification

In this study, ML estimation method for Frequentist
CFA and Bayesian estimation method for BSEM approach
were used. In this study, as in a study [20], it was assumed
that factor covariance matrix (®) positive definite matrix
and residual covariance matrix (V) are a diagonal matrix
(off-diagonal elements are zero). For identification purpose,
the factor variances of the tested models were specified at 1,
and latent means were specified at 0. Accordingly, within
the Bayesian framework, conjugate priors were specified
for main loadings, cross-loadings, residual variances and
factor covariances in CFA. Default priors in Mplus 7 were
taken into consideration as priors for the parameters except
for cross-loadings. Accordingly, N (0, ) for main loadings,
IG (-1,0) for residual variances (yj;), and IW (0.000, -4) for
factor variances and covariances were specified as prior
distributions. For prior specifications for cross-loadings
parameters, Muthén and Asparauhov’s [11] study was
taken into account. Researchers states that a normal prior
with 0 mean and 0.01 variance will enable cross-loadings
to approximate 0; however, this prior is evaluated as a
strong informative prior since it is not exactly O.
Accordingly, in this simulation study, an informative prior
as A ~ N (0, 0.01) for cross-loadings parameters was
specified. Default settings in Mplus were used in the
estimation of all models examined in the study [11, 34].

2.3. Analytic Strategy

In this study, the performance of CFA based on Bayesian
approach and the performance of CFA based on
Frequentist approach were compared in terms of the model
fit, power to reject the incorrect model (indicates power to
detect model misspecification), parameter coverage and

power to detect cross-loadings. Accordingly, in the first
stage, ML-CFA and Bayes CFA were conducted on the
basis of the data sets which are generated according to the
model which does not include cross-loadings for each
condition specified in the simulation design. Afterwards on
the basis of the data sets generated under the conditions of
cross-loading=0.1 and cross-loading=0.3, ML-CFA and
Bayes CFA were carried out by ignoring cross-loadings
(not estimated) and without specifying informative prior.
In the second stage, CFA models were tested within the
frame of BSEM by specifiying informative small-variance
priors for cross-loadings specified under each condition
[11, 34]. In Bayesian approach, MCMC sampling was
utilized to sample posterior distributions related to
parameters. During MCMC sampling, it was assessed
whether convergence was achieved or not on the basis of
PSR value. PSR values smaller than 1.1 indicate that
convergence is achieved [28,29]. Fit of the models, which
were tested on the basis of both two approaches within the
context of the simulation study, were compared on the
basis of RMSEA and SRMR values for Frequentist CFA
and ppp-values for Bayes CFA. The power to detect model
misspecification ~ of  Bayesian  approach  with
non-informative prior and Frequentist approach was
examined based on ML LRT rejection rates and
ppp-rejection rates, respectively. In order to make
comparison related to parameter estimations, the 95%
coverage values were taken into consideration. Within
Frequentist approach, these values are considered as 95%
coverage of the related parameters. However, these values
indicate at what percentage (%) of the simulation iterations
in Bayesian approach BCI covers the population
parameters utilized in data generation. Besides that,
average estimates, standard deviations, standard error and
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mean-square-error values related to parameter estimations
based on both two approaches were examined. %
Significant Coefficient (%Sig Coeff) was utilized in
evaluating BSEM approach’s power to detect
cross-loadings [11, 34].

3. Results

In this section, firstly convergence results in all analyses
carried out in the simulation studies are presented and
interpreted. Following that, Frequentist and Bayesian
approaches are compared in terms of the findings related to
model fit and parameter coverage for all models tested
respectively in the conditions with no-cross-loadings, in
which cross-loading is not estimated (minor and major
misspecification), and BSEM with formative priors for
cross-loadings. After that, the findings related to power of
both approaches to detect model misspecification are
presented and comparatively interpreted for both two
approaches. Finally, the findings related to BSEM
approach’s power to detect cross-loadings are presented
and interpreted.

3.1. Convergence Assessment

PSR values for convergence were assessed for each
analysis conducted on the basis of Bayesian approach. It
has been seen that convergence was achieved for all
models tested on the basis of Bayesian approach. PSR
values for the models with no cross-loadings varied
between 1.041 and 1.09, for the models with minor
misspecification varied between 1.036 and 1.093 and for
the models with major misspecification varied between
1.035-1.093. It has been observed that convergence was
quickly achieved for the models with no-cross loading
whereas the convergence was more slowly achieved for the
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models with major misspecification. PSR values in the
analyses based on BSEM approach changed between 1.041
and 1.098.

3.2. Model fit and Parameter Coverage

Initially, the analyses were carried out for the data sets
generated on the basis of the models with no cross-loadings
in order to control the performance of the both two
approaches for the models with no-cross loadings. Model
fit indexes (RMSEA=0.008- 0.044, SRMR=0.020- 0.048)
calculated at the end of testing these models with ML-CFA
indicate that the relevant models showed a good fit to the
data. When model fit was assessed on the basis of posterior
predictive p-values (in Bayes-CFA with non-informative
priors), it was seen that ppp-values were higher than 0.1
cutoffs (ppp-values varied between 0.010 and 0.026) for all
conditions in a way that would indicate acceptable model
fit. It has been observed that there was not a considerable
change in the model fit according to the number of factors
and indicators, magnitude of factor loading, and sample
size when the relevant models were tested on the basis of
Frequentist approach. However, generally higher
ppp-values were obtained for more complex models when
Bayes CFA was conducted (with non-informative priors).
In view of model fit assessment, it has been understood that
ML-CFA performed better in comparison with Bayes CFA
in testing models with no cross-loadings. ML-CFA based
on Frequentist approach and Bayes CFA based on
Bayesian approach were compared in terms of parameter
estimations and parameter coverage in addition to model fit.
Because of the space limitation, only factor loading value
related to y3 indicator for main loadings parameters, and
average estimations and 95% coverage values related to the
correlation calculated for the relationship between
factorl-factor3 for factor correlations were calculated and
presented here in Table 2.
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Table 2. ML-CFA and Bayes CFA Results: No Cross-Loading

The Power to Detect Model Misspecifications in Confirmatory Factor Analytic Models

E
MIL-CFA BAYES CFA
Sitoation Parameters Estimates D504 %oSig. Estimates D50% Yo Sig.
Coverage Coeff Coverage Coeff

3 factors, O Main Loading 0406 0.942 1.000 0401 09018 1.000
indicators, - - -
0.4, Mopgg Factor comelation 0.310 0.928 0.682 0300 0.944 0.726
3 factors, O MMain Loading 0701 0956 1.000 0701 0.960 1.000
?’ffb'“ft?q'i*zm Factor comrelation 0,305 0.936 0.946 0303 0.956 0.940
3 factors, O MMain Loading 0402 0066 1.000 0402 0.942 1.000
indicat
?;Di Nosgg  Factor correlation 0.302 0938 0970 0.298 0940  0.990
3 factors, O Main Loading 0701 0064 1.000 0,703 0.940 1.000
indicat
im0 Mesgg Facter correlation 0.302 0936  1.000 0.301 0962  1.000
3 factors, 12 Main Loading 0403 0036 1.000 0400 0.036 1.000
indicators, Factor correlation 0299 0.946 0.778 0294 0.942 0.820
2=0.4_ N=200
3 factors, 12 Main Loading 0,701 0048 1.000 007 0.058 1.000
mdrcators, Factor correlation 0.300 0.964 1.000 0.303 0.946 0.954
3=0.7, N=200
3 factors, 12 Main Loading 0403 0.054 1.000 0350 0.076 1.000
mdicators, Factor cormrelation 0.302 0950 0904 0299 0.944 0.006
A=0.4_ N=500
3 factors, 12 Main Loading 0,701 0058 1.000 0650 0.048 1.000
mdrcators, Factor correlation 0.301 0.938 1.000 0.303 0.954 1.000
3=0.7, N=500
1 factors, 12 Main Loading 0410 0952 0.008 0350 0.02E 1.000
indicators, Factor correlation 0.294 0.944 0.658 0.303 0.950 0.726
3=0.4, N=200
1 factors, 12 Main Loading 0702 0952 1.000 0605 0.036 1.000
?déqtg]mb o0 Factor correlation 0.206 0.936 0.936 0.303 0.958 0.044
A=l N
4 factors, 12 Main Loading 0403 0042 1.000 0308 0.026 1.000
Indicators, Factor correlation 0.301 0.950 0.086 0.303 0.954 0.990
3=0.4, N=500
4 factors, 12 Main Loading 0.69% 0.046 1.000 0,701 0.954 1.000
P%Cf’fg]mj g Factor comrelation 0299 0.948 1.000 0306 0.962 1.000
A= INT
4 factors, 16 Main Loading 0406 0.046 1.000 0401 0.044 1.000
ndicators, ; -
Jm0.4 nepgp  Factor correlation 0.300 0.926 0.766 0306 0.944 0.806
4 factors, 16 Main Loading 0,701 0.956 1.000 0655 0.950 1.000
mndicators, Factor correlation 0297 0930 0950 0310 0962  0.948
3=0_7, N=200
4 factors, 16 Main Loading 0403 0954 1.000 0359 0952 1.000
indicators -

. F rrelati 0.29%9 0.952 1.000 0301 0.960 1.000
J=0.4 N=sop  oeree on
4 factors, 16 Main Loading 0,701 0962 1.000 0,700 0.964 1.000
indicators, Factor correlation 0.208 0.958 1.000 0.302 0.960 1.000
3=0.7, N=500

When Table 2 is examined, it has been understood that
coverage values, which were very close to 95% related to
main loadings and factor correlation parameters, were
obtained for both ML-CFA and Bayes CFA. Also there
was not a considerable difference in parameter coverage
values between conditions and between Frequentist and
Bayesian Approaches.

Fit indexes (RMSEA=.012-.041 and SRMR =.024- .050)
calculated based on Frequentist approach for models with
minor misspecification indicate a good fit. However, it was
observed that all models with major misspecification tested

in single cross-loading conditions (number of omitted
cross-loading=1) showed a good fit to the data
(RMSEA= .030- .068 and SRMR= .034- .053). But many
of the models with major misspecification (except
condition 26) tested in multiple cross-loadings conditions
(number of omitted cross-loadings=3) showed a poor fit to
the data (RMSEA=.055- .121 and SRMR=.047- .111). In
order to compare two approaches in terms of parameter
estimates, initially average estimates and 95% coverage
values obtained on the basis of ML-CFA are given in Table
3 below and interpreted.



Universal Journal of Educational Research 7(2): 494-514, 2019

Table 3. ML-CFA Results for Minor Misspecification and Major Misspecificaton Levels
Cmdifion Mispar  Parameter Estimate 959 Covernge  %9SigCoef  Condition  Mimpec.  Parmmeter Estimate 0504 U35k Cosf.
Coverage
1 Minor  Main Loding 0403 0838 LoD 17 Mor Main Loading 0407 0.954 1000
Farior comelation 0318 0024 0.742 Factor corrslation 0301 0,544 0588
Mgjor  Main Losding 0.406 0882 LoD Magor Main Loading 0407 097 1000
Facior comehation 0.280 0870 0.764 Factor corsslation 0271 {386 0744
1 Minor  Main Losding 0403 0888 100D 13 Mor Main Loading 0407 0851 1000
Facior comelation 0.376 0838 0914 Factor corsslation 0365 0950 000
Mgjor  Main Losding 0403 0888 100D Magor Main Loading 0406 0.960 1000
Facior comelation 044 0838 0880 Bactor corsslation 0441 0.838 088
kK Minor  Main Losding 0.701 0838 100D 19 Minor Main Loading 0702 0954 1000
Faror comelation 0312 0842 0.960 Factor corrslation 0304 0840 0832
Mgjor  Main Losding 0.701 0084 100D Majar Main Loading 0702 0958 1000
Facior comelition 031 0544 04874 Factor coreelation 0313 0.84] 0872
4 Minor  Main Losding 0.701 083 100D 0 Minor Msin Loading 0702 0956 0888
Facior comelation 0333 0828 0984 Factor corsslation 0343 0048 1000
Mgjor  Main Losding 0.701 0060 LoD Majar Main Loading 0102 0.966 1000
Facior comehation 0438 0716 1000 Factor cormslation 0433 0.728 0508
g Minor  Main Losding 0.402 0888 100D 1 Minor Main Loading 0402 0048 1000
Farior comelation 0308 0936 0882 Factor corrslation 0308 0832 0588
Mgjor  Main Losding 0.402 0072 100D Majar Main Loading 0402 0962 1000
Farior comelation 0.269 0848 1000 Factor corrslation 0174 0.284 0oog
[ Minor  Main Losding 0402 (B 100D n Mmor Main Loading 0402 0841 1000
Factor comelation 0373 0866 100D Pactor corrslation 0374 0808 1000
Mgjor  Main Losding 0401 0874 100D Magor Main Loading 0402 0.960 1000
Facior comehtion 0451 0342 1000 Factor corrslation 0434 0.532 1000
7 Minor  Main Loading 0.700 0870 LD IE) Mor Main Loading 0.100 0.950 1000
Factor comelation 0310 0840 100D Factor corrslation 0308 0956 1000
Mgjor  Main Losding 0.701 0874 100D Magor Msin Loading 0700 0960 1000
Facior comehation 0319 0842 1000 Factor cormslation 0317 0.950 1000
5 Minor  Main Losding 0.701 0870 100D U Mror Msin Loading 0700 0831 1000
Factor comelation 0.352 0872 LoD Factor corsalation 0345 0.900 1000
Mgjor  Main Losding 0.701 0076 100D Main Loading 0.700 0.960 1000
Facior comelation 0443 031 100D Magor Factor corsslation 0440 0.330 1000
[] Minor  Main Losding 0403 0840 100D 18 Mmor Main Loading 0408 0044 1000
Factor comelation 0309 0838 0514 Factor corrslation 0306 0934 1000
Mgjor  Main Losding 0403 0834 100D Magor Main Loading 0406 0954 1000
Facior comehtion 0.310 0882 0502 Factor corrslation 0308 0016 0874
Main Loading 0408 0840 100D Msin Loading 0405 0044 1000
0 M combtn 038 084 1000 B M cmbim 0360 08 om0
Mgjor  Main Losding 0404 0832 0956 Magor Main Loading 0406 09358 1000
Facior comelation 0438 00934 100 Factor corrslation 0436 0.812 0098
11 Minor  Main Losding 0.701 0826 082 " Mor Main Loading 0701 0954 1000
Facior comelation 0.307 0048 100D Factor corsslation 0304 0938 [{LsH]
Mgjor  Main Losding 0.701 0970 0976 Magor Main Loading 0701 0.956 1000
Facior comelation 0318 0832 LD Factor corselation 036 0.938 0ET)
1 Minor  Main Losding 0.701 0076 0988 113 Mor Main Loading 0701 0831 1000
Facior comelation 0330 0882 100D Factor corsslation 0338 0.934 0588
Mgjor  Main Losding 0.701 0048 050 Magor Main Loading 0701 0831 1000
Facior comehation 0410 0828 1000 Factor corsslation 0117 0.081 0367
13 Minor  Mzin Losding 0402 0834 1000 0 Manor Mzin Loadinz 0403 0956 1000
Facior comelation 031l 0960 1000 Factor corsslation 0300 0.854 1000
Mgor  Mzin Losding 0402 0834 0.8 Magor Mzin Loading 0402 0871 1000
Facior comelation 0313 0844 1000 Factor corsslation 0313 0.854 1000
JE| Minor  Mzin Losding 0402 0834 1000 k! ] Manor Mzin Loadinz 0403 0854 1000
Facior comalation 0.366 0o12 1000 Factor corsslation 0363 0.916 1000
Mgor Mz Losding 0402 0856 1000 Mygor Mzin Loadinz 0402 0970 1000
Facior comalation 0480 038 1000 Factor corsslation 0476 0418 1000
15 Minor  Mzin Losding 0.700 [ER 1.000 Kl Maor Mzin Loadinz 0701 0.960 1000
Facior comelation 0.308 0842 1000 Factor corsslation 0303 0838 1000
Mgor Mz Losding 0.700 0862 1000 Mygor Mzin Loadinz 0701 0.962 1000
Facior comelation 0.320 0848 1000 Factor corsslation 0317 0.950 1000
16 Mmor Man Loading 0.0 it LI i Maor Main Loading 0,101 0962 1100
Facior comelation 0340 0o1R 1000 Factor corsslation 033t 0920 1000
Mgor  Mzin Losding 0.700 0060 1000 Mgjor Mzin Loading 0701 0.966 1000
Facior comelation 0411 0318 1000 Factor corsslation 0342 0.341 1000
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The Power to Detect Model Misspecifications in Confirmatory Factor Analytic Models

When ML-CFA was conducted, coverage values very
close to 95% were obtained for the estimations related to
main loadings parameters at both minor and major model
misspecification levels. Also a considerable difference has
not been found in 95% coverage values in accordance with
the level of model misspecification. When Table 3 is
examined, it has been understood that 95% coverage values
related to main loadings parameters did not differ
significantly according to the number of omitted
cross-loadings, factor loading values, sample size, number
of factors, and number of indicators per factor. In relation
to factor correlation parameter, low coverage values were
obtained when the models only with 3 factors and 9
indicators were tested at minor model misspecification
level in the condition of n=500 (conditions 6 and 8). But
coverage values very close to 95% were obtained in all
other conditions. It has been seen that the estimations that
were very close to the population value (0.30) for factor
correlation parameter were obtained for the models with
minor misspecification. For the models with major
misspecification, 95% coverage values for factor
correlation parameter changed between the conditions
tested in the simulation study. There was no systematic
change for coverage values for this parameter according to
the sample size. However, at the multiple cross-loadings
conditions in which models tested with large samples
(n=500) lower coverage values were obtained. Also
generally coverage values very close to 95% were
obtained for single cross-loading conditions related to
factor correlations parameters whereas it has been
observed that coverage values were low for multiple
cross-loadings conditions. Especially, a considerably low

coverage value was obtained in the condition in which the
most complex model (4 factors with 16 indicators) was
tested with the strong indicators (A=.7), n=200 people.
This finding shows that biased parameter estimations
related to factor correlations can be obtained when the
more complex models are tested in small samples even if
they have strong indicators. It has been generally observed
that factor correlations were over-estimated in multiple
cross-loading conditions at the level of major model
misspecification. These findings reveal that when
ML-CFA was conducted, minor model misspecification
generally did not affect significantly the estimation of the
correlations between factors. On the other hand, major
model misspecification significantly affected the
estimation of correlations between factors in accordance
with the number of omitted cross-loading. It has been
found that ppp-values (varied between 0.014 and 0.106)
calculated for the models with minor misspecification at
single cross-loading conditions indicate acceptable model
fit in Bayes CFA. However, it has been observed that
ppp-values (varied between 0.032 and 0.538) for models
with minor misspecification tested at multiple
cross-loading conditions were high in a way that would
indicate better model fit. For models with major
misspecification, higher ppp-values (varied between 0.106
and 1.00) were obtained. At both minor and major model
misspecification levels it has been found that the
performance of Bayes-CFA in terms of model fit changed
according to the number of omitted cross-loadings.
Average estimates and 95% coverage values, which were
obtained when the models were tested through Bayes CFA,
were given in Table 4 below and interpreted.
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Table 4. Bayes CFA Results for Minor Misspecification and Major Misspecificaton Levels
Condifion ~ Misspec  Parameter Estimate 9504 Coverage  %4SigCoef  Conditibn  Misspec.  Paramefer Estimate 9509 Covernge  %4Sig Coef
1 Mnor  Man Losding 0.402 0934 1000 17 Muor Msin Loading 0381 0.838 1000
Fattor comlation 0.303 0542 0.788 Factor corslation 0311 0.060 07
Mgjar  Main Losding 0.401 04570 1.000 Mgior Mzin Loading 0380 0572 1000
Fat tor comeation 0.282 0831 0.564 Factor corselation 0283 0034 0528
1 Mnor  Man Losding 0.404 058350 1000 13 Moor Msin Loading 0381 0840 1000
Factar comelation 0.366 0530 0,944 Factor corslation j 0510 0o
Mgjar  Mah Losding 0.400 0838 1.000 Mgior Msin Loading 0.566 1000
Fc tor comeation 0.457 0T 0.988 Factor corslation 0.682 088
1 Minor Mz Loading 0.703 0845 1.000 19 Minor Msin Loading 0044 1000
Factar comelation 0310 0530 0.960 Factor corslation 0562 083k
Mgier  Main Loading 0.702 0562 1000 Mjor Mzin Loading 0038 1000
Factor comlation 0312 0546 0980 Factor corslation 0548 0976
4 Minor  Main Losding 0.703 0845 1.000 n Minor Mzin Loading 0048 1000
Fattor comlation 0.356 0502 0,988 Factor corslation 0014 0o
Mgjar  Main Losding 0.703 0468 1.000 Majar Mzin Loading 0831 1000
Fat tor comeation 0,442 04518 1.000 Factor corselation 0.600 1000
5 Mnor  Man Losding 0.402 058350 1000 1 Minor Msin Loading 0.060 1000
Factor comlation 0.303 0534 0,904 Factor corslation 03 0034 0ogE
Mgjar  Main Losding 0.401 08m 1.000 Majar Mzin Loading 0387 0.566 1000
Factor comeation 0270 0550 0,905 Factor corsslafion 0283 0820 1000
[1 Minor Mz Loading 0.401 0852 1.000 n Moor Msin Loading 0380 0848 1000
Factar comelation 0370 0534 1.000 Factor corslation 0370 0.248 1000
Mgier  Main Loading 0.402 0854 1000 Mggor Mzin Loading 0388 0881 1000
Ft tar comelation 0.430 0446 1.000 Factor cofslation 0462 0.374 1000
7 Minor Mz Loading 0.702 0834 1.000 n Moor Msin Loading 0.700 0850 1000
Fattor comlation 0302 05854 1000 Factor corslation 0314 0831 1000
Mgier  Main Loading 0.701 0854 1000 Mggor Mzin Loading 0.700 0870 1000
Fat tor comeation 0318 0530 1.000 Factor corselation 0323 0831 1000
i Mnor  Man Losding 0.702 0545 1000 4 Moor Msin Loading 0.700 0.036 1000
Fattor comlation 0.351 08m 1000 Factor corslation 0356 0.850 1000
Mgjar  Main Losding 0.702 0562 1.000 Mgior Mzin Loading 0.700 0562 1000
Factor comlation 0.441 0260 1000 Factor corslation 0447 0241 1000
2 Mnor  Man Losding 0.410 058350 1000 15 Moor Msin Loading 0380 0,045 1000
Factar comelation 0.301 04534 0.570 Factor corslation 0315 0548 DB
Mgjar  Mai Losding 0411 0936 1.000 Mgior Msin Loading 0387 0534 1000
Factar cormlation 0.30 0826 0021 Factor corselation 0323 0.048 020§
Mzin Loading 0411 0844 1.000 Msin Loading 0388 0848 1000
10 Minor  Factor comelation 0.353 0916 0.950 16 Moor Factor corslation 0371 0018 0834
Mgier  Main Loading 0402 0562 1000 Mggor Mzin Loading 0388 003 1000
Fat tor comeation 0433 0.716 1.000 Factor corselation 0476 0,648 1000
11 Mingr - Mah Losding 0.707 0544 1.000 ” Mowor Msin Loading 0650 0541 1000
Fattor comlation 0311 0545 0,966 Factor corslation 0317 0.060 0838
Mgjar  Main Losding 0.706 0562 1.000 Mgior Mzin Loading 0658 0560 1000
Factor comlation 034 0844 0,988 Factor corslation 0330 0048 0874
1 Mnor  Man Losding 0.706 0560 1000 3 Moor Msin Loading 0658 0,048 1000
Fattor comelation 0344 04824 0984 Factor corselation 0350 0834 0215
Mgjer  Man Losding 0.707 0832 1000 Mgior Msin Loading 0658 0.0¢4 1000
Fat tor comation 0.417 0.732 1,000 Factor corslation 0173 0,380 0088
13 Mnor  Main Loading 0.400 0841 1.000 n Muor Mzin Loading 040 0954 1000
Factor comzlation 0309 0930 0808 Factor corrlation 0310 0,848 1000
Mgior  Main Loading 039 0934 1000 Maior Mzin Loading 0388 0,964 1000
Factor comzlation 0312 0028 1.0 Factor corrlation 0316 0,944 1000
4 Minor  Main Loading 0.400 0840 1.000 0 Muwor Mzin Loading 035 0.936 1000
Factor comelation 0.366 034 1.000 Factor cormlstion 0370 0.840 1000
Mgior  Main Loading 0381 0045 1000 Maior Mzin Loading 035 0.962 1000
Factor comzlation 0.467 0316 1000 Factor corrlation 0474 0,304 1000
15 Mnor  Mzin Loading 0.680 0842 1000 il Muor Mzin Loading 055 0936 1000
Factor comelation 0310 0248 1.000 Factor cormlstion 0308 0931 1000
Mgor  Main Loading 0.550 084 1.0 Mior Mzin Loading 0.7 0938 1000
Factor comzlation 0312 0028 1000 Factor corrlation 0311 0,931 1000
16 Mnor  Main Loading 069 0841 1.000 n Muor Mzin Loading 0.100 0958 1000
Factor comzlation 0342 0874 1.0 Factor corrlation 0341 0,854 1000
Mgior  Main Loading 069 0945 1.000 Maior Mzin Loading 0.100 0.962 1000
Factor comzlation 0416 0460 1.0 Factor corrlation 0413 0481 1000
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When Table 4 is examined, it has been understood that
coverage values that were very close to 95% were obtained
for the estimations related to main loadings parameter in all
the conditions on the basis of Bayes CFA. Similar to the
table emerged when ML-CFA was conducted, 95%
coverage values here did not differ significantly according
to the level of model misspecification, number of omitted
cross-loadings, factor loading value, sample size, number
of factors, and number of indicators per factor. It has been
understood that 95% coverage values related to factor
correlation parameter were lower in the multiple
cross-loadings conditions in which the models with minor
misspecification were tested with generally large samples
(n=500). On the other hand, they were high in other
conditions. For the models with major misspecification,
coverage values which were generally very close to 95%
were obtained for single cross loading conditions. But low
coverage values related to factor correlation parameter
were obtained for all multiple cross loadings conditions. It
has been found that the lowest coverage value related to
factor correlation parameter estimated on the basis of
ML-CFA was obtained in the condition (condition 28) in
which the most complex model was tested with strong
indicators and small sample. And as for model testing
with Bayes CFA, the lowest coverage value for the
relevant parameter was obtained in the condition
(condition 24) in which the model with 4 factors and 12
indicators was tested with strong indicators and large
sample. For the models with minor misspecification,
similar to the results of ML-CFA, average estimations
which were close to the population value (0.30) for factor
correlation parameter were obtained in all conditions in
Bayes CFA. For the models with major misspecification,
the findings, which were similar to those in ML-CFA
again, were obtained, and factor correlations resulted in
over-estimation in multiple cross-loading conditions
(except condition 28) in Bayes CFA.

It has been observed that ppp-values calculated on the
basis of BSEM approach (ppp<.01) indicated poor fit
except for three conditions: For the conditions in which the
model with 3 factors and 12 indicators tested with small
samples (condition 10 for cl=0.3, condition 12 for cl=0.1
and cl=0.3), obtained ppp-values (varied between 0.000
and 0.014) indicated acceptable model fit. In order to

compare BSEM approach with ML-CFA and Bayes CFA
in terms of parameter estimations and parameter coverage,
average estimates and 95% coverage values for main
loading and cross-loading parameters were given in Table
5 below. Because of the space limitation again, the values
related to only y3 indicator for main loading and yl
indicator for cross-loading were presented here. It has been
observed that factor correlation parameters were
over-estimated only in the situations in which the model
with 3 factors and 9 indicators was tested in multiple
cross-loading conditions with cl=0.3 (for conditions 2.4
and 6 average estimates for factor correlation varied
between 0.443 and 0.474). Except for these conditions, it
has been observed that average estimates (varied between
0.244 and 0.380), which were close to the ones (0.30) that
used to generate data related to factor correlation parameter,
and high coverage values (varied between 0.920 and 0.988)
were obtained.

When Table 5 is examined, it has been understood that
coverage values, which were close to 95%, for all
conditions related to main loading parameter were obtained.
It has been observed that, for cross-loading parameter, high
coverage values (very close to 95% or higher) were
obtained in all conditions (when other factors are fixed)
with cross-loading=0.1. Also, these values did not differ
significantly between the conditions. For all conditions
with cross-loading=0.3, lower coverage values related to
cross-loading parameter were obtained. It was understood
that there was not a considerable change in coverage values
for cross-loading parameter in terms of number of
cross-loading  (single cross-loading vs. multiple
cross-loadings). When the magnitude of main loadings and
sample size increased, the coverage values related to factor
correlation parameter also increased. It has been generally
observed that there is an amount of increase in coverage
values related to cross-loading parameter along with the
increase in the number of factors for large samples (n=500)
and conditions with cl=0.3. When the comparisons were
made between the conditions, it has been generally
understood that coverage values related to cross-loading
parameter were higher in the conditions in which the
models including a lot of indicators (4 indicators per factor)
were tested with large samples.
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Table 5. Results of Bayesian analyses with informative priors

Condition Crosw-loading  Parameter Edimate 0504 Coverage  SizCoef.  Condifion  Croswloading  Parameter Esfimate 95U Coverage  DaSigCoef

1 01 MsinLoading 0432 0084 0,998 17 01 Main Losding 0.4 0.966 1.000
CrozsLoading 0049 0554 0.002 CrossLoading 0.651 0895 0005

03 MsinLoading 0424 0976 0998 03 Mzin Losding 042 0482 1.000
Crossloading 0.117 0242 0140 CrossLosding 0.120 0.264 0142

1 01 MzinLoadinz 0417 0476 0888 15 01 Mzin Loading 0433 0am 1000
CrozsLoading 0049 1000 0.008 CrossLoading 0.0 04842 0005

03 MsinLoading 0387 0982 0,998 03 Main Loading 0.383 097 0o
CrozsLoading 0.133 0206 0.2 CrossLoading 0.134 0.204 0258

3 01 MzinLoading 0.716 0934 1.000 19 01 Mzin Losding 0.14 0954 1000
CrossLoading 0.033 0892 0.010 CrossLosding 0.3 0808 0014

03 MsinLoading 0715 0034 1.000 03 Main Losding 0.4 0974 1.000
CrozsLoading 0.154 0408 0.624 CrossLoading 0.156 0438 0524

4 01 Mzin Loading 0.714 0848 1.000 0 01 Main Losding 0.1 0.966 1000
CrossLoading 0.043 0808 0.016 CrossLosding 0.6 0804 0014

03 MzinLoading 0.726 0950 1.000 03 Mzin Losding 0.883 0.956 1000
Crozloading 0.158 0388 0.686 CrozsLoading 0.160 0440 0.706

5 01 MsinLoading 0418 0048 1.000 1 01 Mzin Losding 0.46 0950 1.000
CrozsLoading 0.060 054 0.030 CrossLoading 0.063 0808 004

03 MsinLoading 0419 0970 1.000 03 Mzin Losding 0.415 0838 1000
CrosLoading 0.161 0431 0.624 CrosiLoading 0.165 0.530 0660

[] 01 MzinLoadinz 0418 0960 1.000 n 01 Main Losding 044 083 1.000
CrozLoading 0.0680 1000 0.028 CrossLoading 0.063 0998 0028

03 MsinLoading 038 0934 1.000 03 Main Losding 0304 0964 1.000
CrozsLoading 0.173 0482 0838 CrossLosding 0.176 0.572 0344

7 01 MzinLoading 0.706 0858 1.000 n 01 Mzin Losding .79 0848 1000
CrossLoading 0.062 1000 0042 CrossLosding 0.064 0888 002

03 MsinLoading 0.706 0036 1.000 03 Main Losding 0.8 0848 1.000
CrozsLoading 0180 054 0.962 CrozsLosding 0.182 0.582 0874

H] 01 MsinLoading 0.706 0852 1.000 M 01 Mzin Losding 0.8 0950 1000
Crossloading 0.062 0988 0.012 CrossLosding 0.062 1.000 0024

03 MsinLoading 0.700 0950 1.000 03 Main Loading 0.&8 0834 1000
CrossLoading 0.18 0560 0.974 CrossLosding 0.185 0.524 04m

L] 01 MsinLoading 0434 0840 1.000 15 01 Main Losding 0450 044 1.000
CrozsLoading 0.038 1000 0.018 CrossLosding 0.060 0808 0018

03 MzinLoading 0438 0828 1.000 03 Mzin Losding 0.456 0848 1000
CrossLoading 0.157 0480 0.567 CrossLosding 0.156 0.500 0348

01 MsinLoadinz 0434 0832 1.000 01 Mzin Loading 0454 0840 1.000

1 CrozLoading 0.059 0998 0.028 16 CrossLosding 0.9 1.000 0024
03 MsinLoading 0412 0952 1.000 03 Main Losding 0.410 0848 1.000
CrozsLoading 0.163 0498 0.652 CrossLosding 0.163 0.530 0670

11 01 MsinLoading 0.726 0852 1.000 n” 01 Mzin Loading 0.72 0858 1.000
CrossLoading 0.062 0994 0.036 CrossLosding 0.062 0890 0040

03 MsinLoading 077 0950 1.000 03 Main Losding 0.73 0934 1.000
CrozsLoading 0.181 0580 0.808 CrozsLosding 0.181 0.574 0900

11 01 MsinLoading 0.2 0838 1.000 i1 01 Mzin Losding 0.70 0962 1000
CrossLoading 0.061 0580 0.040 CrossLosding 0.063 0905 0048

03 MzinLoading 0.709 0554 1.000 03 Mzin Loading 0.410 0858 1000
CrossLoading 0.18 0572 0.934 CrossLosding 0.163 0.530 0670

13 01 MsinLoading 0.426 0832 1.000 i 01 Main Losding 0.433 0945 1.000
CrozsLoading 0.071 0588 0.076 CrossLoading 0.070 088 0056

03 MsinLoading 0417 0838 1.000 03 Mzt Losding 0.433 0432 1000
Crossloading 0.167 04672 0974 CrossLoading 0.198 0.740 0962

£} 01 MzinLoading 0424 0842 1.000 Hn 01 Mzin Loading 0.430 0842 1.000
CrossLoading 0.069 0988 0.078 CrossLosding 0.0 0808 0038

03 MsinLoading 0.402 0068 1.000 03 Mzin Losding 0.407 096 1.000
CrozsLoading 0.202 0.706 0882 CrossLoading 0.1 0718 080

15 01 MsinLoading 0.709 0847 1.000 il 01 Mzin Losding 0.71 0934 1000
Crossloading 0.070 1000 0.1000 CrossLosding 0.068 0995 0066

03 MzinLoading 0710 0950 1.000 03 Mzin Losding 0.72 0956 1000
CrozsLoading 0.208 0.708 098§ CrossLoading 0.6 0718 0998

16 01 MsinLoading 0.708 0852 1.000 n 01 Main Losding 0.10 0838 1000
CrozsLoading 0.070 0588 0.082 CrossLoading 0.070 0808 0076

03 MzinLoading 0701 0858 1.000 03 Mzin Losding 0.1 0.962 1000
Crossloading 0.208 0680 1.000 CrossLosding 0.9 0.760 0

3.3. Detection of Model Misspecification

The power to detect model misspecification of CFA
based on Frequentist approach and CFA based on Bayesian
approach has been examined in terms of rejection of

incorrect model. In this context, ML LRT rejection rates
and ppp-rejection rates have been taken into consideration
in order to compare ML-CFA and Bayes CFA (with
non-informative priors), and these are presented in Table 6
below.
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Table 6. Rejection rates for Bayes CFA and ML-CFA for minor misspecification and major misspecification levels

Condition Misspecification ERejection rate Bayes FPP Condition  Misspecification  Rejection rate Bayes PPP
Les el for ML LRT rejection rate level for ML LRT rejection rate
1 Minor 0.340 0.028 17 Mimor 0.363 0.014
Major 0.073 0.142 Magor 0.123 0.106
2 Minor 0.182 0.046 18 Minor 0246 0.032
Major 0.000 0828 Magor 0001 0.706
3 Minor 0.433 0.038 19 Minor 0316 0,026
Major 0.003 0524 Magor 0014 0376
4 Minor 0.089 0.134 20 Minor 0.153 0,082
Major 0.000 1.000 Magor 0.000 0.988
5 Minor 0263 0034 21 Minor 0293 0.032
Major 0.002 0.608 Magor 0008 0492
6 Minor 0.040 0236 22 Minor 0.088 0.162
Major 0.000 1.000 Magor 0000 1.000
7 Minor 0.157 0.008 23 Minor 0212 0,074
Major 0.000 0.992 Magor 0.000 0970
8 Minor 0.004 03538 24 Minor 0020 0380
Major 0.000 1.000 Magor 0000 1.000
9 Minor 0321 0.020 25 Minor 0307 0.034
Major 0.034 0276 Magor 0.061 0.180
10 Minor 0.168 0088 26 Minor 0194 0.064
Major 0.000 0920 Magor 0001 0.856
11 Minor 0283 0.042 27 Minor 0280 0,052
Major 0.004 0578 Magor 0.013 0398
12 Minor 0.108 0.156 28 Minor 0.141 0.108
Major 0.000 1.000 Magor 0.000 1.000
13 Minor 0249 0.064 29 Minor 0261 0,040
Major 0.001 0872 Magor 0.001 0.720
14 Minor 0.034 0.308 30 Mimor 0.066 0.190
Major 0.000 1.000 Magor 0000 1.000
15 Minor 0.181 0.106 31 Minor 0210 0.064
Major 0.000 0.990 Magor 0000 0972
16 Minor 0.008 0526 3z Minor 0.024 0358
Major 0.000 1.000 Magor 0000 1.000

Rejection rates for ML-LRT presented at Table 6
indicate that the power of ML-CFA to detect minor model
misspecification is high, whereas it’s power to detect major
model misspecification is so much lower. However, it has
been observed that at the minor model misspecification, in
single cross-loading conditions rejection rates are high and
generally in multiple cross-loading conditions these
rejection rates are lower. At minor model misspecification
level, ML-CFA rejected approximate 44% of the models in
the single cross-loading conditions in which the simplest
factor structure with strong indicators was tested with small
samples. At major model misspecification level, in general,
the rejection rates are low. It has been understood that there
is no considerable change according to the number of
omitted cross-loadings. However, Bayes ppp-rejection
rates indicate that the power of Bayes CFA to detect minor
model misspecification is low, but it’s power to detect
major model misspecification is so much higher. For both
minor and major misspecified models, at the single
cross-loading conditions ppp-rejection rates were lower,
whereas at multiple cross-loading conditions these rates
were slightly higher. It has been found that the power to
detect major model misspecification of Bayes CFA was
low at the four conditions in which the related models were
tested with weak indicators and small samples (conditions
1,9,17 and 25). However, at the all other conditions the
power of Bayes CFA to detect major model
misspecification was so much higher. The striking finding

is that at the major model misppecification level for 11
conditions, ML-CFA does not reject any of the incorrect
models (ML-LRT=0.000). But for these same conditions
Bayes CFA rejects all of the incorrect models
(ppp-rejection rate=1.000). Besides this, in case of the
major model misspecification, ML-CFA does not reject
any of the incorrect models in another seven conditions.
These findings reveal that ML-CFA is so sensitive to the
minor model misspecification, especially in single
cross-loading conditions and Bayes CFA is so senstitive to
the major model misspecification, especially in multiple
cross-loading conditions.

When the models were tested with ML-CFA, according
to magnitude of main loadings, a systematic difference has
not been observed for single cross-loading conditions at
minor model misspecification level and for multiple
cross-loading conditions at major model misspecification
level in terms of the rejection rates. However, it could be
said that the rejection rates decreased when the magnitude
of factor loadings (A=.7) increased for multiple
cross-loading conditions at minor model misspecification
level and single cross-loading conditions at major model
misspecification level. In all conditions in Bayes CFA, it
has been observed that there was an increase in ppp
rejection rates along with the increase in magnitude of
factor loadings. According to the increase in sample size,
power of ML-CFA to reject the incorrect model and power
of Bayes CFA to reject the incorrect model did not differ
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only at major model misspecification level for multiple
cross-loading conditions. Whereas the rejection rates
showed a decrease in all other conditions in model testing
with ML-CFA for large samples (n=500), ppp rejection
rates showed an increase in model testing with Bayes CFA.
It has been found that this change was much more for the
conditions with strong indicators (A=.7) for both ML-CFA
and Bayes CFA.

In accordance with the increase in the number of factors,
power of ML-CFA to reject the incorrect model showed an
amount of increase only at minor model misspecification
level for multiple cross-loadings conditions .But power of
Bayes CFA to reject the incorrect model showed an amount
of decrease at both minor and major model
misspecification levels. For other conditions, according to
the number factors, a considerable difference has not been
observed in terms of both two approaches’ power to reject
the incorrect model. Finally, a systematic and considerable
change has not been found according to the number of
indicators per factor in terms of both ML-CFA’ power to
reject the incorrect model and Bayes CFA’s power to reject
the incorrect model.

3.4. Power to Detect Cross-loadings in BSEM

Power of BSEM approach to detect cross-loading has
been evaluated on the basis of %sig coeff values given in
Table 5. It has been understood that the power to detect
cross-loadings was considerably low when informative
prior with low variance was specified for cross-loading
parameter, and it was cross-loading=0.1. However, it has
been observed that BSEM approach had sufficient power
(power higher than 0.8) to detect cross-loading for 17
conditions when it was cross-loading=0.3 [11]. The
analysis results show that when it was cross-loading=0.3,
power of BSEM approach to detect cross-loading was
higher for some conditions: For the conditions in which
each factor was generally represented by more indicators
(conditions 11-16 and conditions 27, 29, 30, 31, 32) and six
conditions including large samples (conditions 6-8 and
22-24). Since power of BSEM approach to detect
cross-loading was too low when it was cl=0.1, the
comparisons between the conditions were made only for
the conditions in which it was cl=0.3. It has been observed
that when it was the same in terms of other factors, power
of BSEM approach to detect cross-loading was generally
lower for single cross-loading conditions. However, the
power showed an amount of increase for multiple
cross-loading conditions. When the change in the power to
detect cross-loading is examined according to magnitude
of main loading, it has been understood that the power
increased when there were strong indicators.

4. Discussion and Conclusions

Since most psychological constructs are complex in
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nature, the indicators, which are chosen to represent those,
may be mostly related to more than one factor of the
construct [35]. Therefore, when the relationships between
the constructs and their indicators are modelled by
considering that each indicator is only related to one
factor of the construct but not certainly related to other
factors, this leads the researchers to misspecified
measurement models. Although biased parameter
estimations are obtained as the consequence of testing a
misspecified measurement model, fit indexes, which will
indicate that this model is a “valid” model, can be obtained.
In fact, this case means the specifications of the
measurement models which do not reflect the theory well.
But unfortunately this may cause a problem in the
researchers’ theory development process since it may
hinder the accuracy of the inferences made on the basis of
these models in further studies [12, 32].

There are various ways of dealing with the
misspecification of the measurement model. In line with
the theory, some of these ways are: (a) the specification of
bifactor model in relation to the construct examined, (b) the
specification of higher order factor model in an appropriate
condition, and (c) allowing an indicator to load into more
than one factor or the specification of the relationships in
the model among the specific variances related to
indicators [10, 32]. Allowing a specific indicator to load
into more than one factor in the measurement model means
the specification and estimation of cross-loading in the
model in fact. In Frequentist approach, in specification of
CFA models, an indicator’s loadings for other factors are
fixed at “0”; in other words, cross-loadings are not allowed.
The departure point of BSEM approach is the idea that
underlying theory in educational and psychological
measures is reflected better when the specifications as the
absolute “0” in CFA models in Frequentist approach are
replaced by the approximate “0” by using an informative
prior with small variance. In BSEM approach, it is allowed
to both cross-loadings and use of prior information in
addition to the information in data [22,34]. Accordingly, a
simulation study has been conducted to examine the power
of BSEM approach to detect cross-loading and to compare
the performances of Frequentist and Bayesian approaches
in the existence of model misspecification. In this study,
model misspecification was considered in terms of
omitted-cross loading. In the study, firstly the performance
of ML-CFA and the performance of Bayes CFA were
compared for the models with no cross-loading (correctly
specified models). As in Muthen and Asparouhov’s study
[11], this study has found that Frequentist approach
showed a better performance in comparison with Bayesian
approach with non-informative priors in terms of the model
fit for CFA models with no cross-loading. However, in
reality, an idea that the indicator of a psychological
construct is related to only a factor but not certainly related
to other factors will reflect an imaginative case. Hence, it
will be a more realistic approach to evaluate both these
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approaches’ performance in the existence of cross-loading.
For that reason, this research has been needed and carried
out accordingly.

For misspesified models, expectedly, it has been found
that the levels of model fit differed in accordance with the
level of misspecification as a consequence of the analyses
conducted on the basis of both two approaches. At minor
misspecification level, both two approaches lead the
researchers to a decision pointing out that these models
show a good/acceptable fit to the data. When the
misspecification was ignorable, it has not been observed
that there was a considerable difference between
conditions in terms of the model fit levels in Frequentist
approach. But in Bayesian approach (with non-informative
priors), it has been observed that the levels of model fit
changed according to the number of omitted cross-loading.
From the perspective of parameter estimations, Frequentist
approach was resulted in the insubstantial backing of factor
correlation parameters in the condition in which the
simplest factor structure examined in this study was tested
with large sample (just for multiple cross-loadings
conditions). Bayesian approach (with non-informative
priors) approach was resulted in the insubstantial backing
of factor correlation parameters in generally large sample
conditions (just for multiple cross-loadings conditions). It
is considered that the fact that the average standard errors
in relation to factor correlation parameter estimations in the
relevant conditions were higher in both two approaches
than those in other conditions might cause these results.
When the findings related to model fit assessment and
parameter estimates are evaluated together, it has been
understood that at low misspecification level, the
performance of Bayes CFA and the performance of CFA
within Frequentist framework are comparable in terms of
the model fit and parameter estimation.

At major model misspecification, in both two
approaches, the levels of model fit differed in accordance
with the number of omitted cross-loading. When there is a
model misspecification at this level, both Frequentist and
Bayesian approaches will lead to a decision pointing out
that the model is accepted as “a valid model” when there is
only one omitted-cross loading. However, the value
considered as the amount of omitted cross-loading (c1=0.3)
at major model misspecification is taken into account as an
evidence, which indicates that an indicator represents the
underlying factor appropriately/sufficiently, in the
literature [36]. Accordingly, the current simulation study
findings implied that in both two approaches, the
researchers should not relate an indicator to its underlying
factor in an incorrect way. Because this may cause a
problem related to the representation of the relevant factor.
When more than one cross-loading are not modelled,
Frequentist approach causes that most of the relevant
models (except for condition 26) are rejected. On the other
hand, Bayesian approach causes that all these models are
incorrectly accepted as “valid model”. In both two

approaches, major model misspecification caused the
overestimation of factor correlation parameter only in the
conditions with multiple omitted cross-loadings.
Accordingly, it has been understood that the evaluation of
the model fit on the basis of RMSEA and SRMR is
appropriate within the framework of Frequentist approach
in the conditions in which there are doubts (based on theory)
indicating that more than one indicator may have a
significant relationship with non-target underlying factors.
However, this approach may lead the researchers to
incorrect results within the context of the relationships
between the factors.

When the literature [11,13,15,16,1737,38] is examined,
it has been seen that the model fit has been evaluated on the
basis of overall goodness of fit indexes for various types
and levels of model misspecification under various
conditions. Unlike the results in this study, in a study [16] it
was stated that RMSEA was generally insensitive to
multiple omitted cross-loadings and changed in accordance
with the sample size when it was studied with strong
indicators. Reference [37] reported that RMSEA changed
in accordance with the magnitude of factor loadings when
the misspecification was introduced as omitted
cross-loading in CFA models. In another study [38], in
which they examined the model misspecification within
the context of omitted cross loading, that the decrease in
RMESA was a function of the model size, and this decrease
was higher for the smallest models.

However, in aforementioned studies and in the current
study, the sensitivity of RMSEA to the model
misspecification was examined under different conditions
in terms of the magnitude and number of omitted
cross-loading, sample size, number of factors and
indicators per factor, magnitude of main loading and factor
correlations. When the findings of all these studies and
current study are evaluated together, it has been understood
that RMSEA actually performed differently at different
types and levels of model misspecification under more
various model sizes and parameter values. In addition it
could be concluded that the sensitivity of RMSEA changed
according to the number of omitted cross-loading even if,
in the current research, the sensitivity of RMSEA to model
misspecification at both misspecification levels did not
show a systematic change in terms of the factors examined
in the research. In the literature [15] it is emphasized that
goodness of fit index especially for misspecified models
was affected by other features of model (number of factors
and indicator and etc.) and data (like sample size and
normality) in addition to model misspecification.
Accordingly, a model with little misspecification may be
rejected since a fit index is very sensitive for a type and
level of model misspecification under specific conditions.
Besides that, a major misspecified model may be accepted
as “valid model” since a fit index is not sensitive enough
for the relevant type and level of model misspecification.
Therefore, it has been seen that when the model fit for
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misspecified models is assessed on the basis of overall
goodness of fit indexes, the accuracy levels of decisions to
be made on the model validity change in accordance with
the fit index utilized and the quality of model and data.
From this point of view, it is suggested to examine the
parameter estimations in addition to the utilization of
multiple fit indexes in evaluating whether a model is a
valid model or not. Accordingly, an examination was also
conducted in the current research in terms of the parameter
estimates and parameter coverage.

In this study, it has been found that whereas generally
factor correlations are effectively estimated at ignorable
model  misspecification, factor correlations are
overestimated in the conditions with multiple omitted
cross-loading at major misspecification level. These
findings indicate that the analyses based on Frequentist
approach may lead the researchers to incorrect results
about identifying the nature of underlying construct in
educational and psychological measures correctly in the
conditions with omitted multiple cross loading at major
misspecification level. As in a study [11], similarly, it was
observed that factor correlations had a tendency to be
overestimated along with the increase in the magnitude of
omitted cross-loading.

The results, which were similar to those in Muthen and
Asparouhov’s [11] study, were obtained for both two levels
of misspecification on the basis of Bayesian approach (with
non-informative priors) in terms of the model fit and
parameter estimation. When it has been found that the
models showed an acceptable/good fit to the data (based on
ppp-values) at both two misspecification levels; the
decrease in factor correlation parameter coverage
according to the level of misspecification and number of
omitted cross-loadings actually indicates the sensitivity of
Bayesian approach to model misspecification in this
context. Accordingly, it is considered that the fact that two
approaches lead the researchers to different decisions
within the context of the model fit for the important level
of misspecification may stem from the difference in the
nature of the criteria used in the evaluation of the model
fit in these approaches. It is stated that RMSEA is
sensitive to the model misspecification error especially
when the model misspecification is related to factor
loadings since it indicates the degree of difference
between the population covariance matrix and covariance
matrix generated by the model again [14,32]. However,
the evaluation of the model fit according to ppp-values in
Bayesian approach is based on the validity for further
observations of the model [24]. As supporting this idea, it
is stated in the literature [13,33] that Bayesian variant of
RMSEA (BRMSEA) and Deviance information criteria
(DIC) are more appropriate in the comparison of
Frequentist and Bayesian approaches in terms of the
evaluation of model fit in testing CFA models.
Accordingly, in further studies, it can be suggested to
examine the performance of DIC and the performance of
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BRMSEA for both correctly specified models and
misspecified models in the evaluation of model fit for CFA
models.

In BSEM approach, the fact that low ppp-values
(indicate a poor fit) are obtained shows that the evaluation
of ppp-values within the context of the model fit is not
appropriate as mentioned above. The estimation of factor
correlation parameter except for three conditions and main
loading parameter efficiently on the basis of BSEM
approach is qualified as supporting this idea. Similarly,
Muthen and Asparouhov [11] reported in their study that
BSEM performed well for misspecified models. Therefore,
it can be also suggested in BSEM approach to carry out the
studies about the evaluation of the model fit on the basis of
aforementioned criteria.

Following the comparison of Frequentist and Bayesian
approaches in terms of the model fit and parameter
estimation, the power of these two approaches to detect
model misspecification has been evaluated. It has been
seen that in Frequentist approach, the power of detecting
ignorable model misspecification was very high when
there was only one omitted cross-loading. On the other
hand, this power had a tendency to decrease when the
number of omitted cross-loading increased. An inference
that Bayesian approach with non-informative prior
generated more reasonable results due to the fact that its
sensitivity to this misspecification increased in accordance
with number of omitted cross-loadings may be made.
When both magnitudes of cross-loading and number of
omitted cross-loading are low, misspecification is
evaluated as ignorable misspecification at this level.
Therefore it is considered that the fact that this
misspecification leads to an inference in a way that model
is invalid will not be appropriate. Also, it is understood that
the misspecification at this level did not affect significantly
the model fit levels and parameter estimations, and the
model might be accepted as a valid model. In line with
these findings, in a study [11] it was observed that whereas
ML-CFA  was  highly sensitive to ignorable
misspecification, Bayes CFA performed better in this
context. In consistency with Muthen and Asparauhov’s [11]
study, the results of the current study (especially in the
conditions with multiple cross-loadings) show that the
power of Bayes CFA to detect misspecification was high.
However, unlike the relevant study, the results of the
current study put forward that the power of ML-CFA to
detect misspecification was very low.

The most important thing is, for the deviations from the
correct model at ignorable level (ignorable model
misspecification) the acceptance of the models at and the
rejection of the models at important level of
misspecification [17]. Accordingly, it has been found that
ML-CFA, which was conducted within Frequentist
framework, was highly sensitive to minor model
misspecification, and Bayesian approach performed better
at this level of model misspecification. For the important
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level of model misspecification, ML-CFA based on
Frequentist approach was insufficient to detect model
misspecification, and Bayes-CFA based on Bayesian
approach was highly sensitive to misspecification. The
most remarkable finding of this study is that for the
important level of misspecification, none of incorrect
models are rejected in eleven conditions on the basis of the
analyses conducted within Frequentist framework. On the
other hand, all incorrect models are rejected as the
consequence of the analyses conducted within Bayesian
framework under the same conditions. When these eleven
conditions are examined in terms of the variables
manipulated in the research, only one common point has
been found: All of them are the multiple cross-loadings
conditions. Therefore, it has been understood that
Frequentist approach may lead the researchers to incorrect
results in this subject when there are theoretical and
empirical bases about the significant relationship between
more than one indicator and non-target factors in the
specification of the correct/appropriate model related to the
factor structure of a measurement tool; Bayesian approach
is robust in revealing the existence and level of model
misspecification. It has been found that the power of both
two approaches to detect model misspecification changed
in accordance with the factor loading values, number of
factors and sample size in addition to the number of
omitted cross-loadings. It has been found that the power of
Frequentist approach to detect model misspecification
decreased for some conditions in the existence of strong
indicators. But it has been observed that the power of
Bayesian approach to detect model misspecification
generally increased in the existence of strong indicators.
This case indicates that it may be resulted in the fact that
model misspecification is ignored when there are strong
indicators in Frequentist approach.

Since the power of detecting model misspecification has
been examined in this study by using chi-square test of
exact fit in Frequentist approach and it has been evaluated
on the basis of ppp-rejection rates in Bayesian approach, it
is expected that this power shows change in both two
approaches according to sample size [32]. In this study, it
has been found that the power of ML-CFA to reject the
incorrect model decreased in accordance with the increase
in sample size as it was observed in a study [33]. However
the power of Bayes CFA to reject the incorrect model
increased as it is similar to Muthen and Asparouhov’s [11]
study. The high rejection rates which were found when the
models with minor misspecification were tested with small
samples in Frequentist approach (these are single
cross-loading conditions) can be explained with the small
sample bias of ML y* test (Muthen & Asparouhov, 2012).
That the rates of rejecting incorrect models were found as
high in the condition in which these models were tested
with large samples in Bayesian approach (these are
multiple cross-loadings conditions) can be explained with
the fact that ppp-rejection rates were very sensitive to the

deviations from the correct model at ignorable level in
large samples as it is stated in the literature [34]. It has been
found that the number of factors in Frequentist approach
affected the power of detecting model misspecification to
some extent only when there were the deviations from the
correct model at ignorable level (tendency to increase). The
number of factors in Bayesian approach affected to some
extent for each level of misspecification (tendency to
decrease).

In this study, finally, the power of BSEM approach to
detect cross-loading was examined. In ML-CFA conducted
within Frequentist approach, sometimes the first model
show a poor fit, and the researchers have doubts on the fact
that various meaningful cross-loadings might be different
from “0”. In these situations it is required to carry out a
large number of model modifications by releasing a
cross-loading in each time, but this might cause a problem.
On the contrary, it may be estimated freely and
concurrently within BSEM framework with the addition of
cross-loadings, considered as meaningful on the basis of
theoretical and empirical findings in BSEM approach, to
the model and without the requirement of model
modification sequentially [34]. In line with these
explanations, the current study results show that for the low
value of cross-loading, BSEM was insufficient to reveal
the existence of cross-loading required to be specified in
the model. However, for the high level of cross-loading, it
could effectively reveal the cross-loadings required to be
specified in the model. The power of BSEM to detect
cross-loading is especially higher when some indicators
were affected by the factors, which are more than one, at
the high level (cl=0.3), and the factors were represented by
more indicators, and generally in the conditions in which
the models were tested with large samples. Along with that,
it has been understood that the power of BSEM to detect
cross-loading increased for the models having strong
indicators. However, in the literature [8,34] it is stated that
both BSEM approach’s power to detect cross-loading and
its effectiveness in parameter estimations are quite
sensitive to the variance of prior identified for
cross-loading. In a study [8] it was examined the
performance of BSEM approach (they called this approach
as BSEM-RP) by identifying different priors with low
variance for cross-loading. The researchers have reached
the result that this approach performs better for low values
of cross-loading when a prior with 0.001 variance is
identified. However, in parallel with the results of the
current study, it has been found that this approach performs
better for high values of cross-loading when a prior with
0.01 variance is identified. When a variance with 0.01 prior
is compared with a variance with 0.001 prior, it may cause
that the posterior estimations related to cross-loading move
far away from “0”. Therefore, it is considered that the fact
that for 0.1 value of cross-loading, the power of detecting
cross-loading was found as lower may stem from the
variance of prior identified in this study for cross-loading.
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That the sensitivity analyses could not be carried out by
identifying the priors including different variances for
cross-loading becomes an important limitation of this
study.

In light of these explanations and discussion, it is
considered that RMSEA, which is used in Frequentist
approach in the evaluation of the model fit for misspecified
models (even if it leads to appropriate decisions in
specifying “valid model” in this study), should not be used
alone in the evaluation of the model fit since the
contradictory results were obtained in this subject in the
literature. It has been understood that in Bayesian approach,
the evaluation of the model fit on the basis of ppp-values
especially for misspecified models might lead the
researchers to incorrect results. Within the context of
rejecting the incorrect model, namely the detection of
model misspecification, it has been found that Bayesian
approach performed better in comparison with Frequentist
approach. It has been seen that BSEM performed well
especially for high level of cross-loading and in the
conditions with multiple cross-loading. For that reason,
especially within the context of omitted cross-loading, it is
considered that it may be used effectively to avoid model
misspecification.

In practice, a researcher using CFA in the Frequentist
framework represents the underyling theory of the
measures through imposing exclusion restrictions on A.
But it is a rigid specicification and primarily, in general, it
insinuates a loss of information in the sense of applying
more exclusion restrictions than required for the model
identification. Besides this specification, in which each
item in the measurement instrument is related to just a
certain dimension of the construct measured, may purport
to omission errors and may lead to researchers to an
unrealistic assumption that the items measure factorilly
pure structure. In addition, such a specification may trigger
the emergence of bias in the estimation of free parameters
in CFA model. It is stated that in some way these matters
could be related to widely-encountered case that the factor
structures obtained through exploratory techniques are not
confirmed by CFA (van Prooijen & van der Kloot, 2001).
Accordingly it could be suggested to researchers and
practitioners in the field of Behavioral Sciences to apply
CFA based on BSEM approach along with EFA to
examine the factor structure of the educational and
psychological measures. As the priors chosen for the
paramaters in CFA model affect the results in BSEM
approach, one should be elaborately investigate related
literature especialy with regard to the results of former
exploratory factor analyses and expert opinions to specify
priors for model parameters when applying CFA based on
BSEM approach. By this way, it is believed that it could
be avoided from making inferences and decisions based
on misspecified model (as possible).

It is considered that the results of this research are
important within the context of the evidences related to the
validity of the measures since high-stake decisions are
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made on the basis of educational and psychological
measures. In order to make correct decisions in educational
settings on the basis of educational psychological measures,
it is necessary to provide appropriate evidences on the
psychometric qualities of these measures. In this context,
model misspecification may lead the researchers to
incorrect results in terms of the evidences on the validity of
measures. Besides that, that the correct evidences on the
validity of educational and psychological measures are
obtained will support the use of these measures in view of
educational accountability. In the literature [15, 26], it is
pointed out that model misspecification will also have an
impact on the results directly in testing invariance of
measures between groups. Accordingly, it may lead the
researchers to the incorrect inferences in the comparisons
between the groups. Thus, when the measurement models
are misspecified, further examinations, inferences and
decisions based on these measures will be doubtful. For
that reason, the effectiveness levels of Frequentist and
Bayesian approaches were compared in this study, under
more realistic and various conditions, in terms of the
specification of the valid model related to educational and
psychological measures and estimation of model
parameters appropriately. It is considered that the results of
this research will have the quality to guide the practitioners
and researchers, who take various decisions on the basis of
the educational and psychological measures, in the process
of obtaining evidences to support these decisions.
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