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Article

With the passage of the Individuals with Disabilities 
Education Act in 1997 and subsequent reauthorization in 
2004, schools became newly accountable for ensuring that 
students with learning disabilities (LD) meet the same stan-
dards as typically developing students, in part by requiring 
that students with LD participate in high-stakes testing 
(Thurlow & Johnson, 2000). These requirements may ben-
efit students with risk for or identified with LD in some 
ways, by increasing expectations, promoting the hiring of 
better-qualified teachers, and encouraging use of evidence-
based practices (Vannest, Mahadevan, Mason, & Temple-
Harvey, 2009).

However, these changes have not substantially improved 
the learning outcomes of students with high-incidence dis-
abilities, as evidenced by the results of the 2015 National 
Assessment of Education Progress (NAEP; 2017), on which 
only 16% of these students scored “proficient” or above on 
the fourth-grade mathematics assessment. Poor performance 
has led to an increased likelihood of grade retention, as many 
states use high-stakes test scores as a gate to promotion 
(Allensworth, 2005; Roderick, Bryk, Jacob, Easton, & 
Allensworth, 1999). A single nonpromotion at the conclu-
sion of any grade from 8 to 12 doubles a student’s likelihood 
of dropping out of school (Rumberger & Larson, 1998).

There has been a recent trend in mathematics assess-
ment, accelerated by the Common Core State Standards 
(CCSS) and subsequent versions of College- and Career-
Ready Standards, toward requiring students to provide 

explanations as an indicator of their understanding of math-
ematics work. Figure 1 shows an example of this type of 
item. This shift reflects a belief that explanation quality 
(EQ) is a more accurate indicator of student understanding 
than more traditional assessment response formats, reflect-
ing conceptual rather than procedural understanding of 
mathematical concepts (Glaser, 2015; Kilpatrick, Swafford, 
& Findell, 2001; Matthews & Rittle-Johnson, 2009; Niemi, 
1996). While on a given assessment only one or two items 
may reflect this trend, the shift toward an answer format 
with unknown implications for students with risk for or 
identified with LD nonetheless warrants investigation.

Common Core State Standards are divided into the 
Standards for Mathematical Content, which delineate the 
knowledge and procedural skill that mathematically profi-
cient students are expected to attain at each grade level, and 
the Standards for Mathematical Practice, which describe the 
ways in which students should engage with mathematics 
and the depth of understanding they should achieve as they 
progress through elementary, middle, and high school. The 
content standards and practice standards are connected by 
practitioners in lessons, linking practical mathematical 
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engagement with the “understanding” standards outlined in 
the content standards. It is notable that the practice stan-
dards do not explicitly require students to provide written 
explanations for their mathematical work or conclusions. 
Instead, the practice standards implicitly suggest the need 
for explanations by requiring that students “construct viable 
arguments . . . justify their conclusions, communicate them 
to others, and respond to the arguments of others” (National 
Governors Association Center for Best Practices & Council 
of Chief State School Officers, 2013, pp. 6–7).

The lack of an explicit requirement that students provide 
written explanations for their mathematical work in CCSS 
indicates that this form of assessment is advisable insofar as 
it provides a more nuanced or accurate assessment of stu-
dents’ understanding. Despite the movement toward the use 
of explanation measures on high-stakes tests, few studies 
have examined the relation between traditional measures of 
mathematical understanding and the quality of students’ 
explanations. Our search of the literature indicates that the 
use of self-explanation is widely recommended as a means 
of assessment despite little empirical support. Furthermore, 
little is known about the predictors of student success on 
assessments requiring mathematical explanations.

The present study extends the literature in these areas, 
focusing on student explanations of fraction magnitude 
understanding (a key measurement interpretation topic at 
fourth grade) and on a sample of students with risk for or 
identified with LD. In this study, we sought information 
related to three primary areas of inquiry. First, we deter-
mined which of our measures account for variability in EQ. 
Second, we assessed the relation between the quality of 
student explanations and their accuracy in comparing frac-
tion magnitudes. Finally, we examined the predictive 
strength of EQ relative to other indicators of success on a 
criterion measure.

In this introduction, we provide background information 
on three bodies of research underpinning our investigation. 
First, we summarize research into the use of self-explana-
tion as an instructional tool for deepening conceptual under-
standing. This relation underlies the movement toward 
using explanation as an indicator of student learning. Next, 
we discuss research on the use of explanation as an assess-
ment device to index student understanding of mathemati-
cal concepts. Then, we provide an overview of research 
examining the role of cognitive predictors of mathematical  
success and the development of fraction knowledge.

Self-Explanation as an Instructional Tool

Self-explanation as an instructional technique has been 
incorporated in mathematics instruction since at least the 
1980s (Kelley, 2011). Self-explanation in instruction occurs 
when students generate explanations to aid in making sense 
of new information (Chi, 2000; Rittle-Johnson, 2006). For 
example, a student might explain his or her procedure for 
solving eight minus two by saying, “The first number is 
eight and then two. I have to count down from the first num-
ber by the second number, so that leaves six.” These expla-
nations may be spontaneously generated without support by 
a teacher or elicited with support during instruction (Fuchs 
et al., 2016).

Guidelines issued by the National Council of Teachers of 
Mathematics (2000) recommend that teachers encourage 
students to use language to express mathematical ideas. 
Self-explanation is believed to aid students in mastering 
diverse mathematical skills and concepts, including number 
representation, number words, the base-10 system, decimal 
place value, and the connection between physical or graphic 
representations of mathematics problems and their numeri-
cal representations (Kilpatrick et al., 2001). Whitenack and 

Figure 1.  Example of a released National Assessment of Education Progress item requiring students to explain their answers. 
Retrieved from https://nces.ed.gov.

https://nces.ed.gov
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Yackel (2002) recommend having students explain their 
work aloud to classmates as a way of deepening collective 
understanding and demonstrating different approaches to 
solving problems. Use of self-explanation has also been 
recommended as a means of helping students to retain their 
learning (Kilpatrick et al., 2001).

Research provides mixed support for self-explanation as 
an instructional tool. Rittle-Johnson (2006) demonstrated 
that self-explanation can help students develop conceptual 
understanding and transfer mathematical skills to unfamil-
iar problems in third through fifth grade, although effects 
were not stronger than other instructional conditions. Rittle-
Johnson’s recent work indicates that while self-explanation 
is generally effective for promoting learning in some 
domains, its use limits learning in other areas: inhibiting the 
acquisition of certain types of knowledge even as it pro-
motes the acquisition of others (Rittle-Johnson & Loehr, 
2016). McEldoon, Durkin, and Rittle-Johnson (2013) estab-
lished the benefits of explanation in promoting conceptual 
and procedural understanding for elementary students with 
lower levels of mathematics understanding, but as with 
Rittle-Johnson, student outcomes were not stronger than 
with other forms of instruction.

We located one study investigating the use of self-expla-
nation as an instructional tool for students with risk for or 
identified with LD. Fuchs and colleagues (2016) compared 
three conditions: supported self-explaining embedded within 
a fractions multicomponent intervention, word-problem 
solving (to control for fractions instructional time) embedded 
within the same multicomponent fractions intervention, and a 
business-as-usual control group. The sample comprised stu-
dents at risk for mathematics LD. Students in the explanation 
condition were explicitly taught to generate explanations of 
their solutions to fraction comparison problems. In the word-
problem condition, schema-based approaches were taught to 
solve different types of word problems.

Fuchs and colleagues (2016) found that students taught 
to provide high-quality explanations were more accurate in 
comparing fraction magnitude than students in the word-
problem condition and as compared with students in the 
control group. Students in the explanation condition also 
produced higher-quality explanations. These results indi-
cate the efficacy of supported self-explaining in improving 
the quality of students’ explanations and enhancing fraction 
magnitude understanding.

Explanations as an Assessment Tool

Many studies have made use of self-explanation as a measure 
of understanding (e.g., Zhang, Clements, & Ellerton, 2015) 
but without investigating the relation between the quality of 
students’ explanations and other indicators of understanding. 
Studies examining the strength of EQ in predicting student 

performance on other measures of fraction knowledge have 
consistently found a relation between the two.

Niemi (1996) tested measures of EQ and justification. 
For the explanation measure, students explained fractions 
to an imagined audience, using pictures to support their 
explanations. The quality of the explanations was scored 
according to a 6-point rubric. The justification measure 
asked students to solve fraction problems and then justify 
their answers using pictures and words. Students earned 1 
point for correctly solving the problem and 1 point each for 
including a verbal or graphic justification. The quality of 
the justifications was not assessed. Students were classified 
as belonging to groups of high, moderate, or low represen-
tational fluency. Students belonging to the high-fluency 
group produced stronger explanations than did their lower-
fluency peers, with particularly strong results in their expla-
nation of conceptual knowledge. The high-fluency group 
also produced more justifications than their peers with 
lower fraction fluency.

Niemi (1996) also examined correlations among the 
explanation elements, justifications, and outside measures 
of mathematics understanding (teacher ratings and perfor-
mance on a criterion measure). The author found moderate 
correlations between the external measures and students’ 
likelihood of producing a justification and weak to moder-
ate correlations between external measures and the EQ 
ratings.

Niemi’s (1996) results suggest that explanation and jus-
tification measures accurately indicate students’ fraction 
understanding. However, the binary scoring (present/
absent) of the justification measure does not allow for anal-
ysis of the quality of those justifications. It also does not 
provide the opportunity to assess the relation between the 
accuracy of students’ problem solving and the quality of 
their justification.

Nicolaou and Pitta-Pantazi (2016) examined the relation 
between student understanding of fractions and facility with 
definitions and explanations about fractions, as well as 
arguments about and justifications for answers to fraction 
problems. In the analysis, students were grouped into three 
levels of fraction understanding (low, medium, and high) 
according to latent class analysis. Results indicated that 
only students in the highest level of fraction understanding 
were proficient in defining and explaining fraction concepts 
and justifying their answers to problems involving frac-
tions. These suggest promise for explanations in distin-
guishing strong understanding from moderate or low levels 
of mastery, but the study design does not permit nuanced 
assessment at lower levels of student understanding. As 
with Niemi’s 1996 study, the uncoupling of explanations 
from traditional measures of fraction understanding prohib-
its analysis of the relation between EQ and performance in 
solving fraction problems.
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More recent work has investigated the relation among 
students’ writing skill, computational skill, and mathemati-
cal writing. Hebert and Powell (2016) found that fourth 
graders have difficulty using mathematical vocabulary to 
express mathematical ideas and called for instruction to 
directly address vocabulary words related to mathematics to 
aid students in producing mathematically accurate writing 
(e.g., for fractions, numerator, denominator, and equal 
parts). In a related study, Powell and Hebert (2016) exam-
ined correlations among general writing ability, mathemati-
cal writing ability, and computational skill. Student 
performance on the computational and general writing tasks 
was moderately correlated with the mathematical writing 
task, suggesting that the two types of writing do not repre-
sent the same skill set and students cannot transfer skills 
from the writing tasks to computational skill.

These findings indicate that mathematical writing may 
not be the best indicator of conceptual understanding, as it 
requires a set of explanatory skills and mathematical vocab-
ulary that students with risk for or identified with LD are 
poorly prepared to leverage. The authors conclude that stu-
dents may require specific instruction in mathematics writ-
ing to be successful on assessment items requiring the use 
of writing to express mathematical ideas. Therefore, other 
measures might be more reliable indicators of student 
understanding.

Research has established that question format is an 
important determinate of the performance of students with 
risk for or identified with LD. In a 2012 study of third-grade 
students, Powell (2012) demonstrated that students with 
mathematics difficulties are more successful in answering 
multiple-choice items than constructed-response items, 
when the question construct was controlled in the analysis, 
even though a correction procedure to account for the effect 
of guessing was employed in scoring the assessment. These 
results indicate that for students in elementary grades with 
mathematics difficulties, multiple-choice rather than con-
structed-response items lead to stronger performance on 
assessments. One hypothesis following from this finding is 
that the added demands of using written language to express 
mathematical ideas may place a burden on students who are 
at risk for LD and whose language ability is limited. Another 
is that requiring students to explain their answers calls on 
reasoning skills leveraged differently in answering other 
types of questions.

Cognitive Predictors of Mathematical 
Achievement

To pursue the relation among language, reasoning, and EQ 
further, we administered measures related to these cognitive 
processes. This line of inquiry is supported by a number of 
studies investigating the role of a variety of cognitive pro-
cesses in predicting mathematical development (e.g., Fuchs 

et al., 2013; Fuchs et al., 2014; Fuchs et al., 2016; Hansen 
et al., 2015; Jordan et al., 2013; Seethaler, Fuchs, Star, & 
Bryant, 2011). Language comprehension likely plays a sig-
nificant role in predicting EQ, as students rely on language 
skills to understand verbal instruction from teachers and to 
articulate their explanations. The role of language compre-
hension in mathematical development has been demon-
strated (Fuchs et al., 2013; Jordan et al., 2013). Reasoning 
ability is critical in supporting students to make connections 
between mathematical concepts and representations and in 
problem solving. The relation between reasoning ability 
and mathematical development has been established in lon-
gitudinal studies (Fuchs et al., 2013; Seethaler et al., 2011). 
While these cognitive processes are critical to answering 
other types of test items, the way that students leverage 
them may be different for different problem types.

Summary of Present Study’s Purpose and 
Hypothesis

The primary purpose of the present study was to investigate 
the strength of EQ as a measure of magnitude understand-
ing for fourth-grade students with or at risk for LD. We 
included students qualifying as “at risk” in an attempt to 
capture data from students with mathematics difficulty who 
may not be identified as having a specific learning disability 
in mathematics but may nonetheless experience the diffi-
culties faced by students with LD in explaining their work. 
This strategy increases the likelihood of including students 
who may later be identified with LD but have not yet been 
referred for evaluation or who are receiving some instruc-
tion in the second tier of response to intervention for 
mathematics.

First, to investigate predictors of EQ, we explored the 
relation between the quality of students’ explanations and 
their language and reasoning skills. We hypothesized that 
language would be the stronger predictor, given the demands 
that written-response formats make on language. Next, we 
examined the relation between EQ and students’ accuracy 
in comparing fraction magnitudes. We hypothesized a mod-
erate correlation between these measures of understanding, 
based on the results of Powell and Hebert’s 2016 study.

Finally, to investigate the relation among EQ, more tra-
ditional measures of magnitude understanding, language 
ability, and reasoning, we ran a complete commonality 
analysis using performance on the NAEP as the outcome. 
We hypothesized that EQ is a weaker predictor of NAEP 
scores than traditional measures of magnitude understand-
ing based on Niemi’s (1996) findings. Given the language 
demands inherent in writing explanations, we expected lan-
guage ability to be more strongly predictive of the quality of 
students’ explanations than a measure of reasoning and that 
these two measures would account for a moderate propor-
tion of the variance in EQ.



Foreman-Murray and Fuchs	 185

Method

Participants

Participants were drawn from a parent study (Fuchs et al., 
2016), conducted with 236 children from 52 classrooms in 
14 schools in a southeastern metropolitan district. The par-
ent study investigated the effects of teaching fourth-grade 
students to provide explanations on their mathematics per-
formance. Participants were identified as at risk for mathe-
matics difficulty based on scoring <35th percentile on a 
broad-based calculations assessment at the start of the par-
ent study (Wide Range Achievement Test–4 [WRAT-4]; 
Wilkinson & Robertson, 2006). Fifteen students who scored 
<9th percentile on both subtests of the Wechsler Abbreviated 
Scale of Intelligence (WASI; Wechsler, 1999) were excluded 
from the parent study sample.

Participants in the present analysis were the 71 students 
who had qualified as being at risk for mathematics diffi-
culty and had been randomized into the control group’s par-
ent study. The mean WRAT-4 standard score for these 
students was 85.41 (SD = 7.56); the mean WASI was 93.27 
(SD = 11.40). The sample was 52% male; 19% of the stu-
dents were English language learners; and 13% were receiv-
ing special education services. African American students 
made up 43% of the sample; non-Hispanic White students, 
21%; Hispanic students, 30%; and 6% other race/ethnici-
ties. There were no significant differences between the sam-
ple for the present study and that of the parent study on 
preintervention performance or demographics.

Screening Measures and Cognitive Predictors of 
Outcome

With WRAT-4 Math Computation (Wilkinson & Robertson, 
2006), students solve calculation problems of increasing dif-
ficulty; alpha for the sample of the parent study was .87. The 
test was administered to groups of students by a research 
assistant. The WASI (Wechsler, 1999) is a measure of general 
cognitive ability composed of two subtests. With WASI 
Vocabulary, students identify pictures and define words. Per 
Zhu (1999), split-half reliability is .86 to .87. With WASI 
Matrix Reasoning, students choose among provided options 
that best complete a visual pattern. Zhu reports reliability at 
.94. These measures were administered to students individu-
ally by a research assistant. These were used to index students’ 
skills with vocabulary and reasoning, for the purpose of exam-
ining cognitive predictors of performance on measures of 
fraction magnitude understanding. All three measures were 
double-scored by two research assistants, with disagreements 
resolved by consultation with a project coordinator.

Measures of Fraction Understanding

The measure of students’ magnitude understanding and 
ability to explain their answers was based on performance 

on Explaining Fraction Magnitude Comparisons from the 
Fraction Battery–Revised (Schumacher, Namkung, Malone, 
& Fuchs, 2013). The subtest includes nine items, each of 
which consists of two components. First, students place a 
greater or less than sign between two fractions. Second, 
students use written words and a drawing to explain which 
fraction was the greater or lesser magnitude. Items are 
evenly divided among same-numerator, same-denominator, 
and different-numerator/different-denominator problems. 
For each item, students can earn 1 point for accurately com-
paring the fractions (maximum score = 9) and 3 points for 
the quality of the explanation: 1 point for indicating that the 
numerator represents the number of parts in a fraction, 1 
point for indicating that the denominator represents the size 
of the parts, and 1 point for including an accurate drawing 
comparing fraction magnitudes.

Examples of student responses are included in Figures 2 
and 3. Figure 2 shows a response earning 2 points for EQ 
(“Same number of parts but forths [sic] are bigger”). 
Responses were not penalized for misspellings. This 
response earned an additional point for a drawing (two units 
of the same size, each with three parts shaded, with one 
divided into four parts and one divided into six parts). 
Figure 3 shows a 0-point response in which the student used 
whole-number logic in the explanation (“6 is bigger than 
4”) and provided no drawing. Student responses generally 
conformed to the length and depth of these examples.

Figure 2.  Example of a 2-point response.

Figure 3.  Example of a 0-point response.
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Despite the potential for students to guess correctly on 
this measure given that there are only three possible answers 
(>, <, =), we found significant differences between the con-
trol and experimental groups on this measure in the parent 
study, lending credibility to the measure. Also, similar com-
paring tasks are commonly used in the research literature as 
an index of fractions magnitude understanding (Fuchs et al., 
2013; Geary, Nicholas, Li, & Sun; 2017; Rinne, Ye, & 
Jordan, 2017). Alpha values on this sample were .68 for 
accuracy and .81 for quality. Two coders worked indepen-
dently to score the tests, with 100% agreement for accuracy 
of magnitude comparisons and 99.1% agreement for EQ, 
computed point by point. Discrepancies were resolved 
through discussion.

The criterion measure of fractions understanding was 
based on performance on 19 released items from the 
1990–2009 NAEP. This includes easy, medium, and hard 
items from the fourth-grade assessment and easy items 
from the eighth-grade assessment. Eight items assess part-
whole understanding (given a circle divided into five 
parts, the student shades 2/5); nine items assess measure-
ment understanding (given several lists of fractions, the 
student circles the answer choice showing the fractions in 
order from least to greatest); and one question asks stu-
dents how many fourths make a whole. Multiple-choice 
questions comprise 11 items; written response, three 
items; placing a mark on a number line, two items; shad-
ing a portion of a shape, one item; short answer, one item; 
and one open response, which students completed by writ-
ing numbers, shading a shape, and explaining their answer. 
The maximum possible score for this section is 25. Alpha 
for the sample was .79.

Results

What Accounts for the Quality of Students’ 
Explanations?

We investigated the contribution of two measures of cogni-
tive skill, WASI Vocabulary and Matrix Reasoning, to the 
variability in EQ. To test the independent contributions of 
these two predictors to EQ, we ran a regression analysis 
using WASI Vocabulary as an indicator of language ability 
and WASI Matrix Reasoning as an indicator of reasoning 
ability and predicting EQ. Table 1 shows results.

We found that language and reasoning accounted for a 
comparable proportion of the variance in EQ, indicating 
that language skill is not primarily responsible for students’ 
success or difficulty in providing high-quality explanations. 
In further analysis (see Table 2), language was a stronger 
predictor of comparison accuracy (CA) than EQ. This sug-
gests that language ability is not a stronger determinant of 
success on the EQ measure than for the more traditional 

measure of magnitude understanding. This ran contrary to 
our hypothesis that language ability would be a significant 
and greater contributor to student success on this measure 
than reasoning ability.

What Is the Relation Between CA and EQ?

Table 3 provides means, SDs, and correlations among the 
predictors and NAEP. Raw and standard scores are shown 
where applicable. To address our second research ques-
tion, we considered correlations between the two compo-
nents of the Explaining Fraction Magnitude Comparisons 
measure: EQ and CA. Due to the skewness of the EQ 
variable, we used Spearman’s rank-order correlation in all 
analyses involving that variable. First, we investigated 
the descriptive statistics for the two components. The 
mean for CA was 5.08 (maximum score = 9, SD = 2.41). 
For EQ, the mean was 1.27 (maximum score = 27, SD = 
2.55). The mean for EQ was expected to be low for this 
sample due to the unfamiliarity of the measure for the 
students, who received no specific support in learning 
how to write explanations for their work. By contrast, evi-
dence from the study from which these data were drawn 
(Fuchs et  al., 2016) indicates that students who were 
explicitly taught to write explanations for their solutions 
to magnitude comparison problems during instruction 
showed substantially higher scores in EQ than did this 
sample. As hypothesized, the correlation between the 
components was moderate and positive (r = .51, p < .001), 
supporting the view that the two measures of understand-
ing are related but not synonymous and represent related 
but different constructs.

Table 1.  Regression Models Predicting Explanation Quality.

Predictor B SE β t(1, 71) p R2

Language 0.08 0.04 0.21 1.84 .07 .05
Reasoning 0.09 0.05 0.21 1.91 .06 .04
Total .11

Note. Language and reasoning are based on the Wechsler Abbreviated 
Scale of Intelligence Vocabulary and Matrix Reasoning, respectively 
(Wechsler, 1999).

Table 2.  Regression Models Predicting Comparison Accuracy.

Predictor B SE β t(1, 71) p R2

Language 0.11 0.04 0.27 2.46 <.05 .07
Reasoning 0.08 0.05 0.18 1.61 .11 .03
Total .12

Note. Language and reasoning are based on the Wechsler Abbreviated 
Scale of Intelligence Vocabulary and Matrix Reasoning, respectively 
(Wechsler, 1999).



Foreman-Murray and Fuchs	 187

What Predicts NAEP Scores?

To address our third research question, we conducted a 
complete commonality analysis: a method of investigating 
results that accommodates collinear variables within multi-
ple regression analyses (Nimon, 2010; Siebold & McPhee, 
1979). Commonality analysis partitions the variance 
accounted for in a regression model into nonoverlapping 
parts accounted for by each predictor variable and each 
combination of variables, allowing researchers to identify 
the unique contribution of each variable, as well as the 
shared variance among variables. The analysis involves 
running multiple hierarchical regression models with pre-
dictor variables entered in all possible subsets of orders, 
with the researcher recording the independent contribution 
of each variable to the regression effect.

Table 4 shows the results of regression analyses predict-
ing NAEP with the four indicator variables; Table 5 shows 
results of the commonality analysis, which provides esti-
mates of the unique and shared variance associated with 
each predictor individually and in combination with every 
other predictor or group of predictors of NAEP. In the sec-
ond column, we report the proportion of total variance 
accounted for by the predictor(s). In the third column, we 
report the percentage of explained variance accounted for 

by the predictor(s). To obtain this percentage, we took the 
proportion of total variance explained by the predictor(s) 
and divided it by the total explained variance across predic-
tors, then multiplied by 100.

The purpose here was to examine the performance of 
EQ as a predictor of NAEP scores relative to CA, a more 
traditional measure of magnitude understanding, as well as 
its relation to language and reasoning, the two measures of 
cognitive processing. The unique variance accounted for 
by EQ was 1.17%—by far, the smallest of the four predic-
tors. Language was the strongest predictor, uniquely 
accountable for 15.37% of explained variance. CA and 

Table 3.  Means, Standard Deviations, and Correlations Among Predictors and NAEP (n = 71).

Raw score Standard scorea Correlation

Variable M SD M SD EQb CA L R

Predictor  
  EQ: Explanation quality 1.27 2.41  
  CA: Comparison accuracy 5.08 2.55 .51**  
  L: Language 30.75 6.48 45.55 0.8 .26* .30**  
  R: Reasoning 16.75 5.76 46.01 9.77 .27* .23* .14  
Outcome: NAEP 12.61 3.86 .41** .55** .45** .43**

Note. Language and reasoning are based on the Wechsler Abbreviated Scale of Intelligence Vocabulary and Matrix Reasoning, respectively (Wechsler, 
1999). NAEP is based on performance on 19 released items from the 1990–2009 National Assessment of Educational Progress.
aStandard scores for Wechsler Abbreviated Scale of Intelligence Vocabulary and Matrix Reasoning are T scores (M = 50, SD = 10). bTo account for the 
skewness of the data, Spearman’s rank-order correlations were used for correlations with EQ.
*p < .05. **p < .001.

Table 4.  Regression Models Predicting NAEP.

Predictor B SE β t(3, 71) p

Explanation quality 0.13 0.17 0.08 0.75  .46
Comparison accuracy 0.55 0.23 0.30 2.40 <.05
Language 0.17 0.06 0.28 2.72 <.05
Reasoning 0.15 0.07 0.23 2.23 <.05

Note. Language and reasoning are based on the Wechsler Abbreviated 
Scale of Intelligence Vocabulary and Matrix Reasoning, respectively 
(Wechsler, 1999); NAEP is based on performance on 19 released items 
from the 1990–2009 National Assessment of Educational Progress.

Table 5.  Commonality Analysis for Predicting NAEP.

Explained variance

Variable Proportion Percentage

Unique to  
  EQ: Explanation quality 0.005 1.17
  CA: Comparison accuracy 0.050 11.97
  L: Language 0.065 15.37
  R: Reasoning 0.044 10.36
Common to  
  EQ + CA 0.029 7.01
  EQ + L 0.003 0.59
  EQ + R 0.003 0.58
  CA + L 0.048 11.37
  CA + R 0.048 11.28
  L + R −0.0009 −0.21
  EQ + CA + L 0.034 8.01
  EQ + CA + R 0.038 8.95
  EQ + L + R 0.001 0.11
  CA + L + R 0.024 5.59
  EQ + CA + L + R 0.033 7.84
Total 0.422 100

Note. NAEP = National Assessment of Educational Progress.
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reasoning accounted for a similar proportion of explained 
variance: 11.97% and 10.36%, respectively. Together, EQ 
and CA accounted for another 7.01% of the explained vari-
ance, suggesting that the predictive value of EQ is largely 
duplicated by CA.

In explaining NAEP scores, the four predictors accounted 
for 42.1% of the variance, F(3, 71) = 12.02, p < .001. Three 
variables were uniquely predictive of NAEP scores; only EQ 
did not make a unique contribution. Language and CA were 
the strongest contributors. The relative weakness of EQ as a 
predictor of NAEP scores confirmed our hypothesis.

Discussion

The main purpose of this study was to test the strength of 
EQ as a measure of magnitude understanding for at-risk 
fourth graders in comparison with traditional measures. We 
focused on explanations because of the requirement on 
high-stakes assessments that students explain or justify 
their solutions to mathematical problems, premised on the 
belief that explanations better reflect conceptual knowledge 
than traditional measures of magnitude understanding 
(Niemi, 1996). We also investigated the predictive power of 
traditional measures of magnitude understanding and cog-
nitive processes hypothesized to contribute to performance 
on mathematical assessments.

What Is the Relation Between CA and EQ?

We found that students were more successful in comparing 
fraction magnitudes than in providing quality explanations 
for their work and that there was a moderate positive cor-
relation between the measures, indicating that they reflect 
student understanding differently. These data are consistent 
with findings by Powell (2012), who showed that students 
with disabilities were more successful on assessments when 
items were presented in multiple-choice format than a con-
structed-response form. These results indicate that how stu-
dents with risk for or identified with LD are asked to 
demonstrate their understanding plays a role in determining 
their success. Our results similarly support the idea that stu-
dents may be less successful when asked to demonstrate 
their understanding using words and drawings instead of 
choosing a symbol to represent a magnitude difference.

Further research is necessary to parse this difference. 
One possibility, often cited by those favoring the use of 
explanations in assessment (Niemi, 1996), is that the com-
parison measure allows students to rely primarily on proce-
dural knowledge to correctly solve problems. A procedural 
approach to comparing fraction magnitudes often seen in 
classrooms in the school district where the study took place 
(Malone & Fuchs, 2017) is cross-multiplying, or “the but-
terfly method,” which allows students to arrive at the cor-
rect solution without applying any conceptual understanding 
of fractions. Students using this method could accurately 

compare fraction magnitudes but would be unlikely to pro-
vide a high-quality explanation for their work due to limited 
conceptual understanding.

An alternative explanation for the disparity in student 
performance on these two measures is a difference in the 
skills required to successfully complete the different prob-
lem types. Explanations require students to call on mathe-
matics vocabulary, which may be lacking in classroom 
instruction. For example, if students have not discussed 
fractions in terms of important constructs and vocabulary 
(e.g., numerator, denominator, equal parts), they are likely 
incapable of calling on relevant vocabulary to produce 
explanations (Hebert & Powell, 2016). This may lead to 
inaccurate or missing justifications for their answers. 
Relatedly, if students have not received instruction directly 
targeting mathematical writing, they may be unable to 
leverage the vocabulary that they do understand to create 
high-quality explanations. Finally, using written language 
in any subject area likely poses a challenge for students 
with limited writing skill.

What Is the Relation Between Language and 
Reasoning in Predicting EQ?

Our analyses showed that language and reasoning accounted 
for a comparable proportion of the variance in the quality of 
students’ explanations and that language is a stronger pre-
dictor of CA than EQ. These results indicate that students’ 
difficulty in providing high-quality explanations is not pri-
marily a function of language skill. Our data suggest that 
students specifically with poor language may not be 
uniquely disadvantaged when it comes to assessment items 
requiring explanations. Further research is warranted into 
the cognitive processes associated with EQ to determine if 
there are other viable mediators of student performance on 
these measures.

It is notable that the measure of language skill used in 
this analysis is domain general and does not specifically 
address mathematical vocabulary. Future research investi-
gating the relation of mathematical vocabulary and mathe-
matical writing skill to EQ would provide a more detailed 
view of the contribution of those qualities. These outcomes 
support the recent argument by Powell and Hebert (Hebert 
& Powell, 2016; Powell & Hebert, 2016) that students 
require targeted instruction in mathematical writing and 
vocabulary to be successful on tasks requiring them to 
leverage these skills and that general mathematical and 
writing instruction is not sufficient.

Does EQ Predict Performance on a Criterion 
Assessment?

The commonality analysis revealed the relative weakness 
of EQ as a predictor of performance on NAEP. CA, lan-
guage, and reasoning were all uniquely predictive of NAEP 
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scores, accounting for a substantially higher percentage of 
the variability and leaving EQ as the only predictor in the 
model that was not uniquely predictive of the outcome.

The strength of the CA measure in contrast to the weak 
predictive power of EQ is notable, as fraction magnitude 
comparisons are already widely used to measure magnitude 
understanding (Fuchs et al., 2013; Fuchs et al., 2014; Fuchs 
et al., 2016; Hansen et al., 2015; Powell & Hebert, 2016). 
The movement toward EQ as a better indicator of student 
understanding, as reflected in success on the criterion mea-
sure, is not supported by these data, which indicate that the 
existing measure better reflects students’ mathematical skill.

The predictive strength of the language and reasoning 
measures is not surprising, as these are powerful sources of 
domain-general cognitive processing (see, e.g., Harvey & 
Miller, 2017; Purpura, Hume, Sims, & Lonigan, 2011; 
Ribeiro, Cadime, Freitas, & Viana, 2016; Tobia, Bonifacci, 
& Marzocchi, 2016), as demonstrated in their use within 
tests of intellectual ability. Language and reasoning would 
be expected to contribute substantially to student outcomes 
on many assessments of mathematical understanding. As 
revealed in the commonality analysis, variance common to 
these measures and CA accounts for the bulk of the 
explained variance in the model. By contrast, variance com-
mon to these predictors and EQ alone account for little 
explained variance. This indicates that domain-general 
measures of skill and a measure of magnitude understand-
ing already in wide use account for the majority of the pre-
dictive power of the model.

Implications for Assessment and Instruction

Results from this investigation have several implications 
for assessment design and classroom instruction. First, 
assessors should be wary of including measures requiring 
the explanation of mathematical ideas without fully consid-
ering the constructs that they intend to evaluate. Our results 
indicate that explanation items are likely to increase the dif-
ficulty of the assessment for students at risk for or diag-
nosed with LD without adding predictive power when it 
comes to criterion measures of mathematical understand-
ing. While it is possible that EQ reflects conceptual under-
standing, studies by Niemi (1996) and Nicolaou and 
Pitta-Pantazi (2016) suggest that measures requiring expla-
nation are more effective at differentiating students with 
high levels of understanding from those with less, without 
offering a nuanced assessment of the conceptual under-
standing of students at the lower end of that spectrum.

We speculate that many explanation measures require 
high levels of mastery to successfully complete, as well as 
strong language and reasoning skill, effectively grouping stu-
dents with lower levels of ability across these measures 
together. This grouping precludes differentiation of their 
grasp of the concepts underpinning mathematics, defeating 
the purpose of employing a measure targeting conceptual 

understanding. More traditional measures of magnitude 
understanding employed in new ways might offer a more 
detailed picture of what students with moderate or low levels 
of conceptual understanding have mastered. Use of number 
lines, ordering problems, and drawing tasks may allow stu-
dents with limited language ability or burgeoning conceptual 
understanding to demonstrate that developing knowledge.

Our results suggest that the use of explanation measures 
on high-stakes tests is likely to be detrimental to students 
with risk for or identified with LD because they register less 
success on these measures than on more traditional mea-
sures of fraction understanding. This echoes the work of 
Powell and Hebert (Hebert & Powell, 2016; Powell & 
Hebert, 2016), who showed that students are unable to 
transfer general writing ability to mathematical writing 
tasks and lack the mathematical vocabulary to be successful 
on explanation measures. While only one or two items on a 
single test may reflect this trend, the shift toward an answer 
format that disadvantages students with risk for or identi-
fied with LD is troubling. With the serious consequences of 
low achievement on high-stakes tests for this group 
(Rumberger & Larson, 1998; Thurlow & Johnson, 2000; 
Vannest et al., 2009), further research into the benefits of 
using explanation test items is warranted.

As long as mathematical explanation is included as a 
problem type on high-stakes assessments (albeit few such 
items may occur on any given assessment), teachers must 
prepare their students for success on this response format, 
perhaps by incorporating explicit mathematical vocabulary 
and writing instruction and practice into instructional rou-
tines. This may be important not only to increase student 
performance on such measures but also to support students’ 
conceptual understanding of the material.

As noted earlier, two studies (Rittle-Johnson, 2006; 
Rittle-Johnson & Loehr, 2016) reveal the limitations of elic-
ited self-explanation as an instructional technique in which 
students are prompted but not explicitly taught to generate 
self-explanations. However, a randomized controlled trial 
conducted by Fuchs and colleagues (2016) indicates that 
instructional time devoted to high-quality explanations is a 
productive instructional activity, as long as an explicit form 
of self-explaining instruction is used. In the Fuchs et  al. 
study, students were randomized to three conditions: one 
focused on supported self-explaining, one on deepening 
conceptual understanding without supported self-explain-
ing, and a control condition. On traditional measures of 
magnitude understanding and on measures of EQ, the per-
formance of students in the supported self-explaining was 
stronger than that of students in the competing intervention 
condition (with both intervention conditions outperforming 
the control group). Data from this study suggest that sup-
ported self-explaining instruction, in which teachers explic-
itly engage students to create high-quality explanations 
using mathematics vocabulary, represents a productive 
investment of teachers’ instructional time.
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Limitations

Before closing, we note several limitations. First, because 
the writing demands of the explanations quality measure 
were not extensive, it is possible that the measure did not 
adequately tap the construct of explanations. Future research 
based on multiple measures of EQ to derive this construct 
would produce stronger evidence. Second, our language 
measure specifically measured vocabulary rather than lan-
guage comprehension, limiting conclusions that can be 
drawn about the relation of the boarder construct to EQ and, 
likewise, the reasoning measure specifically addressed non-
verbal reasoning. Future research based on a range of mea-
sures related to language and reasoning would provide a 
fuller and more accurate assessment of these relations. 
Furthermore, while our sample size was too small to mean-
ingfully leverage moderator analysis, inclusion of modera-
tors of language ability—particularly, English language 
learner and special education status—would extend this line 
of work in important ways.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with 
respect to the research, authorship, and/or publication of this 
article.

Funding

The author(s) disclosed receipt of the following financial support 
for the research, authorship, and/or publication of this article: This 
research was supported in part by Grant R324D130003 from the 
Institute of Education Sciences, U.S. Department of Education, to 
Vanderbilt University. The content is solely the responsibility of 
the authors and does not necessarily represent the official views of 
the Institute of Education Sciences or the U.S. Department of 
Education.

References

Allensworth, E. M. (2005). Dropout rates after high-stakes test-
ing in elementary school: A study of the contradictory effects 
of Chicago’s efforts to end social promotion. Educational 
Evaluation and Policy Analysis, 27, 341–364.

Chi, M. T. H. (2000). Self-explaining: The dual processes of 
generating inference and repairing mental models. In R. 
Glaser (Ed.), Advances in instructional psychology: Vol. 5. 
Educational design and cognitive science (pp. 161–238). 
Mahwah, NJ: Erlbaum.

Fuchs, L. S., Malone, A. S., Schumacher, R. F., Namkung, 
J., Hamlett, C. L., Jordan, N. C., . . . Changas, P. (2016). 
Supported self-explaining during fraction interven-
tion. Journal of Educational Psychology, 108, 493–508. 
doi:10.1037/edu0000073

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, 
C. L., Cirino, P. T., . . . Changas, P. (2013). Improving at-risk 
learners’ understanding of fractions. Journal of Educational 
Psychology, 105, 683–700. doi:10.1037/a0032446

Fuchs, L. S., Schumacher, R. F., Sterba, S. K., Long, J., Namkung, 
J., Malone, A. S., . . . Changas, P. (2014). Does working mem-
ory moderate the effects of fraction intervention? An aptitude-
treatment interaction. Journal of Educational Psychology, 
106, 499–514. doi:10.1037/a0034341

Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental 
change in the influence of domain-general abilities and 
domain-specific knowledge on mathematics achievement: 
An eight-year longitudinal study. Journal of Educational 
Psychology, 109(5), 680–693. doi:10.1037/edu0000159

Glaser, R. (Ed.). (2015). Advances in instructional psychology: 
Vol. 5. Educational design and cognitive science. New York, 
NY: Routledge.

Hansen, N., Jordan, N. C., Fernandez, E., Sigler, R. S., Fuchs, L. S., 
Gersten, R., & Micklos, D. (2015). General and math-specific 
predictors of sixth-graders’ knowledge of fractions. Cognitive 
Development, 35, 34–49. doi:10.1016/j.cogdev.2015.02.001

Harvey, H. A., & Miller, G. E. (2017). Executive function skills, 
early mathematics, and vocabulary in head start preschool 
children. Early Education and Development, 28(3), 290–307. 
doi:10.1080/10409289.2016.1218728

Hebert, M. A., & Powell, S. R. (2016). Examining fourth-grade 
mathematics writing: Features of organization, mathematics 
vocabulary, and mathematical representations. Reading and 
Writing, 29, 1511–1537. doi:10.1007/s11145-016-9649-5

Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, 
R., & Micklos, D. (2013). Developmental predictors of frac-
tion concepts and procedures. Journal of Experimental Child 
Psychology, 116, 45–58. doi:10.1016/j.jecp.2013.02.001

Kelley, D. (2011). The self-explanation effect when learning math-
ematics: A meta-analysis. Evanston, IL: Society for Research 
on Educational Effectiveness. Retrieved from https://eric.
ed.gov/?id=ED518041

Kilpatrick, J., Swafford, J., & Findell, B., (Eds.). (2001). Adding 
it up: Helping children learn mathematics. Washington, DC: 
National Academy Press.

Malone, A. S., & Fuchs, L. S. (2017). Error patters in ordering frac-
tions among at-risk fourth-grade students. Journal of Learning 
Disabilities, 50, 337–352. doi:10.1177/0022219416629647

Matthews, P., & Rittle-Johnson, B. (2009). In pursuit of knowl-
edge: Comparing self-explanations, concepts, and proce-
dures as pedagogical tools. Journal of Experimental Child 
Psychology, 104, 1–21. doi:10.1016/j.jecp.2008.08.004

McEldoon, K. L., Durkin, K. L., & Rittle-Johnson, B. (2013). Is 
self-explanation worth the time? A comparison to additional 
practice. British Journal of Educational Psychology, 83, 615–
632. doi:10.1111/j.2044-8279.2012.02083.x

National Assessment of Education Progress. (2017). Nation’s report 
card. Retrieved from https://www.nationsreportcard.gov

National Council of Teachers of Mathematics. (2000). Principles 
and standards for school mathematics. Reston, VA: Author.

National Governors Association Center for Best Practices & 
Council of Chief State School Officers. (2013). Common 
Core State Standards. Washington, DC: Author.

Nicolaou, A. A., & Pitta-Pantazi, D. (2016). Hierarchical levels of 
abilities that constitute fraction understanding. International 
Journal of Science and Mathematics Education, 14, 757–776. 
doi:10.1007/s10763-014-9603-4

https://eric.ed.gov/?id=ED518041
https://eric.ed.gov/?id=ED518041
https://www.nationsreportcard.gov


Foreman-Murray and Fuchs	 191

Niemi, D. (1996). Assessing conceptual understanding in math-
ematics: Representations, problem solutions, justifications, 
and explanations. Journal of Educational Research, 89, 351–
363. doi:10.1080/00220671.1996.9941339

Nimon, K. (2010). Regression commonality analysis: Demonstra-
tion of an SPSS solution. Multiple Linear Regression 
Viewpoints, 36, 10–17.

Powell, S. R. (2012). High-stakes testing for students with math-
ematics difficulty: Response format effects in mathematics 
problem solving. Learning Disability Quarterly, 35, 3–9. 
doi:10.1177/0731948711428773

Powell, S. R., & Hebert, M. A. (2016). Influence of writing ability 
and computation skill on mathematics writing. The Elementary 
School Journal, 117, 310–335. doi:10.1086/688887

Purpura, D. J., Hume, L. E., Sims, D. M., & Lonigan, C. J. (2011). 
Early literacy and early numeracy: The value of including 
early literacy skills in the prediction of numeracy develop-
ment. Journal of Experimental Child Psychology, 110, 647–
658. doi:10.1016/j.jecp.2011.07.004

Ribeiro, I., Cadime, I., Freitas, T., & Viana, F. L. (2016). Beyond 
word recognition, fluency, and vocabulary: The influence of 
reasoning on reading comprehension. Australian Journal of 
Psychology, 68(2), 107–115. doi:10.1111/ajpy.12095

Rinne, L. F., Ye, A., & Jordan, N. C. (2017). Development of 
fraction comparison strategies: A latent transition analysis. 
Developmental Psychology, 53(4), 713–730. doi:10.1037/
dev0000275

Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-
explanation and direct instruction. Child Development, 77, 
1–15. doi:10.1111/j.1467-8624.2006.00852.x

Rittle-Johnson, B., & Loehr, A. M. (2016). Eliciting explana-
tions: Constraints on when self-explanation aids learning. 
Psychonomic Bulletin & Review. Advance online publication. 
doi:10.3758/s13423-016-1079-5

Roderick, M., Bryk, A. S., Jacob, B. A., Easton, J. Q., & 
Allensworth, E. (1999). Ending social promotion: Results 
from the first two years. Chicago, IL: Consortium on Chicago 
School Research.

Rumberger, R. W., & Larson, K. A. (1998). Student mobility and 
the increased risk of high school drop out. American Journal 
of Education, 107, 1–35. doi:10.1086/444201

Schumacher, R. F., Namkung, J. M., Malone, A., & Fuchs, L. 
S. (2013). 2013 Fraction Battery–Revised. Nashville, TN: 
Vanderbilt University.

Seethaler, P. M., Fuchs, L. S., Star, J. R., & Bryant, J. (2011). 
The cognitive predictors of computational skill with whole 
versus rational numbers: An exploratory study. Learning 
and Individual Differences, 21, 536–542. doi:10.1016/j.lin-
dif.2011.05.002

Siebold, D. R., & McPhee, R. D. (1979). Commonality analysis: 
A method for decomposing explained variance in multiple 
regression analysis. Human Communication Research, 5, 
355–363. doi:10.1111/j.1468-2958.1979.tb00649.x

Thurlow, M. L., & Johnson, D. R. (2000). High stakes testing of 
students with disabilities. Journal of Teacher Education, 51, 
301–314. doi:10.1177/0022487100051004006

Tobia, V., Bonifacci, P., & Marzocchi, G. M. (2016). Concurrent 
and longitudinal predictors of calculation skills in preschool-
ers. European Journal of Psychology of Education, 31(2), 
155–174. doi:10.1007/s10212-015-0260-y

Vannest, K. J., Mahadevan, L., Mason, B. A., & Temple-
Harvey, K. K. (2009). Educator and administrator per-
ceptions of the impact of No Child Left Behind on special 
populations. Remedial and Special Education, 30, 148–159. 
doi:10.1177/0741932508315378

Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence. 
San Antonio, TX: Psychological Corporation.

Whitenack, J., & Yackel, E. (2002). Making mathematical argu-
ments in the primary grades: The importance of explaining 
and justifying ideas. Teaching Children Mathematics, 8, 
524–527.

Wilkinson, G. S., & Robertson, G. J. (2006). Wide Range 
Achievement Test–4 professional manual. Lutz, FL: 
Psychological Assessment Resources. doi:10.1037/t27160-
000

Zhang, X., Clements, M. A., & Ellerton, N. F. (2015). Enriching 
student concept images: Teaching and learning fractions 
through a multiple-embodiment approach. Mathematics 
Education Research Journal, 27, 201–231. doi:10.1007/
s13394-014-0137-4

Zhu, J. (1999). WASI manual. San Antonio, TX: Psychological 
Corporation.


