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Modeling Growth With Adaptive Longitudinal Large-Scale
Assessments

Jiahe Qian

Educational Testing Service, Princeton, NJ

The 2-parameter logistic multidimensional item response theory (MIRT) model was employed to model growth for the National Edu-
cation Longitudinal Study of 1988 (NELS:88). The 3 measurement waves of NELS:88 (base year, first follow-up, and second follow-up)
represented 3 dimensions. The inquiry aimed to improve modeling performance growth based on examinees’ responses to the test items
in each wave, with item location parameters set to be invariant across the 3 waves (instead of using item changes) and the latent mean of
the first wave set to 0. The yielded scores of 3 waves were thus placed on approximately the same scale; the changes of the scores across
waves could be measured. Moreover, the growth models for longitudinal data were improved by using auxiliary information such as
gender, race, school location, and parents’ education. In the study, the results of the growth pattern were compared with those yielded
by the Embretson models.

Keywords Multidimensional item response theory (MIRT); longitudinal data; survey with adaptive testing; National Education
Longitudinal Study of 1988 (NELS:88)
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Latent logistic regression models are often used to model growth assessing student learning and change over time (Millsap,
2008; Mislevy & Bock, 1982; Rasch, 1960); multidimensional item response theory (MIRT) models are used in particular
(Embretson, 1991; Fischer & Seliger, 1997). Normally the MIRT models provide an appropriate way to measure multiple
layers of skills with a multidimensional data structure (Haberman & Sinharay, 2010; Haberman, von Davier, & Lee, 2008;
Reckase, 2009; te Marvelde, Glas, van Landeghem, & van Damme, 2006; von Davier, 2005).

As a longitudinal survey, the National Education Longitudinal Study of 1988 (NELS:88) was designed to evaluate the
growth of skills of the same collection of individuals with periodic assessments, including reading, mathematics, and
science (Rock, Pollack, & Quinn, 1995). This program examined the educational, vocational, and personal development
of an eighth-grade cohort of students1 in 1988 at various stages during their educational years, as well as the personal,
familial, social, institutional, and cultural factors that may have affected that development.

In this study, the three measurement waves of NELS:88 (base year, first follow-up [F1], and second follow-up [F2])
represented three dimensions in the MIRT growth models. The NELS:88 reading assessment adopted an adaptive design,
beginning with a standard test booklet for the first wave and branching into two test booklets of different difficulty levels
for each of the second and third waves. Each participant was assigned to a test booklet in a subsequent wave based on his
or her performance (high/low) in the prior wave.

Much research has focused on issues related to model fitting for unidimensional or multidimensional item response
theory modeling and the goodness-of-fit of models (Haberman, 2009; Haberman, Sinharay, & Chon, 2013; von Davier
& Sinharay, 2010). van Rijn (2008) employed a quadrature Kalman filter to improve the estimation of longitudinal IRT
models. Alternatively, Almond (2011) proposed applying the particle filter expectation–maximization (PFEM) algorithm
to estimating parameters of longitudinal IRT models. Fu (2016) applied MIRT models with flexible covariate structures to
longitudinal data to measure skill differences at the individual and group levels. In application, Yao and Boughton (2007)
used MIRT models to improve subscale proficiency estimation and classification. von Davier, Xu, and Carstensen (2011)
used a general latent variable model to measure growth for the Programme for International Student Assessment (PISA).
Mislevy and Zwick (2012) discussed the scaling and linking issues in reporting the results of a periodic assessment system.
Some growth models assessed growth by the changes of item parameters (Doran & Jiang, 2006; Kaplan & Sweetman, 2006;
Reckase, 2009; von Davier, 2005), for example, the Embretson model (Embretson, 1991; Xu & Qian, 2009).
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This study aimed to construct conditional two-parameter logistic (2PL) MIRT models to measure growth based on
examinees’ responses in testing under the invariant constraints; that is, the location parameters of the same items were set
invariant across the measurement waves of longitudinal assessments (Almond, 2011; Qian, 2015; Rijmen, 2010; van Rijn,
2008; von Davier et al., 2011). In this study, the item discrimination parameters of the same items across the measurement
waves were not fixed. The marginal maximum likelihood (MML) approach (Bock & Aitkin, 1981; Zhang, 2012) is widely
used in most MIRT packages to calibrate item parameters for the response data with multidimensional structure and
estimate the correlation coefficients between abilities, including the discrimination parameters of the overlapping items.
Without loss of generality, one can also standardize the latent traits of each measurement wave. In this study, the latent
means of the first wave were set to zero; then, based on the EM algorithm for marginal likelihood, the latent means and
variances of the other waves could also be estimated. Moreover, under this design, together with the invariant constraints
for overlapping items, the model places the scale scores of different waves on the same scale; the changes of the scores
across waves can be measured and compared; and the correlations between dimensions can also be estimated because
the same examinees were measured across waves. Although the latent traits of three waves are not identical and measure
different dimensions, as described above, this design yields comparable scores across different waves. Under this design,
the MIRT growth models can be used to create a scale for measuring the changes of groups and individuals for longitudinal
data, such as the NELS:88 (Millsap, 2008; Rock, 2012).

In this study, the constraints imposed on the proposed MIRT model were fulfilled through its design matrix that defined
a covariate structure of all the parameters in the model; the location parameters of the same items were set invariant across
three waves, the latent mean and variance of the first wave were standardized, the correlations of across-wave scales were
specified, and the parameters for each demographic group were designated. A methodical description of the 2PL MIRT
model used in this study can be found in the “Methodology” section of this report.

In this study, the psychometric specification of the model was also enhanced with incorporated demographic variables
such as gender, race, school location, and father’s and/or mother’s education. The results were compared with those yielded
from the Embretson models. Although growth models can be promoted by use of auxiliary variables, these models are
mainly recommended for the data of low-stakes assessments such as NELS:88 for reporting group scores. When such
models are applied to estimating individual scores, fairness issues can arise because, for example, a boy and girl who give
identical item responses could get different scores.

The software package, mirt, used in this study (Haberman, 2013) to calibrate the MIRT models employs the stabi-
lized Newton–Raphson algorithm (Haberman, 1988). In addition, the software allows users to define their own design
matrixes to build new models, including models using the incorporated demographic variables in this study. Other soft-
ware packages (Cai, 2013; von Davier, 2005; Yao, 2008) for MIRT analysis are based on different algorithms, such as the
expectation–maximization algorithm using MML and an approach applying the Markov chain Monte Carlo (MCMC)
method.

The report is organized as follows. The next section introduces the main conditional 2PL MIRT model and the MIRT
models enhanced by incorporating auxiliary information. The third section reviews the instrument design, data collection,
and the dimensionality structure of the reading assessments of NELS:88. The fourth section presents the results of the
empirical analysis for different subsets of NELS:88 data, and the final section summarizes the findings.

Methodology

The Two-Parameter Logistic Multidimensional Item Response Theory Model With Use of Auxiliary
Information

In this study, the 2PL MIRT model was used to fit the adaptive longitudinal assessments of NELS:88; by the NELS:88
design, all 54 items in the reading item pool were multiple-choice items. The 3PL model was not employed because, in
addition to the difficulty in estimation of item parameters (Holland, 1990), a 2PL describes real test data as well as the 3PL
model (Haberman, 2006a; Sinharay & Holland, 2007).

The 2PL MIRT model is enhanced by incorporating demographic variables as the predictors. The MIRT model assumes
that an r-dimensional latent skill vector 𝛉i with elements θik, 1≤ k≤ r (r = 3 for NELS:88) is associated with each examinee
i at wave (or time) k. Let Yi be the response vector for each examinee i ( 1≤ i≤ n). The pairs (Yi, 𝛉i), 1≤ i≤ n, are inde-
pendently and identically distributed and, given 𝛉i, the response variables Yij, 1≤ j≤ q are conditionally independent.
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Let τj be the item intercept (difficulty), and let aj be the vector with all parameters, including the parameters of slopes
and the nonconstant elements of the predicting variables at different test waves of item j, 1≤ j≤ q. The 2PL MIRT model
for dichotomous item j can be expressed as

Pj (1|𝛉) = exp
(
τj + a′j A𝛉

)
1 + exp

(
τj + a′

j A𝛉
) , (1)

where latent vector 𝛉∼MN(𝛍(z),𝚺(z)), A is a defined matrix, z is a matrix that contains U predictors including exami-
nee’s covariate vector across waves. The model in Equation (1) provides a general framework for 2PL multidimensional
IRT models (Reckase, 2009), including those making use of auxiliary information (Mislevy, 1991) and those employing
algorithms that can appropriately estimate parameters and statistics of interest for complex survey data such as NELS:88
in this study. Because the latent vector 𝛉 is assumed to be multivariate normal, the K-dimensional latent mean and K ×K-
dimensional latent covariance matrix are

𝛍 (z) = [−2𝚲]−1 𝚿z

and
𝚺 (z) = [−2𝚲 (𝛌, z)]−1 ,

respectively, where 𝚿 is a K ×U matrix of regression parameters and −𝚲(𝛌, z) is a K ×K positive definite matrix. The
elements of 𝚲 are defined as

Λkk′ (𝛌, z) =
⎧⎪⎨⎪⎩
(1∕2)

∑U
u=1 λkk′uzu, k < k′,∑U

u=1 λkk′uzu, k = k′,
(1∕2)

∑U
u=1 λk′kuzu, k > k′,

(2)

where 𝛌 is an array with elements λkk′u, 1< k≤ k′
≤K, 1≤ u≤U (Haberman, 2013).

The CMIRT model in Equation (1) can also be expressed as a logit model:

log

[
Pj (1|𝛉)
Pj (0|𝛉)

]
= τj + a′

j A𝛉. (3)

Because the scale structure for the model is defined by a covariance matrix with the item location parameters invariant
across the three waves, it is called a 2PL conditional MIRT (CMIRT) model; its scale differs from the one yielded by
concurrent calibration of IRT models (Lord, 1980; Wingersky & Lord, 1984). The scale yielded by concurrent calibration
can fail to account for construct shift in scale across dimensions (Patz & Yao, 2007).

The 2PL CMIRT model for item j can be extended to a very general model:

Pj
(

y|𝛉) = exp
(
τyj + a′

yjA𝛉
)

∑Mj−1
m=0 exp

(
τmj + a′mjA𝛉

) , (4)

where 𝛉∼MN(𝛍(z),𝚺(z)), A is a defined matrix, and y= 0, 1, … , Mj − 1 (Haberman, 2013). This model is an extension
of the model in Equation (1) and covers different types of items, including dichotomous and polytomous items.

Design Matrix for the Linear Model of Latent Vectors

Let 𝛃 be a vector of dimension B with elements of the parameters of locations, slopes, and the nonconstant elements of
the predicting variables and the quadratic terms in the upper triangular of 𝚺−1. If a model is designed to include auxiliary
information in calibration, as in this study, demographic variables need to be recoded and included in 𝛃 as well. Let o be
a known offset vector of dimension B with the elements listed in the same sequence as 𝛃. Let T be a B×C (C > 0) design
matrix. Let Γ be a nonempty open subset of the space RC and 𝛄∈Γ be a C-dimensional vector. A linear model is defined
as

𝛃 = o + T𝛄 (5)
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(Haberman, 2013). Let wi be the case weight for examinee i (1≤ i≤ n). Let the log-likelihood component li(𝛃) for examinee
i be the logarithm of the probability P(Y i| zi,𝛃) under conditions in Equations (1)–33 of Haberman (2013). Then, the
weighted log-likelihood function is

l (𝛃)=
n∑

i=1
wili (𝛃)=

n∑
i=1

wi log P
(

Y i| zi,𝛃
)
. (6)

The stabilized Newton–Raphson algorithm is the procedure used to solve Equation (6) for MML estimation.
To reduce the computational complexity, the transition matrix T and vector o are decomposed: o=T1o2, T=T1T2,

and 𝛃=T1𝛃1. Thus the model can be simplified as

𝛃1 = o2 + T2𝛄, (7)

where T2 is a B1 ×C design matrix. Therefore the main task of modeling MIRT is to define its design matrix by specifying
covariates and taking account of auxiliary information. When Equation (7) has been defined, the mirt program can auto-
matically implement Equation (5); the stabilized Newton–Raphson algorithm is then used to obtain MML estimation
for Equation (6) (Haberman, 2013). A partitioned T2 provides a modular design technique that emphasizes separating
the functionality in modeling. The block matrix T2 in the appendix, provides the block design details, defining unknown
location and slope parameters in T2

τ and T2
ad, specifying the means and covariates across waves in T2

λ, and designating
auxiliary variables to the appropriate parameters in T2

λ,∗.
The model can be nonidentifiable unless some relationships are well defined between the elements in aj and the ele-

ments in 𝚺. The identification conditions are set by making the first element of 𝛍 equal to 0 and the element in the first
row and the first column of 𝚺 equal to 1. The specific setup for the reduced vector in linear model can be found in the
Appendix.

Estimation for the 2PL Conditional MIRT Models

In this study, the scale scores were expected a posteriori (EAP) scores (Mislevy & Bock, 1982), which were used as the
estimated theta scores in item analysis. In the mirt output of estimated EAP scores for examinee (1≤ i≤ n), the row vector
(Bellman, 1970) of the estimated scores for three waves is �̂�(i) =

(
θ̂i1, θ̂i2, θ̂i3

)
; vector 𝛉(i) = (𝛉i1, 𝛉i2, 𝛉i3) is a corresponding

row random vector. The column vector of estimates is �̂�k =
(
θ̂1k, … , θ̂ik, … , θ̂nk

)′
for wave (1≤ k≤ 3). Based on column

vectors, the matrix of estimated scale scores is �̂�
c
=
(
�̂�1, �̂�2, �̂�3

)
.

The EAP scores, augmented based on Kelley’s formula (Kelley, 1947), are regressed estimates of the true score that
shrink proportionally toward the aggregate average; moreover, in mirt, the accuracy and efficiency of estimation are
improved by use of the subtest score mean through methods of numerical adaptive quadrature procedure (Haberman,
2008; Haberman, 2013). Because NELS:88 is a low-stakes assessment, this study is focused on the performance of group-
level achievement. Maximum likelihood estimator (MLE) is an alternative choice. Because it was unavailable in mirt, MLE
was not chosen in studying.

The conditional mean of the EAP scores, given Yi and Zi, for kth test wave is ̂θk = 1
n

∑n
i=1 θ̂ki. The mirt output includes

the estimated conditional covariance matrix of conditional means: V
(
�̂�

c′|Yi,Zi

)
3×3

with element Covc
k,k′

(
1 ≤ k, k′ ≤ 3

)
.

Note that these estimates can be also derived from �̂�k (1≤ k≤ 3) provided by mirt. Let Δ�̂�(i) = 𝛉(i) − �̂�(i). The mirt output
also includes the estimated conditional covariance matrix: V

(
Δ�̂�(i)|Yi,Zi

)
3×3

(1≤ i≤ n) with element Cov(i), k, k′ of waves

k and k′ (1≤ k, k′
≤ 3). The average across examinees is

V
(
Δ�̂�(·)|Yi,Zi

)
3×3

= 1
n

n∑
i=1

V
(
Δ�̂�(i)|Yi,Zi

)
with element Cov(·),k,k′ (1≤ k, k′

≤ 3). Because the unconditional covariance matrix for 𝛉(i) equals the conditional covari-
ance matrix of conditional means and the conditional covariance matrix (Haberman, 2013, p. 44), the estimated uncon-
ditional covariance matrix is

V̂
(
𝛉(·)

)
= V

(
�̂�

c′|Yi,Zi

)
+ V

(
Δ�̂�(·)|Yi,Zi

)
. (8)
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Therefore, the correlation between latent traits of waves k and k′ (1≤ k, k′
≤ 3) is.

ρ̂k,k′ =
Covc

k,k′ + Cov(·),k,k′√
Covc

k,k Covc
k′,k′

=
Covc

k,k′ + Cov(·),k,k′√
Vc

k,k Vc
k′,k′

. (9)

Embretson Model and Its Expansion

Embretson (1991) proposed a multidimensional Rasch (1960) model for learning and change (MRMLC) by employing a
Wiener simplex structure for skills to provide parameters for individual differences in changes. The Wiener simplex model
(Anderson, 1960; Joreskog, 1970) is appropriate for structuring parameters in Rasch models because the properties of
equivalency of measurement scales between tests and the additivity of these effects are compatible between the models. In
MRMLC, Embretson postulated the involvement of M skills in item responses within K occasions, that is, measurement
waves. Specifically, assume in the first wave (k= 1) that only an initial skill is involved in the item responses; assume further
in later waves (k> 1) k− 1 additional skills as well as the initial skill factored into examinees’ skill scores (Embretson,
1991). Thus the number of skills tested increases in each wave over time. Combining these assumptions with the one-
dimensional Rasch model, MRMLC is given as

P
(

Xi(k)j = 1|θim, bj

)
=

exp
(∑k

m=1 θim − bj

)
1 + exp

(∑k
m=1 θim − bj

) , (10)

where θim and bj are the skill of person i at test wave m and the difficulty parameter for item j, respectively.
It is worth mentioning that Embretson (1991) developed MRMLC for situations where items are not repeated across

waves to avoid the well-known effects of repeated item presentation (practice effects and memory effects, among others)
and local dependency among item responses. Under such situations, Equation (5) tells us that for an item j observed at
wave k, all tested skills up to wave k are involved. So an item observed at wave k measures k skills, including initial skill (θi1)
as well as k− 1 modifiabilities (i.e., θi2,… , θik). The change between condition k− 1 and k is equal to the kth modifiability
(θik). An Embretson model can be extended and has the following form:

P
(

Xi(k)j = 1|θim, bj

)
=

exp
(∑k

m=1 aj

(
θim − bj

))
1 + exp

(∑k
m=1 aj

(
θim − bj

)) , (11)

where aj is the slope parameter (Xu & Qian, 2009). The parameters of the Embretson models in Equations (10) and (11)
can be calibrated through many software packages, such as mirt and mdltm (von Davier, 2005). The results of the six ability
groups reported in Xu and Qian (2009) were yielded by mdltm.

Data Resources

Survey Design and Data Collection for the National Education Longitudinal Study of 1988

NELS:88 was initiated by the National Center for Education Statistics (NCES). Based on a two-stage stratified, clustered-
sample design, the base-year survey for NELS:88 was carried out during the 1988 spring semester (Spencer, Frankel, Ingels,
Rasinski, & Tourangeau, 1990). A representative sample of 24,242 students was selected among eighth graders from 1,052
public and private schools. On average, 23 student participants represented each of the participating schools.

The base-year study design consisted of four data components split by the role targeted individuals played in the edu-
cational system; these components were the surveying and testing of students along with the surveying of parents, school
administrators, and teachers.

The first follow-up study was conducted in 1990, when most of the students were high school sophomores, and included
all the components in the base-year study except the parent survey. In addition, a freshened sample was added to the
student component to enhance the representativeness of the sample of the nation’s sophomores. A total of 21,474 students
participated in the first follow-up study.
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Table 1 Number of Overlapped Items Across Booklets for the National Education Longitudinal Study of 1988 Reading Assessments

Wave 2 (F1) Wave 3 (F2)

Test wave Wave 1 (base year) Low High Low High

Wave 1 (base year) – 20 8 15 4
Wave 2 (F1)

Low – – 7 15 4
High – – – 7 4

Wave 3 (F2)
Low – – – – 8
High – – – – –

Note. This table is the upper triangular of a symmetric matrix. Low/high denotes the booklet difficulty level. F1= first follow-up;
F2= second follow-up.

The second follow-up took place in early 1992, when most sampled students were in the second semester of their
senior year. Again, a freshened sample was added in 1992 to better represent 12th graders during the spring term of
the 1991–1992 school year. As in the previous waves, students were asked to complete a questionnaire and a series of
cognitive tests. Overall, this second follow-up study included a total of 20,923 students, which was made up of both
in-school students and dropouts.

Adaptive Reading Assessment Design

The construction of the NELS:88 eighth-grade battery was in some sense a delicate balancing act between several compet-
ing objectives suggested by the NELS Technical Review Panel and/or NCES project staff during base-year development
(Rock et al., 1995). To improve the measuring accuracy of the NELS:88 reading assessment, the program was designed
to contain two test booklets at different difficulty levels for the second and third waves, respectively, and each participant
was assigned to a booklet based on his or her performance (high/low) on the assessment of the previous wave. Therefore
the examinees in the first follow-up assessment were partitioned into two ability groups (high and low); based on their
base-year and F1 performances, the examinees in the second follow-up assessment were partitioned into six ability groups
(high/high, high/low, high/not present, low/high, low/low, and low/not present).

The item pool of the NELS:88 reading assessment comprised 54 multiple-choice items. Each booklet contained 21
items. By the NELS:88 design, some items were overlapped across the two booklets at the second and third waves; some
items were also overlapped through two or three waves. Table 1 presents the number of the items overlapped across book-
lets from base year to F2. For example, seven and eight items were overlapped across the two booklets in the second
and third wave, respectively. For further information on item overlapping, see the test item map in Rock et al. (1995).
Such a design, with common items across the booklets within each wave and through different waves, guaranteed devel-
opment of a scale (Kolen & Brennan, 2004; Stocking & Lord, 1983; Vale, 1986) that could measure changes over time,
even though participants at different levels answered a different assortment of test questions across the measurement
waves.

Dimensionality Structure of the National Education Longitudinal Study of 1988 Reading Assessments

In this study, the MIRT models were applied to model growth for the NELS:88 reading assessment, and the structure
of the multiwave assessments was treated as multidimensional. Thus, verifying the dimensional structure of multi-
waves was essential to the study. Qian (2010), based on the dimensionality evaluation to enumerate contributing traits
(DETECT) procedure (Zhang & Stout, 1999), analyzed the dimensionality structure of NELS:88 data. The results of
the DETECT confirmatory analysis validated that the three waves were approximately three dimensional and that
these findings were in line with the conclusions drawn by the DETECT exploratory analysis. Therefore, NELS:88
is one of the longitudinal assessments with a dimension structure appropriate for modeling growth by applying
multidimensional logistic models (Embretson, 1991; Fischer & Seliger, 1997; Sijtsma, 2001). Otherwise, the conclu-
sions drawn from the MIRT model may be without basis (Roberts & Ma, 2006) with the dimensional structure not
confirmed.
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Results

Model Calibration With Complex Survey Data

In modeling MIRT, the common items were set with the same item parameters across test occasions, and the dimensions
defined by the test occasions were assumed to be dependent. The mirt program also enabled incorporating the complex
sampling features such as primary sampling units in model calibration and variance estimation. Four sets of standard
error (SE) estimates—regular SE, Louis SE, sandwich SE, and complex SE for the parameter estimates were computed
based on the estimates of the Hessian matrix in the Newton–Raphson algorithm (Haberman, 2006b; Louis, 1982).

In this study, four demographic variables (DVs) correlated with growth were included in the CMIRT model: gender,
race, school location, and father’s education. They were coded as 11 dummy variables (Draper & Smith, 1981); for details,
see Table 2.

For NELS:88, a large proportion of missing data was embedded due to the adaptive design of booklets illustrated in the
Adaptive Reading Assessment Design section in this report. In response to this issue, the data employed in the analysis
were extracted from the original data set with the criterion that each student in the data set took at least one assessment.

The Criterion Functions of Evaluation

The chi-square test based on the log-likelihood ratio statistic (Wilks, 1938) can be used to compare the models. The
chi-square test statistic for comparison is

G2 (A,B) = −2
(

l
(

X, 𝛉A,𝛃A
)
− l

(
X, 𝛉B,𝛃B

))
, (12)

where l(X, 𝛉A,𝛃A) and l(X, 𝛉B,𝛃B) are the log-likelihood ratio statistics for two models, respectively. Let p be the differ-
ence in the number of parameters between two models. The discrepancy measure G2(A, B) has an asymptotic chi-square
distribution with p degrees of freedom.

For comparison of models by entropy, the estimated expected log penalty per presented item (PE) can also be used for
model selection. Let Jik be the number of items presented to an examinee i corresponding to the kth measurement wave.
The PE index is defined as

PE =
−l

(
�̂�
)

∑N
i=1 wi

∑K
k=1 Jik

,

which can be improved with a bias correction (Gilula & Haberman, 1994). The Gilula–Haberman index (GH) is defined as

GH =
−l

(
�̂�
)
+ tr

{[
−∇2l

(
�̂�
)]−1

Φ
(
�̂�
)}

∑N
i=1 wi

∑K
k=1 Jik

,

where tr{M} denotes the trace of the matrix M and −∇2l
(
�̂�
)

is the estimated Hessian matrix of the weighted log-
likelihood (Gilula & Haberman, 1995; Haberman, 2013). The computation of the Hessian matrix is based on the estimated

Table 2 Eleven Dummy Variables Recoded From the Demographic Variables (Gender, Race, School Location, and Father’s Education)

Dummy variable Definition

1 D1= 1, if sex= 2 (female); otherwise 0
2 D2= 1, if race2= 2 (Black); otherwise 0
3 D3= 1, if race2= 3 (Hispanic); otherwise 0
4 D4= 1, if race2= 4 (White); otherwise 0
5 D5= 1, if region= 2 (urban); otherwise 0
6 D6= 1, if region= 3 (suburban); otherwise 0
7 D7= 1, if region= 4 (rural); otherwise 0
8 D8= 1, if father’s education= 2 (< high school); otherwise 0
9 D9= 1, if father’s education= 3 (high school ≤ &< college); otherwise 0
10 D10= 1, if father’s education= 4 (college ≤ or master’s); otherwise 0
11 D11= 1, if father’s education= 5 (doctor, professional, etc.); otherwise 0
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Table 3 Model Prediction Statistics for Growth Models for the National Education Longitudinal Study of 1988 Reading Data

2PL MIRT
models

No. of
predictors DVs included

Model
dimen. Log-likelihood Penalty

SE of
penalty Akaike Gilula–Haberman

CMIRT 1 115 −609019.31 0.5483 0.00045 0.5484 0.5484
CMIRTDVA 12 G, R, L, F_edu 148 −606050.51 0.5456 0.00158 0.5458 0.5458
CMIRTDVB 11 R, L, F_edu 145 −606248.23 0.5458 0.00158 0.5459 0.5459
CMIRTDVC 9 G, R, F_edu 139 −606203.60 0.5458 0.00158 0.5459 0.5459
CMIRTDVD 9 G, L, F_edu 139 −606730.48 0.5462 0.00158 0.5464 0.5464
CMIRTDVE 8 G, R, L 136 −607536.83 0.5470 0.00158 0.5471 0.5471
CMIRTDVF 8 R, F_edu 136 −606401.54 0.5459 0.00158 0.5461 0.5461
CMIRTDVG 8 F_edu 127 −607080.14 0.5465 0.00158 0.5467 0.5467
CMIRTDVH 8 R 124 −607965.68 0.5473 0.00158 0.5475 0.5475

Note. The sample size of the base-year sample was 24,242, and a total of 90 items were used in the NELS:88 reading assessments.
2PL= two-parameter logistic; CMIRT= conditional multidimensional item response theory; DV= demographic variable; Model
dimen. = model dimensions; F_edu= father’s education; G= gender; L= school location; R= race. “Stage 1 iterations” and “Stage 2
iterations” refer to the iterations used in the first and second stages of the computation of the maximum-likelihood estimates.

covariance matrix with built-in complex sampling effects. The Akaike information criterion (AIC; Akaike, 1973) is also
used for model selection; the AIC index is provided with the model dimension added to the numerator of the PE index.
However, AIC can misrepresent the disparity between models, in particular for large samples (Gilula & Haberman,
1994).

Nine Calibrated Conditional MIRT Models

Nine CMIRT models were fitted to the NELS:88 data: one 2PL CMIRT model and eight models used DVs, CMIRTDVA to
CMIRTDVH. Table 3 presents the model prediction indexes for the nine models fitted for the NELS:88 data (sample size
N = 24,242), including log-likelihood, PE, GH, and AIC.

The test chi-square statistic G2(A, B) in Equation (12) was used to compare the models. For example, in Table 3,
CMIRTDVA, with all the DVs included, was compared with CMIRTDVB. Because G2(A, B)= 395.4 and p= 1, the
model CMIRTDVA was significantly improved from CMIRTDVB. Although the structures of the models CMIRTDVB
and CMIRTDVC were close, the CMIRTDVB was significantly improved from CMIRTDVC because G2(B, C)= 89.3 and
p= 2. By comparing the DVs used in the models, it was determined that father’s education and race were important
predictors.

The outcomes of the model selection based on different criteria, either PE, GH, or AIC, were consistent with those
by the log-likelihood ratio tests. Except for 2PL CMIRT, the eight other models, from CMIRTDVA to CMIRTDVH, all
made use of auxiliary information and had a better fit than the 2PL CMIRT model. Clearly, the conditional MIRT models
were improved by the incorporation of background variables, analogous to the estimation procedures of the National
Assessment of Educational Progress (NAEP; Allen, Donoghue, & Schoeps, 2001). Among the models, CMIRTDVA fit the
data best. The nine 2PL CMIRT models can be sorted from best to worst as follows: CMIRTDVA, CMIRTDVC, CMIRTDVB,
CMIRTDVF, CMIRTDVD, CMIRTDVG, CMIRTDVE, CMIRTDVH, and CMIRT.

Figure 1 presents the cumulative frequency curves (CFCs) and the conditional CFCs per booklet at each score point on
the frequency curves for three waves yielded by the 2PL CMIRT and 2PL CMIRTDVA, respectively. Define their deviations
as the difference between CFC and the conditional CFC and the residuals as the difference between FC and the conditional
FC at each score point. The patterns of the CFCs across the ability continuum, measured by EAP, were comparable with the
two models; the curves shifted to the right end from base year to F1, and then to F2, which suggested growth in examinees’
ability over time. On the second and third rows of Figure 1, the standardized deviations, equal to the deviation divided by
the standard error at each score point, and standardized residuals, equal to the residual divided by the standard error at
each score point, on the low end of the continuum were mostly larger than those on the high end, reflecting the guessing
effects on the performance of examinees with low scale scores; it can also be due to memory effects on overlapping items
across waves. The plots also exhibited the differences between CMIRT and CMIRTDVA models; for example, the curves of
the conditional CFCs per booklet yielded by CMIRTDVA were smoother than those yielded by CMIRT. Table 4 presents
the estimated correlations between latent traits among three waves for the 2PL CMIRT and 2PL CMIRTDVA, respectively.
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Figure 1 Cumulative frequency curves, conditional cumulative frequency curves per booklet, their deviations, and the residuals at
each score on the frequency curves for three test waves of the National Education Longitudinal Study of 1988 reading (left CMIRT,
right CMIRTDVA).

The corresponding correlations, of CMIRT and CMIRTDVA, were very close, ranging from .86 to .90. The calculations
were based on Equation 9. As expected, the correlation between the traits of base year and F2 was slightly lower than the
other two correlations.

Figure 2 presents the Q–Q plots (Filliben, 1975) of the scale scores of base year, F1, and F2 yielded by the two models.
The plots in the second row were slightly closer to the lines of the normal distribution in the Q–Q plots than the corre-
sponding plots in the first row. Figure 3 shows the scatterplots of a pair of the score sets (base year vs. F1, base year vs. F2,
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Table 4 Estimated Correlations Between Latent Traits Among Three Waves (upper triangular CMIRT, lower triangular CMIRTDVA)

Test wave Wave 1 (base year) Wave 2 (F1) Wave 3 (F2)

Wave 1 (base year) – 0.902 0.866
Wave 2 (F1) 0.899 – 0.896
Wave 3 (F2) 0.864 0.900 –

Note. F1= first follow-up; F2= second follow-up.

Figure 2 Probability plots of the scale scores of base year, first follow-up, and second follow-up for the National Education Longitudinal
Study of 1988 reading (first row CMIRT, second row CMIRTDVA).

and F1 vs. F2) for the two models. Although the patterns of the plots were compatible with the two models, the slopes of
the trend lines in the scatterplots in the first row were about 1–2% smaller than those in the second row. A majority of the
points in the plots were above the diagonal lines: approximately 91%, 95%, and 90% for the corresponding plots in the first
row and 87%, 95%, and 90% for the plots in the second row. Evidently, most of the examinees made progress in reading
over time because the scores assessed were higher in a later measurement wave in the comparisons of base year versus
F1, base year versus F2, and/or F1 versus F2. Note that the progress stated here was measured by the changes of scores on
the same scale for three dimensions; this did not suggest that the latent traits of the three dimensions were identical and
measuring the identical ability of reading at different grades.

The skill scores of seven demographic groups for six ability patterns (i.e., high/high, high/low, high/not present,
low/high, low/low, and low/not present) provided comprehensive information on evaluating nine CMIRT models cali-
brated with the NELS:88 data. Table A1 in the appendix presents the detailed results, including the total sample yielded
by the 2PL CMIRT and 2PL CMIRTDVA models. For the groups with a high/high pattern, Figure 4 presents the skill
scores of seven demographic groups yielded by the 2PL CMIRT and CMIRTDVA model. In the left plot in Figure 4, the
means of all seven groups with high/high pattern at base year ranged from 174 to 188; all the groups gain scores between
F1 and F2, though growth rates were different. In general, the results on the right plot, yielded by the CMIRTDVA model,
had a similar pattern to those yielded by the 2PL MIRT model, although the models with the use of DVs always fit the
data better.

The plots in Figure 5 present the skill scores of seven demographic groups with a high/low pattern yielded by the 2PL
CMIRT and CMIRTDVA. The means of all seven groups with a high/low pattern were homogeneous at the base year,
ranging from 147 to 152 for the 2PL CMIRT; most of the groups experienced a 1–2 point loss in F1, except for the
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Figure 3 Plots of the comparisons of the EAP scores (base year vs. first follow-up, base year vs. second follow-up, and first vs. second
follow-up) for the National Education Longitudinal Study of 1988 reading (first row CMIRT, second row CMIRTDVA).

Figure 4 Performance of seven demographic groups with high/high pattern for the National Education Longitudinal Study of 1988
reading (left CMIRT, right CMIRTDVA).

female and Hispanic groups. These students, with a high/low pattern, had outperformed other students on the test in the
base-year wave. The right plot in Figure 5 shows a similar pattern for the CMIRTDVA model. All the demographic groups
with a high/low pattern gained progress in the F2 wave test after 2 years in the study.

Model Comparison: Embretson Model Versus CMIRT Model

Table 5 presents the results of the comparison of the average expected a posteriori (EAP) scores of the six ability pattern
groups yielded by the 2PL CMIRT and Embretson models. For the sake of comparison, the EAP scores were aligned
with the same target mean and standard deviation (150, 35) by a linear transformation of each set of results for CMIRT
and Embretson (Xu & Qian, 2009), respectively. When the whole base-year samples (with no ability group yet classified)
were transformed, the same transformation was then applied to the EAP scores of F1 and F2 for CMIRT and Embretson,
respectively. Although this transformation is neither linking nor equating, it enables us to better perceive trends or patterns
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Figure 5 Performance of seven demographic groups with a high/low pattern for the National Education Longitudinal Study of 1988
reading (left CMIRT, right CMIRTDVA).

Table 5 Comparison of the Performance of Six Ability Groups Yielded by Multidimensional Item Response Models (left CMIRT, right
Embretson model)

2PL CMIRT Model Extended Embretson Model

Size Base F1 F2 Base F1 F2

High/high 5,373 183.98 206.25 221.50 228.10 284.32 293.31
High/low 1,076 151.61 150.70 167.19 186.05 152.00 183.68
High/not present 1,713 165.60 181.38 195.87 217.56 245.03 204.36
Low/high 1,103 146.06 174.46 183.01 154.07 211.39 230.92
Low/low 4,009 119.01 127.81 138.87 108.74 128.55 144.68
Low/not present 2,091 119.99 130.52 140.70 109.37 132.01 122.28

Note. All expected a posteriori (EAP) mean scores are transformed by a linear transformation that sets base-year EAP distribution
with mean and SD of [150, 35]. 2PL= two-parameter logistic; CMIRT= conditional multidimensional item response theory; F1= first
follow-up; F2= second follow-up.

based on the transformed mean EAPs. In addition, the objective information on the student performance in the United
States reported by The Nation’s Report Card and other educational surveys (Allen et al., 2001; Neidorf, Binkley, Gattis,
& Nohara, 2006) supports the following two facts: (a) Most or almost all groups of students between Grade 8 and Grade
12 make some progress (no stepping backward by group), and (b) the changes for the same group across two waves are
not drastic or like outliers. The educational reality forms the basis to be used to judge if an outcome yielded by a model
conflicts with reality. For example, in a longitudinal probability sample, it is unlikely to have a group that performs worse
in Grade 12 after 4 years of studying.

In Table 5, the results yielded by the CMIRT model were consistent with the educational reality we observed. Among
the second ability group (high/low), some may have been classified as high level by luck by the base-year measurement
and then received slightly poor skill scores in the F1 measurement. Nonetheless, these students, as a group, should have
made some progress in the 12th grade. The Embretson model yielded different results. For example, in Table 5, the mean
score of the second ability group (high/low) at the F2 measurement yielded by the extended Embretson model is 183.68,
that is, still lower than the base-year mean of 186.05; this can also be found in the left plot in Figure 6. It seems unrealistic
that a group of students failed to make any progress on the test after 4 years of study. However, the results yielded by both
2PL CMIRT models, as illustrated by the right plot in Figure 6, did not show such contradictions. Other numbers yielded
by the Embretson model were difficult to explain, in particular the extreme changes of mean EAPs between two waves.
For example, the students in the high/high group gained approximately 60 points between base year and F1. Considering
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Figure 6 Performance of six ability groups for the National Education Longitudinal Study of 1988 reading (left Embretson model, right
CMIRT).

that the jackknifed standard error for six ability groups ranges from 4.5 to 9.0 (Qian, 2015; Wolter, 1985), such a large
jump of 60 points is hard to explain.

Some Remarks on Model Comparisons

The rationale for the structure of the Embretson model in Equation (10) can reveal the causes of the issues in fitting the
NELS:88 data. First, as an extension of Rasch models, the Embretson (1991, p. 495) “model specifies a Wiener simplex
pattern for the involvement of initial ability and one or more modifiabilities in response potential for successive measure-
ment occasions (waves).” The model yields latent scales for each wave with Rasch models with comparable properties;
although the latent mean and variance of the first wave are fixed, the model specifies no covariance structures across the
scales of each wave. In comparison, the covariate structures between the scales for the CMIRT model are fully defined.
Second, the Embretson model measures growth based on changes of item parameters for the Rasch models for each wave;
additionally, the properties of the Rasch models for each wave are compatible, and the growth effects are additive. Instead,
the CMIRT model measures growth by examinees’ responses to items in each wave and constrains the item parameters to
be invariant across the waves of the longitudinal assessment (Almond, 2011; van Rijn, Sinharay, Haberman, & Johnson,
2016).

As a high quality longitudinal survey, the NELS:88 program collected data through repeated assessments using booklets
at different levels assembled from the same item pool; the growth model with the constraints seems appropriate for the
NELS:88 longitudinal data.

Summary

In this study, a conditional 2PL MIRT model was proposed to fit the three waves of the NELS:88 reading data. In the
model, the IRT parameters were constrained to be invariant across the three waves, and the growth in examinee skills was
measured by the progress of examinees’ performance on the assessments. The design of the adaptive NELS:88 reading
assessment provided a basis for modeling growth with the constraints, setting the item location parameters of the same
item invariant across measurement waves. The assessment instrument, also useful for developing a scale for growth, con-
tained a standard test booklet for the first wave and two test booklets of different difficulty levels for each of the second
and third waves; furthermore, each pair of the five booklets shared common items. For discussion of item parameter
invariance, see Lord (1980).

In general, the results yielded by the CMIRT models provide a more reasonable explanation for the performance
of different groups than those that had been yielded by the Embretson models. The empirical results yielded by the
2PL CMIRT model are consistent with the educational reality in the United States; most student groups made progress
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in 4 years’ study in schools, and the progress made across two waves was gradual, without radical changes. However,
some of the results yielded by the Embretson models seem implausible. For instance, for the students in the second
ability group (high/low), their mean EAP score in 12th grade was still lower than their base-year scores after 4 years’
study. In addition, the students in the high/high group gained approximately 60 points between base year and eighth
grade.

The results also show that the growth models for longitudinal data can certainly benefit from making use of demo-
graphic variables (DVs) such as gender, race, school location, and father’s education. Evaluated by the model predic-
tion indexes of log-likelihood, PE, GH, and AIC, all the models with incorporated DVs had an improved fit over the
2PL CMIRT model without using demographic information. Among the nine models fitted, the 2PL CMIRTDVA model
demonstrated the best fit of the data. In this study, the growth models for NELS:88 were improved by use of auxiliary
information because NELS:88 was a low-stakes assessment and the analysis was focused on reporting group scores. How-
ever, when the goal of an assessment is to estimate individual scores, major fairness issues can arise for the models with
incorporated auxiliary information because two examinees with different demographic backgrounds could get different
scores, even if they give identical item responses.

The mirt program offers flexibility in defining the design matrix of the covariate structure for the linear model of
latent vectors. The 2PL CMIRTDVA model provides a specific example of how to specify a complex design matrix T2,
which is expressed in a partitioned matrix, including the blocks of setting the item parameters equal across waves, defin-
ing the across-wave correlations, and designating parameters for a specific demographic group. Moreover, the stabilized
Newton–Raphson algorithm provides an efficient way to calibrate the MIRT models and create a scale that measures
growth at both group and individual levels. The flexibility in defining a design matrix within the efficient stabilized
Newton–Raphson algorithm offers an edge over other programs based on the expectation–maximization (EM) algorithm
using MML and the approach employing the MCMC method.

Several issues can be explored in future studies. The first one is the conditions under which the CMIRT growth
models can yield valid scales in evaluating growth, such as the number of overlapping items and the size of the
correlations between the latent traits across waves. Second, the growth model developed in this study, measuring
changes in person-related (instead of item-related) parameters, can certainly be extended to other longitudinal assess-
ment data, such as the Education Longitudinal Study of 2002 (Ingels, Pratt, Rogers, Siegel, & Stutts, 2005). Third, the
idea of including auxiliary information for inference with latent models, though not MIRT, has been supported by
many educational assessments, such as NAEP (Beaton & Zwick, 1990; Mislevy, 1991) and PISA (Turner & Adams,
2007). It is certainly of interest to compare the NAEP results with those yielded by the CMIRT models with auxiliary
information.
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Appendix

Structure of the Design Matrix for the Two-Parameter Logistic CMIRT Model

As defined in the Design Matrix for the Linear Model of Latent Vectors section in this report, 𝛃 and o are the parameter
vector of the linear model and the offset vector of dimension B, respectively; 𝛄 is the vector of dimension C, where C is
an integer greater than zero. The parameter vector of the linear model in Equation (5) can be expressed as

𝛃 = o + T𝛄 = T1 (o2 + T2𝛄
)
,

where T1 is a B×B1 matrix and T2 is a B1 ×C matrix. Because 𝛃=T1𝛃1,

𝛃1 = o2 + T2𝛄.

When T2 is partitioned as a block matrix, the main task of modeling is to define the functionality of each block in
T2. Whenever T2 has been defined, the mirt program can automatically generate T1; the stabilized Newton–Raphson
algorithm is the procedure used to solve the log-likelihood function

l (𝛃)=
n∑

i=1
wili (𝛃)=

n∑
i=1

wi log P
(

Y i| zi,𝛃
)

for MML estimation. In the multivariate normal case, the procedure is also featured with the adaptive quadrature tech-
nique, which is based on the adaptive Gauss–Hermite integration (Haberman, 2006b).

The NELS:88 reading assessment contains 54 multiple-choice items. By the item map (Rock et al., 1995), the number
of distinct items selected for the three waves, that is, base year, F1, and F2, is 21, 35, and 34, respectively; the total number
of items is 90. In this study, for the 2PL MIRT model of three dimensions, the structure of T2 is a B1 ×C block matrix,
that is, with (90+ 270+ 9)× (54+ 54+ 7) dimensions:

T2 =
⎛⎜⎜⎝

T2
τ O12 O13

O21 T2
ad O23

O31 O32 T2
λ

⎞⎟⎟⎠ ,
where O12, O13, O21, O23, O31, and O32 are zero matrixes.

The matrix block T2
τ, 90× 54 is defined for unknown location parameters; the dimensions 90 and 54 correspond to the

90 items used for the three waves (=21+ 35+ 34) and the 54 items used in the reading assessment. Note that in this study,
the location parameters of the overlapping items are set to be invariant across the three waves; otherwise, the number of
the parameters could triple. When an item is used, the identification conditions are set to 1; otherwise, they are set to 0.
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For example, because the item with ID 1 is used in all three waves, the elements tτ, 1, 1, tτ, 22, 1, and tτ, 57, 1 in T2
τ are set to

1; because the item with ID 29 is only used once in the high-level test booklet in the second wave, tτ, 45, 29 in T2
τ is set to 1;

and so on.
The matrix block T2

ad, 270× 54, is defined for unknown slope parameters. The vectors of the slope parameters for
the three waves are different, so 270 in total for 90 items. Vectors of the slope parameters are (1 0 0)′ ,

(
0 1 0

)′, and(
0 0 1

)′ for the base year, F1, and F2 assessments, respectively. For the case of the first item, (91, 55) in T2
ad, because

the item with ID 1 is used in all three waves, in T2
ad, the elements(

tad,91,55 tad,92,55 tad,93,55
)′ = (

1 0 0
)′
,

(
tad,154,55 tad,155,55 tad,156,55

)′ = (
0 1 0

)′
,

(
tad,259,55 tad,260,55 tad,261,55

)′ = (
0 0 1

)′ ;
because the item with ID 29 is only used once in the high-level test booklet in the second wave, in T2

ad, the element(
tad,223,84 tad,224,84 tad,225,84

)′ = (
1 0 0

)′
,

and so on. The vector o2 in the model has 369 elements with zero elements, except o364 = o366 = o369 = − 0.5. The block
matrix T2

λ is defined for unknown predictors and quadratic terms,

T2
λ =

(
T2

p O𝛌12
O𝛌21 Q2

p

)
,

with dimensions (3+ 6)× (2+ 5). In T2
λ, O𝛌12 and O𝛌21 are zero matrixes:

T2
p =

⎛⎜⎜⎝
0 0
1 0
0 1

⎞⎟⎟⎠

Q2
p =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
.

In the setup of Q2
p for the 2PL CMIRT model, the estimated Λ11(𝛌, z), in (7), is set to 1. Although the initial values of

Λ22(𝛌, z) and Λ33(𝛌, z) in o2 are also set to 1, conditioned on the F1 estimates, the values of Λ22(𝛌, z) and Λ33(𝛌, z) are
updated in each iteration, and their yielded estimates are not the same as their initial values.

Structure of the Design Matrix for the Two-Parameter Logistic CMIRT Model With
Demographic Information

In this study, to improve the accuracy of estimation, the 2PL CMIRT model has made use of auxiliary information.

Extended Block Matrix for CMIRTDVA

The structure of T2
DVA, for the model with demographic variables incorporated (2PL CMIRTDVA), is a 468× 148 block

matrix, that is, with (90+ 270+ 108)× (54+ 54+ 40) dimensions. Thus 148 parameters need to be estimated for the
model; the parameter vector of the linear model 𝛃1

DVA and the offset vector o2
DVA both have 468 elements. The vector

o2
DVA has 465 zero elements, except o397 = o399 = o402 = − 0.5.
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Table A1 Mean Expected A Posteriori Scores and Standard Deviations of Six Ability Groups for Demographic Groups Yielded by the
Two-Parameter Logistic CMIRT and Two-Parameter Logistic CMIRTDVA Models

2PL CMIRT 2PL CMIRTDVA

Base F1 F2 Base F1 F2

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Total Total
High/high 183.98 23.08 206.25 28.07 221.50 36.13 184.27 23.10 206.35 28.17 221.65 36.36
High/low 151.61 12.17 150.70 17.10 167.19 27.09 151.99 12.20 150.64 17.10 167.06 27.12
High/not present 165.60 31.43 181.38 39.42 195.87 42.98 165.99 31.45 181.27 40.11 196.01 43.71
Low/high 146.06 18.73 174.46 19.69 183.01 28.66 146.46 18.92 174.57 19.85 183.17 28.96
Low/low 119.01 15.35 127.81 19.96 138.87 26.31 119.48 15.36 127.97 19.80 138.91 26.15
Low/not present 119.99 18.83 130.52 26.81 140.70 26.35 120.52 18.89 130.43 26.88 140.30 26.88

Male Male
High/high 182.97 22.77 205.89 27.65 219.96 36.32 182.63 22.57 205.96 27.60 219.34 36.30
High/low 151.43 12.65 149.10 17.67 164.33 29.49 151.49 12.61 149.22 17.62 163.87 29.36
High/not present 163.25 31.89 179.05 40.03 193.53 43.63 162.93 31.58 178.79 40.37 192.45 43.77
Low/high 143.99 17.43 172.60 18.41 180.32 28.12 143.93 17.35 172.74 18.45 179.91 28.16
Low/low 117.37 15.45 125.60 20.12 136.33 26.75 117.57 15.37 125.93 19.97 136.10 26.49
Low/not present 118.04 19.13 127.87 27.50 137.98 27.00 118.12 19.12 127.74 27.51 136.46 27.29

Female Female
High/high 184.82 23.31 206.56 28.43 222.78 35.93 185.63 23.45 206.69 28.64 223.58 36.31
High/low 151.79 11.69 152.27 16.39 170.02 24.19 152.47 11.76 152.05 16.46 170.20 24.33
High/not present 167.73 30.86 183.50 38.74 198.00 42.30 168.78 31.09 183.51 39.76 199.25 43.43
Low/high 148.16 19.75 176.34 20.74 185.72 28.97 149.01 20.08 176.42 21.02 186.45 29.42
Low/low 120.96 15.01 130.42 19.44 141.85 25.47 121.73 15.05 130.37 19.33 142.21 25.34
Low/not present 122.15 18.27 133.45 25.72 143.71 25.29 123.18 18.27 133.42 25.85 144.56 25.77

Asian/others Asian/others
High/high 187.08 23.87 211.14 28.67 230.13 35.68 194.29 23.68 218.16 28.44 237.00 35.39
High/low 152.28 12.54 152.09 16.63 170.20 25.11 159.77 12.44 159.58 16.50 177.55 24.92
High/not present 169.66 32.31 187.71 39.82 202.83 42.88 177.01 32.05 194.92 39.50 209.92 42.54
Low/high 145.84 18.86 175.18 18.08 185.40 27.64 153.38 18.71 182.48 17.94 192.62 27.42
Low/low 117.43 16.50 126.00 21.88 136.79 28.63 125.19 16.37 133.69 21.71 144.40 28.41
Low/not present 118.57 19.44 130.28 27.48 139.97 27.00 126.32 19.29 137.94 27.26 147.55 26.79

Black Black
High/high 174.56 20.92 195.04 25.31 207.07 34.09 181.87 20.75 202.19 25.11 214.12 33.82
High/low 150.72 12.09 150.26 17.14 167.86 23.93 158.22 12.00 157.77 17.01 175.22 23.74
High/not present 147.07 30.99 159.14 37.28 171.20 42.27 154.60 30.75 166.57 36.99 178.53 41.93
Low/high 143.01 17.57 171.45 17.42 179.84 27.77 150.57 17.44 178.78 17.28 187.11 27.55
Low/low 117.79 15.34 125.96 19.67 136.80 24.91 125.55 15.22 133.66 19.51 144.41 24.72
Low/not present 117.41 18.19 126.73 24.78 137.03 24.44 125.17 18.04 134.42 24.58 144.64 24.25

Hispanic Hispanic
High/high 174.11 21.39 195.04 25.43 205.78 34.08 181.43 21.22 202.19 25.23 212.84 33.81
High/low 146.96 11.07 147.29 14.50 159.27 24.66 154.49 10.98 154.82 14.38 166.70 24.46
High/not present 148.75 32.22 161.92 39.08 173.35 44.49 156.26 31.97 169.34 38.78 180.67 44.14
Low/high 139.83 14.09 165.91 15.33 168.95 24.26 147.41 13.98 173.28 15.21 176.31 24.06
Low/low 114.82 15.61 122.73 19.64 130.99 24.57 122.60 15.48 130.45 19.48 138.65 24.38
Low/not present 114.93 18.15 124.19 24.44 133.88 24.60 122.71 18.01 131.90 24.25 141.52 24.41

White White
High/high 185.06 22.95 207.40 28.01 222.84 35.90 192.29 22.77 214.45 27.79 229.77 35.62
High/low 152.19 12.17 151.00 17.38 167.64 27.89 159.68 12.07 158.49 17.25 175.01 27.67
High/not present 169.86 29.58 186.23 37.84 201.37 40.72 177.21 29.34 193.45 37.55 208.46 40.40
Low/high 147.28 19.17 175.80 20.40 184.74 28.96 154.80 19.02 183.10 20.24 191.97 28.73
Low/low 120.64 14.89 129.87 19.58 141.74 26.35 128.37 14.77 137.53 19.42 149.31 26.15
Low/not present 122.47 18.74 133.58 27.54 143.92 26.83 130.20 18.59 141.21 27.32 151.47 26.62

Note. All expected a posteriori (EAP) mean scores are transformed by a linear transformation, which sets base-year EAP distribu-
tion with mean and SD of [150, 35]. 2PL= two-parameter logistic; CMIRT= conditional multidimensional item response theory;
DV= demographic variable; F1= first follow-up; F2= second follow-up.
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The matrix blocks T2
τ and T2

ad are the same; T2
λ,DVA is an extended block matrix for CMIRTDVA with auxiliary informa-

tion added; therefore, for three test waves, each of the 11 dummy DVs in Table 1 is coded as a 3× 3 identity matrix I1,… ,
I10, and I11,

T2
λ,DVA =

(
T2

p,DVA Oλ∗12

Oλ∗21 Q2
p,DVA

)
with dimensions (36+ 72)× (35+ 5). The matrix

T2
p,DVA =

⎛⎜⎜⎜⎜⎝
T2

p Oλ,1,2 … Oλ,1,11

Oλ,2,1 I1 … Oλ,2,11
⋮

Oλ,12,1

⋮
Oλ,12,2

⋱
…

⋮
I11

⎞⎟⎟⎟⎟⎠
,

where T2
p is defined the same as earlier; 11 identity matrixes, I1,… , I10, and I11, are set on the diagonal of T2

p,DVA, and
132 other matrixes, in symbols of Oλ, * , * in T2

p,DVA, are zero matrixes with appropriate dimensions. The matrix Q2
p,DVA is

defined as

Q2
p,DVA =

⎛⎜⎜⎜⎜⎝
Q2

p
Op∗1
⋮

Op∗11

⎞⎟⎟⎟⎟⎠
,

where Q2
p, 6× 5 dimensions, is defined the same as earlier; 11 matrixes, Op∗1,… , Op∗11, are zero matrixes with 6× 5

dimensions.

Extended Block Matrix for CMIRTDVB

The structure of T2
DVB, for the model with demographic variables incorporated (2PL CMIRTDVB), is a 459× 145 block

matrix, that is, with (90+ 270+ 99)× (54+ 54+ 37) dimensions. Thus 145 parameters need to be estimated for the model;
the parameter vector of the linear model 𝛃1

DVB and the offset vector o2
DVB both have 459 elements. The vector o2

DVB has
456 zero elements, except o394 = o396 = o399 = − 0.5.

The matrix blocks T2
τ and T2

ad are the same; T2
λ,DVB is an extended block matrix with auxiliary information

added; therefore, for three test waves, each of the 10 dummy DVs in Table 1 is coded as a 3× 3 identity matrix
I1,… , I9, and I10,

T2
λ,DVB =

(
T2

p,DVB Oλ∗12

Oλ∗21 Q2
p,DVB

)
with dimensions (33+ 66)× (32+ 5). The matrix

T2
p,DVB =

⎛⎜⎜⎜⎜⎝
T2

p Oλ,1,2 … Oλ,1,10

Oλ,2,1 I1 … Oλ,2,10
⋮

Oλ,11,1

⋮
Oλ,11,2

⋱
…

⋮
I10

⎞⎟⎟⎟⎟⎠
,

where T2
p is defined the same as earlier; 10 identity matrixes, I1,… , I9, and I10, are set on the diagonal of T2

p,DVB, and
110 other matrixes, in symbols of Oλ, * , * in T2

p,DVB, are zero matrixes with appropriate dimensions. The matrix Q2
p,DVB is

defined as

Q2
p,DVB =

⎛⎜⎜⎜⎜⎝
Q2

p
Op∗1
⋮

Op∗10

⎞⎟⎟⎟⎟⎠
,
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where Q2
p, 6× 5 dimensions, is defined the same as earlier; 10 matrixes, Op∗1,… , Op∗10, are zero matrixes with 6× 5

dimensions.
For CMIRTDVC to CMIRTDVH, based on the demographic included variables, their extended block matrixes with

auxiliary information (T2
λ,DVC to T2

λ,DVH) can be also constructed.
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