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R E S E A R C H R E P O R T

Automated Scoring of Nonnative Speech Using
the SpeechRaterSM v. 5.0 Engine

Lei Chen, Klaus Zechner, Su-Youn Yoon, Keelan Evanini, Xinhao Wang, Anastassia Loukina, Jidong Tao,
Lawrence Davis, Chong Min Lee, Min Ma, Robert Mundkowsky, Chi Lu, Chee Wee Leong, & Binod
Gyawali

Educational Testing Service, Princeton, NJ

This research report provides an overview of the R&D efforts at Educational Testing Service related to its capability for automated
scoring of nonnative spontaneous speech with the SpeechRaterSM automated scoring service since its initial version was deployed in
2006. While most aspects of this R&D work have been published in various venues in recent years, no comprehensive account of the
current state of SpeechRater has been provided since the initial publications following its first operational use in 2006. After a brief
review of recent related work by other institutions, we summarize the main features and feature classes that have been developed and
introduced into SpeechRater in the past 10 years, including features measuring aspects of pronunciation, prosody, vocabulary, grammar,
content, and discourse. Furthermore, new types of filtering models for flagging nonscorable spoken responses are described, as is our
new hybrid way of building linear regression scoring models with improved feature selection. Finally, empirical results for SpeechRater
5.0 (operationally deployed in 2016) are provided.

Keywords Automated speech scoring; automated speech recognition; scoring models; natural language processing; English
assessments

doi:10.1002/ets2.12198

Automated scoring of speech can be seen as a task of artificial intelligence, whereby a computer system assigns a speaking
proficiency score to a digitized spoken response produced in a language assessment by a test taker who is not a native
speaker of the language being assessed or is still a learner. Essentially, the task involves generating a mapping function
from the speech signal to a speaking proficiency score, whereby scores usually generated by human raters are used as the
gold standard to train the system.

Most automated speech scoring systems contain three main components: an automatic speech recognition (ASR) sys-
tem that generates word hypotheses for a given speech sample along with other information, such as the duration of pauses
between words; a set of modules based on digital signal processing and natural language processing (NLP) technolo-
gies that compute a number of features measuring various aspects of speech considered relevant by language assessment
experts (e.g., fluency, pronunciation, grammatical accuracy); and finally, a scoring model that maps features to a score
using a supervised machine learning paradigm.

Numerous significant challenges need to be addressed in automated speech scoring, including but not limited to a large
variation in the speech input characteristics owing to variations in speech proficiency as well as native language (resulting
in substantially higher ASR word error rates [WERs] than what is observed for native speech) or issues with audio quality
related to audio capture, transmission, and environmental effects such as noise or background talk.

In addition to these technical challenges due to data characteristics and ASR performance, it is also not easy to com-
pute measures of speech that both assess valid aspects of speaking proficiency and exhibit a reasonably high empirical
performance when used for speech scoring. Some aspects of spoken proficiency that are highly valued by human raters,
such as content appropriateness and organization of discourse, are very hard to capture with current ASR and NLP tech-
nology; a similar issue is also a challenge for the automated scoring of essays (Quinlan, Higgins, & Wolff, 2009). Finally,
in terms of building a high-performing scoring model that combines the features or measures of speaking proficiency,
several aspects in addition to empirical performance need to be considered when following best practices of the educa-
tional measurement field. These include model interpretability (this usually means a preference toward linear models),

Corresponding author: K. Evanini, E-mail: kevanini@ets.org

ETS Research Report No. RR-18-10. © 2018 Educational Testing Service 1



L. Chen et al. SpeechRaterSM v. 5.0 Engine

feature independence (minimizing collinearities or feature intercorrelations), fairness of the assessment (the automated
scoring system having similar performance across different groups of test takers), and construct relevance (maximizing
the overlap between features and aspects of the speaking construct that should be considered in a scoring model as defined
by assessment experts). The section Hybrid Method of Feature Selection in this report addresses the latter challenge.

Research into the automated scoring of nonnative speech at Educational Testing Service (ETS) started in the early
2000s and resulted in ETS’s automated speech scoring capability, the SpeechRaterSM automated scoring service, whose
scores have been operationally deployed as the sole scores for the TPO™ practice test since 2006 (Zechner, Higgins, Xi,
& Williamson, 2009). This system was the first capability ever used in operation for scoring open-ended, spontaneous
nonnative English, compared to other systems developed around the same time, as well as in the 1990s, which focused on
the automated scoring of highly predictable speech, such as passages read aloud or sentences presented as audio stimuli
and repeated aloud (Bernstein, Moere, & Cheng, 2010).

In the intervening decade, research and development related to the capability of automated scoring of nonnative speech
at ETS has been substantially expanded, with the main focus on adding features to SpeechRater that can measure aspects of
the speaking proficiency construct that were not previously addressed, for example, features related to vocabulary diversity
or grammatical complexity.

While SpeechRater was initially geared only toward scoring nonnative spontaneous speech, over the years, it has also
been used for speaking tasks that are more restricted, for example, in the TEFT™ assessment, which contains highly
predictable as well as moderately predictable tasks (Zechner et al., 2015). For these task types, additional features that can
measure, for example, the accuracy of reading or repeating a sentence or a passage were developed.

Furthermore, the process of building scoring models has been for the most part automatized and streamlined,
allowing for a substantially faster turnaround time when building new scoring models and also allowing for exploring
a large number of model alternatives in a short amount of time. Recent research into using particular versions of linear
regression models that perform shrinkage of feature vector dimensions and preserve construct coverage commensurate
with that of human experts has further allowed us to increase empirical model performance while maintaining a high
degree of model interpretability, an aspect of high importance in the educational measurement field (Loukina, Zechner,
Chen, & Heilman, 2015).

Last, but not least, SpeechRater has grown substantially in functionality, complexity, and size over the years. Two major
rounds of code refactoring were undertaken with the goal of increasing code maintainability and allowing for easier
updates and changes to the code by multiple research scientists and research engineers engaged with the work of automated
speech scoring.

The aim of this research report is first to provide, in the following section, an overview of recent developments in
the area of automated speech scoring in the last decade, then to succinctly summarize and describe the most important
features and feature classes that have been developed and added to SpeechRater in recent years (in the Innovations in
Scoring Features section); to describe the current SpeechRater system, including aspects of its refactored code structure
(in the SpeechRater 5.0 section); and finally, in the Applying SpeechRater 5.0 section, to provide a case study of the current
scoring model building process using SpeechRater for TPO.

Figure 1 provides an overview of the major data-processing steps inside SpeechRater. In addition, we also present a
concise summary of the research activities enabling these steps in the left column and applications in the right column.

Previous Research

Speech Scoring Research in a Nutshell

Because automated speech scoring technology has widespread applications in the language testing and education fields,
many research groups and companies around the world have been conducting research or developing commercial prod-
ucts. There are already comprehensive surveys on this topic. For example, a special issue related to this topic was published
in the journal Speech Communication in 2009 (Eskenazi, Alwan, & Strik, 2009). Eskenazi (2009) summarized various
research endeavors in speech scoring and computer-assisted pronunciation training (CAPT).

In this section, we provide information about several academic research groups and companies that have been active
in speech scoring research and in industry to provide an up-to-date snapshot of the landscape of the entire domain. Note
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R&D Activities SpeechRater Applications

spoken response

- transcribing non-native spoken responses

- building high accuracy ASR systems

- investigating speech and language 

 processing algorithms

Speech processing

- ASR systems

- prosody analysis

- NLP

- speech-to-text conversion

- acoustic analysis

- pronunciation evaluation

- proposing features based on scoring rubric

- investigating feature-extraction algorithms

- implementing feature-extraction steps

Feature extraction

- supporting both

abnormality filtering and

score-prediction tasks

- supporting feedback 

generation

- modeling different types of abnormality 

- filtering tasks (e.g., non-English detection, 

off-topic detection)

- selecting optimal feature sets

- investigating various machine-learning- 

based scoring methods

- training scoring models using big data

-generating model-evaluation reports

- identifying responses with 

technical difficulty (TD)

- cheating prevention

- replacing human rating

- working collaboratively with 

human rating

- checking human rating 

quality

Scoring model

score reporting 

abnormalities

Filtering

model

Figure 1 An overview diagram showing the major data-processing steps within SpeechRater (in the center column), the associated
research activities (in the left column), and potential applications (in the right column).

that the brief survey presented in this section should be treated as a concise summary–in a nutshell–rather than as a
comprehensive literature review.

First, we introduce several research groups in academia that have been consistently conducting research on speech scor-
ing. The Center for Language and Speech Technology (CLST) at Radboud University in the Netherlands is well known for
its long-term research into utilizing speech recognition technology to help language learning. For example, several papers
were published in speech scoring, and these papers (e.g., Cucchiarini, Strik, & Boves, 2000; Strik & Cucchiarini, 1999;
Strik, Truong, de Wet, & Cucchiarini, 2009) have received a considerable number of citations by other scholars. In recent
years, CLST has studied utilizing its pronunciation training technology within a Web-based coaching system (Cucchiarini,
Nejjari, & Strik, 2014) and has utilized a serious game setup for language learning (Strik, Palumbo, & de Wet, 2015).

The Institute for Automated Language Teaching and Assessment (ALTA) is another research agency that develops
automated assessment technology. It is directly funded by Cambridge English Language Assessment with the goal of
improving research in enhancing the linguistic proficiency of English learners and developing technologies to automati-
cally rate both writing and speaking skills. In recent years, an increasing number of publications from ALTA have reported
several advances in both essay and speaking scoring. For example, van Dalen, Knill, and Gales (2015) proposed using a
Gaussian process model to score speaking proficiency.

ETS Research Report No. RR-18-10. © 2018 Educational Testing Service 3



L. Chen et al. SpeechRaterSM v. 5.0 Engine

Globally, utilizing speech technology to assist language learning has become a hot research topic. For example, the
laboratory led by Dr. Meng at the Chinese University of Hong Kong has been actively working on this topic. In 2012, her
group published the first paper to use deep neural network (DNN) acoustic models (AMs) for improving mispronuncia-
tion detection (Qian, Meng, & Soong, 2012).

We now introduce several industry agencies working on speech scoring and CAPT technologies. Besides ETS, several
companies around the world have been carrying out research and product development related to automated speech
scoring. Carnegie Speech provides English pronunciation training tools based on speech recognition technologies, such
as Carnegie Speech Assessment and NativeAccent. The former is a solution for scoring general English speaking skills,
whereas the latter focuses on providing pronunciation training for global enterprises and individual users.

SRI’s eduSpeak SDK (Franco et al., 2010) provides a special speech recognition system for computer-based language
learning and training applications. It can be utilized for building products for foreign language learning, English as a
second language (ESL) training, reading comprehension, and interactive tutoring systems.

Another major player in the speech scoring arena is Pearson’s speech scoring team, under its Knowledge Technology
division. This group can be traced back to the Versant company before Pearson acquired it. Versant developed an auto-
mated speaking assessment deployed on the telephony platform; more details about the Versant speaking assessment can
be found in Bernstein, Moere, et al. (2010). In recent years, Pearson’s speech scoring team has improved their technical
capabilities and applied automated speech scoring within several major Pearson English test products, for example, the
Arizona English Language Learner Assessment, which is the domestic English language learning assessment for the state
of Arizona (Metallinou & Cheng, 2014). Pearson embraced new high-accuracy DNN ASR technology in its speech scoring
research with significantly increased recognition accuracy on nonnative speech. More details on Pearson’s work utilizing
a DNN ASR can be found in Cheng, Chen, and Metallinou (2015).

Leveraging its technical assets in advanced ASR and text-to-speech technologies, Microsoft Research Asia conducted
research on pronunciation evaluation. Hu and colleagues (Hu, Qian, & Soong, 2014; Hu, Qian, Soong, & Wang, 2015)
reported their work introducing the newest DNN ASR technology to provide higher quality pronunciation evaluation.
This pronunciation evaluation technology has been used as an important learning module inside Microsoft’s Bing
Dictionary app.

Last, we mention several start-up companies that have been working on bringing speech scoring technology to new
disruptive language learning and testing products on the mobile platform. Duolingo is a start-up company originating
from CMU. It provides free and paid language learning services through its online and app-based platforms. Recently,
on its Test Center platform, Duolingo pushed out the Duolingo English Test (DET), a computer-adaptive test of general
English language ability with a testing fee of US$50. The Test Center platform is based on mobile devices and can utilize
different sensors, such as the microphone and camera, to deliver advanced testing items and to conduct test proctoring.
Using adaptive testing, the total duration of a DET test can be reduced by about half compared to the nonadaptive test,
and it generally lasts approximately 10–25 minutes. The testing results are returned within 48 hours, and a median wait
time is 18.5 hours. Wagner and Kunnan (2015) is an independent and rigorous validity study. It criticizes DET for its high-
profile nature and the fact that there is little publicly available material about its assessment development or the model
of language ability being measured. Similarly, Liulishuo is a start-up company in Shanghai, China. It provides a mobile
app on both iOS and Android platforms to allow English learners (mostly from China) to use their spare time to improve
English skills. ASR-based pronunciation training and feedback have been utilized in Liulishuo’s English practice module.

From the preceding brief survey, we have the following observations. Developing more advanced automated speech
scoring technology is a hot research area, in which many research groups around the world are active. Second, new tech-
nology, such as DNN-based ASR, has been introduced into the speech scoring research area very quickly. Last, new trends
have become clear in this area. From the point of view of learning, game-based and mobile-based products (for utiliz-
ing learners’ spare time) have received more attention. Also, a unified platform holding learning and testing in one place
(mostly on a mobile platform) is an interesting new development.

A Summary of the Improvements Made for SpeechRater

Within ETS, automated speech scoring R&D work can be dated back to 2002. SpeechRater 1.0, released in 2006, was the
first automated scoring system for spontaneous nonnative English spoken responses. Since then, several versions of the
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SpeechRater system have been built to act as the sole scorer for the TPO test. Automated scoring technology allows the
TPO test to provide consistent and timely scoring that is very close to the performance level of human rating.

Xi, Higgins, and Zechner (2008) summarized the SpeechRater 1.0 system. Since the publication of that research report,
there have been many significant improvements. Prior to describing these improvements in the following sections, we list
major improvements here to provide readers with a high-level overview of this report:

• More construct-related features. SpeechRater 1.0 provided the features mostly covering the fluency aspect of the
TOEFL® test scoring rubric. Since then, new features have been developed to provide more comprehensive con-
struct coverage, especially on pronunciation, rhythm, and high-level linguistic skills, for example, vocabulary and
grammar; the section Innovations in Scoring Features in this report provides more detail.

• More accurate automatic speech recognition technology. SpeechRater 1.0 used an ASR system with a relatively high
error rate; in contrast, a new ASR system with much improved recognition accuracy was introduced in SpeechRater
5.0. More details about the updates to the ASR can be found in the section Automatic Speech Recognition System.

• More accurate and comprehensive abnormality detection. When running an assessment, some abnormal spoken
responses may show up for various reasons. For example, audio files may be missing due to technical issues through-
out the entire audio recording, transferring, and storage pipeline. Test takers may provide off-topic responses or
even memorized responses to intentionally cheat the scoring system. Therefore abnormality detection is impor-
tant for maintaining the entire scoring system’s accuracy and validity. However, only limited abnormality detection
was utilized in SpeechRater 1.0. In contrast, SpeechRater 5.0 can detect more types of abnormalities with increased
detection performance. More details on these updates can be found in the section Filtering Models.

• Improved code implementation. In recent years, consistent efforts have been made to systematically update the
SpeechRater code repository. These efforts have improved code quality, and the updated code repository of
SpeechRater 5.0 is easy to maintain and expand.

• More advanced model building. The scoring model plays an important role in the entire SpeechRater system. There-
fore the methods and tools for building accurate scoring models meeting various psychometric criteria have become
a focus of our team’s research. As a result, many major improvements have been made in this direction. For example,
in SpeechRater 1.0, feature selection and regression model parameters were determined manually by experts. This
has been updated to a more efficient and accurate hybrid model-building process that jointly utilizes both a data-
driven approach and human expertise. More details on these updates can be found in the section Hybrid Method
of Feature Selection.

• More data. We have been utilizing the power embedded in ample-sized data sets. Compared to the data sets used in
SpeechRater 1.0, a larger data set that was double-scored completely was used in SpeechRater 5.0. In particular, to
train the scoring model, a sizable number of prescored responses is required, and test takers’ profiles are expected
to be close to what will be met in real tests. Therefore, instead of using the data set collected in 2006 for building
SpeechRater 1.0, a larger and more recent set of TPO responses has been used for building scoring models. These
responses were obtained in 2012, and double human ratings were provided by trained raters. This data set contains
a total of 6,000 TPO responses from 1,000 test takers.

Innovations in Scoring Features

In this section, we introduce several groups of new features that have been investigated and proposed in recent years.
These features help to increase the construct coverage compared to what we achieved in the SpeechRater 1.0 system, as
described in Xi et al. (2008). Each group of new features is discussed in a separate subsection following a standard structure
to ease the reader’s understanding. The presentation structure contains (a) introduction and related work, (b) methods
(describing the procedures of how to extract this group of features), (c) evaluation (recapping the experimental results in
corresponding publications), and (d) optional discussion.

Note that we report on the evaluation results of the features in the following manner: The evaluation section recaps the
findings with respect to these new features in their original publications; later, a more recent systematic evaluation using
the tools and data sets for developing SpeechRater 5.0 is reported in the section Feature Correlations.

The main metric we use to evaluate feature performance is correlations with human holistic scores. While this is a good
first indicator in terms of how “useful” a certain feature may be to measure spoken proficiency, additional, more detailed
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evaluations of features, for example, comparing their internal representations and derived values with human annotations,
may yield deeper insights into the strengths and weaknesses of particular speech features. Since holistic scores are evalu-
ating a large set of areas related to speaking proficiency (such as fluency, intonation, vocabulary complexity, grammatical
accuracy, content, and discourse) but individual features only measure a small aspect of the speaking construct, ideally,
human scores based only on the same narrow aspect of speaking proficiency would be obtained and also used for feature
evaluations. However, in practice, it is quite difficult for human raters to focus their scoring on a very narrow aspect of
speech, and additionally, it turns out that oftentimes the measurement of various aspects of spoken proficiency are highly
correlated with each other, resulting in little additional information obtained from this approach (Xi, 2007).

Utilizing Structural Events

Introduction and Related Work

Disfluencies have been considered an important key to understanding the sentence planning process, and researchers
in psycholinguistic and second language acquisition (SLA) have actively investigated characteristics of disfluencies to
understand L1 and L2 speakers’ sentence planning. Boomer (1965) and Bock and Levelt (1994) found that disfluencies can
be classified into groups according to their locations within utterances. There are two groups, and each group has a different
function. Disfluencies that occurred at clause boundaries (hereinafter boundary disfluencies) serve as sentence planning
time, whereas disfluencies that occurred within clauses (hereinafter within-clause disfluencies) occur when speakers have
problems in sentence generation, such as failures in lexical retrieval.

In ESL research, Temple (2000) found a strong relationship between within-clause disfluencies and L2 speaker profi-
ciency. Compared to L1 speakers, L2 speakers have reduced lexical and syntactic knowledge and must consciously control
speech because it does not come automatically. Because of these issues, speakers with low proficiency have more prob-
lems during sentence generation, resulting in more frequent within-clause pauses than speakers with higher proficiency
show. More recently, Mizera (2006) showed that the frequency of within-clause disfluencies is more strongly correlated
with human proficiency scores than is the frequency of all disfluencies, including both within-clause and boundary dis-
fluencies. A combination of utterance structure and disfluency profile can more accurately estimate speakers’ proficiency
levels.

Furthermore, ESL researchers have developed various quantitative measures based on the frequency and distribution of
disfluencies and have used them in estimating L2 learners’ oral proficiency. For instance, Lennon (1990) and Riggenbach
(1991) found strong correlations between proficiency levels and features such as filled pauses per sentence and percentage
of T-units followed by pauses. These features have been used since the beginning of automated speech scoring systems
(e.g., Cucchiarini, Strik, & Boves, 2002; Zechner et al., 2009). In particular, Zechner et al. extracted these disfluency fea-
tures in a fully automated manner. Given a spoken response, the automated scoring system calculated the frequency and
duration of disfluencies (e.g., “uh,” “um,” and silent pauses) from the transcription created by a speech recognition system
and generated multiple disfluency-related features. However, the features used in Zechner et al. were limited to relatively
simple features; the study did not cover important aspects such as sentence structure. To address this gap, we developed
a new set of features based on both disfluency profile and utterance structure.

Methods

First, we detected a set of structural events (SEs) from spoken responses. The SEs included two different types of events:
clause boundaries and disfluencies. The disfluencies were further classified into edit disfluencies, silent pauses, and fillers.
Silent pauses and fillers were detected from ASR output directly, while clause boundaries and edit disfluencies were
detected using an automated model trained on the similar body of nonnative speakers’ spoken responses (a total of 660
responses) with manual SE annotations. The model was based on a maximum entropy model using both lexical features
(word bigrams, part of speech [POS] tag bigrams) and pause features. It was evaluated using the held-out annotation data
comprising 330 spoken responses. The model achieved an F-score of .60 in clause boundary detection and an F-score of
.30 in edit disfluency detection. The low accuracy in disfluency detection was expected because systems based on state-
of-the-art speech technology, such as Liu (2004), achieved low accuracy even on native speakers’ speech. The details of
the experiments can be found in L. Chen and Yoon (2011, 2012).
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Next, we generated the disfluency features using ASR output and the output of the automated SE detection model. All
disfluencies were classified into two groups: within-clause pause/disfluency or clause-boundary pause/disfluency. Finally,
the following five features were calculated: (a) ipcount, the number of edit disfluencies; (b) clausecount, the number of
clause boundaries detected by the automated detection system; (c) IPC, the number of disfluencies per clause; (d) IPW,
the number of disfluencies per word; and (e) longSilRatio, the proportion of long within-clause silence to all within-clause
silence.

Evaluation

As reported in L. Chen and Yoon (2011), several features described in this section had significant correlations with
holistic human scores. The best performing feature was longSilRatio, and the Pearson correlation coefficient with human
scores was −.36. In the section Feature Correlations, the evaluation results of this group of features in SpeechRater 5.0
are presented.

Discussion

In L. Chen and Yoon (2011), SE detection using speech transcriptions shows generally good performance, and the features
derived from the detected SEs show promising usefulness for predicting speaking proficiency levels. However, when using
the noisy ASR output directly, as shown in L. Chen and Yoon (2012), disfluency detection was negatively impacted more
than clause boundary detection was. Consequently, the features related to clause boundary and silent pauses show small
reductions in correlations with human-judged scores, for example, longSilRatio.

Improved Pronunciation Features Measuring Spontaneous Nonnative Speech

Introduction and Related Work

Pronunciation measurement is one of the most important subtasks in the automated speech scoring task. A seminal
approach, goodness of pronunciation, was proposed by Witt (1999) for measuring read-aloud pronunciation based on
hidden Markov model (HMM) AM log likelihood. This approach and its extended version have been widely used in
measuring read-aloud pronunciation (e.g., Cucchiarini, Strik, & Boves, 1997; Franco et al., 2000; Hacker et al., 2005;
Neumeyer, Franco, Digalakis, & Weintraub, 2000). Moustroufas and Digalakis (2007) supported language teachers in
using their own reading texts rather than the predefined ones. This improvement gives language teachers more freedom
to use any reading text that helps students’ learning.

A limited number of studies have been conducted on assessing speaking proficiency based on spontaneous speech.
Zechner and Bejar (2006) presented a system to score nonnative spontaneous speech using features derived from the
recognition results. The same technology was used in SpeechRater 1.0 for assessing pronunciation quality. However,
there are some issues with the method of extracting pronunciation features in the previous research (Zechner & Bejar,
2006; Zechner, Higgins, & Xi, 2007). For example, the AM that was used to estimate the likelihood of a phoneme being
spoken matches the acoustic properties of nonnative speech. However, for such measurements, an AM trained on native
speech data needs to be utilized for more accurate and objective computation. Furthermore, other important aspects of
pronunciation, for example, vowel duration, were not utilized as a feature in SpeechRater 1.0. In addition, likelihoods
estimated on nonwords (such as silences and fillers) that were not central to the measurement of pronunciation were
used in the feature extraction.

Method

Figure 2 depicts our new method for extracting an expanded set of pronunciation features in a more meaningful way.
We used two different AMs for pronunciation feature extraction. First, we used an AM optimized for speech recognition

(typically an AM adapted to nonnative speech so that it better fits nonnative speakers’ acoustic patterns) to generate word
hypotheses; then we used another AM optimized for pronunciation scoring (typically trained on native or near-native
speech so that it is a good reference model reflecting the expected speech characteristics) to force-align the speech signal
to the word hypotheses and to compute the likelihoods of individual words being spoken and the durations of phonemes;
finally, new pronunciation features were extracted based on these measurements.
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Figure 2 Two-stage pronunciation feature extraction.

Table 1 Notation Used for Pronunciation Feature Extraction

Variable Meaning

L(xi) The likelihood of word xi being spoken given the observed audio signal
ti The duration of word i in a response
Ts The duration of the entire response

T
n∑

i=1
ti, the summation of the duration of all words, where T ≤ Ts

n The number of words in a response
m The number of letters in a response

R m
Ts

, the frequency of letters (as the rate of speech)

vi Vowel i
Nv The total number of vowels
Pvi

The duration of vowel vi

P The average vowel duration (across all vowels in the response being scored)
Dvi

The standard average duration of vowel vi (estimated on a native speech corpus)
D The average vowel duration (of all vowels in a native speech corpus)

Svi
∣ Pvi

− Dvi
∣, the vowel duration deviation vi (measured as the absolute value of the difference between the duration of

vowel vi and its standard value)

Snvi
∣ Pvi

P
− Dvi

D
∣, the normalized vowel duration deviation vi (measured as the absolute value of the normalized difference

between the duration of vowel vi and its standard value)

Some notation used for computing the pronunciation features are listed in Table 1. On the basis of this notation,
the proposed new pronunciation features are described in Table 2. To address the limitations of previous research on
automated assessment of pronunciation, our proposed method has achieved the following improvements: (a) using the
two-stage method to compute HMM likelihoods using a reference AM trained on native and near-native speech, (b)
expanding the coverage of pronunciation features by using vowel duration deviations from native speakers’ norms, and
(c) using likelihoods on the audio portions that are recognized as words and applying various normalizations.

Evaluation

In the study described by L. Chen, Zechner, and Xi (2009), two AMs were created using the speech recognizer, utilized in
SpeechRater 1.0, which is a gender-independent fully continuous HMM recognizer. The AM used in the recognition was
trained on approximately 30 hours of nonnative speech from the TPO test. For language model (LM) training, a large
corpus of nonnative speech (approximately 100 hours) was used and mixed with a large general-domain LM (trained from
the Broadcast News corpus of the Linguistic Data Consortium [LDC]; Graff, Garofolo, Fiscus, Fisher, & Pallett, 1997).
In the pronunciation feature extraction process depicted in Figure 2, this AM was used to recognize nonnative speech to
generate the word hypotheses. The AM used in the forced alignment was trained on native speech and high-scoring non-
native speech. It was trained as follows: Starting from a generic recognizer, which was trained on a large and varied native
speech corpus, we adapted the AM using batch-mode MAP adaptation. The adaptation corpus contained approximately
2,000 responses with high scores in previous TPO tests and spoken responses to TOEFL questions collected from native
speakers. In addition, this AM was used to estimate standard norms of vowels as described in Table 1.
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Table 2 A List of Proposed Pronunciation Features

Feature Formula Meaning

L1

n∑

i=1
L
(

xi
)

Summation of likelihoods of all the individual words

L2 L1/n Average likelihood across all words

L3 L1/m Average likelihood across all letters

L4 L1/T Average likelihood per second

L5

n∑

i=1

L(xi)
ti

n
Average likelihood density across all words

L6 L4/R L4 normalized by the rate of speech

L7 L5/R L5 normalized by the rate of speech

S

Nv∑

i=1
Svi

Nv
Average vowel duration deviations

Sn

Nv∑

i=1
Snvi

Nv
Average normalized vowel duration deviations

The evaluation result in L. Chen et al. (2009) showed that new features provide promising measurement of pronuncia-
tion. The new pronunciation features, that is, L6 and L7, have |r| values ranging around .44. In addition, Sn, a new feature
representing the vowel production aspect of pronunciation, shows a relatively high correlation with human holistic
scores. This suggests that our new pronunciation feature set has an expanded coverage of pronunciation. Regarding the
comprehensive evaluation results when using the updated, more accurate ASR in SpeechRater 5.0, please see the section
Feature Correlations.

Discussion

When developing accurate and valid automated scoring systems, in addition to considering features that are highly cor-
related with human-rated scores, we need to pay attention to the features’ construct relevance. This belief has guided us
in designing this new group of features that measure pronunciation. The method of using one AM optimized for speech
recognition and another AM optimized for pronunciation evaluation is well motivated theoretically (Witt, 1999; Xi et al.,
2008). The results support the linkage of the features to the construct of pronunciation and their utility for use in a scoring
model to predict human holistic judgments.

Rhythm Features

Introduction and Related Work

Several studies have investigated whether different languages can be classified into different groups (typically stress timed
vs. syllable timed) based on rhythmic properties, such as variability of segmental and syllabic durations in an utterance
(Dellwo, 2006; Grabe & Low, 2002; Ramus, Nespor, & Mehler, 2000). While more recent experimental studies suggest
that there are not clear categorical differences between languages, there is evidence that different languages have different
characteristic patterns (Loukina, Kochanski, Rosner, & Keane, 2011; White, Mattys, & Wiget, 2012). These findings have
motivated investigations into rhythmic differences between native speech and nonnative speech under the hypothesis
that rhythmic patterns from a speaker’s L1 may carry over into his or her L2 speech. Several studies along these lines
have found rhythmic differences between native English speech and L2 English produced by speakers from a variety
of L1 backgrounds, including Spanish and Dutch (White & Mattys, 2007), Cantonese and Mandarin (Mok & Dellwo,
2008), French (Tortel & Hirst, 2010), and Japanese (Tepperman, Stanley, Hacioglu, & Pellom, 2010). In addition, some
research studies have employed rhythm metrics to score the English speaking proficiency of nonnative speakers. Most of
these studies have investigated read-aloud speech produced by speakers from a uniform L1 background, including Korean
(Jang, 2009), Spanish (Nava, Tepperman, Goldstein, Zubizarreta, & Narayanan, 2009), and Mandarin (L. Chen & Zechner,
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Table 3 Summary of Rhythm Metrics

Metric Description

percentX Percentage of speech consisting of X intervals
stddevX Standard deviation of X intervals
varcoX ΔX× 100/mean(X)
rpviX Raw Pairwise Variability Index:

n−1∑

k=1
∣ xk+1 − xk ∣ ∕n − 1

npviX Normalized Pairwise Variability Index:

100 ×
n−1∑

k=1
∣ xk+1 − xk∕

(
xk+1 + xk∕2

)
∣ ∕n − 1,

where k is the index of linguistic intervals ranging from 1 to n − 1

Note. The metrics are calculated using durations of three different types of linguistic intervals: X ∈ {v= vowels, c= consonants,
s= syllables} (except for %X, which is not meaningful for syllables).

2011). In addition, Lai, Evanini, and Zechner (2013) investigated spontaneous speech produced by speakers from a wide
range of L1 backgrounds in the context of the TPO practice test. In general, these studies have demonstrated that nonnative
speakers tend to have different rhythmic patterns of segmental and syllabic duration compared to native speakers and that
these differences can be beneficial for automated speaking proficiency assessment. These findings motivated the addition
of rhythm features to SpeechRater.

Method

Table 3 summarizes the rhythm metrics that were added to SpeechRater based on the findings from the studies described
in the preceding introduction. These metrics are calculated using durations of consonantal (c), vocalic (v), and syllabic
(s) intervals (except for percentX, which is defined for vowels and consonants but not for syllables).

Evaluation

As reported in Lai et al. (2013), several of the rhythm features described in this section had significant correlations with
holistic human scores for spontaneous spoken responses captured in the TPO practice test. The highest performing fea-
ture was rpvis, with a correlation of −.44; this indicates that nonnative speakers who produce more uniform syllable
durations throughout an utterance tend to receive higher scores. Additional performance results for the rhythm features
are presented in the section Feature Correlations.

Discussion

Most studies of L2 rhythm have focused on patterns of duration across an utterance, which motivated the selection and
addition to SpeechRater of duration-based rhythm features. However, some studies have also considered other acous-
tic properties that contribute to the perception of a nonnative speaker’s rhythm; in particular, He (2012) and Selouani,
Alotaibi, Cichocki, Gharsellaoui, and Kadi (2015) found systematic rhythmic differences between L1 and L2 speech based
on patterns of average intensity values across linguistic intervals, similar to the duration-based rhythm metrics per-
centX, stddevX, varcoX, and rpviX. Future research will address whether these additional types of features can improve
SpeechRater’s automated assessment of nonnative rhythm in addition to the duration-based features.

Vocabulary Features

Introduction and Related Work

Vocabulary usage comprises two subconstructs: sophistication and precision. The vocabulary features described in this
section are designed to measure lexical sophistication. Vocabulary sophistication features assess the degree to which a
varied and large vocabulary is used (Laufer & Nation, 1995).

Researchers from SLA have developed many quantitative features to assess lexical sophistication (e.g., Daller, Van Hout,
& Treffers-Daller, 2003; Vermeer, 2000). These features can be grouped into one of two groups: (a) quantitative or (b)
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Table 4 List of Vocabulary Features

Feature name No. features Feature type Description

TOP1 ... TOP6 6 List-rel Relative frequency of word types in reference vocabulary list as a %
of total types

avgRank 1 Rank Average word rank (“rank” is the ordinal number of words in a list
that is inverse sorted by word frequency)

avgFreq 1 Freq Average word frequency
logFreq 1 Freq Average log word frequency (the logarithm of the word frequency)

qualitative. The features in the first group merely assess the number of words known; they do not make any distinctions
among them. The most representative feature in this group is type–token ratio. It has been widely applied but is unstable
owing to its sensitivity to the length of language samples used in calculating the feature. The features in the second group
take into account distinctions among words, such as their parts of speech or difficulty levels. The lexical frequency profile
(LFP) as described in Laufer and Nation (1995) is a representative feature in this group. LFP uses a vocabulary profile for a
given body of written text or spoken utterances and gives the percentage of words used at different vocabulary frequency
levels (such as from the 1,000 most common words, the next 1,000 most common words, etc.), where the words themselves
come from a vocabulary list that is precompiled based on frequencies of actual usage in corpora. Laufer and Nation have
shown that LFP is a strong measure in assessing the written proficiency levels of ESL learners. However, limited studies
have explored the relationship between vocabulary features and oral proficiency level from spoken responses.

Method

Table 4 summarizes LFP-based vocabulary features that were added to SpeechRater 5.0. First, the frequency of each vocab-
ulary item was calculated from the TOEFL Academic Language Corpus covering the variety of language used in academic
situations. We used frequency to estimate the difficulty of each vocabulary item; low-frequency items were considered to
be difficult. Words were classified into seven groups based their frequency: top 100 words (TOP1), top 101–300 words
(TOP2), top 301–700 words (TOP3), top 701–1,500 words (TOP4), top 1,501–3,000 words (TOP5), and over 3,001 words
(TOP6). Next, we generated the four types of features shown in Table 4. The details of the feature generation process can
be found in Yoon, Bhat, and Zechner (2012).

Evaluation

As shown by Yoon et al. (2012), the best performing features are avgFreq followed by TOP1. The feature evaluation result
from SpeechRater 5.0 is presented in the section Feature Correlations.

Discussion

The empirical performance of LFP features was strongly influenced by the length of input. In particular, the proportion of
low-frequency word types fluctuated largely even within the same speaker when each response was composed of a small
amount of speech. This large variation within a speaker may decrease the correlation with oral proficiency scores. In addi-
tion, there was a strong impact on feature values by task types. Given two different task types—tasks that elicited opinions
about familiar topics and tasks that elicited a summary or opinion about reading passages or listening stimuli—responses
to the latter type tended to include more low-frequency words than responses to the former type. To address this task-type
impact, a special approach (e.g., task-type-specific models) may be required in future research.

Grammatical Complexity Features

Introduction and Related Work

Grammatical complexity, the mastering of a variety of syntactic structures, is an important aspect of spoken proficiency
assessed by language tests, in particular, when such tests elicit spontaneous rather than predictable speech. Research in
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SLA has identified a number of different measures of syntactic complexity and has also looked at how well they correlate
with oral proficiency scores by human raters (Broussard, 2001; Iwashita, 2010; Iwashita, Brown, Mcnamara, & Hagan,
2008; Lu, 2010; Ortega, 2003). However, the focus of such research has been predominantly on written production using
manual annotation of such measures.

In recent years, several research groups have started also to explore the use of measures for evaluating syntactic com-
plexity in oral production (Bernstein, Cheng, & Suzuki, 2010; Bhat & Yoon, 2015; M. Chen & Zechner, 2011; Yoon &
Bhat, 2012). Most measures used here are inspired by those used previously for analyzing the grammatical complexity
of written language, but some more robust measures based on POS were added to this set that address specific issues of
the automated scoring of spontaneous speech, for example, the issue of words incorrectly recognized by the ASR systems,
which are the first step of automated speech scoring systems (Yoon & Bhat, 2012).

In general, computing grammatical measures based on nonnative spontaneous speech is very challenging, not only
because of the aforementioned errors by ASR systems, but also because of speech disfluencies, such as hesitations, filled
pauses, or false starts; various errors by the speaker; and the need to predict clause boundaries automatically. (ASR systems
do not generate any interpunctuation in their output.) For these reasons, it is advantageous to use measures that are robust
and not too complex to compute. We also note here that in contrast to the research on the automated scoring of essays,
very little research has been done related to grammatical error detection in nonnative speech. The features we use in
SpeechRater also focus, for the most part, on grammatical complexity rather than on grammatical accuracy.

Method

SpeechRater currently uses three groups of features measuring grammatical complexity:

• Part-of-speech-based features. This set of features assesses the range and sophistication of grammatical expressions
based on their similarity with a corpus of learners’ speech. The features are based on shallow processing (POS
tagging) and are more robust against ASR errors. The features measure vector similarities (dot products) between
samples of responses for each score level (1–4) and a particular ASR hypothesis generated from a spoken response
(Bhat & Yoon, 2015; Yoon & Bhat, 2012). (These vectors contain frequencies of POS bigrams.) Aside from the
similarity measures for each score level (poscva1, … , poscva4), a fifth feature (poscvamax) returns the score level
with the maximum similarity score.

• Clause-based features. This set of features looks at the occurrence and frequency of certain clauses in the ASR hypoth-
esis (M. Chen & Zechner, 2011). Clause-based features are related to the following two clause types: coordinate
clauses (coord) and dependent clauses (dep).

• Phrase-based features. This set of features looks at the frequency of certain syntactic phrases in the ASR hypothesis
(M. Chen & Zechner, 2011). In addition to basic syntactic constituent phrases—noun phrases (NPs), prepositional
phrases (PPs), and verb phrases (VPs)—SpeechRater also computes statistics on coordinate phrases (coord), com-
plex nominal phrases with embeddings (CX_Nominals), and dependent infinitives (Dep_Inf).

Clause-based and phrase-based features are computed using a pipeline approach, whereby the ASR hypothesis is first
cleaned up (e.g., filler words are removed), then automatically segmented into clauses, then syntactically parsed using
the Stanford parser (Klein & Manning, 2003), and finally processed using a script to extract syntactic structures from the
output of the parser.

A similar process is used for computing POS-based features: The cleaned ASR hypothesis is tagged for POS. Next,
features are generated by calculating similarity with a POS-based vector space model trained from a large collection of
learners’ spoken response transcriptions.

Evaluation

In our previous work (L. Chen & Zechner, 2011), we found a few features with correlations with human holistic scores in
the range of .3–.4, for example, features measuring the mean length of a sentence, the number of fragments, the number
of dependent infinitives, or the number of prepositional phrases. As for POS-based features, the highest correlations
previously reported were above r = .4 for a feature trained on responses for score level 4 using POS bigrams (Bhat & Yoon,
2015). The section Feature Correlations presents the performance of these features in the SpeechRater 5.0 system.
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Discussion

As we pointed out earlier, measuring syntactic complexity in nonnative speech is very challenging because errors can be
introduced at all stages of the feature computation process: the ASR system, removal of disfluencies from the ASR hypoth-
esis, POS tagging, the assignment of clause boundaries, syntactic parsing, and structure extraction. However, despite all of
these challenges, it is encouraging to see that at least for a subset of grammar features, reasonable performance (correlation
with human scores) can be achieved.

For future work, we plan, on the one hand, to improve and refine the various components of the feature computation
pipeline and, on the other hand, to explore additional features that exhibit promise for measuring the syntactic complexity
of nonnative speech.

Content Features

Introduction and Related Work

The appropriateness of a response’s content in completing the specified speaking task is typically an important compo-
nent of the human scoring criteria for spontaneous speech, as exemplified by the following description of high-scoring
responses in the topic development category of the TOEFL Speaking scoring rubrics for the integrated tasks: “The response
… conveys the relevant information required by the task. It includes appropriate detail.” However, features addressing
content appropriateness were not included in early versions of SpeechRater, primarily because of the relatively low accu-
racy of the ASR engine and the associated difficulty in extracting meaningful content features. With the inclusion of
a more accurate ASR engine (see the section Automatic Speech Recognition System for details), research was initiated
to investigate the performance of different types of content features. This section describes features based on standard
word-level vector space models (Salton, Wong, & Yang, 1975), which have been used to extract effective content appro-
priateness features—referred to as content vector analysis (CVA) features—in the context of automated essay scoring
(Attali & Burstein, 2006). The basic motivation behind these features is to use a data set of human-scored responses to
train CVA models at each score point and then compare the similarity between the content in a test response to these
models to calculate the content features. After presenting this basic approach, the Discussion section briefly mentions
some additional approaches that have been investigated recently.

Method

To develop the CVA features, lexical vectors containing term frequencies weighted by inverse document frequency values
(tf-idf) were trained for a set of responses from each of the score points represented in the human scoring rubrics (this
represents a 1–4 range for TOEFL Speaking). For each of the score points, s, the tf-idf value for each word, i, in the vector
was therefore calculated as follows:

tf-idf i,s = tf∗i,s log
(

N∕Ni
)
, (1)

where tfi, s is the frequency of the word i across all responses at score point s, N is the total number of responses in the
corpus used to calculate the idf values, and Ni is the total number of responses containing word i across all score points
in the idf corpus. Then, for a given spoken response, the tf-idf value for each word in the vector was calculated as follows:

tf-idf i = tf∗i log
(

N∕Ni
)
, (2)

where tfi is the frequency of the word i in the response. Then, to calculate the content features, the cosine similarity score
between the vector for the response and each of the CVA models is computed. These cosine similarity scores are then used
directly as features to predict proficiency scores and are referred to as follows: coss for s ∈ 1, … , 4. An additional feature
was calculated by comparing all of the cosine similarity scores to the models for the five score points for a given response
and taking the score of the model that has the highest similarity; this feature is referred to as max_cos.

The CVA models can be trained either by using human transcriptions or the output of the ASR engine. Using the
transcriptions provides the most accurate representation of the content of the response; however, this approach leads to
a mismatch between the CVA models and the CVA vector for a test response, because the human transcription is not
available in a live deployment. Therefore results using both approaches are presented in the following section.
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Table 5 Correlations With Human Scores for Two Content Vector Analysis Content Features on Responses to TOEFL Integrated and
Independent Prompts

Prompt type CVA model source max_cos cos4

TOEFL independent Transcription 0.37 n.s.
ASR 0.30 n.s.

TOEFL integrated Transcription 0.50 0.51
ASR 0.49 0.53

Note. CVA= content vector analysis.

Evaluation

Separate CVA models were trained using responses from a set of 8 TOEFL independent and 16 TOEFL integrated prompts
and evaluated on responses to the same prompts (for further details about these experiments, see Xie et al., 2012). The
results consistently showed that the cos4 feature, in which the content of the test response is compared to the CVA model
based on responses with the highest human score, outperformed the other coss features. Table 5 presents the performance
of two CVA features, cos4 and max_cos, in terms of correlations with human scores for CVA models trained using both
human transcriptions and ASR output.

As shown in Table 5, the performance of the CVA features was higher on the responses to TOEFL integrated prompts
than to TOEFL independent prompts, and the cos4 feature does not even have a significant correlation with human scores
for the TOEFL independent prompts. This result is not surprising, because the TOEFL independent prompts are not source
based, and the content of high scoring responses is therefore expected to exhibit much more variation, thus reducing the
effectiveness of the CVA models. The results in Table 5 also demonstrate that the CVA features are robust to ASR errors:
The performance of the max_cos and cos4 features changes very little on TOEFL integrated responses when ASR output
is used to train the CVA models compared to when human transcriptions are used, despite the fact that the ASR WER on
this set was 33%.

Discussion

In addition to the relatively straightforward method of using CVA models and cosine similarity calculations to produce
the content features, additional approaches have been investigated for scoring spontaneous speech. Some of these include
using latent semantic analysis (LSA; Metallinou & Cheng, 2014), pointwise mutual information (Xie, Evanini, & Zechner,
2012), and the ROUGE summarization evaluation metric (Lin & Rey, 2004; Loukina, Zechner, & Chen, 2014).

Finally, it should be emphasized that these approaches all assume the existence of human-scored responses to the same
prompts that can be used to train the content models. In the absence of such data, for example, when new prompts are first
deployed in an assessment, alternative approaches for assessing the content are required. One general approach has been
to compare the content in the test response with elements from the stimulus materials presented to the test taker in the
source-based task, such as a listening passage or an article. This approach has resulted in some features that have significant
correlations with human scores but that do not perform as well as the features calculated using models trained on human-
scored responses; Evanini, Xie, and Zechner (2013) have presented results using this type of prompt-based feature for
spoken responses, and Beigman Klebanov, Madnani, Burstein, and Somasundaran (2014) have presented results using
prompt-based features for essays.

Discourse Coherence Features

Introduction and Related Work

Discourse coherence related to topic development has always been used as a key metric in human scoring rubrics for
various assessments of spoken language. However, very little research has been done to assess a speaker’s coherence in
automated speech scoring systems. To address this, we present a corpus of spoken responses that has been annotated
for discourse coherence quality, and we explore a set of surface-based features to capture the use of nouns, pronouns,
conjunctions, and discourse connectives in a spoken response.
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Methods for automatically assessing discourse coherence in text documents have been widely studied in the context
of applications such as natural language generation, document summarization, and assessment of text readability. For
example, Foltz, Kintsch, and Landauer (1998) measured the overall coherence of a text by utilizing LSA to calculate the
semantic relatedness between adjacent sentences. Barzilay and Lee (2004) introduced a model for the document-level
analysis of topics and topic transitions based on HMMs. Barzilay and Lapata (2005, 2008) presented an approach for
coherence modeling focused on the entities in the text and their grammatical transitions between adjacent sentences and
calculated the entity transition probabilities on the document level. Pitler, Louis, and Nenkova (2010) provided a summary
of the performance of several different types of features for automated coherence evaluation, including features based on
cohesive devices, measurements of adjacent sentence similarity, Coh–Metrix features (Graesser, McNamara, Louwerse,
& Cai, 2004), word co-occurrence patterns, and entity grids (Barzilay & Lapata, 2008).

In addition to studies on well-formed text, researchers have also addressed coherence modeling on text produced
by language learners, which may contain multiple spelling, vocabulary, and grammar errors. Utilizing LSA and random
indexing methods, Higgins, Burstein, Marcu, and Gentile (2004) measured the global coherence of students’ essays by
calculating the semantic relatedness between sentences and the corresponding prompts. In addition, Burstein, Tetreault,
and Andreyev (2010) combined entity-grid features with writing quality features produced by an automated essay assess-
ment system to predict the coherence scores of student essays. Recently, Yannakoudakis and Briscoe (2012) systematically
analyzed a variety of coherence modeling methods within the framework of an automated assessment system for non-
native free text responses and indicated that features based on incremental semantic analysis, local histograms of words,
POS co-occurrence patterns in adjacent sentences, and word length were the most effective.

In contrast to these previous studies on written texts, Hassanali, Liu, and Solorio (2012) investigated coherence mod-
eling for spoken language in the context of a story retelling task for the automated diagnosis of children with language
impairment. They annotated transcriptions of children’s narratives with coherence scores as well as markers of narrative
structure and narrative quality; furthermore, they built models to predict the coherence scores based on Coh–Metrix
features and the manually annotated narrative features. The study of Wang, Evanini, and Zechner (2013) differed from
this one in that it dealt with free spontaneous spoken responses provided by students at a university level; these responses
therefore contained more varied and more complex information than the child narratives did.

Data and Annotation

The data used in this study were drawn from the TOEFL iBT®test and comprised 1,440 spoken responses from one test
form (240 responses from each item). The spoken responses were all manually transcribed, and the average number of
words per response was 113.8 (SD= 33.6), and the average number of sentences was 4.8 (SD= 2.1).

The coherence annotation guidelines used for the spoken responses in this study were modified based on the anno-
tation guidelines developed for written essays described by Burstein et al. (2010). According to these guidelines, expert
annotators provided each response with a score on a scale of 1–3. The three score points were defined as follows: 3= highly
coherent (contains no instances of confusing arguments or examples), 2= somewhat coherent (contains some awkward
points in which the speaker’s line of argument is unclear), 1= barely coherent (the entire response was confusing and hard
to follow; it was intuitively incoherent as a whole, and the annotators had difficulty identifying specific weak points). For
responses receiving a coherence score of 2, the annotators were requested to highlight the specific awkward points in the
response. In addition, the annotators were specifically required to ignore disfluencies and grammatical errors as much as
possible; thus they were instructed not to label sentences or clauses as awkward solely because of the presence of disfluent
or ungrammatical speech.

Two annotators first made independent coherence annotations for 600 spoken responses, including 25 samples from
each of the four score levels of speaking proficiency for each of the six test questions. The two annotators achieved a moder-
ate interannotator agreement (Landis & Koch, 1977) of κ = .68 on the 3-point scale of coherence scores. Subsequently, the
same two annotators provided coherence annotations for the remaining 840 responses in the corpus using the following
approach: Each annotator provided a single annotation for 420 responses from three test questions, that is, 35 responses
from each score level for each test question.

To verify the effectiveness of the proposed coherence cues in the assessment of speaking proficiency, we extracted two
types of features based on the human annotations, including the coherence scores and the number of awkward points
identified in responses. These two features are correlated with the holistic proficiency scores for evaluation. The double
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Table 6 Pearson Correlation Coefficient r of Human Coherence Scores and Number of Awkward Points With Holistic Human Scores

r with coherence scores r with awkward points

Double annotation .656 −.626
Single annotation .615 −.597

annotated set received a special treatment: The average coherence scores from two annotators were used, and the union set
of awkward points identified by either annotator on each response was counted. As shown in Table 6, on the 600 double-
annotated responses, the average coherence scores correlate with the proficiency scores at r = .656, and the number of the
union set of identified awkward points correlates at r =−.626, indicating that the assessment of speaking proficiency can
greatly benefit from modeling the coherence cues proposed in this study.

Features and Evaluation

This work1 explored a set of simple features that were designed to capture the use of nouns, pronouns, conjunctions, and
discourse connectives in a test taker’s spoken response, henceforth referred to as surface-based features. For this purpose,
the discourse connective list from the Penn Discourse Treebank (Prasad et al., 2008) was used. Various basic features were
counted, such as the numbers of nouns, pronouns, conjunctions, and discourse connectives (counted based on both word
types and word tokens). The ratios between these counts were also extracted. An evaluation was conducted to examine
the correlations of these features with the averaged coherence scores on the 600 double-annotated responses, and only
features with absolute correlations greater than .1 on both the human transcriptions and the ASR outputs were adopted.

As shown in Table 7, besides the first five features based on word counts, two additional features were designed to
capture the global coherence, which represented the use of conjunctions and discourse connectives across a test response.
To obtain these features, a reference corpus with high-proficiency responses was collected, and then a connective chain
was extracted from each reference response, where only the pronouns, conjunctions, and discourse connectives were
retained and all other words were removed from the response. Given a test response, a similar connective chain can
be also extracted. Then, by comparing the similarity of the test chain with each of the reference chains, the maximum
similarity or the minimum distance can be extracted as a feature to measure the proper use of the connective sequence
in a test response. The following three evaluation metrics were investigated to evaluate the similarity between two chains:
BLEU score (Papineni, Roukos, Ward, & Zhu, 2002), edit distance, and WER.

The reference chains can be built as either item-specific or generic ones: The item-specific references indicate that they
were elicited with the same test question used to get the test response; conversely, generic references were elicited across
multiple different test questions. In this work, the reference samples were extracted from a corpus that was used to train
the speech recognizer in SpeechRater. Approximately 200–260 responses with the highest speaking proficiency scores
were obtained for each test question, and in total, 1,395 responses across six test questions were collected as references. A
preliminary experiment indicated that the BLEU similarity with the item-specific models, that is, connective_chain_bleu,
and the edit distance with the generic models, that is, connective_chain_ed, achieve relatively higher correlations, as
shown in Table 7.

Table 7 Pearson Correlation Coefficients r of Surface-Based Features With the Averaged Coherence Scores, Extracted From the Human
Transcriptions and the Automatic Speech Recognition Outputs Separately

Features Transcription ASR

num_pronouns .204 .186
ratio_pronoun_nountype −.128 −.106
num_conjunctions .174 .209
num_connective_types .381 .352
num_connective_tokens .337 .330
connective_chain_bleu .068 .155
connective_chain_ed .282 .268

Note. ASR= automatic speech recognition.
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Discussion

In Wang et al. (2013), we presented a corpus of coherence annotations for spontaneous spoken responses, and the
analysis of these annotations shows that an automated speech scoring system can benefit from modeling the coher-
ence of spoken responses. On the basis of this finding, one set of surface-based features was employed to model the
discourse coherence of spontaneous speech. In the future, we will continue the work on discourse coherence modeling
of spoken responses, either by predicting the coherence quality scores or by identifying the awkward points. More
importantly, we will attempt to develop more effective discourse-related features that are robust against recognition
errors.

SpeechRater 5.0

Automatic Speech Recognition System

ASR is an essential component in the SpeechRater system. It is used as the first step in SpeechRater for generating infor-
mation used for extracting a large variety of linguistic features that are then combined in a scoring model for a spoken
language assessment. A systematic investigation (Tao, Evanini, & Wang, 2014) showed that the ASR module used within
SpeechRater plays an extremely important role in achieving high performance in the scoring task. The primary ASR
we are currently using within SpeechRater 5.0 is provided by an external vendor. Compared to the ASR system used in
SpeechRater 1.0, the current system has many significant improvements on the ASR technology itself and the size of the
training data.

Because the spoken responses are nonnative spontaneous speech, a two-stage ASR method is developed by which the
spoken responses are first recognized based on the acoustic properties of nonnative speech, and then the speech and the
recognized responses are force-aligned using an AM that reflects the properties of native speech (L. Chen et al., 2009). In
the initial stage, the recognizer uses a highly optimized speaker-independent cross-word triphone HMM with Gaussian
mixture for each state as the AM and a four-gram statistical LM. To obtain the most accurate word hypotheses from
nonnative spontaneous speech, the AM and the LM were trained using a corpus of approximately 800 hours of nonnative
spontaneous English speech collected from the TOEFL iBT assessment. This ASR engine achieved a WER of 28.5% on
the evaluation partition of the corpus. In the forced-alignment stage, the nonnative spontaneous speech is force-aligned
to the word hypotheses recognized from the previous stage using another AM trained on native English speech. To
accommodate both North American and British accents, two LDC speech corpora, Broadcast News (Graff et al., 1997)
and Cambridge Read News (Robinson et al., 1995), were combined to train the AM. This two-stage ASR system not
only generates word hypotheses but also computes word confidence scores, LM likelihood, and word and phone acoustic
likelihood.

Although the external vendor–provided ASR achieved a 28.5% WER on the evaluation partition of this corpus for the
purpose of building the nonnative spontaneous English ASR system, the WER on the TPO scoring evaluation partition
is 38.5%, owing to a vocabulary mismatch caused by the fact that many of the prompts in the TPO data set were not
contained in the ASR training set.

Filtering Models

In a large-scale language proficiency assessment including a speaking test, some spoken responses have suboptimal char-
acteristics that make it difficult for the automated scoring system to provide a valid score. Hereinafter we call these prob-
lematic responses nonscorable responses. These nonscorable responses can be classified into the following two groups: (a)
TD,2 responses with serious audio quality problems that make it impossible to assign fair scores, for example, responses
with a high level of noise; and (b) 0,3 responses from uncooperative test takers, for example, responses in which the test
taker does not speak.

They are likely to cause problems in automated speech recognition or in extracting the linguistic features used in
generating an automated score. As a result, they may cause failure in score generation or reduce the validity of the auto-
mated scores. To address these issues, we used a two-step approach: These problematic responses were filtered out by
a “filtering model,” and only the remaining responses were scored using the automated scoring model. By filtering out
these responses, the robustness of the automated scoring system can be improved. For SpeechRater 5.0, we focused on
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developing new capabilities to detect the responses that receive a score of 0 (group 2 from the above) because we already
achieved a high accuracy of detecting TD responses (e.g., Higgins, Xi, Zechner, & Williamson, 2011).

Recently, a few researchers have investigated the filtering of nonscorable responses for automated speech scoring, but
most studies have focused on restricted speech. van Doremalen, Strik, and Cucchiarini (2009) and Lo, Harrison, and
Meng (2010) used normalized confidence scores of a speech recognizer in recasting speech. They identified nonscorable
responses with promising performance (equal error rates ranged from 10% to 20%). Cheng and Shen (2011) extended
these studies and combined an AM score, a LM score, and a garbage model score with confidence scores. They applied
this new filter to less constrained items (e.g., picture description) and identified off-topic responses with an accuracy rate
of 90% and with a false positive rate of 5%.

Although these models achieved promising performance in restricted speech, they are not appropriate for uncon-
strained speech. The types of nonscorable responses that arise in a speaking test that elicits unconstrained spontaneous
speech may be different from what is encountered in restricted speech. To better understand this issue, first we analyzed
the types of nonscorable responses using a large collection of spoken responses from the TOEFL iBT. For the responses
that received a score of 0, we found the following subcategories: (a) no-speech, or responses that do not have any speech
but have clear evidence of the speaker’s presence, for example, breathing, coughing; (b) non-English response, or responses
spoken entirely in another language; (c) off-topic, or responses that are entirely irrelevant to the task; (d) generic responses,
or responses that only include filler words or generic responses, such as “I don’t know,” “it is too difficult to answer,” or
“well”; (e) question-copy, or full or partial repetition of the question or reading/listening stimuli; (f) canned responses, or
responses only including memorized segments provided by external sources (often Web sites); and (g) other, or responses
from speakers who do not attempt to respond in a way not otherwise covered by the preceding categories. In addition,
there is a “complicated responses” category. These are responses that belong to more than one type, for instance, a response
that comprises both off-topic sentences and sentences in a speaker’s native language.

Responses that belong to non-English, off-topic, and canned responses are likely to be associated with test takers who
try to game the automated system. By speaking in their native languages, citing memorized responses for unrelated topics,
or reading questions or parts of questions, test takers can generate fluent speech, and the automated proficiency scoring
system, which utilizes fluency as one of the important factors, may assign a high score. The proportion of these gaming
responses was extremely low (less than 0.5%) in both TOEFL iBT, for which all responses are scored by human raters,
and TPO, for which students may have low motivation owing to the low-stakes nature of the test. Because of this skewed
distribution, it was not easy to train the filtering models for gaming responses. To address this issue, we trained two
new filtering models—a filtering model for non-English responses and a filtering model for responses with topicality
issues—using different data sets.

Filtering Model for Non-English Responses

The non-English filtering model was developed based on speech-based language identification (LID) technology and
fluency features (e.g., speaking rate) from SpeechRater. The LID technology used in this study was based on the output of
multiple language-dependent phone recognizers, as in Zissman (1996). The frequencies of phones and phone sequences
differ according to languages, and some phone sequences occur only in certain languages. The system first ran 10 language-
dependent phone recognizers4 and created a set of features, such as the language with the highest phone recognizer score,
the normalized phone recognizer score, and the difference between normalized English phone recognizer score. Details
of the implementation are presented in Yoon and Higgins (2011).

We trained a non-English filtering model using LID technology and a corpus comprising 3,021 English responses from
TPO and 158 non-English audio files from the OGI Multi-Language corpus (Muthusamy, Cole, & Oshika, 1992). The
OGI Multi-Language corpus is a standard language identification development data set including speech in 10 different
languages. A decision tree model was trained to predict binary values (0 for English and 1 for non-English) using the J48
algorithm (WEKA implementation of C4.5) of the WEKA machine learning tool kit (Hall et al., 2009). We performed
threefold cross-validation during the non-English filtering model training and evaluation. The model achieved high
performance: The accuracy was .98, and the F-score was .82. The accuracy was .03 higher than the accuracy of the baseline
using majority voting (in which all responses were classified as English, the majority class), and there was a 35% relative
error reduction.
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Filtering Model for Responses With Topicality Issues

The topicality filtering model was developed to filter out responses with topicality problems: off-topic responses, question-
copy, and generic responses. For this purpose, in addition to SpeechRater features, we developed a set of new features based
on the metrics frequently used to identify documents with relevant topics (e.g., Hoad & Zobel, 2003; Sanderson, 1997).
The new features were classified into the following two subgroups:

1. Response-based features. These were features based on CVA models using cosine similarity and term frequency-
inverse document frequency (tf-idf). Two different CVAs (one trained on samples with the highest proficiency scores
and one trained on the test prompts) were used to detect both off-topic responses and question-copy responses.

2. Sentence-based features. These were similarity scores between a prompt question and a response at each sentence
level, similar to Metzler, Bernstein, Croft, Moffat, and Zobel (2005). The response was first split into the sentences,
and the proportion of word overlap with the prompt question was calculated. Finally, the response was determined
as nonscorable or not based on aggregated sentence-level features.

We used 11,560 spoken responses from TOEFL iBT, and the proportion of nonscorable responses in this data set was
13% (for a total of 1,560 responses).5 We performed 10-fold cross-validation to train and evaluate the filtering model. In
addition to the newly developed features, we used SpeechRater features, and 30 features were selected using the WEKA
feature selection algorithm.6 Finally, the filtering model was trained using the support vector machine algorithm with the
radial basis function of the WEKA machine learning tool kit (Hall et al., 2009).

The model achieved extremely high performance; the accuracy was .98, and F-score was .91. There was a substantial
improvement over the majority class baseline (classifying all responses as scorable responses); the accuracy of this system
was .87. However, there was only slight improvement over the model that was based exclusively on SpeechRater features;
the accuracy and F-score were .98 and .90, respectively, and the improvement was .01.

Because the majority of nonscorable responses were no-speech, the new features designed for responses with topicality
issues may not have a strong impact on the results. To evaluate the impact of the new features on the target nonscorable
types, we created a new data set by removing the responses that were nonscorable for reasons other than topicality. We
removed 1,246 nonscorable responses, and the data set included only 314 nonscorable responses (4%).

The accuracy was .98, and the F-score was .66. Furthermore, there was a substantial improvement over the model
based exclusively on SpeechRater features. The F-score of the model using all features was .19 higher than the F-score of
the model based only on SpeechRater features (.47).

Applying SpeechRater 5.0 to Building an Automated Scoring Model for the TPO Version 5

Feature Correlations

In the section Innovations in Scoring Features, a series of the new features that have been proposed by the speech scoring
research team was presented. In the past several years, through collaboration between research scientists and engineers,
most of these feature extraction methods have been implemented into SpeechRater 5.0. Therefore, when building the
fifth version of the TPO scoring models (TPO V5), these new features can be computed directly and can be considered
with other preexisting features during the model-building process. In addition, the implementation of these features into
SpeechRater 5.0 also provides us an opportunity to evaluate these features on a common data set. This is useful, because
various data sets were used in the evaluations that took place over the course of development of these features, as shown
in previous publications.

When evaluating the features described in this section, we used the new larger standard data set collected in 2012. Two
thirds of this data set (667 test takers; 4,002 responses) were allocated to the model training partition, and one-third (333
test takers; 1,998 responses) was allocated to the model evaluation partition. Table 8 presents the interrater agreement for
the two partitions, in terms of both Pearson correlation (r) and quadratic weighted κ, between two raters’ holistic scores.

On this new data set, we applied SpeechRater to extract speech features. To measure the features’ usefulness for pre-
dicting human-rated scores, we computed the Pearson correlations (r) between the features and human rated scores. The
following tables report on the correlation analysis results regarding the features introduced in the section Innovations in
Scoring Features.

ETS Research Report No. RR-18-10. © 2018 Educational Testing Service 19



L. Chen et al. SpeechRaterSM v. 5.0 Engine

Table 8 Interrater Agreement on Model Training (sm-train) Partition and Model Evaluation (sm-eval) Partition

Data set Correlation (r) Quadratic weighted κ

sm-train .61 .61
sm-eval .59 .59

Table 9 Pearson Correlation r Between Human-Rated Scores and the Structural-Event Features Described in the Section Utilizing
Structural Events

Feature r to human-rated scores

ipcount .141
clausecount .199
IPC .237
IPW .279
longSilRatio −.356

Table 10 Pearson Correlation r Between Human-Rated Scores and the Pronunciation Features Described in the Section Improved
Pronunciation Features Measuring Spontaneous Nonnative Speech

Feature r to human-rated scores

L1 .307
L2 .187
L3 .264
L4 .125
L5 .121
L6 .398
L7 .396
phnshift .430

Table 9 reports on the Pearson correlations between the features related to SEs, which were described in the section
Utilizing Structural Events, and human-rated scores. On the SpeechRater 5.0 system, the feature with the highest |r| is
longSilRatio (r =−.356). It is interesting to see that the IPW feature now has a high |r| (r = .280) after implementing a
more accurate ASR in the SpeechRater 5.0 system. Clearly the features related to the internal structure of spoken responses
(i.e., clauses and disfluencies) provide additional measurements over the feature set used in SpeechRater 1.0.

Table 10 reports the correlation analysis results on the new group of pronunciation features described in the section
Improved Pronunciation Features Measuring Spontaneous Nonnative Speech. Both L6 and L7 features show very high
correlation (r values around .4), quite close to the r value from the amscore feature (r = .404). Because the new pronunci-
ation features are more relevant to the construct, these new features help SpeechRater 5.0 increase its construct validity.
In addition, the new feature related to phoneme durations, phnshift, shows quite a high r (.430) and will help SpeechRater
5.0 reach higher scoring accuracy with respect to pronunciation.

Table 11 reports the correlation analysis results on the features measuring rhythm described in the section Rhythm
Features. The rpvis feature shows a high correlation (r = .357). Both npvis and stddevs show a correlation higher than .25.
This suggests that new rhythm-related features provide additional support for more accurate scoring.

Table 12 reports the correlation analysis results on the vocabulary features described in the section Vocabulary Features.
Consistent with the evaluation result reported in Yoon et al. (2012), the best performing vocabulary profile features are
avgFreq (r = .33) and TOP1 (r = .20).

Table 13 shows correlations between the grammatical complexity features described in the section Grammatical Com-
plexity Features. Features counting occurrences of traditional constituent phrases, for example, NPs and PPs, show fairly
strong correlations with human holistic proficiency scores (i.e., compared to SpeechRater features from other construct
areas), almost reaching .4 for NPs and PPs. A similar level of performance is also achieved by POS-based features, where
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Table 11 Pearson Correlation r Between Human-Rated Scores and the Rhythm Features Described in the Section Rhythm Features

Feature r to human-rated scores

percentv .171
rpvic .216
rpvis .357
rpviv .243
npvic .131
npvis .268
npviv .121
varcoc .150
varcos .248
varcov .084
stddevc .216
stddevs .296
stddevv .216

Table 12 Pearson Correlation r Between Human-Rated Scores and the Vocabulary Features Described in the Section Vocabulary
Features

Feature r to human-rated scores

TOP1 .201
TOP2 .065
TOP3 .141
TOP4 .114
TOP5 .146
TOP6 .161
avgRank −.069
avgFreq .326
logFreq .165

POS sequences of training data are compared to those observed in the ASR hypothesis for a test taker’s response. In con-
trast, clause-based features have correlations below .3 in the evaluation result on SpeechRater 5.0. These results indicate
that grammatical features based on shorter spans, such as POS sequences, NPs, or PPs, can be more accurately computed
than those using longer spans of information, such as coordinate phrases, VPs, and various clause types.

The cvamax feature described in the section Content Features shows a correlation of .311 with human-rated scores and
will provide an important measurement regarding content relevance.

Hybrid Method of Feature Selection

Building automated scoring models for constructed responses is a complex endeavor because such models need to balance
good empirical performance with the validity and interpretability of the scoring models (cf. Bernstein, Moere et al., 2010;
Ramineni & Williamson, 2013; Williamson, Xi, & Breyer, 2012). One very important aspect of validity is the extent to
which the automated scoring model reflects important dimensions of the construct measured by the test. Furthermore,
relative contributions by features to each construct dimension should be transparent to the test taker and the score user.
Finally, the contribution of each feature to the final score should be consistent with expectations: If all of the features in
the model are designed to be positively correlated with a criterion score, the coefficients of all such features in the final
model should be positive as well.

Fulfilling all of these requirements when building automated scoring models is not trivial, and therefore, in previous
versions of SpeechRater, the scoring models for constructed responses were built using human experts who selected fea-
tures based on these criteria in an iterative fashion, training and evaluating scoring models after each feature set was
chosen. However, there are certain limitations to this manual process of building scoring models, not the least of which
is the aspect of the time it takes to build models with iterative evaluations and changes in the feature set composition.
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Table 13 Pearson Correlation r Between Human-Rated Scores and the Grammatical Complexity Features Described in the Section
Grammatical Complexity Features

Feature r to human-rated scores

poscva1 −.316
poscva2 .344
poscva3 .379
poscva4 .401
poscvamax .261
coord_clauses .075
coord_clauses_per_clause .049
dep_clauses .273
dep_clauses_per_clause .134
coor_phrases .161
coor_phrases_per_clause .084
cx_nominals .275
cx_nominals_per_np .112
dep_inf .217
dep_inf_per_clause .096
np .388
pp .304
vp .379

To solve this problem, Loukina et al. (2015) introduced an automatic method of feature selection based on penal-
ized linear models. In this approach, the feature selection is done using Lasso regression (Tibshirani, 1996) constrained
to positive-only coefficients (Goeman, 2010) and fine-tuned to enforce more aggressive feature selection. They showed
that this method allowed them to achieve simultaneously satisfying construct coverage, maximal interpretability of the
resulting scoring model, and good empirical performance.

As discussed in Loukina et al. (2015), sometimes the feature set selected by the fully automated method may not result
in optimal construct coverage. Therefore the scoring models for SpeechRater 5.0 are built using a hybrid method of feature
selection, which includes the following steps:

1. An expert identifies a subset of SpeechRater features applicable to a particular assessment or item type.
2. The Lasso-based method described is used to select the initial set of features.
3. The final set is reviewed by an expert and adjusted as necessary to ensure optimal construct coverage.

Scoring Model for TPO Version 5

The scoring model for TPO Version 5 was built using the hybrid method of feature selection described in the previous
section: We identified 102 features applicable to TPO items and used a combination of Lasso regression and expert judg-
ment to identify the optimal set of features. This fine-tuning was done using 10-fold cross-validation on the training set.
The coefficients for the selected features were then estimated using ordinary least squares linear regression. The final model
was then evaluated on the evaluation set.

The scoring model included 20 features that covered all constructs currently represented in SpeechRater. Though only
20 of 102 features were used in the scoring model, it is worth noting that the features not appearing in the scoring model
could be used in other nonscoring scenarios, such as being used for providing constructive feedback to English learners.
Table 14 shows the features included in the final hybrid model, the corresponding constructs and subconstructs, and the
relative contribution of each feature to the final score. The construct attributions for features were determined based on a
theoretical understanding of different constructs and an understanding of the phenomena addressed by different features.

Table 15 shows the model performance at the level of individual response in comparison to agreement between two
human raters. Although the correlation between system and human scores falls below the .7 threshold recommended
by Williamson et al. (2012), the degradation from the human–human score agreement was substantially below the rec-
ommended threshold of .1. Similarly, the standardized mean score difference between machine and human scores was
−.02 and did not exceed the recommended threshold of .15. As also noted by Williamson et al., low interrater agreement
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Table 14 List of Features Included in the Final Scoring Model for TOEFL Practice Online Version 5 and Their Relative Contributions
to the Final Score

Construct Subconstruct Feature Description Relative coefficient

Delivery Fluency silmean Mean silence duration .119
Fluency wpsec Speaking rate in words per second .097
Fluency secpchk Average of chunk length in seconds .066
Fluency numrep No. repetitions .061
Fluency numdff No. disfluencies .056
Fluency silpsecutt No. silences per second .056
Fluency IPC No. interruption points per clause .012
Fluency withinClauseSilMean Average duration of all within-clause silences .008
Pronunciation L1 Total acoustic model score for all words with

model trained on native data
.081

Pronunciation amscore Total acoustic model score with model trained on
nonnative data

.038

Prosody powstddev SD of power .057
Prosody pitdeltanorm Range of normalized pitch .028
Prosody phn_shift Mean of absolute shifts of the normalized vowel

durations compared to standard normalized
vowel durations estimated on a native speech
corpus

.014

Rhythm rpvic Raw Pairwise Variability Index for consonants .028
Rhythm stresyllmdev Mean deviation of distances between stressed

syllables in syllables
.014

Language use Grammar poscvamax Score point with the highest grammatical
similarity score

.062

Grammar dep_clauses_per_clause Mean no. dependent clauses per clause .001
Vocabulary a cvamax Score point with the highest word CVA similarity

score
.099

Vocabulary types Total no. different lexical types .061
Vocabulary logFreq Average of log frequency of word types in the

response
.042

Note. CVA= content vector analysis.
aWhen using generic CVA models trained on responses from a range of prompts, the CVA-related features do not measure content
appropriateness directly; rather they provide a measure of general vocabulary usage.

Table 15 Human–Human and System–Human Agreement at Item Level

N R R2 SMD

Human–human 1,756 .591 .350 .032
System–human 1,775 .557 .308 −.019

Note. All metrics are computed on the evaluation set (total N responses, Pearson’s correlation, R2, and standardized mean difference
[SMD]).

of independent human raters is likely to result in lower performance of the automated scoring “because of the inherent
unreliability of the human scoring upon which it is both modeled and evaluated” (p. 7).

While item-level performance is commonly used to evaluate the performance of the automated scoring system, the
speakers only receive a report of the final score aggregated across the six items. Table 16 shows the agreement for such
speaker-level scores. The table only includes the speakers who received six numeric nonzero scores from both the first
rater and the system.

The model-building process uses a data-driven approach. Consequently, the training data set’s properties (e.g., test
takers’ L1 distributions, gender distributions) will influence the obtained scoring models. For tests that aid in making
high-stakes decisions with a high standard on testing fairness, more careful controls on the training data sets are highly
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Table 16 Human–Human and System–Human Agreement at Speaker Level

N R R2 SMD

Human-human 263 .88 .751 .036
System-human 264 .770 .584 −.061

Note. All metrics are computed on the evaluation set (total N speakers, Pearson’s correlation, R2, and standardized mean difference
[SMD]).

needed. As for this line of research and practice in assessment, readers can refer to Dorans and Holland (2000), Dorans
and Cook (2016), and Zhang, Dorans, Li, and Rupp (2017).

Conclusion

More than 10 years have passed since the first version of ETS’s automated speech scoring capability, SpeechRater, was first
used operationally as the sole score for the TPO Speaking section; many aspects of this early system were described in detail
by Zechner and colleagues (Zechner et al., 2009; Zechner, Higgins, & Xi, 2007), Higgins et al. (2011), and Xi et al. (2008).
In the meantime, research and development related to automated speech scoring at ETS has made substantial progress in
many areas, including improved automated speech recognition, a substantially expanded set of linguistically based features
to evaluate spoken proficiency, improved methods of feature selection and model building, and additional methods for
flagging nonscorable responses. While these individual R&D efforts have been published in journals and in conference
and workshop proceedings in previous years, no monograph has summarized and captured the major developments in
the area of automated scoring of spontaneous speech at ETS since the initial publications of 2007–2011 mentioned earlier.
This research report was meant to summarize these R&D efforts as comprehensively, and also as succinctly, as possible.
Research efforts related to the automated scoring of predictable speech also undertaken at ETS in these years (e.g., Zechner
et al., 2015; Zechner & Xi, 2008) were not in the scope of this report, as these types of spoken responses have received
more attention by other research groups and for a longer time. This report focuses only on the automated scoring of
spontaneous speech, even more precisely, on speech elicited by TOEFL iBT items.

In what follows, we summarize where we currently are in the principal areas of the automated scoring of spontaneous
speech and where we still need to make progress moving forward.

Automatic Speech Recognition

Although switching to a state-of-the-art ASR system in recent years has enabled us to achieve substantially lower WERs
on spoken responses by test takers, recent developments in the field of speech science and ASR, for example, related to
DNN technologies (Metallinou & Cheng, 2014), suggest that even more substantial improvements are possible in this area
in the near term. Still, it needs to be pointed out that studies on human speech transcribers have shown that for nonnative
spontaneous speech, it is difficult to reach agreement above 85% (Zechner, 2009); therefore WERs by automated speech
recognition engines for spontaneous nonnative speech may bottom out at approximately 10%–20%, compared to 5% or
less for spontaneous native speech.

Speech Features

Comparing Version 1 and Version 5 of SpeechRater, the feature set was expanded from less than 50 to more than 100
features, specifically addressing spontaneous speech. More importantly, the features’ construct coverage has been substan-
tially increased to allow the automated scoring method to use rich information, as human raters do. As for the TOEFL iBT
Speaking construct (as delineated in the TOEFL iBT Speaking rubrics), virtually all of the various subareas of the construct
are currently addressed by some of the SpeechRater features. Still, the coverage of the topic development area is somewhat
limited, and more features addressing more detailed aspects of content and discourse still need to be developed—not an
insignificant challenge given that the WER of speech recognition is still substantial.
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Filtering Model

Whereas the initial filtering model in SpeechRater only focused on detecting responses with no speech or responses with
too much noise, we now have several additional components that can flag nonscorable responses, including detection
of non-English speech or off-topic speech. All of these additional filtering components are important, in particular, if
(and when) SpeechRater may be used in some way in the operational scoring of an assessment used to make high-stakes
decisions, where test takers may be inclined to use certain strategies of gaming the system to inflate the scores they receive
from the automated system. Developing additional and more effective filtering models is a high priority moving forward;
one of the major challenges here is that very limited “real-life” data are available to train these models, and furthermore,
it is not straightforward to anticipate all of the different ways test takers may try to artificially inflate their scores before
automated scoring is actually introduced.

Scoring Model

In the first version of SpeechRater (as well as in several subsequent versions), scoring models were mostly handcrafted
by content experts, using information about feature correlation with human scores, feature collinearity, feature normality,
overall construct coverage, and so on, as input in their model design. Recently, as described in the section Hybrid Method
of Feature Selection, we switched to a hybrid model of feature selection, whereby the initial step is automatic and deter-
mines a subset of the overall feature set to be used in the model. In a second step, a content expert further refines this
feature set according to considerations similar to those listed earlier. This hybrid approach results in both improved empir-
ical model performance and more balanced construct coverage, along with a substantial reduction in model-building time.
Still, we are currently only using linear regression as the machine learning method to compute scores; research into more
sophisticated and complex machine learning algorithms is ongoing and may yield scoring models with still improved
empirical performance.

In summary, in this report, we have provided a comprehensive view of the major R&D efforts and results related to the
automated scoring of spontaneous nonnative speech at ETS in the past 10 years, since the introduction of the first version
of SpeechRater in 2006. R&D efforts are still continuing in all areas of this technology, and we may be nearing the time
when our SpeechRater capability may be used, in conjunction with human raters, in more consequential assessments.
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Notes
1 The code for extracting discourse coherence features had not been integrated into SpeechRater 5.0. Therefore we could not

evaluate this group of features with other feature groups in the section Feature Correlations. Instead, we report the evaluation
result presented in Wang et al. (2013) here.

2 TD stands for technical difficulty.
3 These responses are assigned a score of 0 by human raters.
4 The languages were English, Farsi, French, German, Japanese, Korean, Mandarin Chinese, Spanish, Tamil, and Vietnamese.
5 Owing to the extremely skewed distribution of NS responses (2% in the ASR set), it was not easy to train and evaluate the filtering

model. To address this issue, we modified the distribution of NS responses in the FM set. Initially, we collected 90,000 responses,
including 1,560 NS responses. While maintaining all NS responses, we downsampled the scorable responses in the FM set to
include 10,000 responses. Finally, the proportion of NS responses was 6 times higher in the FM set (13%) than in the ASR set.

6 In addition to topicality problems, many different issues make responses nonscorable. A subset of SpeechRater features that
measure spectrum characteristics, energy level, ASR confidence scores, and length of speech section were selected to detect
various other issues, such as problems with audio quality and abberant behavior of the ASR system.
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