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We present a microservice architecture for large-scale automated scoring applications. Our architecture builds on the open-source
Apache Storm framework and facilitates the development of robust, scalable automated scoring applications that can easily be extended
and customized. We demonstrate our architecture with an application for automated content scoring.
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Automated scoring of written or spoken student responses has received a lot of attention from the natural language
processing (NLP) research community in the last few years (Burrows, Gurevych, & Stein, 2015; Dong & Zhang, 2016;
Dzikovska et al., 2013; Farra, Somasundaran, & Burstein, 2015; Liu et al., 2014; Loukina, Zechner, Chen, & Heilman,
2015; Shermis & Burstein, 2013). However, building large-scale automated scoring applications for a production
environment poses a different set of challenges. Reliability, scalability, and flexibility are all desirable characteristics
of such an application, and it is often easy to optimize one of these at the expense of others. Automated scoring
pipelines have many moving parts, have multiple stakeholders, and typically involve numerous teams within an
organization. Therefore it is critical that they be developed within a framework that can support the challenges of
competing demands.

The reliability (stability) of a production-based automated scoring application is crucial. An unstable system (e.g., if it
crashes, fails to deliver scores, or gives feedback with low latency) is effectively useless to most test takers and clients. At
the same time, the ever-increasing number of student responses that are passed to large-scale scoring applications puts
pressure on the applications to scale quickly to increased volumes of data (particularly when the increase is spiked, as in
during a test administration). Like with other real-time services, clients expect (and often have contractual guarantees)
to receive scores (or automated feedback) from a scoring application in a given amount of time and will not tolerate a
slowdown in performance because of high load. Business demands also require that new functionality or customizations
be frequently added to keep up with new populations and forms of writing. This involves multiple software developers
who all need to be able to contribute to the code base concurrently. A modular design facilitates efficient development
by multiple developers (Burstein & Marcu, 2000). A further complication within an organization can be that multiple
programming languages are used (particularly where a research group is responsible for continued enhancement of the
features of such an application).

In this report, we present an architecture for automated scoring applications, designed to be scalable, robust, and flex-
ible. In the Apache Storm section, we build on an open-source framework and extend it to address some limitations.
Then, in the A Storm-Based Architecture for Automated Scoring section, we show how the new architecture can be easily
instantiated for multiple automated scoring applications and compare it to a more traditional architecture in terms of
speed. In the Content-Scoring Application section, we exemplify the microservice architecture using an application that
scores content knowledge along with a Web interface where users provide answers to short-answer questions and receive
scores in real time.
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Apache Storm

The architecture we describe leverages the open-source, distributed, message-based computation system called Apache
Storm.1 Although frameworks like MapReduce and Hadoop make it significantly easier to conduct batch processing of
large amounts of data, they are not designed to support real-time processing, which has a fundamentally different set of
requirements.

We briefly introduce some of the Apache Storm terminology that is necessary to follow this report. Storm is a stream-
processing framework (Stonebraker, Çetintemel, & Zdonik, 2005); that is, it performs computations over data as the data
enter the system, for example, computing features and scores for written or spoken student responses in real time. Com-
pared to a batch-processing paradigm, where computational operations apply to an entire data set, stream processors
define operations that are applied to each individual datum as it passes through the system. A difference between Storm
and Spark, another stream-processing framework, is that Spark performs data-parallel computations, whereas Storm per-
forms task-parallel computations. A Storm application is comprises three major components:

1. Spouts produce the data streams to be processed by the application.
2. Bolts consume data streams, apply operations to them, and produce the results of the operation as additional data

streams.
3. A topology is a network of spouts and bolts, usually organized as a directed acyclic graph with edges denoting data

dependencies between the bolts. A final bolt is added at the end of the graph to produce the final result.

Next, we discuss the significant advantages that Storm provides for building applications that not only process data
streams at scale but also provide results in real time—the use case that we describe in this report (see the Content-Scoring
Application section).

Scalability

Storm can scale to millions of data streams per second simply by increasing the parallelism settings in the topology and
adding more compute nodes to the cluster. It also automatically handles running bolts in parallel to maximize throughput.

Robustness

Storm also provides strong guarantees that every data stream will be processed and never dropped. In case of any faults
during a computation, for example, a hardware failure, Storm automatically reassigns tasks to other nodes to ensure that
an application can run forever (or until explicitly stopped).

Programming Language Agnosticism

Storm topologies, bolts, and spouts can be defined in any programming language. This is particularly important in NLP,
where high-quality open-source libraries are available in many programming languages, for example, StanfordNLP/Java
(Klein & Manning, 2003), NLTK/Python (Bird, Klein, & Loper, 2009), and WordNet::Similarity/Perl (Pedersen, Patward-
han, & Michelizzi, 2004).

Ease of Customization

Because bolts can be shared across topologies, a central repository can easily contain all bolts. Each new instantiation of
a Storm topology (e.g., an automated scoring application) can be easily created by selecting relevant bolts and defining
the information flow through them. This also allows for convenient “plug and play” experiments with different NLP core
components, such as parsers or taggers.

A Storm-Based Architecture for Automated Scoring

In their simplest form, automated scoring applications can be seen as machine learning applications where an automated
scoring model is (a) trained on a large set of human-scored responses; (b) evaluated for accuracy, fairness, and validity
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on held-out data; and (c) deployed in a production setting requiring high throughput and low latency. Although this is
a fairly simplified view of such applications—for example, it ignores monitoring components that automatically detect
anomalous conditions, such as drifts in machine scores and application failures—it should suffice for the goal of this
report.

Although Storm affords several advantages to NLP applications, it has some gaps in the case of building automated
scoring applications:

• Although Storm has support for multiple programming languages, it does not actually provide any reliable Perl and
Python bolt and spout implementations out of the box.

• Storm does not provide a way to identify and group data streams; that is, there is no way to say “I want the output
from all the bolts in the topology for the same student response together.”

• If a response causes an exception in one of the bolts (e.g., the parser times out because a response is too long), Storm
will retry the same response forever, instead of bypassing its processing in any downstream bolts.

Our architecture extends Storm to address all of the preceding issues. The core of our enhanced architecture is a cus-
tom implementation of a Storm bolt that we term a FeatureService. FeatureService is an abstract class with
implementations in Java, Perl, and Python. Each object inherited from this class represents a microservice that performs a
simple, discrete task on the data streams that pass through it. Our Perl and Python implementations of FeatureSer-
vice use the IO::Storm2 and the streamparse3 open-source libraries, respectively, and bring them up to par with
the corresponding Storm-native Java implementation.
FeatureService encapsulates an extremely easy-to-use interface for developers: After subclassing Feature-

Service in their preferred programming language, they only need to implement two methods: setup() to load any
resources required and calculate() to perform the processing. Finally, FeatureService implements data stream
grouping: Developers specify which other feature services are its prerequisites (i.e., which inputs it needs), and the cal-
culate() method automatically receives the values of all of its prerequisites as a hash or dictionary at run time.

Figure 1 shows the stubs for three microservices written using Python, Perl, and Java and for a topology defining a
toy application using these services. The application takes a student response, tokenizes it into sentences, assigns part-of-
speech tags to each sentence, and then computes the similarity between these tagged sentences and a reference answer to
the same question for which the student response was written.

Evaluation

To illustrate the impact of the microservice architecture, we compare the throughput (measured in responses scored per
hour) of different versions of our two largest scoring applications—one that scores responses for writing quality using
features for discourse structure, vocabulary use, and English conventions (Attali & Burstein, 2006) and a second applica-
tion that scores responses for understanding of content (Heilman & Madnani, 2015; Madnani, Cahill, & Riordan, 2016).
Unlike writing quality, content scoring generally ignores misspellings and grammatical errors (see the Content-Scoring
Application section, where we demonstrate the content-scoring application in more detail).

The first version of each application does not use the microservice architecture and is structured as a traditional sequen-
tial application. These traditional systems were technically not fully sequential because some parts had been parallelized
manually—a significant development effort. The second version uses the microservice architecture with each component
implemented as a bolt inheriting from the FeatureService class, participating in a predefined topology. This version
is able to take full advantage of Storm’s automatic parallelization. Table 1 shows their throughput values.4 For both scoring
applications, using the microservice architecture leads to a significant increase in the throughput.

Student responses processed by the writing quality-scoring application are, on average, three to four times longer than
the responses processed by the content-scoring application, which leads to lower throughput values for the former in
general. In addition, the writing quality-scoring application uses many more features than the content-scoring application,
leading to more opportunities for parallelization and, hence, a larger increase in throughput over the traditional version.

Additional evaluation metrics could be applied in this scenario, such as intertask message latency, average task switch
time, minimum interrupt latency, and deadlock break time (Gumzej & Halang, 2010, Chapter 2). However, for our pur-
poses, these metrics are superseded by our throughput metrics (which are also the metrics used by IT when running
performance tests on the automated scoring engines). In addition, it is difficult to measure effectively some of the other

ETS Research Report No. RR-18-14. © 2018 Educational Testing Service 3



N. Madnani et al. Microservice Architecture for Automated Scoring

Figure 1 Illustrating Storm microservices and topologies. Boxes 1, 2, and 3 show stubs for three different FeatureService bolts
written in Python, Java, and Perl, respectively. Box 4 shows the stub of a topology (written in Clojure) that defines a toy scoring appli-
cation composed of these bolts.

Table 1 Throughputs for Two Different Scoring Applications (Measured in Student Responses Scored per Hour) for a Traditional
Version and for the Version that Uses the Proposed Storm-Based Microservice Architecture

Version

Traditional 𝜇-Service

Score type
Quality 6,058 12,091
Content 57,285 70,491

nontangible benefits, such as improved collaborative development, ease of integrating multiple programming languages,
and sharing code across engines.

Content-Scoring Application

In this section, we provide more details on how the content-scoring application is architected using the microservice
architecture. The application can be tested via a Web app that communicates with the instantiated topology of this appli-
cation, allowing users to provide answers to several science, math, or English questions and obtaining scores for them in
real time.

Scoring responses for writing quality requires measuring whether the student can organize and develop an argument
and write fluently with no grammatical errors or misspellings. In contrast, scoring for content deals with responses to
open-ended questions designed to test what the student knows, has learned, or can do in a specific subject area, such as
computer science, math, or biology, without regard to fluency (Dzikovska et al., 2013; Mohler, Bunescu, & Mihalcea, 2011;
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Figure 2 Visualizing the topology of the content-scoring application. Each oval represents a bolt, and each edge between bolts repre-
sents a data stream connection. The final bolt uses a pretrained, preloaded support vector regression model to compute the score for a
response, based on the four feature streams.

Ramachandran, Cheng, & Foltz, 2015; Sakaguchi, Heilman, & Madnani, 2015; Sukkarieh, 2011; Sukkarieh & Stoyanchev,
2009; Zhu, Liu, Mao, & Pallant, 2016).5

The content-scoring application typically uses text regression or classification: We label existing student responses to
the question with scores on an ordinal scale (e.g., correct, partially correct, or incorrect; 1–5 score range, etc.), extract a
predefined set of features for these responses, and then train a machine learning model with these features using scikit-
learn (Pedregosa et al., 2011). The trained model is first evaluated for accuracy, fairness, and validity on held-out data
(Madnani, Loukina, von Davier, Burstein, & Cahill, 2017) and, if it passes the evaluation criteria, is deployed to production.
For our content-scoring application, we use the following set of features:

• lowercased word n-grams (n= 1, 2), including punctuation
• lowercased character n-grams (n= 2, 3, 4, 5)
• syntactic dependency triples computed using the ZPar parser (Zhang & Clark, 2011)
• length bins (specifically, whether the log of 1 plus the number of characters in the response, rounded down to the

nearest integer, equals x, for all possible x from the training set)
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Figure 3 Screenshot of a Web app communicating with our content-scoring application to score the responses to a math question for
which the possible score is in the range 0–2.

Figure 2 shows a visualization of the Storm topology of our content-scoring application. Each oval in the figure rep-
resents a Storm bolt. There are nine bolts in total. All student responses to be scored enter the topology at the spout and
are passed on to the ResponseReader bolt, which uses statistical language identification models and a set of simple
rules to automatically detect responses that may be written in bad faith, for example, responses in other languages or
nonscorable responses of the form “idk,” “I don’t know,” and so on. All such bad-faith responses are directed to a human
scorer. Any responses that are not filtered out are then passed to the subsequent bolts that compute intermediate repre-
sentations (sentences, words, dependency parses) and to bolts that compute the four types of features. Once the features
are computed, they are passed to the final bolt, which uses a pretrained support vector regression model to compute a
score for the response. Our architecture automatically handles parallelism, for example, while a response is being parsed
in the DependencyParser bolt, other bolts are processing other responses. It also allows for multiple instances of a
bolt, so throughput can be further improved by having multiple instances of slower bolts (e.g., parsers).

Figure 3 shows a screenshot of a Web app that allows a student to enter responses to various content questions.
Responses are sent to the topology of the content-scoring application running in the background, and results are pre-
sented to the student on the same page. The app contains several questions from different domains (math, science, and
English) that can be selected using a drop-down menu. In the screenshot in Figure 3, a math question6 asks students to
evaluate a claim and to explain whether they agree or disagree using their knowledge of mathematics. Students enter their
responses in the text box and click “Score” to submit their responses. The score returned by the application is displayed
at the top of the screen. In this app, the score is returned in raw format, but other applications might round first before
displaying the final score to the student.

6 ETS Research Report No. RR-18-14. © 2018 Educational Testing Service
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Conclusions

Our goal is to provide insights into the rarely discussed topic of transitioning a NLP system, for example, an automated
scoring system, from a small-scale research prototype into a production system that can process millions of student
responses reliably and with low latency.

We described a robust microservice architecture that can be used to successfully execute such a transition for automated
scoring applications. The architecture extends an existing open-source framework that provides several advantages out
of the box in terms of scalability, robustness, and fault tolerance. Our extensions to the framework address some of its
limitations pertaining to its use for automated scoring applications. We presented concrete examples in which using this
architecture leads to significant improvements in throughput processing, ease of development, and scalability. Finally, we
showed a Web interface to a microservice-based content-scoring application that can score user-authored responses for
content in real time.

Acknowledgments

The authors thank Keelan Evanini, Vikram Ramanarayanan, and Beata Beigman Klebanov for their comments on an
earlier draft of the report. We also thank Dmytro Galochkin and John Blackmore for discussions relating to performance
evaluation of the microservice architecture.

Notes
1 http://storm.apache.org/.
2 http://github.com/dan-blanchard/io-storm.
3 http://github.com/Parsely/streamparse.
4 The throughput was measured by scoring 250,000 responses for writing quality and 135,000 responses for content. Each

application was run on the same single server. The responses were written to questions from a mixture of low-stakes assessments
and assessments that aid in making high-stakes decisions.

5 See Table 3 in Burrows et al. (2015) for a detailed list.
6 This question is taken from the CBAL® learning and assessment tool (Bennett, 2010).
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