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ABSTRACT 

In problem-based learning large cohorts of students are divided into smaller groups 

that pursue learning objectives with separate instructors called tutors. This presents 

challenges for tutors tasked with providing similar educational experiences and 

assessment of multiple groups of students. Here we evaluated between-group variation 

in test scores that are attributable solely to the random sampling without replacement 

process used to form smaller groups. We then compared this with the actual between-

group variation in test scores in a university-level zoology class over 4 years. We found 

the variation attributable exclusively to group formation accounted for a 14.4-16.2 

point differential between groups whereas differences in empirical test scores 

attributable to group formation and other factors such as tutor capacity and group 

dynamics ranged from 12-18 points and rarely exceeded the variation inherent solely 

to group formation. This implies ad-hoc strategies for reducing variation between 

groups at the assessment phase will have limited success. 
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INTRODUCTION 

A number of disciplines have incorporated active learning approaches, either partially or 

completely into their curriculums (Prince 2004; Galand & Frenay  2005). Problem-based 

learning (PBL) is one such active learning approach that has been present for a number of years 

in medicine (Barrows 1996) and engineering (Mills & Treagust 2003; Prince & Felder 2006) 

and has become more common in the fields of science (Akçay 2009; Mauffette & Poliquin 

2001) and social sciences (Heycox & Bolzan 1991). Benefits of PBL approaches include 
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promotion of soft skills (Bell 2010) as well as long-term retention of course material (Strobel 

& van Barneveld 2009). However, major concerns remain as to how students are assessed in 

PBL learning environments (Azer 2003, Macdonald & Savin-Baden 2004, Macdonald 2005). 

Baden (2004) expressed concerns that students in the PBL context may feel that their learning 

is unrewarded and that working in groups is undervalued. Since PBL relies on a constructivist 

framework and on collaborative learning, group dynamics play a critical role in the learning 

process (Savery & Duffy 2001) as well as during the assessment and evaluation phases of a 

course (Gijbels et al. 2005; Gijbels & Dochy 2005).  

 

In the PBL learning environment, students from a large cohort are generally distributed in 

groups of 6 to 14 where course material is mastered through group-directed inquiry based 

around a problem or situation given to students by the tutor (Boud & Feletti 1997). We have 

implemented a biology program using a PBL format based on the practices of McMaster-

Maastricht universities whereby our groups are typically 12 students that meet twice a week 

with a tutor (De Graaff & Kolmos 2003). We may have several tutors facilitating a given cohort 

all using the same problem. This presents challenges for educators tasked with providing similar 

educational experiences and assessment to these multiple groups of students. Students are 

tasked with identifying specific objectives, formulating and testing hypotheses using 

information such as primary literature and textbooks in an approach akin to the scientific 

method (Duch et al., 2001). During this process, tutors (instructors) are tasked with verifying 

that course objectives are covered during these discussions and intervene when necessary to 

clarify or redirect discussions. In our program, all students, regardless of group assignment, are 

evaluated with identical exams that are administered throughout the course. Under these 

circumstances significant variation in test scores often arises between groups suggesting that 

students are not receiving similar educational experiences among groups.  

 

Potential sources for variation in test scores between groups may include differences in the 

quality/capacity of the tutor (Neville, 1999), differences in social dynamics between students 

within groups and even the initial selection and formation of groups prior to the course (Lowry 

et al. 2010; Lohman & Finkelstein, 2000). Selection and formation of groups differs 

fundamentally from other potential sources of between-group variation in that it occurs 

independently from the role of tutors or interaction among students within a group and its 

effects extend to all groups. Thus, variation in test scores due to group assignment may 

inescapably obscure the variation in tutors’ capacity and student dynamics. As a consequence, 

differences in tutor quality/capacity determined by evaluations that are linked to student 

performance may be effectively masked unless differences among tutors are greater than 

variation created from group assignment. Likewise, the importance of within-group dynamics 

among students for test scores must exceed variation related to group assignment in order to be 

detectable. For these reasons, it is useful to quantify the variation in test scores between groups 

attributable strictly to group assignment as a baseline prior to the assessment of other sources 

of variation. 
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Relative to other factors, quantifying the effects of group assignment on the variability in test 

scores between groups is relatively straightforward. Each cohort of students enrolled in a course 

constitutes a random sample from larger population of students. If group assignment is based 

on random allocation of students to groups, the initial cohort of students is sampled without 

replacement. As with all sampling, allocation of students to groups and the variability of test 

scores between groups will depend on both the size and the number of groups. If the underlying 

distribution of test scores can be estimated for the larger student population, the allocation of 

students to groups can be analyzed via simulation to quantify the inherent variability related to 

the formation of groups.  

 

Here we present simulations characterizing the variation in test scores between groups in a 

university-level course in a PBL program that is attributable exclusively to the initial selection 

and formation of groups. We compared the empirical variability between groups in a zoology 

course given between 2014-2017 based on tests given mid-term and at the end of the course to 

assess the relative variation attributable to other factors such as differences in quality/capacity 

of instructors or differences in group-dynamics. Assuming that maintaining similar educational 

experience between groups is desirable, we also suggest strategies for how a critical 

consideration of the allocation process of students into smaller groups could be changed to 

minimize between-group variation in a PBL context. 
 

METHODS 

We analyzed test scores from an introductory, university-level course in zoology in a PBL 

program in biology for our study. The course is required material for the baccalaureate program 

in biology at the Université du Québec à Montréal. The course counts for 7 credits of the total 

90 credits within the program and takes place over 7.5 weeks during the second trimester. In 

this program, courses are offered sequentially rather than concurrently, thus students are 

involved only in this course during this period. During the second trimester, the course counts 

for more than half of the 13 credits offered. Enrolment in the course is ranges from ca. 75-85 

students in a given year.  

 

The course is divided into both practical and theoretical aspects. Practical aspects of the course 

are taught in a laboratory setting in larger groups where students concentrate on learning 

external and internal morphology and taxonomic identification. Theoretical aspects of the 

course are taught in smaller groups and led by a tutor (instructor) for the duration of the course. 

Each tutor is responsible for 1 (or less frequently 2) groups. Thus, in a given year there are 

typically 5-7 instructors assigned to different groups. Subject matter during this aspect of the 

course revolves around understanding phylogenies and major evolutionary transitions seen 

throughout the radiation of multicellular animals. Each class period, students are presented with 
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a short document that describes a problem/situation related to course subject matter. In these 

small groups with the aid of the tutor, students are expected to identify learning objectives and 

develop and use hypotheses to guide their inquiry. Once established, students verify these 

hypotheses using pertinent sources of information such as assigned reading from textbooks, 

current popular science writing in the media and peer-reviewed scientific literature. During this 

period, the tutor may intervene to clarify course material and assure that hypotheses and 

discussions revolve around material pertinent to the course. Students then meet to share and 

compare information responding to each hypothesis. The synthesis produced in these meetings 

serves as the base of course material that students use to prepare for exams. The tutor’s role 

through this process is to guide students in the formulation of clear and verifiable hypotheses, 

to assure that pertinent subject matter is addressed with accurate information and to verify that 

students have met specific learning objectives for the course. For our analysis, we concentrated 

only on test scores from exams related to theoretical aspects of this course that were linked to 

performance in small groups with a single tutor. 

 

Theoretical aspects of the course are evaluated twice during the course as a mid-term and final 

exam. Each exam has the same format and consists of 40% long-form essay response, 50% 

short response and 10% ‘fill in the blank-type’ responses and is based on a total 100 points. 

Long-form essay questions are broad questions that require students to integrate material from 

several problems/situations to support their responses that can be up to both sides of a single 

page. Short response questions require less development and target more specific aspects of the 

course. Fill-in the blank type responses consist of students correctly naming organisms 

associated with a phylogenetic tree that emphasizes evolutionary relationships among taxa. 

Exam scores (based on 100 points total) are then given letter grades as follows: A+>88%, A 

85-87%, A- 82-85%, B+ 78-82%, B 75-78%, B- 72-75%, C+ 70-72%, C 68-70%, C- 65-68%, 

D+ 63-65%, D 60-63%, E<60%.  

 

STATISTICAL ANALYSIS  

For our analysis, we compiled mid-term and final exam scores between 2014 and 2017. We 

combined scores from all years to provide an overall empirical distribution of test scores for 

each exam. The empirical distribution was then used to choose reasonable parameters for beta 

distributions that were used in simulations. Beta distributions are convenient representations 

for student grades because 1) they are bounded between 0 and 1, which can be easily translated 

to 0 to 100% a standard scale for evaluations and 2) they can be negative skewed which captures 

well the large range of values associated with a failing grade (usually all notes <60). Beta 

distributions depend on two shape parameters (α and β). Beta distributions with parameter 

values of α between 4 and 5 and β between 2 and 2.5 have modes near 70% and a strong negative 

skew similar to the distributions of grades observed in university courses. For our analysis, we 

used four beta distributions where α=4 or 5 and β=2 or 2.5 to provide a realistic range of possible 
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student populations. We then simulated 1000 virtual cohorts where 80 values representing 

students were drawn at random from a beta distribution and then separated into 8 groups of 10. 

For each cohort, we calculated the maximum difference in mean test scores between groups. 

This value characterizes the largest difference in the mean test scores between groups in any 

simulated cohort. We summarized the differences generated through simulation to quantify the 

extent to which the selection/formation process influences between group variability in test 

scores. These simulations represent the between group variation in test scores that occurs 

exclusively as a product of random sampling without replacement and group assignment.  

 

We also compared to the maximum difference in mean test scores between groups generated 

from randomizations of empirical data for mid-term and final exams. For these randomizations, 

student test scores were randomized and assigned without replacement into individual groups 

where each group had a minimum of 10 students. The number of midterm and final test-scores 

used in these simulations differed slightly within each year as some students dropped the course 

between the mid-term and final exam. Based on 1000 randomizations and group assignments, 

we estimated the distribution of the maximum difference in mean test scores between groups. 

These simulations represent the between-group variation in test scores that would occur 

following the selection and allocation of students to groups as well as other factors such as 

differences in quality/capacity of instructors or differences in group dynamics.  

 

We then compared between group differences in test scores between both sets of simulations 

to determine the extent to which factors other than the selection process and group formation 

contribute to differences in test scores between groups. We hypothesized that on average the 

differences in test scores between groups derived from empirical simulations would be greater 

than differences in test scores derived from beta distributions because of additional factors 

including differences among tutors and group dynamics. All randomization and simulations 

were made using the sample function in RStudio (RStudio Team 2015).  

 

RESULTS 

The combined mid-term and final test scores from 2014-2017 both had modes at 70%, negative 

skew and a large proportion of observed values within 60-80% (Fig 1). Overall variability 

around the mode decreased between the mid-term and final exams with fewer scores lower than 

60% observed in the final exam than in the mid-term exam. Empirical distributions were similar 

qualitatively to beta distributions with shape parameters ranging from 4-5 and 2-2.5 for α and 

β respectively (Fig 2). Beta distributions with α and β ranging from 4-5 and 2-2.5 respectively 

maintained modes at or near 70%, negative skew and a large proportion of values falling within 

60-80%.  
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Figure 1. Empirical distribution of (left) mid-term and (right) final exam scores between 2014 and 2017 

from introductory course in zoology taught through problem-based learning. 

 

 

 

Figure 2. Histograms of 10,000 observations drawn from beta distributions with shape parameters (α, β) 

ranging from α=4 or 5 and β= 2 or 2.5. 
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Given the range of shape parameters used in our simulations, we found that average value for 

the maximum difference in mean test scores between groups ranged between 14.4 and 16.2 

points (Fig 3).  The majority of values (25-75% quartiles) for the between-group differences in 

test scores drawn from beta distributions fell between 11.5 and 19.2 points. Extreme differences 

between group means (>1.5 * the interquartile range which corresponds to a maximum 

difference of >25 points between groups) accounted for only a small proportion (ca. 1%) of the 

simulation values observed under any specific parameter combination.  Extreme differences 

between group means were slightly larger in simulations where the β parameter of the 

underlying distribution equalled 2 (13 and 12 extreme value differences between groups when 

α=4 and 5 respectively) than when the β parameter equalled 2.5 (7 and 9 extreme value 

differences between groups when α=4 and 5 respectively). 

 

 
Figure 3. The maximum difference in mean test scores between problem-based learning groups from 

1000 simulated cohorts of students. Test scores were drawn from four beta distributions (with shape 

parameters α=4 or 5 and β=2 or 2.5) and randomly assigned to learning groups. Box plots depict median 

values (solid black line), 25% and 75% quartile (boxes) and 1.5 times the interquartile range (whiskers). 

Red dots depict the mean. 

 

When actual test scores were randomized and re-allocated to groups, mean values for the 

maximum difference in test scores between groups ranged from 12.2 to 18.2 for mid-term 

exams and from 12.5 to 17.3 for final exams (Fig 4). The overall range of between-group 

differences in test scores was also similar for both mid-term and final exams over the four years 
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examined in this study. Interquartile ranges (25-75% quartiles) for between-group differences 

in empirical test scores over all four years ranged between 9.6 and 21.4 for the midterm exam 

and 10.1 and 20.2 for the final exam (Fig 4). However, the inter-annual patterns in between-

group differences of empirical test scores was different between the mid-term and final exams. 

Between-group differences in mid-term test scores were greater in 2015 and 2017 than in 2014 

and 2016, while between-group differences in final exam test scores were similar in 2014-2016 

but increased in 2017 (Fig 4). As with simulations derived from beta distributions, extreme 

values in simulations based on empirical data (>1.5 * the interquartile range) accounted for only 

a small proportion (ca. 1%) of the differences observed in any given year. However, in 

simulations based on empirical data, we observed 4 extreme values (out of 4000) where 

between-group variation in test scores was extremely low (<5 points) (Fig 4). 

 

 

 
Figure 4. The maximum difference in mean test scores after randomization and reallocation of empirical 

mid-term and final test scores among groups between 2014 and 2017. Box plots depict median values 

(solid black line), 25% and 75% quartile (boxes) and 1.5 times the interquartile range (whiskers). Red 

dots depict the mean. 

 

When we compared simulations drawn from empirical data with those drawn from beta 

distributions, between-group differences in empirical test scores only marginally exceeded 

those drawn from beta distributions and not in every year. The beta distribution with parameters 

α=5 and β=2, had smallest between-group differences in test scores thus provided an 

analytically conservative benchmark for comparisons. The average difference between-groups 

in empirical test scores for mid-term exceeded simulations based on this conservative beta 

distribution by no more than 4 points in any given year and were less than simulation results in 

2016. Likewise, the average difference between-groups in empirical test scores for final exams 

exceeded simulations from the conservative beta distribution by less than 3 points and only in 
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2017. In preceding years, the average difference between-groups in empirical test scores for 

final exams never exceeded the conservative beta distribution.  Differences between 

simulations drawn from empirical data and those based on the other beta distributions used in 

our study will necessarily be less, further stressing the relative importance of the selection and 

group formation process on between-group differences in test scores. 

 

DISCUSSIONS 

Regardless of the parameters chosen for our simulations, significant intergroup variation of 

between 14.4-16.2 points was imparted solely through random assignment of students to 

groups. For students, this variation corresponds to the difference of 2 letter grades in typical 

grading scales where letter grades are separated by 10 points. For tutors, between-group 

variation from random assignment obscures potential differences between tutors unless 

differences in tutors’ performance between groups exceed ca. 14-16 points.  Likewise, 

quantitative evaluations of social dynamics within groups including student performance 

attributable to group size will be hampered unless it exceeds the variation inherent in the 

assignment of students to groups.  

 

Incorrectly attributing between-group variation caused by group assignment to other sources of 

variation such as tutor performance can cause significant loss of time and result in ineffective 

evaluation strategies. It is our experience that tutors themselves often attribute between-group 

variation in test scores to differences in severity or generosity of different tutors during the 

correction of exams. However, it has been reported that tutors may over-rate students of the 

group reflecting a bonding affect (Whitfield & Xie, 2002, Cohen et al. 1993). This often leads 

to protracted but pointless discussions related to correction strategies. Common discussions 

revolve around the questions whether ‘it is better to standardize corrections by having one tutor 

correct exams (or individual exam questions) from all groups’ or ‘should extremely detailed 

correction guides be prepared and rigidly implemented’ to assure homogeneity between groups 

during the correction phase. Both strategies could decrease between-group variation, however 

these effects would be minimal. Our results suggest that after removing the between-group 

variation attributable to formation of groups, which under a conservative scenario based on a 

beta distribution with parameters α=5 and β=2 would account for a differential of 14 points 

between groups, implementing additional ad-hoc correction strategies to minimize between 

group variation could -at best- reduce between group differences up to 4 points.  In our study 

such minor reductions would be possible in only 3 of the 8 evaluations (2015 and 2017 mid-

terms and 2017 final exam). For the remaining five evaluations the empirical between-group 

differences in test scores falls with the range of variation attributable solely to the group 

formation process. 
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There are additional costs associated with ad-hoc correction strategies. Strategies by which 

individual tutors correct exams or individual exam questions across groups do little to correct 

generosity or severity during the correction phase and only shift these disparities to differences 

in student performance on individual questions. Highly detailed correction guides often do not 

capture creative/unforeseen aspects in student responses-particularly in long-form essay 

responses to more open-synthetic type questions. It is not our position that clear correction 

guides and similar expectations among tutors are unwarranted during the correction phase. It is 

our position that these strategies will have negligible effects on between-group variation in 

exam scores. 

 

One alternative is to consider a non-random assignment of students to groups. A simplistic 

assignment strategy would allocate students to groups based on prior performance in PBL 

courses. For introductory courses such as the example used in this study, prior evaluations made 

in PBL courses may be limited or unavailable.  In cases where prior evaluations are available, 

there may be the practical limitation of an insufficient number of students with elevated 

performance that can be dispersed among groups. This has profound implications on learning 

strategies and group dynamics of students within a group and has been discussed in the context 

of behavioural ecology as the ‘producer-scrounger’ argument (Vickery 2013). This argument 

is premised on the idea that a limited number of students who contribute to group discussion 

during the problem or situation given to the students (ie. ‘producers’) promote an inverse effect 

by which other students contribute less (ie. ‘scroungers’) choosing to profit disproportionately 

from ‘producers’. One prediction of this argument is that there is an optimal number of level of 

scrounging. Thus, as the number of producers in a group increases, the number of scroungers 

decreases. However, below the optima predicted under the ‘producer-scrounger’ model, 

scroungers should take on a greater role in class discussions and thus become producers. While 

this argument has been founded on ecological principals, overall performance of a group likely 

involves additional social dynamics among students within the group (shaming, competition, 

the development of cohesion and cooperation within a group). While it is intriguing to think 

that there may be some ‘magic’ formula for group assignment and group size in PBL learning 

continues to be an active area of research, any kind of non-random assignment can also be 

strongly criticized as favouring/disfavouring students depending on the criteria chosen. This 

highlights the need for demonstrable indicators of student performance if non-random group 

assignment strategies are to be adopted. If such indicators do not exist and assignment criteria 

cannot be justified, then tutors should learn to live with significant between-group variation in 

PBL courses. 

 

For tutors and directors of PBL teaching units, the relatively large between-group variance that 

arrives from the group formation process presents a challenge for evaluating tutor performance. 

Reliance on student test scores as a metric of tutor capacity is clearly limited by the variation 

introduced through the formation of groups. Such strategies could only see extremes in tutor 

performance and would still rely on the untested assumption that variation between groups does 
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not occur from other sources such as group dynamics. In this context, we suggest that other 

metrics of tutor performance such as thoughtful evaluations made by students may be more 

useful.  
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