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Genetics and the social sciences have endured a long and 
troubled partnership. At the beginning of the 20th century, 
eugenicists—including the father of modern quantitative 
genetics, R. A. Fisher—used their science to promote poli-
tics of racism, classism, and xenophobia (Tabery, 2008). By 
the end of 20th century, things were not much better. 
Publication in 1994 of The Bell Curve was followed by con-
tentious debate over the existence of and biological basis for 
a racial gradient in intelligence (Devlin, 1997; Neisser et al., 
1996). The 21st century is off to a better start in the form of 
international collaboration among academic social scientists 
and geneticists, best embodied by the Social Science Genetic 
Association Consortium (SSGAC). The first large-scale 
endeavor of this group was to apply state-of-the-art methods 
typically used to hunt for genetic causes of common diseases 
to investigate the genetics of educational attainment 
(Rietveld et al., 2013). The members pooled data on more 
than 100,000 individuals from 42 different studies. To the 

surprise of many in the scientific community, they actually 
found something. Not only were they able to identify genetic 
variants that exhibited robust and replicable associations 
with educational attainment, they were able to construct a 
genome-wide “polygenic score” for educational attainment 
that predicted, albeit very weakly, how far an individual was 
likely to progress in his or her educational career (i.e., total 
years of schooling and/or whether he or she completed 
college).

This breakthrough finding raises an important question 
for social scientists who study educational attainment: What 
does a measure of genetic proclivity toward higher levels of 
educational attainment actually capture? Can one say with 
confidence that the genetics of educational attainment 
uncovered in Rietveld et al. (2013) operate independently of 
the social circumstances into which a child is born? And, if 
so, what are the mechanisms? That is, what are the personal 
attributes (e.g., endophenotypes) that develop from a “high 
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education” genotype that in turn enable their holders to go 
farther in their educational careers?

To help address these questions, we conducted a sibling 
fixed-effects analysis among respondents in the National 
Longitudinal Study of Adolescent to Adult Health (Add 
Health) sibling pairs study. Differences in siblings’ geno-
types arise from a random process similar to a lottery (varia-
tion in recombination and segregation of alleles during the 
meiosis that produces gametes). Our analysis tested whether 
the “winners” of within-family genetic lotteries completed 
more years of schooling as compared to their siblings. The 
use of an independent sample of sibling pairs for this type of 
inquiry provides three important contributions to the exist-
ing work in this area. First, we find strong evidence that 
recent discoveries made in genetic studies of educational 
attainment are nonspurious (i.e., not the result of environ-
mental confounding) and represent more than the genetic 
signature of a privileged social group or groups. Second, 
features of children’s environments that promote educational 
attainment are correlated with their genetic endowments; 
such correlations may bias between-family estimates of 
genetic effects. Third, estimates of genetic influence on edu-
cational attainment from comparisons of siblings may differ 
in important respects from estimates based on individuals 
who do not share the same household. We also examined the 
potential bias that could arise if socioeconomic correlates of 
a person’s genetic inheritance are ignored, a question critical 
to any future translation of genetic discoveries into educa-
tion research. Finally, we examined a putative mechanism or 
pathway by which this genotype–education relationship may 
hold: verbal intelligence as measured by a receptive vocabu-
lary test.

The remainder of this introduction is split into four sec-
tions. We begin by introducing genome-wide data analysis 
and its application to the study of educational attainment. 
We then discuss polygenic scoring as an approach to trans-
lating results from genome-wide analysis into a tool for 
social science. In particular, we highlight vulnerabilities in 
polygenic scoring methods and ways of addressing them. 
Finally, we discuss population and social stratification that 
may confound inference and how the sibling difference may 
be used to bypass these confounding dynamics.

Genome-Wide Data Analysis and Its Application to the 
Study of Educational Attainment

Completions of the Human Genome Project and the 
International HapMap Project have given scientists the nec-
essary tools to directly investigate human DNA and its rela-
tion to various traits and diseases. The current approach 
favored by geneticists for identifying DNA sequence varia-
tion associated with complex human traits is the genome-
wide association study (GWAS). A GWAS is an inductive 
data-mining approach in which an outcome of interest 

(known as a phenotype) is analyzed for association with 
each of a large number of genetic variants selected to survey 
variation throughout the entire genome, most commonly, 
single-nucleotide polymorphisms (SNPs).1 To date, thou-
sands of genome-wide analyses have been conducted on 
hundreds of traits and diseases, and many discoveries have 
been made (Welter et al., 2014). Most GWAS research falls 
within the biomedical domain, but the SSGAC was formed 
to apply the methods of a GWAS to the study of social phe-
nomena. Their first large-scale project was a genome-wide 
association study of educational attainment (Rietveld et al., 
2013). That GWAS, which analyzed data from more than 
100,000 individuals, identified several SNPs that were asso-
ciated with educational attainment even after strict adjust-
ments for multiple hypothesis testing. Subsequent analysis 
has replicated these discoveries (Rietveld et al., 2014). The 
individual genetic variants discovered exhibited only very 
small effects on educational attainment, consistent with 
findings from GWASs of other complex traits ranging from 
body mass index to schizophrenia. But the results of the 
GWAS are not limited to the handful of SNPs identified. It is 
possible to combine information from all of the SNPs ana-
lyzed in the GWAS to calculate a “polygenic score” that 
summarizes genome-wide genetic predisposition to educa-
tional attainment.

Polygenic Scores as a Tool to Integrate GWAS Results Into 
Social Science Research

Polygenic scores (also known as genetic risk scores) 
summarize an individual’s cumulative genetic predisposi-
tion to a particular disease or trait. Scores aggregate infor-
mation across a panel of SNPs according to associations 
identified in independent GWASs. Each SNP is scored by 
counting the number of disease-/trait-associated alleles and 
then multiplying that sum by a weight. The same weight 
may be used for all SNPs or some other value may be used, 
such as the coefficient estimated for the association between 
the SNP and the disease/trait in a GWAS. Then, the weighted 
allele counts are summed across the SNP panel. Polygenic 
scores can include all SNPs measured in a GWAS or some 
subset, typically defined by a p value threshold for the 
GWAS results (for a detailed discussion of polygenic scor-
ing methods, see Dudbridge, 2013; Purcell et al., 2009; 
Wray, Goddard, & Visscher, 2007). As the number of SNPs 
included in a polygenic score increases, the score’s distribu-
tion rapidly approaches normality (Plomin, Haworth, & 
Davis, 2009). The capacity to integrate information from 
across the genome into a single index and the statistical 
properties of that index (i.e., continuous and normally dis-
tributed) have made polygenic scores an appealing tool for 
the integration of genetics in both biomedical and social sci-
ences. For example, previous work has used polygenic 
scores to study the development of obesity, smoking, and 
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asthma (Belsky et al., 2012; Belsky, Moffitt, Baker, et al., 
2013; Belsky, Sears, et al., 2013; Domingue et al., 2014). 
The majority of polygenic scores can predict only a small 
percentage of the variance in traits of interest. However, it is 
thought that as GWAS samples increase in size along with 
the density of SNPs genotyped, so too will the predictive 
power of polygenic scores based on GWAS results (Conley, 
in press). In the case of human height, a trait measured with 
high precision, a GWAS of nearly one quarter million indi-
viduals recently generated a polygenic score predicting 
nearly 30% of population variance (Wood et al., 2014). Even 
with the small level of predictive power they do offer, poly-
genic scores provide a tool for beginning to pose and answer 
questions about the complex relationships that exist between 
genetics, environments, and the traits and behaviors of inter-
est to the social sciences (Belsky & Israel 2014; Conley, 
Domingue, Cesarini, Dawes, & Boardman, 2015).

Population Stratification and Ethnic Confounding of 
Genome-Wide Analysis

Substantively, GWASs test for covariance between allele 
frequencies and a trait of interest. When an association is 
detected, the inference is that the SNP (or, more likely, some 
other DNA sequence variant that is highly spatially corre-
lated with the SNP) causes a biological effect that in turn 
causes variation in the trait of interest. But there are other 
sources of covariance between allele frequencies and traits 
that can confound associations detected in a GWAS. A par-
ticularly pervasive source of confounding in a GWAS is 
“population stratification.” Population stratification is the 
nonrandom patterning of allele frequencies across global 
populations (Cardon & Palmer, 2003). These patterns may 
arise for any number of reasons, including major events, 
such as the departure of a select group from the African sub-
continent, and minor events of social construction, such as 
the erection of national boundaries that restrict contact 
between groups. The main consequence of population strati-
fication for our purposes is that these alleles will be associ-
ated with any trait that varies systematically between these 
populations even though the genetic variation may have 
nothing to do with the underlying reasons (which may be 
environmental) why the trait varies between the two groups. 
To guard against confounding due to population stratifica-
tion, GWASs typically use samples in which the respondents 
all report the same self-identified racial background (Cardon 
& Palmer, 2003).

The challenge of population stratification raises two 
important considerations for the integration of genome-wide 
data into social science research. First, it highlights the 
potential racial specificity of GWAS findings because the 
particular SNPs identified in a GWAS may be differently 
associated with the true causal loci due to differences in 
“linkage disequilibria” (e.g., Reich et al., 2001). This implies 

that a particular SNP measured in a GWAS may be highly 
correlated with an unmeasured causal variant in one popula-
tion but not in another. An important first step for social sci-
entists wishing to incorporate GWAS-derived genetic 
measurements into their own research designs is to evaluate 
cross-race replication of associations (Belsky, Moffitt, & 
Caspi, 2013; Belsky, Moffitt, Sugden, et al., 2013; Domingue 
et al., 2014). This is an especially important point because 
the SSGAC GWAS of educational attainment was conducted 
only in a European-descent sample.

The second consideration raised by the challenge of pop-
ulation stratification is that residual confounding may be 
present even within samples designed to be racially homog-
enous. Subtle, genome-wide allele frequency differences 
exist within even relatively narrowly defined European-
descent populations (Nelis et al., 2009). Thus, at a minimum, 
statistical controls for population stratification are needed. 
The usual approach in the context of a GWAS is to estimate 
principal components from genome-wide SNP data and then 
use these as control variables in regression analysis (Price  
et al., 2006). Such principal components are only estimates, 
though. Therefore, an ideal control for population stratifica-
tion is to conduct analyses that compare individuals who 
share the same ancestry, that is, family-based genetic analy-
sis (Laird & Lange, 2006).

Social Stratification and Environmental Confounding of 
Genome-Wide Analysis

To the extent that GWASs are able to uncover molecular 
roots of behavioral phenomena, there are important chal-
lenges to address in establishing the magnitudes of the 
effects of genetic influences. A primary challenge is that 
polygenic influences will be correlated among family mem-
bers; any genetic predisposition to social attainment will be 
shared between parents and children. Thus a child’s genetic 
and social inheritances will be correlated (e.g., Boardman, 
Domingue, & Fletcher, 2012). Attempts to quantify genetic 
effects must therefore account for social differences between 
children. One method is to measure and control for features 
of children’s environments, such as characteristics of their 
families and neighborhoods. But in parallel to the limitations 
with using principal components to control population strati-
fication, such methods depend on the quality and complete-
ness of the measurements of children’s environments. An 
alternative is to conduct within-family analysis via sibling 
fixed effects. Full siblings in a family share—to a large 
degree—parents, housing, neighborhoods, schools, and so 
on. And as discussed above, their genetic differences are 
essentially randomly assigned. Siblings thus provide ideal 
controls for establishing magnitudes of genetic effects on 
social attainments.

Here, we test the effects of a polygenic score related to 
educational attainment derived from a GWAS in a nationally 
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representative sample of siblings. We then evaluate correla-
tions between genetic and social determinants of educational 
attainment. We next estimate genetic effects after controlling 
for select measured features of children’s social environ-
ments. Finally, we submit genetic effect estimates to the acid 
test of a sibling comparison. We evaluate whether genetic 
effects on educational attainment operate in a similar man-
ner within families and across children in the population. We 
also test whether genetic effects are accounted for by a com-
mon measure of academic aptitude, verbal intelligence.

Materials

Sample

Add Health is a nationally representative cohort drawn 
from a probability sample of 80 U.S. high schools and 52 
U.S. middle schools, representative of U.S. schools in 1994–
1995 with respect to region, urban setting, school size, 
school type, and race or ethnic background (n = 20,745, ages 
12–20 years at Wave 1 in 1994–1995). The Waves 3 (2001–
2002) and 4 (2008–2009) data collections included n = 
15,197 individuals (then ages 18–26 years, mean age 22.3 
years) and n = 15,701 individuals (then ages 24–32 years, 
mean age 28.9 years), respectively. The Add Health study 
includes an oversample of siblings (Harris, Halpern, 
Haberstick, & Smolen, 2013). The sibling pairs sample was 
genotyped (via Oragene saliva collection) with the Illumina 
Human Omni Quad chip at Wave 4 of the study (see 
McQueen et al., 2014, for details). We use this genome-wide 
data to construct polygenic scores for study participants.

Patterns of linkage disequilibrium (LD) vary consider-
ably across socially defined racial and ethnic groups, and 
this is particularly evident when comparing the correlated 
genotype structures of Europeans to those of African ances-
try (Price, Zaitlen, Reich, & Patterson, 2010). Specifically, 
there is more genetic variation among those of African 
ancestry (Li et al., 2008; Rosenberg et al., 2002) that reduces 
LD (e.g., the correlation between neighboring SNPs) and 
thus creates problems for comparing the effects of SNPs 
across groups, a problem compounded when creating 
genome-wide polygenic scores. We therefore analyzed 
genetic associations separately for European and African 
Americans.

The 917 European Americans (EAs) in our analytic sam-
ple are in 386 sibling pairs and 12 sibling trios, with an addi-
tional 109 singletons. The 677 African Americans (AAs) are 
in 100 sibling pairs and four trios, with an additional 465 
singletons. Table 1 shows characteristics of the EA and AA 
sibling pairs study participants who provided genetic data 
and constitute our analytic sample. The table also shows 
characteristics of the full Add Health EA and AA samples for 
comparison. The EAs in our analytic sample are largely 
comparable to the full population of EA respondents in the 
Add Health study. The AAs in our sample are less educated, 

have less educated parents, and score lower on the verbal 
intelligence measure as compared to all AA Add Health par-
ticipants. The bulk of our analysis is focused on the EA sam-
ple because the original Rietveld et al. (2013) GWAS was 
conducted on European-descent individuals. Replication of 
polygenic scores discovered in EA samples among AA sam-
ples may be compromised because LD differences in the 
groups lead to less precision among AA samples. 
Accordingly, large-scale GWASs of educational attainment 
in African Americans will be needed to better quantify 
genetic influences on attainment in this population. 
Nevertheless, in the interest of testing the extent to which 
findings made in European-descent individuals replicate in a 
different population, we conduct several analyses of the AA 
sample. Due to the small number of AA sibling pairs in the 
data, sibling analyses are conducted only in EAs.

Measures

Educational attainment.  We measured educational attain-
ment as the highest degree completed by the time of inter-
view at Wave 4 when respondents were asked, “What is the 
highest level of education that you have achieved to date?” 
Response options and their numeric values (in parentheses) 
were eighth grade or less (8), some high school (10), high 
school graduate (12), some vocational/technical training 
(13), completed vocational/technical training (14), some 
college (14), completed college (16), some graduate school 
(17), completed a master’s degree (18), some graduate train-
ing beyond a master’s degree (19), completed a doctoral 
degree (20), some post-baccalaureate professional education 
(18), and completed post-baccalaureate professional educa-
tion (19). EA respondents in our genetic sample completed 
14.2 years of schooling on average (SD = 2.2) by Wave 4. Of 
the sibling pairs, 64% varied in their educational attainment 
(mean difference = 1.7 years). AA respondents in our genetic 
sample completed 13.5 years of schooling on average (SD = 
2.2).

Parental education.  At the first wave of data collection, par-
ents of respondents (over 90% were females) responded to a 
question asking, “How far did you go in school?” Potential 
responses and their numeric codes (in parentheses) included 
eighth grade or less (8), more than eighth grade but did not 
graduate from high school (10), went to vocational school in 
place of high school (10), high school graduate (12), GED 
(12), vocational school after high school (13), attended col-
lege (14), graduated college (16), and training beyond col-
lege (18). EA parents of participants in our genetic sample 
reported completing 13.5 years of schooling on average  
(SD = 2.1). AA parents completed 12.6 years of schooling on 
average (SD = 2.2). Participants with more educated parents 
went on to complete more years of schooling (r = .42 in the 
EA sample; r = .32 in the AA sample; see Table 2).
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Neighborhood disadvantage.  The Add Health Study used 
respondents’ residential addresses at the time of Wave I data 
collection to link individuals with data describing the U.S. 
Census block group where they lived. We used contextual 
variables from this data set to measure the socioeconomic 
and sociodemographic characteristics of the neighborhoods 
in which Add Health respondents were living at the time of 
the baseline interview in adolescence (see online supple-
ment). By design, measured neighborhood disadvantage was 
associated with educational attainment (r = −.35 for EA 
respondents), although this association was weaker for AA 
respondents (r = −.14).

Verbal intelligence.  Verbal intelligence was measured at 
Wave 1 (when Add Health participants were 12–20 years 
old) via a modified version of the Peabody Picture Vocabu-
lary Test (Dunn & Dunn, 1981, 1997), a test of receptive 
vocabulary (M = 103.9, SD = 11.1, for EA; M = 91.6, SD = 

13.8, for AA). Respondents who scored higher on the vocab-
ulary test went on to complete more years of schooling (r = 
.36 in both EA and AA samples).

Educational attainment polygenic score.  After quality con-
trols (see online supplement), the genetic database included 
1,886 individuals with valid data on 940,862 SNPs. Poly-
genic scores for educational attainment were calculated for 
each sibling pairs participant using the results of their meta-
analysis of the GWAS of educational attainment (Rietveld et 
al., 2013). Briefly, SNPs in the Add Health sibling pairs 
genetic database were matched to SNPs with reported results 
in the GWAS. For each of these SNPs, a loading was calcu-
lated as the number of educational attainment–associated 
alleles multiplied by the effect size estimated in the original 
GWAS. Loadings were then summed across the SNP set to 
calculate the polygenic score. Additional details on the con-
struction of this variable, as well as a sensitivity analysis, are 

Table 1
Key Descriptive Statistics Comparing the Full Add Health Cohort, the European American (EA) and African American (AA) Subsamples 
of That Cohort, and the Genotyped EA and AA Siblings (Sibs) That Are the Focus of This Analysis

Add Health 
Cohort

EA 
subsample

Genotyped 
EA sibs

p value for 
difference between 
EA subsample and 

genotyped sibs
AA 

subsample
Genotyped 

AA sibs

p value for 
difference between 
AA subsample and 

genotyped sibs

Years of education at 
Wave 4

14.2 (2.2) 14.3 (2.2) 14.2 (2.2) 0.11 14.0 (2.2) 13.5 (2.2) 0.00

Verbal intelligence 100.6 (14.5) 105.1 (12.0) 103.9 (11.1) 0.00 94.3 (14.2) 91.6 (13.8) 0.00
Years of maternal 

education
13.2 (2.6) 13.5 (2.3) 13.5 (2.1) 0.66 13.3 (2.5) 12.6 (2.2) 0.00

Neighborhood 
disadvantage

0.00 (2.2) −0.65 (1.8) −0.54 (1.7) 0.06 1.5 (2.5) 1.8 (2.5) 0.01

n 15,697 8,630 917 3,456 677  

Note. Add Health = National Longitudinal Study of Adolescent to Adult Health. Histograms for education at Wave 4 and the polygenic score are in Figure 
S1 of the online supplement.

Table 2
Correlations Between Educational Attainment, Polygenic Score, and Other Key Variables in EA and AA Samples

EA Respondents AA Respondents

 
Correlation with W4 

education
Correlation with 
polygenic score

Correlation with W4 
education

Correlation with 
polygenic score

Years of education at W4 .18*** .11**
Verbal intelligence .36*** .14*** .36*** .15***
Years of maternal education .42*** .05 .32*** .12**
Neighborhood disadvantage −.35*** −.13*** −.14*** .00
Polygenic score .18*** .11**  

Note. EA = European American; AA = African American; W4 = Wave 4.
† p < .1. *p < .05. **p < .01. ***p < .001.
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included in the online supplement. We standardize the poly-
genic score to have M = 0, SD = 1, separately within the EA 
and AA samples. Scores were normally distributed (Figure 
S1). The mean sibling difference in polygenic scores in the 
EA sample was 0.8.

Analysis

Our analysis used three models to test associations between 
Add Health participants’ polygenic scores and their educa-
tional attainments. The youngest participants were age 24 at 
the time of the most recent data collection, and some may 
not have completed their education (Figure S1 contains a 
comparison of birth year and educational attainment). All 
models were adjusted for year of birth to account for any 
differences in educational attainment due to age at the time 
of follow-up. Models 1 and 2 are also adjusted for the first 
10 principal components estimated from the genome-wide 
SNP data to account for any population stratification in our 
analytic sample (McQueen et al., 2014).

The first model estimated the association between poly-
genic score and educational attainment in the pooled sample 
of sibling pairs. Model 1 takes the form

Model 1: y
i
 = a + b

U
score

i
 + lbirth year

i
 + γ′PC

i
 + i.

The estimate of the genetic effect is denoted β
U
, where the 

subscript emphasizes the fact that the estimate comes from 
an approach in which the respondents are treated as unre-
lated individuals. The sibling structure of the data was 
accounted for by clustering standard errors within families 
(Zeileis, 2004), but this does not affect point estimates. 
Model 1 approximates the approach being used by many 
social scientists seeking to integrate genetic information into 
analyses of educational attainment (e.g., de Zeeuw et al., 
2014; Ward et al., 2014).

A limitation to Model 1 is that β
U
 may be biased away 

from zero due to confounders that covary with the genetic 
score across families (environmental stratification, as dis-
cussed in the introduction). For example, children share half 
of their DNA with each parent. Thus, a child’s polygenic 
score will be positively correlated their parents’ scores. If the 
polygenic score is causally related to educational attainment, 
then children with high scores will tend to have better-edu-
cated parents as compared to children with low scores. As a 
consequence, they are likely to grow up in quite different 
environments. β

U
 may therefore capture not just a genetic 

effect but also the effects of environmental advantages that 
are associated with the child’s genotype (i.e., parents with 
more education and the economic and social resources that 
come with it). The geocoded Add Health contextual data 
allow us to test this hypothesis by fitting a second model that 
statistically controls for differences in adolescents’ environ-
ments that may be correlated with their polygenic scores. 
Model 2 takes the form

Model 2: y
i
 = α + β

U′
score

i
 + λbirth year

i
 + γ′PC

i
  

+ νparent edu
i
 + ωneighborhood

i
 + i,

where ν and ω adjust for differences between adolescents’ 
parental and neighborhood characteristics. We also consider 
models where ν and ω are independently constrained to be 
zero (Models 2A and 2B, respectively).

A limitation of Model 2 is that it cannot account for 
unmeasured features of families and neighborhoods that are 
correlated with children’s genotypes. Therefore, we fit a 
third model that utilized the family structure of the data to 
generate a sibling fixed-effect estimate that fully controls for 
parental genotype and attainments and also for any neigh-
borhood or environmental characteristics that may vary 
across families. Model 3 takes the form

Model 3 : ( )y I ii i

k

N

k k iW= + + + +
=
∑α β λ µscore birthyeari

2



where I
k
(i) is 1 if individual i is in family k and 0 otherwise 

(and one family, k = 1, is excluded as the reference). This 
sibling comparison model leverages the genetic lotteries that 
occur within families. Estimates of β

W
 represent the educa-

tional advantage enjoyed by the sibling who “wins” a hypo-
thetical family’s genetic lottery. Because the estimate is 
based on comparing siblings, any parental, neighborhood, or 
school factors that are shared by siblings in a family are con-
trolled by the design of the model.

Results

Did Adolescents With Higher Polygenic Scores  
Complete More Years of Schooling?

Adolescents with higher polygenic scores went on to 
complete more years of schooling as of the most recent  
follow-up, when they were in their 20s and 30s. The genetic 
effect in our U.S. sample of EA respondents was small in 
magnitude (r = .18; see Table 2), consistent with published 
estimates from samples in the United Kingdom and the 
Netherlands (de Zeeuw et al., 2014; Ward et al., 2014). In 
years of educational attainment, this correlation is equiva-
lent to a predicted increase of 0.41 years for an increase of 
one standard deviation in the polygenic score. In our 
European-descent sample, we detected little evidence that 
population stratification confounds genetic effects as esti-
mated effect sizes for the polygenic score were similar when 
models were fitted without adjustment for population struc-
ture: Our base Model 1 estimated that each standard devia-
tion increase in an adolescent’s polygenic score forecast his 
or her completion of over one third of 1 year of additional 
schooling (bU� = 0.37, SE = 0.08, p < .001; see Table 3). In 
comparison, having a mother who graduated college was 
associated with an additional 1.7 years of schooling.

We repeated this analysis in the AA sibling pairs. The 
genetic effect was smaller in AAs but remained statistically 
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significant (r = .11, p < .01). In real terms, after controlling 
for population structure, Model 1 suggests that each stan-
dard deviation increase in polygenic score forecast their 
completion of about one fifth of 1 year of additional school-
ing (bU� = 0.20, SE = 0.09, p = .02).

Were Adolescents’ Social Environments  
Related to Their Genetic Inheritance?

We next tested the potential for environmental confound-
ing of genetic associations. In the EA sample, we did not 
detect a (significant) relationship between participants’ 
polygenic scores and their mothers’ educational attainments. 
In contrast, in the AA sample, participants with higher poly-
genic scores tended to have better-educated mothers (r = .12, 
p < .01). This pattern of findings was reversed when we ana-
lyzed genetic associations with neighborhood disadvantage. 
EA participants with higher polygenic scores tended to live 
in more socially advantaged neighborhoods (r = −.13, p < 
.001), whereas AA participants’ polygenic scores were not 
related to the social circumstances of their neighborhoods. 
These findings show that genetic predisposition to educa-
tional attainment was socially stratified in both Whites and 
Blacks, although they suggest differences in the nature of 
that social stratification.

We next tested whether genetic associations with educa-
tional attainment could be accounted for by measured social 
environmental differences. We repeated our genetic analysis 
of educational attainment, this time adding statistical adjust-
ments to account for maternal education and neighborhood 
disadvantage. For the EA respondents, adding controls for 
parental education and neighborhood disadvantage one at a 
time attenuated genetic effect estimates by roughly 20% (for 
a model controlling neighborhood disadvantage, Model 2A, 
βU ′ = 0.30, SE = 0.07, p < .001; for a model controlling 
maternal education, Model 2B, βU ′ = 0.29, SE = 0.08,  

p < .001). When both maternal education and neighborhood 
disadvantage were included in the model together, the 
genetic effect was reduced by roughly 30% (βU ′ = 0.26, SE = 
0.07, p < .001). We repeated this analysis in the AA sample. 
Because neighborhood disadvantage showed no distinguish-
able association with the polygenic score, we focus on 
Model 2B, which adjusts the effect of the polygenic score 
for parental education. After we included controls for mater-
nal education in Model 2B, the estimated coefficient for the 
polygenic score was not statistically significant (βU ′ = 0.14, 
SE = 0.09, p = .12).

Differences between adolescents’ polygenic scores also 
reflect genetic differences between their families. 
Correlations of polygenic scores between parents and chil-
dren have been estimated as high as r = .60 (Conley et al., 
2015). In our sample, the correlations between EA siblings’ 
polygenic scores is r = .53. Families with higher polygenic 
scores could achieve higher degrees and acquire the 
resources to move into more advantaged neighborhoods on 
the strength of their genetic endowments. As a result, inter-
pretation of the attenuation of genetic effects from Model 1 
to Model 2 is not straightforward. We therefore moved to the 
sibling comparison model, in which adolescents’ social 
environments are equal by design and genetic differences 
between individuals are randomly assigned by the “lottery” 
of meiosis.

Within a Family, Did the Sibling With the Higher  
Polygenic Score Achieve Higher Educational Attainment?

We expected that our Model 3 sibling fixed-effect esti-
mate would be similar to our Model 2 estimates. Surprisingly, 
the sibling-difference genetic effect was of nearly the same 
magnitude as the base model estimate (bW� = 0.35, SE = 
0.11, p < .01). This result suggests two things. First, genetic 
associations with educational attainment are nonspurious, 

Table 3
Model Estimates of Polygenic Score on Educational Attainment

EA respondents AA respondents

  Estimate SE pv N Model r2 Estimate SE pv N Model r2

Model 1: bU� 0.37 0.08 7.5E-07 917 0.06 0.20 0.09 2.1E-02 677 0.02

Model 2A: βU ′� 0.30 0.07 3.1E-05 901 0.16 0.22 0.09 1.0E-02 671 0.04

Model 2B: βU ′� 0.29 0.08 1.4E-04 762 0.23 0.14 0.09 1.2E-01 556 0.12

Model 2: βU ′� 0.26 0.07 5.4E-04 752 0.26 0.14 0.09 1.2E-01 555 0.12

Model 3: bW� 0.35 0.11 2.3E-03 808 0.74  

Note. Model 1 captures the estimated effect of the polygenic score in unrelated individuals (where the standard error is adjusted for the clustering) adjusting 
for age and the top 10 PCs. Model 2 adds controls related to parental education and neighborhood disadvantage to Model 1. Model 2A and Model 2B are, 
respectively, restricted versions of Model 2 where the parental education coefficient and neighborhood coefficients are forced to zero, respectively. Model 3 
focuses within family using sibling fixed effects (still adjusting for the age of the respondents).
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that is, not confounded by social environmental differences 
that correlate with adolescents’ polygenic scores. Second, 
sibling-based analyses may be subtly different from analysis 
of unrelated samples. We discuss the substance and implica-
tions of these differences below.

Do Genetic Effects Operate via Influence  
on Verbal Intelligence?

Published analyses suggest that genetic influence on edu-
cational attainment may be mediated by higher intellectual 
functioning; that is, children with higher polygenic scores 
complete more schooling because they are cognitively more 
able (e.g., Rietveld et al., 2013). We found evidence to sup-
port this hypothesis in our models analyzing unrelated ado-
lescents. Our analysis here focused on the subset of 877 EA 
respondents with data on the modified Peabody Picture 
Vocabulary Test of verbal intelligence in Add Health Wave 
1. Adolescents with higher polygenic scores did better on the 
verbal intelligence test (r = .14, p < .001; see Table 2). In 
turn, adolescents with higher verbal scores went on to com-
plete more schooling (r = .36, p < .001). When we repeated 
the Model 1 analysis of the association between an adoles-
cent’s polygenic score and his or her educational attainment, 
this time adding the verbal intelligence score as a covariate, 
the genetic effect was attenuated (bU� = 0.25, p < .001, com-
pared to bU� = 0.36, p < .001). This result suggests that about 
one third of the genetic association with educational attain-
ment is attributable to genetic influence on the development 
of verbal intelligence. However, the statistical test for the 
difference in coefficients fails to reach conventional signifi-
cance levels.

We next subjected the mediation hypothesis to the rigor-
ous test of the sibling comparison model. There was a rela-
tively weak association between the difference in sibling 
polygenic scores and the difference in sibling verbal intelli-
gence (r = .07, p = .18). However, the difference in sibling 
verbal intelligence was correlated with differences in attain-
ment (r = .22, p < .001). When we repeated our analysis of 
the within-sibling association between polygenic score and 
educational attainment, this time adding Peabody score as a 
covariate, the coefficient was only modestly (and insignifi-
cantly) attenuated (bW� = 0.31, SE = 0.12, p < .01, compared 
to bW� = 0.35, SE = 0.12, p < .01). This result suggests that 
very little of the genetic effect on sibling differences in edu-
cational attainment is attributable to sibling differences in 
verbal intelligence.

We discuss several plausible explanations for these diver-
gent results based on between- and within-family analyses. 
First, it could be that intelligence-score differences between 
siblings contain relatively less information than score differ-
ences between unrelated individuals. This could occur if 
there were less true score variance within sibships. If this 
were true and variance due to random measurement error 

remained constant across the two types of comparisons, then 
there may be a reduced reliability of the sibling difference 
score—that is, the ratio of signal to noise would be lower for 
the sibling analysis. It could also be the case that sibling 
analysis captures nonrandom measurement error, that is, 
mean-regressive error, which may occur if siblings deem-
phasized their verbal differences (consciously or uncon-
sciously) when tested. This would not change the reliability 
of the family average (thus the point estimate for the 
between-family analysis would be unaffected); however, it 
would lead to attenuation bias in the within-family analysis. 
A final potential explanation is that the mechanisms linking 
genes to educational attainment could be different for unre-
lated individuals compared to siblings. Twin studies suggest 
that traits other than intelligence (e.g., personality) may 
mediate genetic influences on educational attainment 
(Krapohl et al., 2014), and these traits may play a larger role 
in producing differences between siblings. We return to this 
divergence in results in the Discussion.

Sensitivity Analyses

The strength of the sibling analyses is that factors that do 
not vary across siblings are eliminated as potential con-
founders. One clear difference between siblings, which pre-
vious studies have related to attainment, is their birth order 
(Black, Devereux, & Salvanes, 2006; Conley & Glauber, 
2006; Kantarevic & Mechoulan, 2006; cf. Hauser & Sewell, 
1985). If birth order were also related to a person’s poly-
genic score, it would represent a plausible confounder. We 
therefore tested this association. A sibling’s birth order was 
not related to his or her polygenic score (r = .01). When we 
include a dummy variable for birth order in Model 3, we 
estimate bW�  at Wave 4 to be 0.30 (p = .01), unchanged from 
the original estimate of 0.29.

Previous research suggests the possibility that genetic 
influences on a child’s educational attainment may be modi-
fied by features of the child’s environment, such as his or her 
family’s socioeconomic status (SES; Turkehimer, Haley, 
Waldron, d’Onofrio, & Gottesman, 2003). A previous test of 
this hypothesis in older cohorts using a similar polygenic 
score found no evidence that genetic effects varied by family 
SES (Conley et al., 2015). As an exploratory analysis, we 
evaluated the hypothesis in our data by testing for an interac-
tion between the polygenic score and maternal educational 
attainment in a modified version of Model 2B. The main 
effect of the polygenic score was similar to what was 
reported in Table 3 (bW� = 0.30, p < .001). We estimated an 
interaction between parental education and the polygenic 
score of −0.06 (SE = 0.03, p = .04). The coefficient being 
negative suggests that a child’s polygenic score is less pre-
dictive of his or her own educational attainment when his or 
her mother holds a higher degree. Notably, this finding is 
opposite the prediction that would be made based on the 
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original Turkheimer et al. (2003) observation, in which 
genetic factors explained more variance in higher-SES chil-
dren. We view this as a preliminary result, which will need 
to be verified in the full Add Health cohort once it has been 
genotyped. A comparable model estimated in the AA sample 
yielded a main effect nearly identical to Model 2B (bW� = 
0.14, p = .12) and an interaction of 0.01 (SE = 0.04, p = .79).

Given the limited sample size, statistical power is a con-
cern. On the basis of published associations between the 
polygenic score and educational attainment, we expected an 
effect size of at least r = .1. We have better than 80% power 
to detect such an effect in the EA sample. Power for the sib-
ling comparison analyses is somewhat lower (about 60%; 
additional details available in the online supplement). 
Therefore, our results should be interpreted as contributing 
to the evidence base on the nature of genetic associations 
with educational attainment but needing replication in addi-
tional samples.

Discussion

We investigated a recently published genetic algorithm to 
predict educational attainment using genome-wide genetic 
data from the Add Health sibling pair files (McQueen et al., 
2014). We found that a polygenic score produced with this 
algorithm was predictive of educational outcomes in our 
sample of U.S. adolescents born during the 1970s and 1980s 
and followed up through the first decade of the 21st century. 
Add Health respondents with higher polygenic scores com-
pleted more years of schooling as compared to peers with 
lower scores. Each standard deviation difference in poly-
genic score predicted roughly one third of 1 year’s differ-
ence in completed schooling by the end of follow-up (e.g., a 
moderate effect size). This estimate may be a lower bound of 
how much variation in educational attainment can be pre-
dicted with a polygenic score. Twin studies estimate that 
approximately 40% of the variation in educational attain-
ment is attributable to genetic factors (e.g., Branigan, 
McCallum, & Freese, 2013). The SSGAC estimates that the 
variance in educational attainment explained by the associ-
ated polygenic score will grow as GWAS sample size 
increases; Rietveld et al. (2013) estimate that 15% of the 
variance in attainment might be predicted with a polygenic 
score derived from a GWAS on 1 million respondents.

Our sibling comparison analysis extends prior work 
(Conley et al., 2015; Rietveld et al., 2014) to a contemporary, 
nationally representative U.S. sample. We further show, for 
the first time, clear evidence for sociogeographic patterning of 
polygenic scores in the contemporary United States. It is not 
entirely surprising that the genetic similarities of parents and 
children are reflected in their respective educational attain-
ments (Conley et al., 2015; Krapohl & Plomin, 2015). But our 
data also show that patterning of polygenic scores extends to 
the neighborhoods in which children live. Neighborhoods can 

be important facilitators of or impediments to children’s social 
attainments (e.g., Chetty & Hendren, 2015; Chetty, Hendren, 
& Katz, 2015). Authors of future research should investigate 
neighborhoods and other macrosocial factors as potential 
pathways through which familial genetic endowments influ-
ence children’s outcomes. Ultimately, the substance of genetic 
differences between neighborhoods implied by our analysis 
remains uncertain. Our observations here represent only a first 
illustration of how novel genome science methods can begin 
to integrate biological science with research on social attain-
ment and mobility.

A further contribution of our study is to identify an impor-
tant difference in estimates of genetic effects obtained from 
between-family analysis and within-family analysis. In our 
between-family analysis, genetic effects were substantially 
attenuated when we included controls for family and neigh-
borhood social advantage. This result suggests that for edu-
cational attainment, social advantages are correlated with 
genetic advantages. This complicates the causal models 
social scientists use when they study socioeconomic gradi-
ents in education, particularly in light of evidence that child-
hood social advantage and educational attainment share 
genetic roots (Krapohl & Plomin, 2015). In any event, the 
within-family analysis does not have this problem due to the 
shared sibling environment. In the within-family analysis 
that also controlled for socioeconomic differences between 
individuals, genetic effects were nearly identical to unad-
justed estimates from between-family analysis. We also see 
discrepancies in the mediation analyses: Verbal intelligence 
appears to mediate about one third of the genetic association 
with educational attainment in analyses of unrelated indi-
viduals but is a weaker mediator of genetic effects identified 
in the within-family analysis. So why do the two approaches 
yield such different results?

The explanation we favor is that families constitute heav-
ily controlled laboratories for testing genetic effects. Out in 
the “wild” of between-family analyses, variance in educa-
tional attainments is mostly accounted for by structural fea-
tures of the social environments children grow up in—their 
parents’ education, the kinds of neighborhoods in which they 
live, and the schools they attend. These powerful social 
forces are silenced within families. This is generally regarded 
as a strength of within-family analysis. But in our case, it 
may require a subtle reinterpretation of results. Because so 
much is similar for siblings, small differences in their genetic 
makeup have the opportunity to stand out. We know that 
medical treatments sometimes show large effects in care-
fully controlled trials but prove less effective when imple-
mented in field settings where there is more variation in 
treatment context (Rothwell, 2005). In the same way, a 
genetic difference measured by polygenic score could have 
larger consequences for a pair of siblings, who share most 
other determinants of educational outcomes, than for a pair 
of unrelated individuals. Some have referred to this pattern 
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as a “social distinction” process in which particular social 
environments, specifically those in which background social 
noise in minimized, enable us to distinguish the signals from 
small genetic associations (Boardman, Daw, & Freese, 
2013). It may also be the case that family environments 
function to magnify differences between siblings. Parents 
respond to observed differences in their children by making 
different investments in them (Conley, 2004), potentially 
magnifying a genetic difference of modest consequence. 
Siblings, seeking to differentiate themselves from one 
another, may form identities that track them toward more or 
less educationally enriching activities and associations, 
again, with the consequence of magnifying a genetic differ-
ence of initially modest consequence.

We acknowledge limitations. First, our data are right cen-
sored. Some Add Health participants may not have com-
pleted their educational careers by the time of the most 
recent Wave 4 interview. Continued follow-up of the cohort 
is needed. Second, our data are left censored. Add Health 
began when participants were well along their adolescent 
educational careers. We were therefore unable to observe 
preschooling characteristics but also unable to observe all 
possible educational transitions (e.g., we have left and right 
censoring). Third, cognitive assessment in Add Health at 
baseline was limited to the modified Peabody Picture 
Vocabulary Test. It is possible that the genetic influence 
measured in the polygenic score affects other facets of gen-
eral cognitive ability not measured in this test of verbal intel-
ligence. Finally, the Add Health study used school-based 
cluster sampling, providing a highly attractive setting for 
investigating the role of schools in modifying/contextualiz-
ing genetic influence on educational outcomes (e.g., through 
use of school-level fixed effects). The sibling pairs sample is 
not large enough to take advantage of this design, and there-
fore schools are omitted from our analysis. We do analyze 
characteristics of children’s families and neighborhoods. 
Analysis of schools will be a priority when the genetic data 
on the full Add Health sample become available.

Conclusion

Twin studies have been the traditional approach for 
understanding the connection between genes and outcomes, 
such as education, but they do not tell us about the biological 
underpinnings of this connection. Although we must empha-
size that this age of integrative genetic research is only just 
entering its second decade, study of molecular genetic data 
has begun to offer evidence providing information about 
why certain types of genetic variation lead to variation in 
mental ability. At this point, we attempt to answer a key 
question: What is the relevance of such genetics research to 
education research? At the present time, the predictive power 
of the polygenic score is clearly too weak to have “clinical” 
value, and we are skeptical that even increased predictive 

power would make the score useful as the basis for interven-
tion. But we do think this line of inquiry offers opportunities 
for study of (a) how the genetic predisposition toward attain-
ment comes to fruition and (b) how environments, often in 
the role of policies, combine with biology to influence out-
comes. We discuss these two opportunities in turn.

There are numerous reasons that certain individuals expe-
rience educational success. Some individuals have more raw 
ability in the various cognitive domains required to continue 
in education. Some individuals have psychological charac-
teristics that contribute, while others have social skills that 
lead to increased educational attainment. Genes are linked to 
all of these personal attributes. Here, we have tested one 
natural pathway (verbal intelligence) through which the 
genetic predisposition toward educational attainment may 
act, but we are limited in our ability to test other pathways. 
The full Add Health sample is currently being genotyped. 
When this process is complete, we hope to test additional 
pathways. Alongside the study of these mediating pathways, 
incorporating genetics into education research also provides 
an additional point of leverage for studying the translational 
pathways through which increased educational attainment 
may translate into more distal life course outcomes, such as 
improved health and labor force participation.

One important pathway through which a genotype may 
translate into increased attainment involves the possibility 
that one’s genotype evokes a particular environment (i.e., 
evocative gene–environment correlation). This perspective 
suggests that genotype is associated with observable traits 
that may, for example, affect a counselor’s decision about 
class scheduling, a teacher’s perception of student ability or 
effort, or even the likelihood that a particular student will 
befriend certain people (Boardman et al., 2012). All of these 
factors may then have influences on the years of educational 
attainment. If this is the case, it does not change the fact that 
genotype is related to educational outcomes, but it suggests 
that the cause has more to do with the environment in which 
one resides than the production of specific proteins that 
directly enhance one’s ability to succeed in school.

A second area of relevance to educational research of 
genetic inquiry is an increased understanding of how envi-
ronments shape outcomes. As an example of how this might 
work, consider smoking. There is evidence to suggest that 
genes became a more important determinant of smoking 
behavior after the 1964 publication of the Surgeon General’s 
warning (Boardman et al., 2011; Boardman, Blalock, & 
Pampel, 2010). If those who still smoke have a different bio-
logical relationship with tobacco (as indicated by genetics) 
than smokers from previous generations, then this suggests 
that modern cessation efforts might need a new focus as 
compared to previous efforts aimed at those with a weaker 
genetic inclination toward smoking.

One might similarly consider the composition of those 
who enter college in 2015 compared to the composition of 
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those who entered college in the mid-1960s. It is increas-
ingly normative for nearly all students in the United States to 
consider college attendance, with 68% of high school gradu-
ates attending college in 2013 compared to only 45% in 
1965 (U.S. Bureau of Labor Statistics, 2015). As such, it is 
possible that the relative contribution of genetics to educa-
tional attainment may have changed. This increased access 
to education may increase or decrease the relative contribu-
tion of genes to educational differences in the population. 
For example, 100 years ago, a remarkably select group of 
adults was able to attend and matriculate from college. Thus, 
social factors related to family resources and institutional 
connections placed great limits on who was able to obtain 
higher education. As such, small genetic associations may 
not have differentiated between individuals in this context. 
As social controls were removed, it is possible that the selec-
tion into college was not random but initiated primarily 
among those with higher polygenic scores, which would 
enable genetic variation in the population to contribute to 
phenotypic variation (e.g., education).

Of course, there are almost assuredly scenarios that would 
decrease the relevance of the polygenic score. The introduc-
tion of compulsory schooling, universal preschool, and the 
GI Bill are all interventions that have possibly changed the 
association between the polygenic score and attainment. 
Whether the genetic association with attainment is increasing 
or decreasing, the larger point is that a consideration of genet-
ics can help us understand the role of environment, including 
policy interventions. In particular, a consideration of genetics 
may allow for understanding of response heterogeneity and, 
more broadly, could help us to understand why policies may 
(or may not) be generating the desired policy objective. 
Although such research is just beginning, Fletcher (2012) 
provides a useful example in which he demonstrates that the 
smoking behavior of certain individuals may be less sensitive 
to changes in the tax rate as a function of genotype.

In closing, this article adds to the ample evidence to sug-
gest that children’s educational attainments are influenced 
by their genes (e.g., Branigan et al., 2013). However, it is 
becoming increasingly clear that just as biology plays a role 
in shaping social outcomes, such as education, the social 
environments in which humans are placed play a role in 
shaping their biology. For example, recent research suggests 
that chronic poverty plays a role in shaping brain structure 
(Noble et al., 2015). Children’s educational environments 
are among the most important social exposures that modern 
humans experience. Thus, we believe that just as genetics 
can offer new tools to education researchers, education 
researchers have important expertise to bring to genetic 
studies. Specifically, there is a need to identify which aspects 
of the educational environment matter, when in development 
they matter most, and whether there are specific children 
who may be more or less sensitive to these environments.
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Note

1. Single-nucleotide polymorphisms (SNPs) are single-letter 
changes in the human DNA sequence that are present in >1% of 
the population. An individual’s genotype for an SNP includes two 
alleles, one inherited from each parent. Most SNPs involve the sub-
stitution of one letter of the A-C-T-G alphabet of human DNA for 
another. So an SNP might be described as A/G if some individuals 
in the population carried a G where most others carried an A. An 
individual could carry one A and one G or two As or two Gs. In 
some cases, a change in allele results in a functional change in the 
genome. For example, in the case of the SNP rs6265 in the BDNF 
gene, the substitution of an A allele for the more common G allele 
results in an amino acid substitution from valine to methionine, 
in turn resulting in altered production of the BDNF peptide (Egan  
et al., 2003). However, most SNPs do not have a known biological 
function, and the biological significance of associations detected in 
a genome-wide association study is usually uncertain.
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