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Recent studies have documented the rich ways that comput-
ers, software, games, online curriculum, and other new tech-
nologies affect how people access education, learn from one 
another, and develop new skills (Clark, Tanner-Smith, & 
Killingsworth, 2015; Ito et  al., 2013; Means, Bakia, & 
Murphy, 2014). However, researchers, policy makers, and 
educators consistently face a seemingly intractable conun-
drum. Despite our hopes that new technologies will revolu-
tionize education systems, with promising findings in 
controlled studies, we often find little positive impact on 
students’ formal learning outcomes when technologies are 
implemented more broadly in schools or communities 
(Cuban, 1986; Vigdor & Ladd, 2010; Warschauer, Cotten, & 
Ames, 2011). This history looms large, as K–12 schools in 
the United States experience a new wave of optimism that 
technology can be deployed to enhance classroom practice 
and improve student achievement.

The prior literature in educational technology highlights 
the complicated relationship between technology and learn-
ing outcomes. A technological tool alone does not cause 
learning to occur (Clark, 1994). Instead, learning outcomes 
arise out of a complicated web of sociotechnical factors, 
including ensuring consistent access to hardware and soft-
ware (Wood & Howley, 2012), attending to how teachers 

conceive of and implement technology (Cuban, Kirkpatrick, 
& Peck, 2001; Zhao & Frank, 2003), and understanding 
whether and how learners use the technology (Means et al., 
2014). In studies of any given technology—ranging from 
computers and video games to online curriculum and 
wikis—scholars have also shown that social factors such as 
class, race, gender, and school environment are highly 
related to whether students have access to a new technol-
ogy, engage with it, and use it in ways related to improved 
learning outcomes (Hohlfeld, Ritzhaupt, Barron, & Kemker, 
2008; Reich, Murnane, & Willett, 2012; Shin, Sutherland, 
Norris, & Soloway, 2012). Issues of implementation and 
equity remain vital factors today, as K–12 school districts 
reinvest heavily in computer hardware and digital 
curriculum.

In this article, we present initial analyses of an urban 
school district’s implementation of an online mathematics 
game called First in Math (FIM). We situate our work in two 
recent developments in education research. First, we are part 
of a researcher-practitioner partnership (RPP) where schol-
ars and practitioners (a) jointly develop research questions 
and analyses to help districts improve their programs and 
implementation and (b) simultaneously contribute to aca-
demic research (Penuel, Fishman, Cheng, & Sabelli, 2011). 
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Our partnership is based in the District of Columbia Public 
Schools (DCPS), which in 2012 began to implement FIM in 
K–8. This implementation was part of a broader initiative in 
DCPS that had two goals: (a) to provide teachers with high-
quality content during the rollout of the Common Core State 
Standards for math and (b) to expand learning with digital 
software across the district and improve mathematics 
achievement for specific subgroups (e.g., low-performing 
students, African American students). Our goals in this 
research are to directly inform practice (Gutiérrez & Penuel, 
2014), but also shed light on critical theoretical issues 
regarding what happens when new technologies are imple-
mented at scale across an urban district, the complex pat-
terns of adoption that occur, and their relationships to student 
achievement.

Second, prior studies of technology implementation were 
built on individual qualitative case studies or surveys with 
teachers and school staff to reveal a rich array of findings 
about the complexity and challenges associated with tech-
nology implementation within schools (Cuban et al., 2001; 
Hohlfeld et al., 2008; Warschauer et al., 2011; Zhao & Frank, 
2003). Recently, however, education researchers have 
increasingly become attuned to the opportunities around 
digital data sources, culled from the rising use of software 
and online tools, to examine questions of learning 
(Bienkowski, Feng, & Means, 2012; Martin & Sherin, 2013; 
Siemens & Long, 2011). We suggest that combining digital 
data sources from software and student information from 
school district data systems affords new ways to examine 
issues of technology implementation, equity, and student 
achievement that can provide actionable insights for our dis-
trict partners and contribute to the research base.

Here, we use student-level data from DCPS, which con-
tain demographic information (e.g., race, gender, grade 
level), along with formal measures of student achievement 
in standardized mathematics exams for >47,000 K–12 stu-
dents. We then link this information with usage data that log 
the hours spent in FIM for each student in the district. By 
combining data on FIM usage with administrative and 
school-level information, our study illuminates how FIM 
was adopted across the city and how this adoption relates to 
future academic performance for students across the district. 
We find that time spent in FIM during the school year was 
correlated with improved performance on standardized math 
assessments at the end of the year. However, which students 
spent time in FIM was highly related to demographic and 
prior achievement indicators.

These findings illuminate an additional nuance to discus-
sions of educational technology and equity. Policy makers 
and administrators often adopt technology with equality in 
mind—giving all students equal access to technology—but 
often fail to account for equity, which includes a focus on 
developing strategies and processes to equalize the benefits 
that all learners (not only the already privileged) can achieve 
with a new technology. We document how data analyses of 

technology use and student achievement can illuminate 
potential inequities across a district system, provide indica-
tors for what may be going right or what areas need further 
attention, and help educators develop strategies for imple-
mentation that result in equitable outcomes.

Background: Technology, Implementation, and Equity

This research is part of a growing number of studies that 
examine the relationship between technology integration 
and student achievement in K–12 schools. Current initia-
tives use terms such as blended learning, which describes 
the ability for teachers to use face-to-face practices and 
offload some of the learning tasks to digital curriculum, 
games, or other learning software (Staker & Horn, 2012). 
Recent studies suggest that integrating digital tools into 
classroom settings may be beneficial for student learning 
outcomes. For example, a 2010 meta-analysis on online and 
blended learning found that students in blended learning 
conditions generally performed better than students in fully 
online or fully face-to-face conditions (Means, Toyama, 
Murphy, Bakia, & Jones, 2010). The authors of the study 
warn that positive achievement outcomes are not caused by 
technology alone and that other factors—namely, increased 
time spent on learning activities—may be the direct links to 
student outcomes.

Most studies of blended learning situations tend to exam-
ine higher education contexts, but research in the K–12 
arena is steadily increasing. The results are mixed when dif-
ferent uses of educational software and student learning out-
comes are examined (Barrow, Markman, & Rouse, 2008; D. 
B. Clark et al., 2015; Figlio, Rush, & Yin, 2013; Hong, Tsai, 
Ho, Hwang, & Wu, 2013; Jia et  al., 2013; Pane, Griffin, 
McCaffrey, & Karam, 2014; Shin et  al., 2012; Smith & 
Suzuki, 2015; Wijekumar, Meyer, & Lei, 2012). Most stud-
ies examine the efficacy or average effects of blended envi-
ronments, as compared with a face-to-face or fully online 
treatment, and find positive benefits on student achievement. 
However, one study of 10,000 students and their usage of 
several software products found no significant difference 
between blended learning and fully face-to-face learning 
during the first year of implementation. The researchers 
found mixed results (some positive and some negative) dur-
ing the second year of the study (Campuzano, Dynarski, 
Agodini, & Rall, 2009).

Prior research suggests that introducing computing, soft-
ware, and games into formal instruction is associated with 
positive gains in student achievement, but there are open 
questions about how to explain these relationships, for 
whom, and under what conditions. For example, Means 
et al. (2010) suggest that learning gains are explained, not by 
technology, but by the added time spent with instruction  
or with the learning tasks that technology may enable. 
Furthermore, certain types of technology-driven blended 
learning situations may benefit subgroups of students more 
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than others. For example, Shin et al. (2012) found that White 
male students benefited the most from playing math games 
on the GameBoy system. These various findings point to the 
need to better parse out the role of technology in learning 
outcomes and the complex ways that implementation affects 
this relationship.

At the most basic level, students need access to a new 
technology or curricular tool and must readily use the tool to 
expect any learning benefits. Thus, we focus our analyses on 
a commonly collected metric in digital learning platforms—
the time that a learner spent in a given platform. Through our 
RPP with DCPS, we were able to obtain detailed log data 
from the vendor of FIM. These data included variables that 
described when students logged into the platform and how 
much time they spent playing the math games in FIM 
throughout the school year. We recognize some of the limita-
tions related to using time-on-task measures in the Discussion 
section (Kovanovic, Gašević, Dawson, Joksimovic, & 
Baker, 2016). However, taking into account these consider-
ations, we note that having detailed access to time spent in 
FIM at the student level allows us to delve deeper into how 
software use was distributed across this urban school district 
and to explore the correlation between use and achievement 
more directly than what was possible in past research.

Past studies on technology implementation and equity 
in schools also inform our conceptual framework and data 
analyses. Education scholars know that there are many 
complex organizational and social processes that have to 
be aligned for technology to be used in effective ways 
(Fishman, Marx, Blumenfeld, Krajcik, & Soloway, 2004). 
School districts must make particular decisions about what 
technologies to purchase, and they must provide organiza-
tional support to maintain access to these resources. For 
effective adoption to take place within a given school, 
school leaders and teachers need to create environments 
such as peer advice networks, technical support staff, and 
organizational schedules conducive to experimenting with 
new technology (Cuban et  al., 2001; Penuel et  al., 2010; 
Warschauer et  al., 2011; Zhao & Frank, 2003). Teachers 
need to be able to learn how to use technologies but, more 
important, learn how to effectively integrate tools to create 
better learning environments (Ertmer, 2005; Mishra & 
Koehler, 2006). Finally, personal factors—such as stu-
dents’ motivations, goals, prior learning histories, and life 
contexts—influence how they take up new technologies 
and for what means, such as play, socializing, and studying 
(Ahn et al., 2014; Azevedo, 2011; Ito et al., 2010; Ito et al., 
2013; Polman, 2006). Thus, many factors may come into 
play in the interpretation of a simple metric such as time 
spent in the FIM platform.

In the following study, our RPP team focused on two 
research questions that examine issues of implementation, 
equity, and student achievement. First, we were interested to 
document and track which students were spending time in 
the FIM platform throughout the school year. Past research 

in technology implementation suggests a stark inequality in 
terms of which students have access to and take up new tech-
nology (Warschauer & Matuchniak, 2010). DCPS structured 
its technology initiative to give hardware and software 
access to all schools in the district. However, there may still 
be inequitable uptake of FIM among students in different 
schools that is important to examine.

Research Question 1: Were there differences in which 
students used FIM throughout the school year by indi-
cators of gender, race, prior achievement, and school 
environment?

Second, an important question from the district perspec-
tive was to understand whether using FIM was correlated 
with improved student achievement at the end-of-year stan-
dardized assessments. We examined this question directly by 
exploring whether students’ time spent in the software was 
related to student achievement measures.

Research Question 2: Was students’ time spent in FIM 
correlated with improved performance in standardized 
math assessments?

Method

DCPS is a large urban school district that, in the 2015–
2016 school year, operated 113 schools serving P–12. The 
district enrolls >49,000 students. Approximately 88% of 
students identify with an ethnic minority group; 10% are 
English language learners; and 16% are in special education 
programs. Finally, >75% of students in the district qualify 
for free and reduced-price meals, which is a common indi-
cator of students who fall under the poverty line. DCPS 
reported that in 2014 approximately 51% of its students 
scored “proficient” or “advanced” on the standardized math 
exam (“DCPS at a Glance,” n.d.). However, the district, 
much like other urban school systems in the United States, 
sees stark gaps in educational achievement across indica-
tors such as race and gender. For example, in 2014, the dis-
trict reported that >90% of White students (female and 
male) in the district scored proficient in the math exam. 
Comparatively, only 45% and 37% of African American 
girls and boys respectively scored proficient on this assess-
ment (“Achievement Gap, Race and Equity,” n.d.).

In 2012, DCPS began to implement a mathematics pro-
gram in Grades K–8 called FIM: a web-based series of math-
ematics games where students practice mathematics 
computation skills such as addition, subtraction, multiplica-
tion, and division, as well as concepts such as fractions, 
decimals, and integers. The activities focus on skill-building 
practice with the various mathematics concepts. It is impor-
tant to note that the game tasks are largely akin to drilling 
math computation. For example, students may be presented 
with different multiplication problems and, in a timed 
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exercise, asked to fill in the answers to those problems, 
which are scored on correctness. Students can earn points 
and badges as they practice more. The program attempts to 
motivate students to engage through gamification elements, 
such as rankings and leaderboards (tracking a school’s prog-
ress versus other schools), opportunities to win “stickers” 
that mark achievement, and chances to unlock bonus games.

It is also important to note the limitations of FIM’s design. 
From a critical perspective, the program is not designed to 
teach deeper conceptual thinking or mathematical practice; 
instead, it is a program that presents drills and rote practice 
for students (Gee, 2005). From a learning perspective, the 
program can largely be viewed as a supplemental tool where 
students can develop skills through repeated practice, and 
we corroborated with our partners in DCPS that teachers 
largely used the program as extra practice activities for 
learners. DCPS offered the program to all schools, using an 
opt-in model of implementation rather than a top-down 
mandate.

Data Sources

Working with DCPS staff, we received student-level 
administrative information (which did not include person-
ally identifiable information) and data on students’ time 
spent in FIM throughout the 2012–2013 school year. We 
received data several times from DCPS, reflecting different 
time points between the 2011–2012 and 2012–2013 school 
years. Variables included in the administrative data sets 
were a student’s grade level, gender, ethnicity, race, special 
education status, English language learner status, and 
schools attended. We also received student scores on the 
state standardized assessment called the DC Comprehensive 
Assessment System (DC-CAS), which students take at the 
end of each year between Grades 3 and 8 and once in grade 
10. Starting in the 2014–2015 school year, DCPS adopted 
the PARCC assessment (Partnership for Assessment of 
Readiness for College and Careers), used by numerous 
states in alignment with the Common Core State Standards, 
and our future analyses will examine these achievement 
measures.

In partnership with FIM, we also received student-level 
data about usage of the online platform FIM. This data set 
included variables that allowed us to match unique IDs in the 
district’s data with unique IDs in the FIM system. In addi-
tion, we received variables that allowed us to match students 
to schools. The log data of usage included details about 
which modules of FIM a student had completed at a given 
point in time, what stickers or achievements he or she had 
earned, and, critically for this analysis, how much time a 
student had spent in the system at different points in the 
school year. In this analysis, we focused on calculating the 
total time that students spent using FIM as an indicator for 
how much different students engaged with the program.

Data Analysis

To gain a holistic understanding of how FIM was used 
across the district, we first computed descriptive statistics of 
student characteristics in the district and general patterns of 
FIM usage. We then conducted regression analyses to delve 
deeper into specific patterns of the data. These descriptive 
analyses helped us to understand how FIM use was distrib-
uted across the system from a high level, and they informed 
more focused methodological decisions, such as narrowing 
the sample of students in our subsequent regression analyses.

Through this process, we decided to delimit the sample in 
regression analyses to all students in Grades 4–8 during the 
2012–2013 school year, the first year that the DCPS imple-
mented FIM. The population is limited to students in these 
grades because DCPS focused its implementation of FIM in 
Grades K–8, and consequently, we observed in the data that 
use of FIM sharply declined when a student reached the 
ninth grade. In addition, students do not start taking the 
DC-CAS exams until the third grade, thus eliminating any 
analyses of student achievement prior to that grade level. In 
our regression models (detailed below), we included a 
lagged variable of prior achievement, as well as aggregate 
measures of prior achievement at the school level as one 
indicator of school environment. Thus, fourth graders were 
the first students in the sample who had a measure of prior 
achievement (their third-grade test scores).

We also note that the distribution of time spent in FIM was 
highly skewed. Students in DCPS spent an average of about 4 
hr using FIM over the entire school year. However, there was 
wide variance among students. Where many students never 
used the system (0 hr), some students logged as much as 121 hr 
in FIM over the school year. In general, we found that the most 
engaged students spent between 4 and 12 hr in the FIM games. 
We excluded any extreme outliers in our data set—namely, 
students who spent >50 hr in FIM. In this sample, students 
spent an average of 3.7 hr in FIM in the school year. Students 
in the 75th percentile spent about 4 hr, and those in the 90th 
percentile spent approximately 19 hr using the program.

Finally, an important detail is in the interpretation of 
DC-CAS performance. The DC-CAS raw scores are not 
scaled across grade levels; thus, one cannot validly compare 
a student’s third-grade raw score on the exam with his or her 
raw score in fourth grade. To address this limitation, we 
standardized students’ test scores (calculating their z scores) 
within a given year. Thus, we interpret changes in z score as 
a change in a student’s relative standing as compared with 
one’s peers in a given year, not as a raw score on the exam. 
In our regression models, we include only students with 
complete data (N = 9,204; Table 1) as compared with the 
13,581 students in the entire population of Grades 4–8. 
However, in comparing both samples, we confirmed that the 
smaller sample with complete data closely reflected the gen-
eral population of students in Grades 4–8.
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Regression Models

In our regression analyses, we first examine the relation-
ship between student and school characteristics and students’ 
time spent using FIM (Research Question 1). We include a 
variety of indicators that were available from the DCPS data 
to explore whether there were inequitable patterns of use 
across the district. For example, past studies (Shin et al., 2012) 
suggest that different software or games may be more readily 
taken up by boys; thus, we wanted to examine any gender pat-
terns related to FIM use. We also wanted to explore any ineq-
uitable patterns of use by language status, special education 
status, and race. Finally, a common occurrence with the intro-
duction of new technologies is that already privileged 
groups—for example, students who are already higher achiev-
ing academically—may more readily adopt and thus benefit 
from a new intervention (Toyama, 2015). As such, we exam-
ine whether students who have higher prior achievement or 
were enrolled in school environments where their peers also 
had higher achievement were more likely to use FIM. The fol-
lowing independent variables were included in our models:

Female: whether a student was female.
English language learner status: whether a student was 

designated as an English language learner.
Special education status: whether a student was enrolled 

in a special education program.
Race: the racial group of which the student was identified 

in the system. White students are the reference group 
in the regression models.

Elementary school: an indicator for whether the student 
was in an elementary school (K–5) or middle school 
(6–8).

Prior achievement: We included 2011–2012 DC-CAS 
performance (z score) as an indicator for prior achieve-
ment.

Prior literature suggests that within-school dynamics, 
such as leadership, teacher networks, and organizational 
routines, mediate how technology is used and, subsequently, 
how much time a student could spend with a piece of soft-
ware (Cuban et  al., 2001; Zhao & Frank, 2003). These  
measures of school culture were not collected by DCPS or 
readily available. However, we constructed an aggregate 
characteristic of school environment by taking a weighted 
average of all students’ prior achievement as one indicator of 
a student’s school environment.

School prior achievement: a weighted average of stu-
dents’ prior achievement in a school. We use this as 
one indicator of school environment (e.g., generally 
higher- versus lower-achieving peers).

The second research question examines whether time 
spent in FIM was correlated with future academic perfor-
mance on the 2012–2013 DC-CAS. In this regression model, 
we include the same independent variables and a measure of 
time spent in FIM:

FIM usage: how many hours a student had spent in the 
system over the entire year (2012–2013) prior to tak-
ing the end-of-year DC-CAS exam.

Findings

Which Students Are Spending Time in FIM?

We present our analyses of students who use FIM in 
Table 2. The findings suggest a complex picture of which 
students are spending time with the FIM program. 
Elementary schools appear to be using FIM more often 
than middle schools (a finding corroborated anecdotally 
with our DCPS partners). Students in elementary schools 
spent approximately 2 more hr practicing skills in FIM ver-
sus those in middle schools. English language learners 
spent an average of 0.6 hr (36 min) more in FIM than their 
peers, while students designated in special education spent 
0.6 hr less using the program. It appears that female stu-
dents spent less time in FIM than their male peers (about 40 
min less over the year).

Differences in racial groups were also significant. The 
findings suggest that students of color in DCPS are spending 
more time in FIM than their White peers. Asian and Black 
students spent >3 more hr in FIM over the course of the year; 
Hispanic students spent just under 3 more hr in FIM; and 
Pacific Islander students spent >5 hr more throughout the 
year. In addition, students who had higher prior academic 
achievement spent substantially more time in FIM in the 

Table 1
Summary Statistics for All Students in Grades 4–8 With Complete 
Data (N = 9,204)

Variable M (SD) or %

FIM use, hr 3.698 (7.077)a

Female 48.9
ELL status 10.9
SPED status 19.4
Race/ethnicity  
  Asian 2.0
  American Indian 1.2
  Black 73.4
  Hispanic 10.5
  Multiracial 2.6
  Pacific Islander 0.3
  White 10.1

Note. Data exclude 37 students who were extreme outliers (FIM use >50 
hr). FIM = First in Math; ELL = English language learner; SPED = special 
education.
aMinimum = 0, maximum = 49.31
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school year. Our results suggest that a student who scored 1 
SD higher in the prior year’s DC-CAS exam spent 1.6 more 
hr using FIM. A final interesting finding was that students 
who were in schools that had higher prior academic perfor-
mance in the DC-CAS (school prior achievement in Table 2) 
spent less time (approximately 25 min less) using FIM over 
the subsequent school year.

Taken together, these results offer hints at positive aspects 
of DCPS implementation of FIM and pose questions about 
aspects to improve. If we assume that FIM use is a positive 
activity (e.g., correlates to improved academic achievement, 
a question that we examine below), it is heartening to 
observe that students of color are exhibiting more use than 
their White peers. This finding is particularly salient in the 
DCPS context, as the district is focused on improving the 
academic performance of minority students, specifically 
Black students. In addition, we note that the negative coef-
ficient for school prior achievement is a potential positive in 
our context. This finding suggests that lower-achieving 
schools in DCPS are making efforts to allow students more 
access and time with FIM, which could produce more equi-
table achievement over time—provided that this time is 
indeed positive for students’ academic achievement. We 
note that the real-world differences in time are small here. 
Students in lower-achieving schools spent about 25 min 
more over the whole year (perhaps negligible in the real 
world, although statistically significant).

Our analysis of DCPS and FIM data also uncovered new 
questions for our partnership team. For example, why did 
female students spend less time in the program versus their 

male peers? Most significant, students who were already 
higher achieving were apt to spend more time in the pro-
gram. This finding offers some questions about equity. If 
students who are already doing well use FIM more and then 
benefit subsequently in the next year, would these patterns 
of use lead to more inequitable student achievement gaps? 
Such findings also compel deeper questions about why cer-
tain students may choose to spend time with a technology 
while their peers reject them. For example, we note that 
FIM was designed for students to practice computation 
skills—or what the most skeptical of observers might label 
a drill-and-kill activity. It appears higher-achieving students 
were willing to spend more time with this activity. If there 
were valid reasons for low-achieving students to reject 
using FIM or for teachers serving these students to avoid 
adopting the technology, then future studies are needed to 
understand this phenomenon, rather than bluntly assuming 
that such students are unmotivated or that teachers are not 
implementing with fidelity.

In addition, the stakes may be lower in this case of FIM 
implementation because of the nature of this activity. 
Offering students some level of drill and practice may be 
beneficial; thus, the district could focus on making sure 
that lower-achieving students had some minimal level of 
time with the program. Although drill and practice are 
lower-level activities—ones that students should perhaps 
not be spending a majority of their time on—achieving 
some level of minimal but effective use for these activi-
ties is very feasible in this context. For example, if teach-
ers of lower-performing students ensured that students 
spent only 15 min per week practicing drills in FIM, this 
would result in approximately 10 hr of time spent over the 
entire year: a minimal time spent on drill and practice, 
with more time devoted to higher-order mathematics 
learning, but perhaps still effective in helping improve 
student achievement.

Did Time Spent With FIM Correlate With Future Student 
Achievement?

The discussion of time spent with FIM and equitable 
implementation hinges on whether there is evidence that 
using the program was linked to improved student achieve-
ment. We present the results of regression analyses that 
explore whether FIM use was significantly associated with 
improved student performance on the end-of-year DC-CAS 
math assessment (Table 3). We find that an hour of FIM use 
was correlated with 0.007 SD of higher standing in the end-
of-year DC-CAS, controlling for other variables. To explore 
the robustness of our findings, we also ran regression mod-
els with school-level fixed effects to account for the hierar-
chical grouping of students in schools and had similar 
results for all coefficients.1 We note that students of color  
in DCPS scored substantially lower in the DC-CAS  
math assessment than their White peers, except for Asian 

Table 2
Regression of Time Spent in FIM on Prior Achievement, 
Demographics, and School Prior Achievement

Variable B SE pa

Prior academic 
achievementb

1.626 0.095 .00

Female –0.662 0.144 .00
ELL 0.606 0.287 .04
SPED –0.615 0.207 .01
Race/ethnicity  
  Asian 3.79 0.567 .00
  American Indian 1.23 0.695 .08
  Black 3.23 0.280 .00
  Hispanic 2.91 0.362 .00
  Multiracial 1.83 0.499 .00
  Pacific Islander 5.86 1.273 .00
Elementary school 2.18 0.144 .00
School prior achievement –0.405 0.168 .01

Note. N = 9,204. R2 = 0.074. Dependent variable: FIM use (hr). Race refer-
ence group: White. FIM = First in Math; ELL = English language learner; 
SPED = special education.
aBold indicates significance (p < .05).
b2011–2012 DC Comprehensive Assessment System (z score).



7

students, who did not differ. We also explored models with 
interaction terms for race and FIM use and found no signifi-
cant findings. Spending time in FIM had similar benefits for 
all students by race.

If one were to extrapolate from this linear relationship, 
then using FIM for 10 hr during the whole school year (e.g., 
approximately 15 min per week for 40 weeks) would be 
related to an increase of about 0.07 SD in a student’s stand-
ing relative to one’s peers. Spending approximately 20 hr 
over the year would be related to about 0.14-SD increase in 
student standing. In Figure 1, we present a scatterplot of stu-
dents’ 2012–2013 DC-CAS math scores (z scores on the 
y-axis) and their time spent in FIM (x-axis). We see a small 
but steady positive relationship between hours spent practic-
ing in FIM and performance on the DC-CAS. These findings 
suggest that a moderate level of use—say 10–20 hr for the 
whole school year which encompassed 90% of all students 
who used FIM—may be related to improved performance on 
the end-of-year assessment.

We also explored the relationship between time spent in 
FIM and academic performance for students in higher-per-
forming school environments (as measured by the average 
academic achievement standing of the school). In Table 3, 
we present a regression model that includes an interaction 
term for School Prior Achievement × FIM Use. We find a 
negative relationship for the interaction term and DC-CAS 
performance on the end-of-year exam. This finding suggests 
that students who are enrolled in higher-achieving school 
environments (where the average achievement of students is 

higher) may not benefit as much from spending time with 
FIM, in terms of correlation with DC-CAS scores. One 
potential implication for this finding is that FIM may serve 
as a practice tool and that some level of practice may be 
related to improved performance on the standardized math 
assessment. However, students in schools with higher aca-
demic achievement environments may benefit more from 
other resources (different teachers, pedagogy, peers, activi-
ties, etc.), rendering the practice benefits afforded by FIM as 
not as beneficial.

Table 3
Regression of 2012–2013 DC-CAS z Score on FIM Use, Prior Achievement, Demographics, and School Prior Achievement

Variable

B (SE)

Model 1 Model 2

FIM use, hr 0.007** (0.001) 0.008** (0.001)
Prior academic achievementa 0.646** (0.008) 0.646** (0.008)
Female 0.028** (0.012) 0.029** (0.012)
ELL status –0.010 (0.025) 0.010 (0.024)
SPED status −0.241** (0.018) −0.236** (0.018)
Race/ethnicity  
  Asian –0.023 (0.048) –0.019 (0.048)
  American Indian −0.269** (0.059) −0.266** (0.059)
  Black −0.275** (0.024) −0.276** (0.024)
  Hispanic −0.138** (0.031) −0.139** (0.031)
  Multiracial −0.114** (0.042) −0.113** (0.042)
  Pacific Islander −0.216* (0.108) −0.217** (0.108)
Elementary school 0.021 (0.012) 0.022 (0.012)
School prior achievement 0.176** (0.014) 1.94** (0.014)
School Prior Achievement × FIM Use −0.008** (0.002)

Note. N = 9,204. R2 = 0.662. Dependent variable: 2012–2013 DC-CAS math assessment (z score). Race reference group: White. Bold indicates significance 
(p < .05). DC-CAS = DC Comprehensive Assessment System; FIM = First in Math; ELL = English language learner; SPED = special education.
a2011–2012 DC-CAS (z score).
*p < .05. **p < .01.

Figure 1.  Scatterplot of 2012–2013 DC Comprehensive 
Assessment System (DC-CAS) z scores (y-axis) and hours of use 
of First in Math (x-axis).
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Discussion

This study offers several implications for RPPs and 
research about implementation of educational software at 
scale in public education systems. We demonstrate the 
potential to combine student-level data from a school dis-
trict, with usage data from digital platforms (e.g., FIM), to 
delve deeper into issues of technology implementation, 
student use, and relationships with learning outcomes of 
interest to educators and district leaders. Our analyses have 
been valuable for our RPP team, compelling new insights 
and further questioning that informs our future work 
together. This iterative inquiry-based process is core to 
RPPs (Penuel et al., 2011), and the availability of new data 
sources helps to facilitate this work. For example, our find-
ings about students’ time spent in FIM help to validate dis-
trict decision making. We show that efforts of DCPS to 
provide computing, Internet, and technical infrastructure, 
as well as to make software such as FIM available to all 
schools, may have some positive benefits. Students of 
color show more time spent with FIM, and it appears that 
schools that serve lower-achieving students are providing 
students more access to the program (e.g., students in 
lower-achieving school environments are spending more 
time in FIM). Using FIM during the school year is also 
significantly correlated with higher performance on the 
DC-CAS at the end of the year. Thus, some amount of 
usage seems to be worth the district’s efforts.

However, our analyses also suggest areas that require 
further inquiry for DCPS. For example, female students are 
spending less time in FIM, and students who are already 
higher achieving spend substantially more time in the pro-
gram. These patterns compel further questions about those 
students who are not using FIM. Our data cannot tell us why 
these patterns of nonuse are present, but prior research pro-
vides some frameworks for potential avenues of future 
work in the district. Perhaps school leadership and organi-
zational routines in different schools are shaping how FIM 
is presented and given to students for use (or nonuse). It is 
possible that the activities in FIM (drill and practice) are 
enjoyable for students who already have higher achieve-
ment but less so for students struggling to understand the 
math content and skills presented to them. Teachers could 
be conceptualizing their classroom practice in ways that 
may align or misalign with their understanding of how to 
use FIM with students. Our analyses are a first step in iden-
tifying potential inequities in implementation and spurring 
further questions for our RPP to understand these patterns in 
the data. We argue that this iterative inquiry—and a focus 
on equitable implementation patterns—would benefit 
school districts across the United States that are also imple-
menting new digital platforms.

The findings suggest that spending time using FIM is cor-
related with improved performance on the DC-CAS at the 
end of the school year, but they also provide some nuance to 

how useful FIM may be and for which students. We know 
that FIM is limited in design, as largely a drill-and-practice 
application, and students spent relatively very little time 
over the course of the school year using it. However, even a 
small amount of drill and practice, such as 20 hr total over 
the entire school year, could potentially relate to higher per-
formance on math assessments in the district (0.14-SD 
improvement). Our findings add to other studies showing 
that some computer-aided instructional programs could be 
related to improved academic achievement in math class-
rooms. For example, Barrow and colleagues (2008) found 
that a computer-aided math instruction platform—I Can 
Learn—was related to 0.17 SD of higher performance for 
middle and high school students.

Finally, we observed an interesting finding where spend-
ing time using FIM was more positive for students in lower-
performing school environments. Taken together, these 
findings suggest some potential strategies for our RPP. It 
may be very reasonable for the district to frame FIM as a 
beneficial tool for students to practice basic skills, a little at 
a time and as a supplement, and focus the rest of its mathe-
matics instruction on more ambitious learning activities. 
Past research in educational technology suggests that under-
served and lower-performing schools are more likely to 
engage students in drill-and-practice forms of technology, 
with all of the negative connotations associated with that 
finding. However, our analyses suggest that a limited amount 
of drill and practice in FIM, for students in lower-perform-
ing school environments, appears to be beneficial for pro-
moting student achievement on standardized assessments.

However, the limitations of our data also compel future 
questions for our RPP and general research on technology 
implementation in schools. First, time on task in a software 
environment is a potentially problematic measure for inter-
pretation (Kovanovic et al., 2016). Our data cannot tell us 
how students spent time logged into the FIM platform—
that is, whether they were progressing, distracted, logged 
in but not doing any tasks, and so on. We checked our time-
on-task data with other indicators in the FIM log data to 
check for robustness. For example, we examined the rela-
tionship between the stickers/badges that players earned in 
FIM (for completing tasks) and their time spent in the pro-
gram, and we found a largely linear relationship. This find-
ing suggested to us that time also was a good indicator for 
progress (earning stickers/badges) in our FIM data set, and 
it gave us confidence to move forward with this measure in 
our models. However, in other districts or settings, this pat-
tern is not a given, as time can be used in many different 
ways. From a theoretical perspective, we also cannot make 
claims about how students used their time in FIM beyond 
rote practice tasks. Did they speak with their peers, do 
activities together, or ask questions of their teachers? Our 
indicators for time provide analytics and patterns of inter-
est to observe, but they are limited in delving into microle-
arning processes that are important.
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Second, as with many field studies, we cannot control for 
the myriad of other programs that students are exposed to in 
the school district that are implemented simultaneously 
with FIM. For example, it may be possible that students 
with zero time on task in FIM or little time spent in the pro-
gram are benefiting from other similar programs. Without 
data on those programs, it is difficult to fully pinpoint the 
impact of FIM on achievement. However, we previously 
noted that we examined models with school fixed effects 
and found similar results for time on task. In those models, 
we control for any programs adopted at the school level, 
and it would be likely that students within the same school 
would be exposed to similar sets of programs. That we find 
similar results for time on task in these models suggests 
some robustness of our findings.

Finally, we note that correlation does not equal causation. 
Our models take advantage of time, using strong controls 
such as prior achievement and modeling time spent in FIM 
to predict future academic performance. Although our cor-
relational analyses provide compelling evidence that time 
spent in FIM was related to improved academic achievement 
in small but significant ways, we cannot make any causal 
claims that time spent in FIM caused better performance. It 
may be plausible that students who used FIM more also had 
better teachers, more motivation, academic supports, or 
other situations that explain the relationship between their 
time spent in FIM and academic achievement. From a theo-
retical perspective, we cannot rule out these alternative pos-
sibilities. However, from an analytics perspective, time 
spent in FIM may serve as a useful indicator that signals a 
need to look deeper into these students. Qualitative under-
standing about which students spend substantial time in the 
program and, relatedly, their peers who decide to be nonus-
ers will be beneficial for the district to understand how to 
better support diverse learners over time. In this way, delv-
ing deeper into multiple data streams and analytics of digital 
trace data in educational software can play an integral role in 
school district decision making, educator practice, and 
improvement over time.

Note

1. We do not present these results given space constraints, but 
they can be provided by the first author upon request.
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