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Collaborative problem solving (CPS) has been described 
as a critical skill for students to develop, but the nature of 
communication between individuals in a collaborative situa-
tion causes difficulty in measuring students’ ability using 
traditional testing approaches, such as multiple choice, 
extended answer, peer review, or teacher observation. 
Further, when students are scored on a group task, teachers 
often allocate one score to the whole group of students, dis-
regarding individual students’ performances, and that score 
might reflect achievement of the correct solution rather than 
contribution to the collaborative process. Another issue is 
that teachers who wish to assess CPS in their classrooms 
may not have the scope to do so if this requires deviating 
from teaching the mandated curriculum. Such issues in 
assessing CPS arise regardless of the teachers’ specific con-
tent area specialization.

This paper considers collaborations in mathematics class-
rooms in junior high school or middle school (with students 
in approximately Years [or Grades] 6, 7, and 8) in six differ-
ent countries. Students in this age range commonly study 
basic algebra and the concepts of variables, integers, and 
polynomials. Their teachers need to manage the transition 
from arithmetic to algebra and accommodate current curric-
ulum reforms emphasizing capabilities such as CPS and 

critical thinking. These latter capabilities require accurate 
and meaningful assessment, just as the more familiar content 
areas do.

These issues and complications in measuring CPS while 
teaching a content domain underlie the overarching research 
question addressed in this study: How can teachers assess 
CPS for students individually while they teach mathematics?

Why Collaborative Problem Solving?

Problem solving has been assessed for several decades, 
following Polya’s (1945/1973) publication of his four-step 
process within the domain of mathematics. As this process 
was embedded within mathematics curricula, problem solv-
ing was generally regarded as a mathematics skill. Studies in 
the latter part of the 20th century and in the early part of the 
21st century linked problem solving with decision making, 
critical thinking, and collaboration (e.g., O’Neil, 1999; 
O’Neil, Chuang, & Chung, 2003; Griffin, Care, & McGaw, 
2012). The inclusion of these skills extended the exploration 
of problem solving beyond the field of mathematics into the 
sciences and other discipline areas, and the skills are now 
broadly considered to be independent of those disciplines 
and a subject of learning in their own right. The combination 
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of these skills as CPS was formalized in the project titled the 
Assessment and Teaching of 21st Century Skills (ATC21S) 
(Griffin et al., 2012; Griffin & Care, 2015).

Increasing awareness of the importance of team partici-
pation in the workplace (e.g., Economist Intelligence Unit, 
2015) and the linking of problem solving and critical think-
ing to increased productivity (World Economic Forum, 
2016) have led to a realization that CPS has a central role in 
learning and work in the 21st century. Because of the shift 
from an industrial economy to a knowledge- and informa-
tion-based economy, there is an increasing demand for 
workers who have developed strong collaboration, critical-
thinking, information technology, and problem-solving 
skills during their education (Greiff, Holt, & Funke, 2013; 
Griffin et al., 2012; O’Neil et al., 2003). Such is the recogni-
tion given to CPS as a valued life skill that the Organisation 
for Economic Co-operation and Development (OECD) con-
ducted a comprehensive study of it in 53 countries as part of 
the Programme for International Student Assessment (PISA) 
in 2015. Many research groups around the globe are in the 
process of creating tasks and investigating data analytic 
techniques for CPS assessments (von Davier, Zhu, & 
Kyllonen, 2017). The focus appears to be on how to best 
assess the construct rather than on how teachers could best 
use CPS assessments in class.

At a policy level, education is shifting toward an empha-
sis on generic competencies, and the involvement of the 
OECD is expected to accelerate pressure for curricula to 
include CPS and other 21st century skills. To embed these 
kinds of skills into curricula, new teaching and assessment 
practices are needed. Data from assessments are needed in 
order to inform teaching and to indicate the kinds of skills 
that students need to learn in order to become more profi-
cient in collaborative practices. This is now widely accepted 
as an important preparation for participation in the work-
force, and many countries have begun adapting their curric-
ulum to incorporate 21st century skills (referred to variously 
as “transdisciplinary” skills or competencies, “general capa-
bilities,” “work skills,” “soft skills,” and so on) into the tra-
ditional key learning areas (Care, Anderson, & Kim, 2016). 
This has encouraged the development of assessment strate-
gies to assist teachers to deal with the curriculum shift.

However, teachers have identified practical difficulties in 
incorporating 21st century skills into classroom teaching. 
According to global survey results published by the 
Economist Intelligence Unit (2015), 49% of teachers report 
that lack of time in a strictly regulated curriculum is the big-
gest barrier to teaching 21st century skills. Another 30% list 
education authorities’ strict requirements that focus in the 
classroom be on literacy and numeracy as the biggest chal-
lenge faced. This paper seeks to address these problems by 
demonstrating that the use of CPS assessments housed 
within mathematics algebra tasks allows teachers to use their 
time to teach the curriculum while also assessing CPS skills. 

And this development has wider implications: Other 21st 
century skills could be taught in a similar way, alleviating 
more of the pressures that teachers feel in introducing the 
assessment of these types of skills into their classrooms.

Theoretical Framework

The ATC21S project pioneered the development of an 
online human-to-human CPS assessment and established a 
benchmark for the construction of tasks and the interpreta-
tion of student performances. A defining feature of the 
ATC21S tasks was the necessity to allocate separate 
resources to each of the students, so that no student could 
solve the problem alone and no student could be a nonpar-
ticipant in the process. The problem could be resolved only 
if each student contributed the resources he or she controlled 
and actively participated in the process. CPS was defined as 
the process of approaching a problem responsively by work-
ing together and exchanging ideas, but Griffin (2014) has 
more recently refined the definition as

a joint activity where two or more people work together to contribute 
resources they alone control, to progress through a series of 
cognitive states that involve collection and analysis of information 
and the formulation of hypotheses that they jointly set out to test. (p. 
12)

CPS differs from individual problem solving in that much 
of the students’ activity is overt. Griffin (2014) described the 
difference between individual problem solving and CPS in 
the following way:

The primary distinction between problem-solving by an individual 
and collaborative problem-solving is its social nature—the need 
for communication, exchange of ideas, shared identification of the 
problem and its elements, and negotiated agreement on connections 
between problem elements and relationships between actions and 
their effects. Collaborative problem-solving makes each of these 
steps observable, as they must be shared with a partner or other 
members of a group if a solution is to be successfully identified. 
(p. 9)

This article describes an analysis of student performances 
on mathematics-related CPS tasks that were created as part 
of the ATC21S project. The tasks were created in English 
and completed in that language by students in Australia, the 
United States of America, and Singapore. The tasks were 
translated into Spanish for students in Costa Rica, Finnish 
for students in Finland, and Dutch for students in the 
Netherlands.

The complex construct of CPS used to create the tasks 
was described by Hesse and others (Hesse, Care, Buder, 
Sassenberg, & Griffin, 2015). They proposed a CPS frame-
work consisting of social and cognitive strands and the defi-
nition of the variable. The indicative behaviors measured in 
the CPS assessments were classified as belonging to either 
social or cognitive skill areas. Social skills were further 
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classified as participation (action, interaction, persistence), 
perspective taking (adaptive responsiveness, audience 
awareness), or social regulation (negotiation, meta-memory, 
transacted memory, responsibility initiative), while cogni-
tive skills were classified as task regulation (problem analy-
sis, goal setting, resource management or control, flexibility 
in an ambiguous context, data collection, systematicity) or 
learning and knowledge building (relationships, contingen-
cies and generalization, hypothesis testing). To explore the 
log stream data for evidence that students were displaying 
these skills, indicators were designed to represent the ele-
ments described in Table 1. The tasks were completed by 
student dyads, and the assessment was designed to record 
the process the students used to solve the problems, includ-
ing the social and cognitive skills they used, in addition to a 
problem solution. This emphasis on the process used by stu-
dents was adopted in anticipation of the need for teachers to 
understand the process involved when students learn to 
develop the skills of CPS and to be able to translate that 
understanding into pedagogical practice.

The mathematics-based tasks used in this study intro-
duce students to algebraic concepts using numerical rea-
soning (rich tasks) in an interactive way designed to be 
engaging. The tasks can be used to teach mathematics and 
meet curriculum demands for both mathematics content 
and 21st century skills. In addition to emphasising the 
problem-solving process, the tasks of the ATC21S project 
allow assessment of individual student performance within 
the composition of a team or group collaboratively solving 
problems.

An Individual Measure for CPS

In the editorial of a special issue on collaborative educa-
tional assessments in the Journal of Education 
Measurement, von Davier (2017) argued that “in modeling 
the process of collaboration, we are concerned about 
describing the statistical dependence exhibited by the 
activities of groups of individuals” (p. 8). This approach, 
described by von Davier and Halpin (2013) and others, 

Table 1
Collaborative Problem-Solving Skills and Indicator Design

Element Behavioural Indicators Based on . . .
Social skills  
  Participation  
    Action Activity within environment
    Interaction Interacting with, prompting, and responding to contributions of others
    Task completion/perseverance Undertaking and completing a task or part of a task individually
  Perspective taking  
    Adaptive responsiveness Ignoring, accepting, or adapting contributions of others
    Audience awareness (mutual modeling) Awareness of how to adapt behavior to increase suitability for others
  Social regulation  
    Negotiation Achieving a resolution or reaching compromise
    Self-evaluation (meta-memory) Recognizing own strengths and weaknesses
    Transactive memory Recognizing the strengths and weaknesses of others
    Responsibility initiative Assuming responsibility for ensuring parts of the task are completed by 

the group
Cognitive skills
  Task regulation  
    Organizes (problem analysis) Analyzing and describing a problem in familiar language
    Sets goals Setting a clear goal for the task
    Resource management Managing resources or people to complete a task
    Flexibility and ambiguity Accepting ambiguous situations
    Collects information Exploring and understanding elements of the task
    Systematicity Trying possible solutions to a problem and monitoring progress
  Learning and knowledge building  
    Relationships (represents and formulates) Identifying connections and patterns between and among elements of 

knowledge
    Contingencies/rules (“If . . . then”) Using understanding of cause and effect to develop a plan
    Hypothesis (“What if . . .”) (reflects and monitors) Adapting reasoning or course of action as information or circumstances 

change

Source. Hesse, Care, Buder, Sassenberg, and Griffin (2015).
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models the statistical dependencies between individuals 
and considers the degree of dependency as a measure of 
collaboration. In contrast, the process described in this 
paper attempts to control for statistical dependency between 
partners by measuring only the individual’s contribution to 
the collaborative process. The method of scoring each indi-
vidual on separate indicators, other than those shown to be 
statistically common between partners, limits dependen-
cies to provide an individual measure of CPS ability.

In its draft framework for individual problem solving, 
PISA (2010) identified three challenges for the assessment 
of CPS skills: how to assign credit to individual group mem-
bers if this is required, how to account for differences across 
groups that may bias individual performance, and how to 
account for cultural differences in group dynamics (PISA, 
2010). The first challenge is addressed in this study. 
However, the separate questions of how to account for dif-
ferences in group dynamics and cultural differences are not 
addressed, nor is the theoretical rationale behind wanting or 
needing to account for any real differences in ability between 
cultures or groups.

Previous publications on the creation, coding, scoring, 
calibration, and use of the ATC21S tasks have provided vari-
ous forms of evidence for the validity and reliability of the 
assessments. A set of four tasks was described in detail, with 
an outline of how each of the tasks covers the skills included 
in the Hesse framework, presenting evidence for validation 
in terms of instrument content (Care, Griffin, Scoular, 
Awwal, & Zoanetti, 2015). The process of the coding of the 
data into indicators was described, demonstrating validation 
for response processess (Adams et al., 2015). The character-
istics of the full set of 11 tasks have been described, includ-
ing concept and construct mapping, specifications, 
blueprints, and task calibration, establishing the internal 
structure of the assessments (Griffin, Care, & Harding, 
2015). Evidence for the reliability and validity of a different 
set of four CPS tasks (a mixture of content-free and content-
dependent tasks), including precision data and test informa-
tion curves, has been reported in Harding and Griffin (2016), 
where analyses of the data demonstrated that the perfor-
mance of the tasks and the indicators of student behavior 
were independent of language, curriculum, or national 
emphasis. The coding and scoring mechanisms presented in 
this paper are the same as described in these articles.

Research Questions

The purpose of this paper is to extend the understanding 
of the possible uses of CPS assessments by exploring the 
benefits and limitations of housing CPS tasks in the specific 
curriculum content of mathematics. Of particular impor-
tance, here we describe the exact mathematical skills cov-
ered by the four tasks to demonstrate how they may be useful 
for teaching specific mathematical concepts. In designing 

our research questions, we aimed to address the validity, 
reliability, and fairness of the tasks with reference to the 
Standards for Educational and Psychological Testing 
(American Educational Research Association [AERA], 
American Psychological Association, & National Council 
on Measurement in Education, 2014). Analyses of the data 
were conducted to ensure that the set of mathematics CPS 
tasks adequately covered the construct, ensuring that they 
are reliable as a measure of CPS. Consequential validation 
was considered by examining fairness between different test 
forms (Students A and B) and cultural bias. Investigations of 
the dependency of one partner’s social or cognitive CPS 
skills on the other were conducted to provide evidence of 
discriminant validity. Scores between partners were not 
expected to correlate, as the scoring was designed to provide 
an individual measure of CPS ability. To examine discrimi-
nant and convergent validity, students’ CPS performance on 
the mathematical tasks was compared to their performance 
on a set of content-free tasks. We hypothesed that student 
estimates on the social skills for the mathemematics tasks 
would correlate with the estimates on the social skills for the 
content-free tasks, providing evidence for convergent valid-
ity. The students’ ability estimates on the cognitive dimen-
sion were hypothesized to differ depending on the content 
area. However, the estimates were expected to correlate to 
some degree. The aim of these analyses was to begin inves-
tigation of the potential dependencies that need to be consid-
ered by teachers when evaluating a student’s level of 
performance on CPS tasks and to raise considerations for 
improvements in the creation and analytical techniques of 
assessments of CPS in the future.

The research questions addressed in this paper are as 
follows:

1.	 Can an assessment for human-to-human CPS be 
framed within a mathematical domain and provide 
accurate estimates of ability for students, while being 
of use in teaching mathematics?

2.	 Is the set of mathematics CPS tasks fair for each stu-
dent A and B, and do the tasks avoid cultural bias?

3.	 What is the dependency of one partner’s social and 
cognitive CPS skills on the other?

4.	 What is the relationship between the students’ ability 
estimates in the mathematics and the content-free 
CPS tasks?

Method

Sample

Data were obtained from 3,004 students (ages 11–17) 
from Australia (n = 554), Costa Rica (n = 362), the Netherlands 
(n = 288), Finland (n = 306), Singapore (n = 878), and the 
United States (n = 556). Students completed a selection from 
a suite of tasks, including Hexagons (n = 846), Warehouse  
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(n = 1,922), Game of 20 (n = 1,184), and Small Pyramids (n 
= 995). The samples of students from each country were 
opportunistic and not representative of the total population. 
The country mean scores could therefore not be compared 
legitimately as indicators of the skill level of students in that 
country. However, the psychometric properties of indicators 
across countries were compared by ordering and determining 
the correlation of the difficulty parameters of items. The stu-
dent pairings were not randomized. Each student pair was 
allocated by class within each country for test administration 
purposes. There is a probable bias toward matched students 
of similar ability because the students in each pairing came 
from the same class, within the same (approximate) year or 
grade level, and within the same country. As there was no 
systematic application of a randomized sampling method, 
any findings based on student pairings have potential limita-
tions, which will be discussed.

The Tasks

The mathematics tasks used are titled Hexagons, 
Warehouse, Game of 20, and Small Pyramids. To address the 
fourth research question involving comparison with non-
mathematical tasks, the content-free tasks used were Olive 
Oil, Clown, Shared Garden, Plant Growth, and Sunflower 
(described by Care et  al., 2015). The content-free tasks 
required no prior content knowledge on any particular sub-
ject. All the tasks involve two students (Student A and 
Student B) working through problems together, on separate 
computers, and communicating information via a chat box 
that functions in a similar way to text messaging. The mech-
anism for communication is solely via the chat box, allowing 
all collaboration to be explicit and recorded. Each student is 
given a unique set of resources to use in working through the 
problem, so students need to ask their partner for informa-
tion to fully understand the problem space and to gather the 
information required.

Each task includes an introductory screen, followed by 
several “pages” of subtasks or problems to complete. The 
introductory screen of each task follows a similar format: A 
brief description of the task is included along with a basic 
description of what is required of the student in completing 
the task. After completion of the tasks, the students were 
also required to answer survey questions, where they were 
required to judge their own and their partner’s performance. 
Peer learning may occur in the tasks if a strong student is 
paired with a weaker student. After the completion of this 
task, the teacher may take the opportunity to create a discus-
sion about how the task could have been solved and how the 
rule may have been produced.

Hexagons.  In Hexagons, students work together to find the 
arithmetical patterns that govern the workings of a puzzle in 
which numbers appear in small hexagons within a larger 

triangle. The task has eight problem-solving screens that 
require no algebraic skills; it involves multiplication and 
addition patterns with negative and positive numbers. Stu-
dents manipulate the number pattern by choosing the start-
ing number and/or the value change for the number pattern 
(e.g., +4). The task shares some similarities with the more 
common input-output “machines” that some mathematics 
teachers use to introduce or allow practice in solving number 
patterns and determining the rules that govern them. The 
first page of the task allows students to alter the numbers in 
the triangle and to investigate how the number pattern works. 
In this task, Student A controls the rule down the left side of 
the triangle, and Student B controls the rule down the right 
side, as illustrated in Figure 1. On the right side of the screen, 
a chat box allows students to talk to each other to discuss the 
problem. Students are guided throughout the different pages 
in the task to create their own rule for the triangle and to 
discover the rule their partner has created. They are guided 
with the visual aid of the triangle for the first six pages, after 
which the students are asked to solve the number patterns 
without the aid of the diagram, as shown in Figure 2. Hexa-
gons is most suitable for students from Year/Grade 6 (age 
11) to Year/Grade 8 (age 13).

Warehouse.  In this task, students are asked to secure a ware-
house by correctly positioning security cameras around tall 
boxes that block the cameras’ view. Students need to assess 
how the cameras behave and find the rule that determines the 
minimum number of cameras required to secure the ware-
house. The five-page task begins with Student A placing 
cameras around six boxes arranged in a 2-by-3 grid, as illus-
trated in Figure 3. Student A has control of the cameras but 
cannot see the areas the cameras cover; Student B can see 
the areas covered by the cameras but cannot see the cameras 
themselves. The students need to work together to find out 
how the cameras operate. The number of boxes in the ware-
house increases in subsequent pages, from six (2 by 3) to 
nine (3 by 3) and then 12 (3 by 4), so students can learn how 
the rule can be extended to various grid sizes. In the final 
page of the task, students need to be able to extrapolate the 
rule they have learned and apply it to larger grids (the largest 
being 18 by 11) without a visual aid. This task requires 
strong mathematical reasoning skills. Stronger students will 
develop an algebraic rule to calculate the number of cameras 
required, and they will see this as the fastest method. Stu-
dents who struggle with algebra may attempt to draw the 
grid to solve the problem. This task can serve as an introduc-
tion to algebra for students in Year/Grade 7 or Year/Grade 8.

Game of 20.  This task has previously been described by 
Care et  al. (2015). It involves two students working as a 
team and competing with a computer to be the first to arrive 
at a total of 20 by placing “counters” on a game board with 
spaces numbered 1, 2, 3, 4, or 5, as shown in Figure 4. When 
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the students have placed a counter on one of the numbers, 
the computer places a counter on a remaining number. This 
continues until the total of the covered numbers reaches 20 
or the players “bust” (use a counter that takes the total over 
20), in which case they lose. The students work together to 
decide in which number space to place their counter. Before 
placing the counter, they must each select one number. Stu-
dent A must select a number between 0 and 4, and Student B 

must select a number between 1 and 5. The combined total 
of their two numbers must be no greater than 5: If Student A 
chooses 3, then Student B can choose only 1 or 2 to make a 
total of 4 or 5, respectively. When the students have chosen 
two numbers, the game places a counter on one of the spaces 
featuring the number of their combined total. As the students 
play and practice, they are guided to find the totals that will 
ensure they win the game. They are then asked to specify 

Figure 1.  Hexagons task, Student B view, page 4.

Figure 2.  Hexagons task, Student B view, page 7.
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their winning strategy. The game requires strong collabora-
tive skills, and its application of general numerical reasoning 
allows it to be used in mathematics classrooms in Years/
Grades 6 to 8.

Small Pyramids.  In this task, students use basic number rea-
soning skills to determine the rules that apply to the Fibo-
nacci series. The small pyramid is “connected” between 
Student A’s and Student B’s screens. When Student A types 
a number in the red box (bottom left side), Student B can see 
consequences of the number choice, including the number 

presented in the black box at the top of the pyramid, about 
which the student must answer questions, as illustrated in 
Figure 5. The task is divided into seven pages. The number 
of boxes filled in the pyramid depends on the level of com-
plexity of the problem presented. On the first page, students 
explore the pyramid. Student A enters a number in the red 
box and can see the bottom row of numbers created from 
that number choice; Student B can see the top half of the 
pyramid. The students need to communicate the numbers 
that they can see to each other to find the rule that explains 
how the boxes are filled. As students continue the task, they 

Figure 3.  Warehouse task.

Figure 4.  Game of 20 task, Student A view, page 4.



8

are required to predict the numbers that would appear in the 
boxes of the pyramid, particularly the black box, when a 
hypothetical number is typed into the red box, as shown in 
Figure 5. Midway through the pages of the task, students can 
no longer enter the number from the problem into the red 
box but need to apply their understanding of the way the 
pyramid works to solve the presented problem. Eventually, 

each student is asked to change the rules of the pyramid, and 
his or her partner is asked to predict the new rules, as shown 
in Figure 6. When the problem is presented, the students can 
view only some of the numbers in the pyramid, so by the 
final page of the task, the students need to have developed a 
thorough understanding of the relationships between these 
numbers to identify their partner’s rule. This task is suited to 

Figure 5.  Small Pyramids task, Student B view, page 3.

Figure 6.  Small Pyramids task, Student B view, page 7.



Measuring Collaboration Using Mathematics Tasks

9

Year/Grade 7 or 8 students as an introduction to algebra or to 
the use of numerical patterns and mathematical reasoning.

Coding and Calibration

As students completed the tasks, all actions and chats 
were captured as process stream data and collected in log 
files, which were then recoded into behavioral indicators 
designed to represent the elements described in Table 1 and 
by Awwal, Griffin, and Scalise (2015) and Adams et  al. 
(2015). Full linguistic analysis of communication was not 
performed, but rudimentary coding of instances of usage 
such as “why,” “where,” “how,” and “?” was used to deter-
mine patterns of communication between partners. Actions 
were coded as dichotomous items based on presence or 
absence of a behavior. The frequency of occurrence of a 
behavior was used as a quasi-measure of difficulty (Adams 
et  al., 2015) for calibration via item response modeling. 
Students’ abilities were estimated with a proportional score 
of the maximum possible, based on the behaviors they had 
the opportunity to exhibit. If a student had the opportunity to 
display a specific behavior (such as responding to his or her 
partner’s chat), he or she would be scored for that item. If the 
student did not have the opportunity (if, for example, his or 
her partner did not provide a resource for him or her), then 
that item was not scored and was considered as missing data. 
Complex algorithms with “if . . . then” propositions were 
utilized to create the indicators.

The following sequence of events (with indicators in 
parentheses) illustrates the scoring: Student A is prompted 
by text on the screen to type a number into a box, at which 
point Student B will see a different number on his or her 
screen. Student A is scored for entering a number (1) and for 
“chatting” to his or her partner before (2) and after (3) enter-
ing the number. Student B is scored for “chatting” to his or 
her partner before (5) and after (6) a number appears on his 
or her screen. If Student A does not enter a number, he or she 
is scored 0 for (1) but a missing for (3), and Student B 
receives a missing for (6). Chatting before the entering of a 
number—(2) and (5)—would be scored for each partner as 
that action is not dependent on Student A entering a number. 
In this way students are scored for their own contribution to 
the collaborative process.

Due to the design of the construction of indicators, there 
was a large amount of missing data in the data set. Missing 
data were considered as “missing at random” (Soley-Bori, 
2013). This consideration was based on the notion that the 
missing data of a student was not a result of his or her own 
actions but was “random.” In truth, most missing data were 
a result of the partner not proceeding with the activity and 
thus not entirely random. Nevertheless, the conception of 
“random” holds, as the student does not intentionally skip or 
miss indicators—the indicators are simply not presented. 
The use of Rasch analysis requires that dichotomous 

indicators be scored (0, 1) or not scored (missing). When a 
student does not have the opportunity to exhibit a behavior, 
the score must therefore be considered missing, as the other 
alternative—scoring the student as correct or incorrect on a 
behavior he or she could not have exhibited—would be 
folly. Missing data were not used to calculate a student’s 
ability estimate; students were scored only on the indicators 
they had the opportunity to present.

During the calibration procedure, the indicators were 
pruned for consistency with the CPS construct. Some items 
were found not to correlate with CPS performance, despite 
the initial conceptualization of the action being an indicator 
of ability. For example, in the sequence described above, 
Student B chatting before a number appears (5) may not 
have corresponded with overall CPS ability. Indicators with 
low discrimination were not used in the calibration of stu-
dent scores and were removed from the set of indicators 
using the procedure described by Harding and Griffin 
(2016).

The algorithms used for coding the indicators were either 
specific to each task or general to all tasks, and either unique 
to one student (A or B) or common to both students. If items 
were designed to be common to both students (which was 
necessary to have students placed on the same scale), 
Pearson’s chi-square test was used to calculate the signifi-
cance of any difference observed between aggregates of 
Student A’s and Student B’s scores. If there was a significant 
difference, the indicator was not considered as “common,” 
because the difficulty parameter was not consistent. Those 
indicators were then scored separately for Student A and 
Student B.

In total, 88 indicators of CPS behavior were used over the 
four tasks. Survey questions were coded as polytomous 
depending on the number of categories (0, 1, 2, or 3). 
Categorization of the survey questions was based on the 
same theoretical framework used to categorize the indicators 
from the process data. Indicators that fit the model (in terms 
of the underlying construct) were used to calculate students’ 
abilities.

Analysis

The data were analyzed using the Rasch one-parameter 
model (Rasch, 1960/1980) adjusted for partial-credit coding. 
According to the model, the ability of each student and the 
difficulty of each indicator (difficulty measured by the fre-
quency of occurrence of the behavior) governs the likeli-
hood of the student scoring 1 on each dichotomous indicator. 
Masters extended the simple logistic model to the partial-
credit model (Masters, 1982; Wright & Masters, 1982), 
allowing the analysis of polytomous items. Of the 88 indica-
tors of CPS, 17 were coded as partial credit and 71 as dichot-
omous, resulting in a total of 114 parameters estimated. 
Student ability estimates, θn, and item difficulty estimates, 
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δi, were marginal maximum likelihood estimates obtained 
using an efficient maximum algorithm. The process of deri-
vation of the student ability estimates was described by 
Adams et al. (2015). The ability parameter θn of person n, 
who had provided responses to a set of items or indicators 
Ωn, was estimated using an iterative process in which, after 
iteration t, student’s ability is denoted θn

t( ) as follows:
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Data were analyzed for a single latent dimension and for 
a two-dimensional construct consisting of social and cogni-
tive dimensions. Between-item dimensionality was analyzed 
using the multidimensional random-coefficients multino-
mial logit model as described by Adams, Wilson, and Wang 
(1997). ConQuest computer software (Adams, Wu, & 
Wilson, 2012) was used to calibrate the item and person 
data.

For estimation of parameters, average indicator diffi-
culty was arbitrarily set to zero, and student ability esti-
mates were allowed to vary. The range of latent student 
ability estimates was compared to the range of indicator 
difficulties to check that the tasks were appropriately 
matched to students’ abilities (Figure 7). For the two-
dimensional model, both dimensions were plotted, with the 
total average indicator difficulty constrained to zero (log-
its). This allowed a visual representation of the differences 
in the difficulty estimates of the social and cognitive indi-
cators, as shown in Figure 8. The correlation between 
dimensions was estimated and interpreted based on student 
variance shared between dimensions. The correlation 

estimate is effectively corrected for attenuation caused by 
measurement error (Adams et al., 2012).

Model Fit and Reliability

Fit statistics were estimated as residual-based indices as 
described by Wu (1997), who extended those described by 
Wright and Masters (1982). Both unweighted and weighted 
fit were examined as evidence that the underpinning con-
struct was represented by the indicators. Weighted fit is the 
mean-squared difference between the observed and the esti-
mated difficulty of each score, weighted by the variance of 
the assigned score, referred to as INFIT (information-
weighted mean-squared residual goodness-of-fit statistic). 
Unweighted fit is outlier sensitive and based on traditional 
chi-square statistics, referred to as OUTFIT (outlier-sensi-
tive mean-squared residual goodness-of-fit statistic). 
According to Linacre (2002), INFIT reports overfit for 
Guttman patterns and underfit for alternative curricula or 
idiosyncratic groups, and OUTFIT is more sensitive to 
responses to indicators with difficulty far from a person’s 
ability and vice versa.

If the model fits the data, then the INFIT and the OUTFIT 
should approximate to 1. Both fit statistics are sensitive to 
large samples, and the confidence interval will narrow as the 
sample size increases. Acceptable fit is often quoted as rang-
ing between 0.77 and 1.20 (as in Adams & Khoo, 1995). 
However, with the large sample of students involved in this 
study, a more acceptable range of fit was considered to be 
between 0.8 and 1.2. Indicators conforming to these criteria 
were retained for analysis.

Reliability estimates for indicator and student separation 
were identified using ConQuest (Adams et al., 2012).

Validity

To examine threats to consequential validity, evidence of 
fairness between the two different test versions (Student A 
and Student B roles) and lack of bias between versions of the 
assessments for each participating country will be presented 
below. Evidence of the potential benefits for teaching and 
learning will be considered in the Discussion.

Indicators (items) common to both students (A and B) 
were used to link the student assessments. Common indica-
tors were tested for differences in parameter difficulty (tested 
for differential item functioning [DIF]), and only those 
retaining identical difficulties for Student A and Student B 
were considered as “common” indicators. Common person 
equating methods were used to establish item difficulty 
parameters that were comparable across tasks.

Of the 3,004 students completing the tasks, 2,944 main-
tained their role as Student A or Student B for all tasks taken. 
That is, just 60 students changed from Role A to Role B or 
from Role B to Role A for different tasks during the 
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assessment—perhaps a result of the students not being told 
that they were able to swap roles. Student A was scored for 
an overall item pool that differs from that of Student B, other 
than for common items. This was accounted for by the 
model, and there was no hypothesized advantage or disad-
vantage based on the role the student played in the assess-
ment. The difference in mean latent ability was determined 
for the group of students who maintained the Student A role 
and the group who maintained the Student B role. This was 
achieved by running a general facet analysis with role (A or 
B) as a main effect.

To determine that indicator functioning was unaffected 
by language-, culture-, or country-specific factors, the 

within-country indicator difficulty estimates were compared 
between countries. This was performed as a DIF comparison 
by correlating the difficulties of the parameter estimates in 
each country.

The main effects of country differences were also com-
pared. This was achieved by running a general facet analy-
sis with country as a main effect. Importantly, unlike the 
main effects of differences in ability estimates per role, the 
hypothesis was that there were likely to be differences in 
the averages of the ability estimates per country, because 
the students from each country were selected by opportu-
nistic sampling and there could be real differences between 
countries in CPS abilities.

Figure 7.  Variable map of one-dimensional analysis.
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Dependencies

An analysis of dependencies between students skills on 
the social and cognitive dimensions was conducted to detect 
potential interactions that may have resulted from the fram-
ing of the CPS tasks in a mathematical context, that is, to 
detect the potential influence of mathematical ability on the 
results. Correlations were calculated in SPSS with the square 
of the correlation coefficient (R2) reported as the percentage 
of the variation in one variable that is related to the variation 
in the other. An F test for significance was conducted.

To investigate the dependency of one partner’s social or 
cognitive CPS skills on the other, Student A ability estimates 
were correlated with Student B ability estimates on both the 
social and cognitive dimensions.

Other possible dependences within the tasks, dependen-
cies across tasks, temporal dependencies, and dependencies 
across people have not yet been investigated.

Results

Analysis

One-dimensional model.  Calibration of the four tasks 
included 88 indicators: 27 unique for Student A, 20 unique 
for Student B, and 41 common for Students A and B. Indica-
tor parameter estimates are summarized in Table 2; mini-
mum and maximum item parameter estimates are shown for 
each of the four tasks, with mean estimates reported. The 
mean of the total item difficulty estimates was 0.000, as 
specified by the model. Fit statistics are summarized with 
mean INFIT, mean OUTFIT, and variance of these reported 
(Table 2). The total mean-square weighted estimate for the 
joint calibration averaged 1.003 with a variance of 0.003, 
indicating that the model fit the data. The items were well 
separated with an item separation reliability of 0.999; 
expected a posteriori/plausible value (EAP/PV) person sepa-
ration was adequate at 0.739. Warm’s weighted likelihood 

Figure 8.  Variable map of two-dimensional analysis.
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estimate reliability was 0.617 and maximum likelihood esti-
mate reliability was 0.644, indicating a satisfactory estimate 
of person’s ability based on the assessments.

The mean of the latent ability distribution for all four 
tasks was −0.163 logits (SE = 0.011), indicating that the 
task indicators were well matched to students’ abilities. 
This is demonstrated visually in the variable map shown in 
Figure 7.

Two-dimensional model.  The data set was then calibrated 
based on the assumption of two logical dimensions, social 
and cognitive, as described in Table 1 (Hesse et al., 2015). 
Indicators were designated as belonging to the social (36) or 
cognitive (52) dimension. Indicator parameter estimates are 
summarized in Table 3. Minimum and maximum item 
parameter estimates are shown for each of the four tasks, 
based on analysis using the two dimensions, with mean esti-
mates reported. Fit statistics are summarized with mean 
INFIT, mean OUTFIT, and variance of these reported (Table 
3). The total mean-square weighted estimate for the joint 
calibration averaged 1.009 with a variance of 0.004, indi-
cating that the model fit the data. There were no substantial 
fit differences between the one- and two-dimensional 

models, providing evidence that CPS can be treated as a 
unitary construct or as a construct with social and cognitive 
dimensions. The items were well separated with a separa-
tion reliability of 0.997; EAP/PV person separation was 
0.685 on the social dimension and 0.714 on the cognitive 
dimension. This separation indicates that the items on the 
cognitive dimension were marginally more accurate for 
determining students’ ability.

The means of the total item parameter estimates for 
each of the two dimensions were set to 0.000, allowing the 
students’ abilities, as measured for each dimension, to 
vary. On the social dimension, students’ mean latent abil-
ity distribution was 0.634 logits (SE = 0.011), and on the 
cognitive dimension, students’ mean latent ability distri-
bution was −0.734 logits (SE = 0.014). The students scored 
higher on the indicators assigned to the social dimension 
than on the indicators assigned to the cognitive dimension. 
This is represented visually in the variable map shown in 
Figure 8.

The dimensions were highly correlated (r = .83), with 
69% of student variance shared between the dimensions. 
Thus, students who scored highly on one dimension were 
likely to score highly on the other.

Table 2
Summary Statistics: One-Dimensional Model

Item Parameter Estimate Fit Statistics

Task Mean Min Max
Mean 
INFIT

Variance of 
INFIT

Mean 
OUTFIT

Variance of 
OUTFIT

Hexagons 0.154 −3.601 1.947 0.994 .002 1.012 .008
Warehouse 0.604 −3.847 3.661 1.018 .002 1.004 .016
Game of 20 1.060 −4.081 2.872 1.019 .002 1.063 .009
Small Pyramids −0.611 −4.046 1.552 0.995 .003 1.013 .013
Survey −1.105 −4.165 −0.270 0.992 .008 0.984 .021

Note. INFIT = information-weighted mean-squared residual goodness-of-fit statistic; OUTFIT = outlier-sensitive mean-squared residual goodness-of-fit 
statistic.

Table 3
Summary Statistics: Two-Dimensional Model

Item Parameter Estimate Fit Statistics

Task Mean Min Max
Mean 
INFIT

Variance of 
INFIT

Mean 
OUTFIT

Variance of 
OUTFIT

Hexagons .088 −2.787 2.715 1.002 .002 1.002 .007
Warehouse .447 −2.542 3.173 1.026 .003 1.019 .024
Game of 20 .767 −3.259 2.446 1.031 .003 1.100 .013
Small Pyramids −.380 −3.222 2.335 1.000 .005 1.015 .014
Survey −.881 −3.348 0.223 0.985 .005 0.976 .012

Note. INFIT = information-weighted mean-squared residual goodness-of-fit statistic; OUTFIT = outlier-sensitive mean-squared residual goodness-of-fit 
statistic.
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Validity

Student role as a facet.  Data collected from the 2,944 stu-
dents who maintained either Role A or Role B for the com-
bination of the four tasks they completed were analyzed to 
determine differences in mean latent ability estimates by 
role. The estimates were hypothesized to be equal for the 
two roles due to the sampling methods involved. The testing 
population of students from each country was selected on 
the basis of teachers and schools wanting to use the assess-
ments—a nonprobabilistic sampling method. The popula-
tion of students who were appointed Role A or Role B was, 
in contrast, a type of stratified random sampling, where stu-
dents from a single class, in a single school, from each of the 
countries involved in the study, were separated into dyads. 
This method created a homogeneous subgroup from which 
an equal sample of Student A and Student B roles were 
drawn. Therefore, on an aggregate basis, the sample of Stu-
dent A students was roughly matched with the sample of 
Student B students for year/grade level, school, district, cul-
ture, language, and teacher-specific differences, even though 
teachers were not asked to separate students based on these 
characteristics.

Role was included as a facet in the measurement con-
struct, and main effects were examined. The parameter esti-
mates for Role A and Role B differ by just 0.002 logits, 
which is less than the standard error of this estimate (0.006); 
therefore, there was no effective difference in the mean 
latent ability estimate based on role, as shown in Table 4.

Country as a facet.  To examine the possibility of DIF 
between the student samples in the different countries 
involved in this study, data were calibrated separately for 
each country and item parameter estimates were compared. 
The correlation between item parameter estimates for each 
country was used as an indication of the amount of DIF 
between countries. All the countries were compared and cor-
relations (r) are shown in Table 5. All correlations were sig-
nificant (two-tailed significance 0.000), demonstrating no 
major differences in the way the indicators were measuring 
CPS in the different countries. This suggests that students 
follow the same process when solving mathematical tasks 
collaboratively, regardless of culture, language, or country 

of origin. The criteria for selecting indicators have provided 
a set of invariant item difficulties across countries. Thus, 
participating groups of students can be compared using the 
set of indicators presented.

Country was added as a facet to the calibration of the joint 
data set (2,944 cases) to determine whether students from 
each country differed in terms of their ability estimates. This 
comparison can be made because the indicator difficulties per 
country are invariant, as shown in Table 5. The data collection 
was focused on the psychometric properties of the tasks, and 
therefore countries have been deidentified. Countries differed 
in their implementation of the tasks. Therefore differences in 
ability cannot be used to generalize to the population. Rather, 
this analysis demonstrates that differences in abilities between 
participating groups, whether matched on age, nationality, 
gender, or other student background characteristics, can be 
estimated using these tasks, and generalization to national 
means would be appropriate if a proper probability sample 
had been drawn. In contrast to using student role as a facet, it 
was hypothesized that differences in main effects would be 
identified due to country differences. The difference between 
the highest-performing country group (Country 3) and the 
lowest-performing country group (Country 4) is 0.71 logits, 
which is above the parameter estimate errors, as shown in 
Table 6. This demonstrates that student groups can be com-
pared in terms of ability using the set of tasks presented in this 
study. The observation that the main effects of country and 
student role (A or B) have no interaction with the indicators 
provides confidence that such studies can be undertaken with-
out fear of bias.

Table 4
Student Role as Facet

OUTFIT INFIT

Student Role Estimate Error Mean
Confidence 

Interval T Mean
Confidence 

Interval T

A .001 .006 1.05 [0.93, 1.07] 1.3 1.02 [0.92, 1.08] 0.5
B −.001 .006 1.03 [0.93, 1.07] 0.8 1.02 [0.92, 1.08] 0.4

Note. INFIT = information-weighted mean-squared residual goodness-of-fit statistic; OUTFIT = outlier-sensitive mean-squared residual goodness-of-fit 
statistic.

Table 5
Country Item Parameter Correlations (r)

Country 1 2 3 4 5 6

1 — .902 .894 .918 .965 .896
2 .902 — .924 .896 .919 .918
3 .894 .924 — .894 .907 .917
4 .918 .896 .894 — .936 .934
5 .965 .919 .907 .936 — .922
6 .896 .918 .917 .934 .922 —
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Dependencies

To address Research Questions 3 and 4, Pearson prod-
uct-moment correlation coefficients were computed to 
assess the relationship between variables. In each case, the 
relationship was positive. However, the strength of the 
relationship varied, as was expected. Student A’s social 
ability estimates were weakly associated with partner 
Student B’s social ability estimates, r = .341, with 11.6% of 
the variance in scores explained by the performance of the 
partner (p = .000). Student A’s cognitive ability estimates 
were weakly associated with partner Student B’s cognitive 
ability estimates, r = .336, with 11.3% of the variance in 
scores explained by the performance of the partner (p = 
.000) (Figure 9, A and B).

In a comparison of CPS performance on mathematics 
tasks and content-free tasks, students’ social ability esti-
mates were strongly correlated, r = .819, with 67% vari-
ance shared between social estimates using different task 
types (p = .000). Students’ cognitive ability estimates were 
moderately correlated, r = .692, with 47.9% shared between 
cognitive estimates using different task types (p = .000) 
(Figure 9, C and D).

Discussion

The Rasch model fit to the data provided evidence that 
the assessment is measuring a consistent latent trait, with 
mean item INFIT ranging from 0.992 to 1.019 (Table 2) for 
the four mathematics tasks and the survey using the one-
parameter model. The two-dimensional model (considering 
social and cognitive dimensions) also fit the data, with mean 
item INFIT ranging from 0.985 to 1.031 (Table 3). The per-
son and item separation reliabilities were adequate, and the 
assessments provided a satisfactory estimate of person’s 
ability. The data presented in this article show clear evidence 
that individual CPS ability can be measured using content-
dependent mathematical tasks, and the tasks were well 
matched to student abilities.

Various aspects of assessment validity have been 
addressed. Consequential validation as defined by Messick 
(1995) combines evidence that the performance assessments 
have potential benefits for teaching and learning with evi-
dence that adverse consequences are minimal. Messick out-
lines the need to evaluate the intended and unintended 
consequences of score interpretation, particularly in associa-
tion with bias in scoring and interpretation and with unfair-
ness in test use. In terms of bias, students from six countries 
were tested, and even though the abilities of these opportu-
nistic samples were different from one another (Table 6), the 
mean correlation of the parameter estimates (that is, the 
order of difficulty of the indicators in the tasks for each 
country) was 0.92 (Table 5), indicating that the construct 
measured did not differ from country to country. This find-
ing was also reported when the entire host of CPS tasks 
(both content dependent and content free) was calibrated and 
reported by Harding and Griffin (2016). The mathematics 
tasks can therefore be used in the six countries tested without 
compromising the validity of the assessment, although much 
work remains to be done to ensure that the mathematics CPS 
assessments meet other criteria for a “fair” test, so that stu-
dents are not advantaged or disadvantaged by linguistic, 
communicative, cognitive, cultural, physical, or other char-
acteristics (AERA et al., 2014).

The results of the facet analysis with student role as a fac-
tor (Table 4) showed that there was no difference in the mean 
latent ability estimate based on role, which was inevitable 
given the design and use of Rasch analysis to estimate the 
difficulty of indicators and to score students accordingly. 
Given the asymmetric nature of the tasks and indicators, it 
was vital to provide evidence that there was no advantage or 
disadvantage to the role that the student took in the task. The 
data showed that a student’s score was not dependent on his 
or her role, or on the set of indicators he or she was scored 
on, and that the assessments are “fair” for each partner.

The influence of the ability of one student on the ability 
estimate of the other was investigated within the constraints 

Table 6
Country as Facet

OUTFIT INFIT

Country Estimate Error Mean
Confidence 

Interval T Mean
Confidence 

Interval T

1 .166 .012 1.12 [0.88, 1.12] 1.9 1.08 [0.86, 1.14] 1.1
2 −.062 .013 0.93 [0.85, 1.15] −0.9 0.95 [0.84, 1.16] −0.6
3 .407 .013 1.02 [0.84, 1.16] 0.3 1.01 [0.83, 1.17] 0.2
4 −.303 .009 1.06 [0.91, 1.09] 1.3 1.04 [0.9, 1.1] 0.7
5 −.111 .011 1.01 [0.88, 1.12] 0.2 0.96 [0.87, 1.13] −0.6
6 −.097 .026 0.97 [0.84, 1.16] −0.3 0.97 [0.82, 1.18] −0.3

Note. INFIT = information-weighted mean-squared residual goodness-of-fit statistic; OUTFIT = outlier-sensitive mean-squared residual goodness-of-fit 
statistic.
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of the sampling technique to address Research Question 3. It 
was an intention of the assessment that the ability estimates 
be independent for each partner. The indicators were care-
fully designed to avoid dependence, with each student hav-
ing the opportunity to exhibit skills of CPS without reliance 
on what the partner says or does. There are likely dependen-
cies existing regardless, perhaps in a psychological manner, 
where one enthusiastic or particularly knowledgeable part-
ner is able to guide the other partner through the assessment. 
This is a conflicting situation where, ideally, students will be 
guiding each other through the tasks via collaboration, but 
the score of each individual student should not be influenced 
by the partner’s CPS ability. Partners’ ability estimates 
should not be correlated to maintain discriminant validity of 
the assessment. In other words, students may influence one 
another, but their scores should not be dependent, as each 
student was judged on his or her unique set of CPS skills.

The mechanisms for dealing with potential dependencies 
in the data was not the focus of the ATC21S project, from 
which the data used in this paper were drawn. Hence the 
sampling distribution of students was not random, and any 

inferences from modeled dependencies need to be taken 
with caution. Artificial inflation of dependencies between 
partners will be evident, as student pairings took place within 
class at school level. A “matching” of student abilities con-
sequently took place, as students within the same class in the 
same year/grade level and in the same country will be more 
homogenous compared to other cohorts. This is a major lim-
itation in the research design. Further examination of the 
potential dependency of one partner on another should be 
undertaken with data drawn from an appropriate randomized 
study. Despite the suboptimal sampling conditions, only 
11.6% and 11.3% of student variation in social and cognitive 
skills, respectively, were shared between partners. This find-
ing suggests that the sole source of dependencies could be 
matched pairing as a by-product of sampling in pairs by 
class. Unfortunately, there is no way to separate the effect of 
the pairing on the effect of any real dependencies within the 
assessment without either (a) an external basis, such as sepa-
rate mathematics and collaboration assessments for those 
same students, to determine the base level of ability relation-
ship between students or (b) a proper randomized study 

Figure 9.  Correlation studies of dependencies. (A) Correlation of social ability estimates on math tasks; Student A versus Student B. 
(B) Correlation of cognitive ability estimates on math tasks; Student A versus Student B. (C) Correlation of social ability estimates on 
math tasks versus content-free tasks. (D) Correlation of cognitive ability estimates on math tasks versus content free-tasks.
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allocating partners at random across schools, year/grade lev-
els, and countries.

The Rasch simple logistic model was used to assess uni-
dimensionality, response category functioning, item fit, per-
sonal reliability, and item invariance across national samples, 
language, and role (A or B) of the student. An important 
specification of the Rasch model is that local independence 
is maintained. If responses to items (or in this case, behav-
iors manifested) are dependent upon other persons or items, 
then the Rasch model is not appropriate for ability estima-
tion. Considering the likelihood of possible dependencies 
remaining (factors other than those accounted for by ability 
on the latent trait), different types of analysis should be con-
sidered in future research either to discount remaining 
dependencies in the data or to model them. Concerns regard-
ing loss of local independence have been discussed recently 
by Griffin (2017, p. 128).

The mathematical tasks used to measure CPS skills were 
designed to be useful to teachers for reporting students’ level 
of development of CPS skills on both the social and cogni-
tive dimensions while students practice or learn mathemati-
cal skills in the classroom. Even though “correct answer” 
was not the focus of the assessments, elements such as sys-
tematicity, relationships, contingencies/rules, and hypothe-
ses were likely to correlate highly with general mathematical 
ability. The focus of the assessment was on the CPS process 
rather than mathematics; however, the mathematical ability 
of the student was hypothesized to influence his or her score 
on the cognitive or “problem-solving” part of the CPS con-
struct. Students’ social skills were hypothesized to be more 
highly correlated between task types than cognitive CPS 
skills; the results confirmed this hypothesis, providing evi-
dence for convergent validity of the assessments. The main 
limitation of the comparison between mathematics and con-
tent-free tasks was that students in the sample did not com-
plete a large number of nonmathematics tasks, producing 
noise in the data and reducing the real correlation of abilities 
on both the social and cognitive dimensions.

When social skills were compared, there was 67% shared 
variance in student ability estimates between mathematics 
and content-free tasks, suggesting that the type of task did 
not strongly affect the measurement of the students’ social 
CPS skills. However, when cognitive skills were compared, 
there was only 47.9% shared variance in student ability esti-
mates between mathematics and content-free tasks. This 
indicates that the cognitive ability estimates were impacted 
by the content of the tasks (students scored differently when 
the tasks were framed in the mathematics context), but this 
does not imply that the measure is inaccurate. There is a 
hypothesized relationship between mathematical under-
standing and skill and the “problem-solving” or cognitive 
part of the CPS construct. As more is understood about the 
construct of CPS and how it relates to other content areas, 
such as mathematics, the scope to improve CPS assessments 

widens. How that improvement will manifest is unknown. If 
the cognitive component of CPS is in fact correlated with 
mathematical ability, then it is not necessarily the case that 
assessments should be designed to avoid this relationship. 
Teachers using CPS assessments that are influenced by par-
ticular content abilities should be made aware of the influ-
ences and educated on how to interpret the results.

Many research groups and governing bodies have avoided 
the issue of dependencies between partners by creating 
human-to-computer agent tasks (Rosen, 2017; von Davier, 
2017). Other approaches, such as modeling both group and 
individual CPS skill dynamics and partitioning out the effect 
of the group from the ability of the individual, are suggested 
(von Davier & Halpin, 2013). This study examined an 
assessment approach that attempted to avoid dependence 
between partners by assessing only behaviors each individ-
ual student had the opportunity to present. There are many 
ways to approach the assessment of CPS, and the findings of 
this study do not seek to resolve considerations by arguing 
for or against a particular type of assessment or analysis of 
the assessment. Rather, the aim was to contribute to shared 
knowledge on the basis of creating, using, and analyzing 
assessments for CPS, particularly focusing on those that 
would be useful for teachers.

This paper contributes to a growing body of evidence that 
problem solving, whether individual or collaborative, is not 
only a mathematics-based skill. With other studies of its 
kind, it raises the possibility that tasks designed to measure 
student collaboration can be constructed with any curricu-
lum base or in a context that is not linked to a particular cur-
riculum component. CPS tasks can be linked to the subject 
areas of mathematics and thus alleviate pressure on teachers 
to measure this transverse skill without diverging from the 
subject in the classroom.
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