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Once again, we find ourselves at the threshold of a new pol-
icy era aimed at improving student learning through the 
introduction of challenging academic standards and accom-
panying student examinations. The Common Core State 
Standards (CCSS) in mathematics and English language 
arts, as well as the Next Generation Science Standards, have 
shifted states’ and school districts’ agendas toward ensuring 
that all students leave high school “college and career ready.” 
Even for those states that have not adopted the CCSS and 
aligned examinations, many are reassessing and realigning 
their standards and their testing programs to “live up to” to 
these new, more ambitious standards. In mathematics, this 
means that students must develop not only skill efficiency 
but also more rigorous ways of thinking and reasoning and 
deeper levels of conceptual understanding.

The changes that must happen in order for students to 
reach these goals are immense, and once again, teachers 
find themselves as both the targets and the agents of reform 
(Cohen, 1990). They are targets because poor instruction is 
implicitly identified as the cause of unacceptably low lev-
els of student performance; they are agents because teach-
ers are widely seen as representing our nation’s best 
opportunity to foster enhanced student learning. There are, 
however, few guidelines and little support for teachers to 

learn how to become agents of reform. Standards do not 
prescribe how to teach. At the same time, there is a lack of 
consensus in the research and practice communities regard-
ing the specific features of teaching that foster deeper lev-
els of student learning.

We argue that making headway on this challenge will 
require advances in our theories of how teaching affects stu-
dent learning and progress in how we measure instruction. 
Theory is required to draw our attention to particular features 
of teaching that matter for students’ development of concep-
tual understanding and to guide the development of mea-
sures. Measurement is required to devise new ways of 
ascertaining the status of instructional practice at scale.

This article draws from a larger investigation of instruc-
tional practice and student learning that we are conducting in 
the state of Tennessee. After spending Race to the Top 
resources on statewide teacher professional development in 
mathematics, state education leaders wanted to be able to 
monitor the range and variability of mathematics instruction 
across the state in ways that could inform decisions about 
future allocation of resources in the new standards-based 
era. Tennessee was one of the first states to adopt the CCSS, 
and although the state has transitioned to Tennessee stan-
dards, these new state-based standards are aligned with the 
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Common Core. In this context, we are conducting a study of 
natural variation in fourth- to eighth-grade mathematics 
teaching and student learning across the state.

The overall purpose of this article—the first in a series 
grounded in the Tennessee work—is to describe the theoreti-
cal framework that anchors our work and to generate and test 
claims grounded in that framework. In so doing, we take the 
first steps toward constructing a validity argument regarding 
the inferences that can be made about teaching based on 
teachers’ responses to survey items aimed at measuring key 
features of mathematics instruction that matter for student 
learning in the Common Core era. The article unfolds in four 
sections. We begin by describing our theoretical framework 
and its relevance for studying and improving teaching in the 
Common Core era. In this section we also lay out a set of 
claims, patterns, and relationships that we predict will hold 
based on the theoretical framework. In the next section, we 
describe our methods for measuring and analyzing instruc-
tion and student learning aligned with the theoretical frame-
work. In the third section, we present findings from these 
analyses that provide mostly convergent evidence to support 
the viability of our measures and the validity of the infer-
ences that we draw from them, although we highlight some 
puzzling findings. We conclude with a discussion of the 
implications of this work for measurement at scale and for 
improving teaching in the Common Core era.

How Mathematics Teaching Influences Student 
Learning

There are few well-developed theories of how teaching 
influences student learning (Floden, 2001; Hiebert & 
Grouws, 2007). There are, however, patterns that emerge 
across empirical studies describing how different kinds of 
teaching support different kinds of student learning. We 
know the most about features of teaching that lead to 
improvement in skill efficiency—defined as the accurate, 
smooth, and rapid execution of procedures (Gagne, 1985; 
Hiebert & Grouws, 2007)—because the most readily avail-
able student learning outcomes have been from state-stan-
dardized tests that feature multiple-choice items at relatively 
low levels of complexity (Lane, 2003; Webb, 1999).

In the policy context created by the Common Core, how-
ever, the field needs evidence regarding the features of 
teaching that influence students’ development of conceptual 
understanding, defined here as connections among mathe-
matical facts, procedures, and ideas (Brownell, 1935; 
Hiebert & Carpenter, 1992; Hiebert & Grouws, 2007). The 
development of the Common Core was heavily influenced 
by the need to avoid “the mile-wide, inch-deep problem” 
(Schmidt, McKnight, & Raizen, 2002) by stressing the need 
for students to develop deeper conceptual understanding of 
fewer key ideas (CoreStandards.org). A call for deeper con-
ceptual understanding demands a review of what is known 

and not known regarding teaching practices that foster the 
development of students’ conceptual understanding.

In a review of studies that examined the relationship 
between teaching and student learning of concepts, Hiebert 
and Grouws (2007) identified explicit attention to concepts 
(EAC) and students’ opportunity to struggle (SOS) as key 
teaching features that foster conceptual understanding (p. 383). 
EAC is defined as the public noting of connections among 
mathematical facts, procedures, and ideas (Hiebert & Grouws, 
2007). This can be done through discussions about the mathe-
matical meaning underlying procedures, by noting how differ-
ent solution strategies are similar or different, and by reminding 
students of the main point of the lesson and how that point fits 
into the bigger picture. SOS is defined as students’ expending 
effort to make sense of mathematics, to figure something out 
that is not immediately apparent; it connotes solving problems 
that are within reach and wrestling with key mathematical 
ideas that are comprehensible yet not well formed (Hiebert & 
Grouws, 2007).

Although other features (e.g., use of concrete materials, 
asking higher-order questions) were sometimes associated 
with conceptual understanding, they were “too specific and 
too closely tied to particular classroom conditions to sup-
port claims that they apply across classrooms” (Hiebert & 
Grouws, 2007, p. 391). EAC and SOS, on the other hand, 
were observed to operate effectively across a range of con-
texts and teaching systems. EAC, in particular, was found 
to be quite robust as it appeared across a variety of studies 
that used different research designs, that were situated in 
different approaches to teaching (e.g., teacher versus stu-
dent centered), and that varied in terms of how concepts 
were developed (e.g., through discourse versus through 
specially designed materials).

Like EAC, students’ opportunity to struggle is espe-
cially relevant for today’s Common Core era. According to 
the CCSS in mathematics, conceptual understanding devel-
ops when students engage in one or more of eight mathe-
matical practices (CoreStandards.org). Several of these 
practices relate to students’ grappling or struggling with 
important mathematics (e.g., make sense of problems and 
persevere in solving them, construct viable arguments and 
critique the reasoning of others). SOS also enjoys support 
in the research literature. In addition to empirical studies in 
mathematics education that demonstrate the effects of cog-
nitive demand on student learning outcomes (Stein & Lane, 
1996; Stigler & Hiebert, 2009), SOS has garnered theoreti-
cal and empirical attention in the learning sciences more 
broadly, most recently under the label of “productive fail-
ure” (Kapur, 2008; Kapur & Bielaczyc, 2012). Research 
has begun to recognize that not all struggle is productive 
and to identify the degree and kind of structure needed to 
facilitate (or undermine) the productive effects of students’ 
struggle (Puntambekar & Hubscher, 2005; Tobias & Duffy, 
2009). The importance of EAC and SOS was also 
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confirmed in the Third International Mathematics and 
Science Study video-based research in which the engage-
ment of students in active struggle with core mathematics 
concepts and procedures was identified as shared by all 
high-achieving countries (Hiebert & Stigler, 2004).

A Focus on Interaction and Grain Size

Our theoretical framework starts with these two con-
structs but takes them a step further by examining their inter-
action. Past measures of classroom teaching have typically 
concentrated on isolated features (e.g., process-product mea-
sures, such as wait time) or have relied on very broad labels 
of teaching approaches (e.g., reform vs. conventional 
instruction) that, although comprising a multitude of inter-
acting features, do not specify or measure those interactions. 
Our examination of the interaction of EAC and SOS takes an 
approach that is different from either of these. It is anchored 
in our belief that specific instructional features achieve their 
impact through interaction with one another rather than 
independently and/or additively (Hiebert & Grouws, 2007).

In selecting EAC and SOS, we also strove to adopt fea-
tures that exist at a medium grain size (suggesting that they 
may be the most noticeable/observable among a constella-
tion of smaller features that typically interact and travel 
together). The Teaching for Robust Understanding (TRU) 
Math framework represents a similar effort to identify fea-
tures of effective teaching that operate at a medium grain 
size (Schoenfeld, Floden, & Algebra Teaching Study and 
Mathematics Assessment Project, 2014). In this scheme, 
five dimensions of effective mathematics teaching are 
identified: (a) the mathematics; (b) cognitive demand; (c) 
access to mathematical content; (d) agency, authority, and 
identity; and (e) uses of assessment. Schoenfeld and col-
leagues (2014) claim that at this level of analytic grain size, 
“the five dimensions, broadly construed, encompass the 
essentials of productive mathematics classrooms” (p. 3). 
EAC and SOS are most strongly aligned to the first two 
dimensions, although issues of agency, authority, and iden-
tity are implicated in some of our measures as well. 
Additionally, TRU Math focuses on “minimally overlap-
ping dimensions of mathematics classroom activity” (p. 2; 
italics added); our framework, on the other hand, empha-
sizes the interaction among features.

Placing EAC and SOS in interaction with one another, we 
argue, offers a way to deepen—and challenge—conven-
tional ways of measuring instruction in mathematics educa-
tion research. Studies typically conflate either high or low 
levels of EAC and SOS. For example, under the label of 
“reform instruction,” researchers often blur a variety of fea-
tures, such as students’ grappling with challenging problems 
(high SOS) and attention to conceptual understanding (high 
EAC), the assumption being that they co-occur (at either 
high or low levels) and, together, lead to effects on student 

learning. Similarly, under the label of “direct instruction,” 
researchers often fuse students practicing what they already 
know (low SOS) with instruction that is devoid of mathe-
matical concepts or ideas (low EAC).1

Instead of avoiding the potential for interaction between 
high and low levels of EAC and SOS, we feature interac-
tions as a key part of our theoretical framework. Doing so 
enables us to test for the existence of the “off diagonals” 
(e.g., high EAC/low SOS) and yields testable hypotheses 
that demonstrate the consequences of interactions among 
them for student learning.

Building an Initial Instantiation of the Theoretical 
Framework

Our first step toward understanding the influence of EAC 
and SOS on student learning is to explore how their interac-
tion produces different profiles of teaching. As shown in 
Figure 1, a simple 2 × 2 matrix of high and low levels of 
SOS and EAC produces four quadrants.

Quadrants 1 and 4 describe typically drawn profiles of 
reform versus traditional teaching. In the first quadrant (high 
SOS and high EAC), students are provided with open-ended 
tasks for which there is not a predictable, well-rehearsed 
approach or pathway to solve the task. Students have to exert 
considerable cognitive effort as they invent and test different 
strategies for solving the task. Student work on the task pro-
vides the primary fodder for class discussions, and attention 
is also paid to connecting student work with important math-
ematical concepts and ideas.

The fourth quadrant represents instruction in which there 
is both low tolerance for student struggle (low SOS) and lim-
ited attention to concepts (low EAC). This often occurs as 
worksheet-driven instruction in which the teacher demon-
strates the procedure he or she wants students to use and then 
students do a set of similar problems using that same proce-
dure with no reference to why the procedure works or when 
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Figure 1.  2 × 2 matrix displaying our profiles of teaching 
along two dimensions (explicit attention to concepts [EAC] and 
students’ opportunity to struggle [SOS]).
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it is appropriate to use it. This profile of teaching accounts 
for the majority of instruction in the United States (Schmidt 
et  al., 2002) and is often referred to as “traditional” or 
“direct” instruction.2

Quadrants 2 and 3 invite us to break away from the 
conventional labels associated with reform and traditional 
instruction. Quadrant 3 (high SOS and low EAC) does not 
align with any espoused view of teaching and learning, but 
it does describe a profile of teaching that can materialize 
when teachers unsuccessfully enact Quadrant 1 teaching 
(Stein, Grover, & Henningsen, 1996).3 When students are 
provided with open-ended problems for which they do not 
have the prior knowledge or a strategy for solving, they 
can struggle but not in productive ways. Without teacher 
scaffolding of students’ thinking toward the important 
mathematical ideas embedded in the task, students do not 
engage with mathematical concepts.

Quadrant 2 teaching involves EAC (high EAC), but unlike 
Quadrant 1 instruction, it provides less opportunity for sus-
tained student struggle (low SOS). Although we suspect that 
teaching in this quadrant can take a variety of forms, it often 
involves teacher demonstration of a general procedure for 
solving a problem with time taken to explain concepts as they 
relate to procedures and to encourage and entertain student 
questions. Multiple representations are enlisted to explain 
concepts along with drawing connections between those rep-
resentations and the procedure that is being taught. This kind 
of instruction can be viewed as high on EAC but as curtailing 
student struggle by suggesting a pathway that students follow 
to a solution (rather than having them invent their own 
approaches). That does not mean, however, that students can 
mindlessly follow the pathway, but rather, they have to think 
about what they are doing and why.

There are other ways in which student struggle could be 
constrained in a high-EAC Quadrant 2 profile of teaching. 
To our knowledge, however, the mathematics education lit-
erature does not contain many other examples of high-EAC/
low-SOS instruction. In the learning sciences, however, 
there is a long history of research on the relationship between 
procedural and conceptual learning (e.g., Rittle-Johnson, 
Siegler, & Alibali, 2001), and design-based studies have 
begun to explore when and how structure can be introduced 
to mitigate or build on student struggle (see, for example, 
Schwartz & Bransford, 1998). Hiebert and Grouws (2007) 
refer to the possibility of conceptual lessons that contain no 
elongated episodes of struggle but do contain more bounded 
forms of struggle (e.g., smaller explorations of targeted con-
cepts embedded in more highly structured lessons).

In summary, recent descriptions of teaching and learning 
have tended to classify instruction into one of two systems: 
reform or traditional teaching. Although representing an 
advance in some ways,4 these labels have also proven to be 
problematic, mostly because they “group together features 
of instruction in ill-defined ways and connote different kinds 

of teaching to different people” (Hiebert & Grouws, 2007, p. 
380). Moreover, the labels have become flashpoints in the 
“math wars,” a series of unproductive back-and-forths 
between reformers and mathematicians that have polarized 
the field (Munter, Stein, & Smith, 2015; Schoenfeld, 2004).

Here, we purposefully move beyond these labels using a 
theoretical framework to guide testable claims and begin to 
acquire evidence for a validity argument. We believe that the 
theoretical framework helps advance our understanding in a 
number of ways. For example, although one is likely to see 
the same kinds of curricula and instructional tasks in 
Quadrant 1 (high-EAC/high-SOS) and Quadrant 3 (low-
EAC/high-SOS) profiles, the separation of the two quad-
rants makes clear the key contribution of EAC by illustrating 
the lack of it in Quadrant 3 teaching. The distinction between 
Quadrant 1 and Quadrant 2 (high-EAC/low-SOS) teaching 
opens the door for exploring the role that SOS plays in both 
teaching and student learning. In research guided by our 
theoretical framework—as reported herein—we demon-
strate how we are able to describe concrete differences in 
teaching between the quadrants (when we use our theoretical 
framework to identify teachers into quadrants using patterns 
of responses to survey data) and test whether there are asso-
ciated differences in student learning.

Building a Validity Argument

Along with our partners in the Tennessee Department of 
Education, our ultimate goal is instructional improvement at 
scale. This led us to the use of surveys as a vehicle for mea-
suring mathematics teaching practice across the state. Our 
validty question thus becomes, What kind of inferences can 
we make about teaching based on survey items aimed at 
measuring two key features of instruction?

Historically, a common approach that has been used to 
demonstrate construct validity of survey responses is to tri-
angulate them with other criterion measures collected via 
different methods (e.g., McDonald, 2008). Indeed, research-
ers in education have primarily used criterion measures to 
demonstrate how surveys can provide valid inferences about 
a teacher’s mathematics instruction and, therefore, be of use 
at scale (e.g., Mayer, 1999). For example, Stecher et  al. 
(2006) made a validity argument by comparing vignette-
based items to other (criterion) measures of mathematics 
teaching practice. Similarly, Mayer (1999), using more tra-
ditional items organized around latent constructs consistent 
with the National Council of Teachers of Mathematics 
(1991) standards, made arguments for the validity of infer-
ences that could be made about teaching from his results.

We attempt to build and elaborate on this research. To 
ensure as much alignment between the survey and our cri-
terion measures as possible, we anchor not only our survey 
measures but also our criterion measures of teaching prac-
tice (video, teacher assignments, and student work) in our 
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theoretical framework. In so doing, we are testing whether 
teachers’ responses to survey items and their resulting 
classification into quadrants are observable in practice and 
whether they correlate with other measures in ways that 
are expected.

Current investigations of validity typically involve the 
collection of a wide range of evidence that provides a scien-
tific basis for a specific score interpretation (American 
Educational Research Association, American Psychological 
Association, & National Council on Measurement in 
Education, 2014; Kane, 2006). Most measures (typically 
assessments but here teaching practice) are designed to serve 
specific purposes, and each purpose involves an interpreta-
tion of scores that should be subjected to a validity investiga-
tion. In our case, we view our theoretical framework as a 
useful heuristic for generating claims and undergoing 
hypothesis testing of those claims in order to acquire evi-
dence for a validity argument. Our primary purpose in devel-
oping survey measures aligned to our theoretical framework 
was to test whether such measures capture meaningful dif-
ferences in teaching practice and, therefore, can be expected 
to be useful for large-scale research studies.

Most current work on validty is based on Kane’s (1992) 
argument-based approach. Following this method, we have 
elucidated the assumptions that undergird the claims.5 As we 
frame our validity argument, we explicitly state claims 
regarding the meaning of our survey-based quadrant place-
ments, then test these claims using empirical evidence. 
Specifically, our claims—and subsequent inferences for 
empirical testing—are the following:

1.	 Amid calls for teaching practices that will foster 
higher levels of students’ conceptual understanding, 
teachers have responded in different ways, resulting 
in teaching practices similar to profiles defined by 
our theoretical framework. Thus, self-reported teach-
ing practices on the survey should reflect a tendency 
for teaching within one of the four quadrants.6

2.	 When teachers respond in patterned ways to surveys, 
suggesting a teaching tendency aligned with a given 
quadrant, their quadrant placement ought to reveal 
instructional practices that are theoretically consis-
tent with the core features of mathematics teaching 
(EAC and SOS) illustrated by our 2 × 2 matrix (see 
Figure 1). Specifically, whereas Quadrant 1 and 
Quadrant 4 teaching will be characterized by instruc-
tional practices aligned with high and low EAC and 
SOS, respectively, we expect that teachers whose 
patterns of survey responses place their tendencies in 
Quadrant 2 would have practices aligned with high 
EAC and low SOS and Quadrant 3 teachers to have 
practices aligned with the opposite.

3.	 A teacher’s self-identification of his or her tendency 
for teaching within a particular quadrant ought to be 

related to more objective, independent measures 
developed from video observations and teacher-pro-
vided assignments with accompanying student work 
artifacts. For example, a tendency for Quadrant 1 
teaching should be characterized by high-conceptual 
and high-struggle video scores, a higher percentage 
of assignments asking for extended writing, a higher 
percentage of high-cognitive-demand tasks, fewer 
problems per task, and problems requiring students 
to generate an additional representation or solution 
path. Similar hypotheses hold for teaching tenden-
cies within the remaining quadrants.

4.	 Differences in teaching tendencies within the quad-
rants ought to be related to student learning in theo-
retically coherent ways. Specifically, a tendency for 
teaching within the quadrants should be meaning-
fully related to student performance on assessments 
of students’ skills efficiency and conceptual under-
standing. For example, students who experience 
Quadrant 1 teaching should outperform students 
from other quadrants on nonroutine, open-ended 
assessments as well as on assessments of skills and 
procedural fluency. These students should outper-
form students from Quadrants 3 (low-EAC/high-
SOS) and 4 (low-EAC/low-SOS) classrooms because 
of the lack of EAC in those quadrants. Students from 
Quadrant 1 classrooms are also predicted to outper-
form students who have primarily experienced 
Quadrant 2 (high-EAC/low-SOS) teaching because 
in addition to being exposed to high levels of EAC 
and SOS, they have had repeated opportunity to 
work on unstructured, open-ended tasks similar to 
those found on the constructed response assessment 
(CRA) throughout the year. Students who experience 
Quadrant 2 teaching should outperform students 
from Quadrants 3 and 4 classrooms on assessments 
that measure higher-level concepts because Quad-
rant 2 teaching prepares students for salient aspects 
of CRA items (e.g., multistep problems, mathemati-
cal reasoning). Although Quadrant 3 teachers pro-
vide ample opportunities for students to engage with 
nonroutine tasks, the lack of EAC may limit the 
extent to which students can earn points on a rubric 
when they are asked for mathematical reasoning.

Methodology

Sample

Our investigation draws on data from the first (2013–
2014) and second (2014–2015) years of a study of natural 
variation in mathematics teaching in the state of Tennessee. 
We recruited a volunteer sample of teachers of mathematics 
in Grades 4 through 8 throughout the state to participate in 
the study, with teachers opting to be part of our larger 
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“survey-only” sample or a more intensive sample including 
additional forms of data collection. At Time 1 and Time 2, 
256 teachers took the survey and have complete data. These 
teachers form our primary analytic sample.

A subset of these teachers have video- (n = 27) and artifact-
based (n = 54) data about their teaching practice. This sample 
is largely representative of fourth- through eighth-grade 
Tennessee mathematics teachers. As shown in Table 1, teach-
ers are slightly more likely to have taught in fourth or fifth 
grade, but each grade level is well represented. Although most 
teachers in our sample are female (90%) and White (90%), 
these proportions are not unusual considering the population 
of teachers across the state. The teachers reported a wide 
range of teaching experience, and on average, they taught 
about 300 minutes a week of mathematics instruction. 
Teachers in the sample are also geographically diverse, com-
ing from all regions of the state. On average we have almost 
as many schools represented as we have teachers in our study. 
The 27 teachers for whom we have video data are also scat-
tered, representing 24 different schools in 13 different dis-
tricts. These teachers are more likely to teach in the elementary 
(67%) versus middle school (33%) grades and have an 18-year 
range of teaching experience (M = 11.56, SD = 6.31). Finally, 
we have achievement data for all students for 193 of our 256 
teachers on two achievement measures (described later) given 
statewide in the year prior to our survey administration.

Data and Measures

We begin with a description of the survey, including how 
our design process helps to mitigate common problems 

associated with survey-based research. We then proceed to 
describe two additional measures (assignments and student 
work and videos of classroom lessons) and the measures of 
student performance that we used.

Survey.  The survey consisted of a variety of item types. In 
addition to general questions (years teaching, number of 
math classes taught per week), there were vignettes, items 
about teachers’ beliefs and practices, and items assessing 
teachers’ mathematics knowledge for teaching (Hill, Ball, 
& Schilling, 2008). The vignettes were short descriptions 
of a mathematics lesson; they were designed to vary 
according to theoretically based profiles of teaching in 
each quadrant. After reading the vignette, teachers were 
asked to answer a bank of questions about it and to use a 
slider bar to estimate the amount of time their lessons 
resembled the vignette (0% to 100%).

A host of problems have been documented with regard to 
self-report research, including surveys (e.g., Stone, 
Bachrach, Jobe, Kurtzman, & Cain, 1999). Difficulty with 
memory retrieval for frequency counts (e.g., Menon & 
Yorkston, 2000; Schwarz & Sudman, 2002) and social desir-
ability (e.g., Paulhus & Vazire, 2007) are commonly known 
problems in social-behavioral surveys. These are among the 
reasons that Camburn, Han, and Sebastian (2015; through a 
comparison of self-reports of frequency counts on an annual 
survey to self-reports of daily log data on comparable items) 
found that 75% of teachers overreported on the annual sur-
vey. However, we agree with researchers who suggest the 
answer is not to throw the baby out with the bathwater 
(Donaldson & Grant-Vallone, 2002; Paulhus & Vazire, 
2007). Instead, we have attended to these known problems 
in both our survey design and analyses.

First, one way in which scholars seek to enhance the 
accuracy of self-reports in medical or social science sur-
veys is to find better ways of asking questions of respon-
dents. For example, asking neutral questions can reduce 
social desirability (Paulhus & Vazire, 2007), contextualiz-
ing items can aid memory recall (Tourangeau, 1999) and 
improve the accuracy of self-reports (Paulhus & Vazire, 
2007), and asking indirect as well as direct questions can 
provide more “honest” appraisals of sensitive topics (Dalal, 
2012). We adhered to these principles in designing multiple 
items across different item formats, all anchored to our 
theoretical framework.

The design of our questions also benefited from cognitive 
interviews conducted before our first administration of the 
survey. Teachers were asked to complete the survey and, at 
predetermined intervals, to talk about how they were inter-
preting items. We were particularly interested in their 
response to the vignette-based items (see online Appendix 
A). We found that different individuals found different 
vignettes to be socially desirable; specifically, they found 
most desirable those that they thought best described their 

Table 1
Demographic Characteristics of Teachers (n=256)

Variable n or M (SD) Percentage of sample

Grade level  
  4 55 21.5
  5 65 25.4
  6 49 19.1
  7 40 15.6
  8 42 16.4
  Missing 5 2.0
Race  
  White 231 90.2
  Black 20 7.8
  Asian 2  .8
  Native American 1  .4
  Hawaiian/Pacific Islander 1  .4
Female 229 89.5
Self-contained classroom 31 12.2
Years experience 11.5 (6.0)  
No. minutes math per week 302.9 (153.6)  
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teaching. Thus, our contextualization of quadrant teaching 
through the vignettes may be considered an instantiation of 
neutral items, reducing concerns about social desirability.7

Another contextualization strategy that we employed 
involved creating an item about perceived constraints in 
teachers’ schools/districts that prevented them from teaching 
in the way they would like to. This item was inserted right 
before a set of items about the frequency they employ par-
ticular teaching practices. By providing them with the 
opportunity to acknowledge that their teaching is shaped by 
external factors, our intention was to put teachers in a mind-
set to reliably report their practices. All of these design con-
siderations, combined with the low-stakes nature of our 
survey, we think mitigates any serious concerns about social 
desirability (Chan, 2009).

Survey items for analyzing patterns of self-report aligned 
with our theoretical framework.  Our work began with 
the development of survey items, utilizing different item 
formats and response scales, aligned with our theoretical 
framework. To understand and test our first claim, we used 
several measures across the survey and analyzed patterns 
of responses using a latent profile analysis (LPA; described 
below). First, using the same mathematics topic, we created 
one vignette per quadrant but varied the tasks and teaching 
approaches for implementing the tasks to align with our the-
ory of instruction in each quadrant. Following each vignette, 
we asked teachers the proportion of time they spent teaching 
like the vignette, and we asked teachers to agree or disagree 
with after-vignette items providing rationale for why cer-
tain teaching decisions were made (see online Figures A1a 
through A4c in Appendix A for the four vignettes and items). 
A fifth vignette was created to gauge teachers’ tendencies to 
continue to facilitate students’ struggle with the mathemat-
ics in the task or to limit the struggle within the context of a 
specific teaching event (see online Figures A5a and A5b in 
Appendix A). The proportion of time they self-report per-
sisting in maintaining high struggle (Mr. Clayton) was a fifth 
item for subsequent use in an LPA.

In addition, we generated an additional four quadrant 
scale scores based on our theoretical framework. For each 
quadrant (e.g., Quadrant 3, exemplified by Ms. Jones’ 
vignette), we identified particular items throughout the sur-
vey that a teacher with a high tendency for teaching like 
Ms. Jones would agree to.8 We then used a partial credit 
system for each item (e.g., strongly agree = 1, agree = 0.5; 
otherwise = 0) and totaled across these items providing sig-
nal for a tendency toward Quadrant 3 teaching.9 Items con-
tributing to each quadrant scale score (i.e., Quadrant 3 
scale score in this case) were chosen theoretically and 
tended to be inclusive of several after-vignette and other 
Likert scale items (see online Tables A1 through A4 in 
Appendix A for the full set of items for each scale for each 
quadrant). The four quadrant scale scores (i.e., Quadrant 1 

scale score, Quadrant 2 scale score, etc.) were constructed 
to be used in the subsequent LPA.

Finally, we administered the proportional reasoning items 
from the Mathematics Knowledge for Teaching (MKT) mid-
dle-grades assessment (see, e.g., Hill et al., 2008). We used 
this as a proxy for teachers’ pedagogical content knowledge. 
We assumed that including a proxy for teachers’ knowledge 
might help generate profiles of teaching at the intersection of 
knowledge and teachers’ decision making about practice—
such that our profiles might be indicative of “usable knowl-
edge” (Kersting et al., 2015). This variable was a summed 
score of each teacher’s correct items out of the 30 on this 
scale of the MKT. This item was our 10th, and final, variable 
included in our LPA.

Survey items for confirmatory factor analysis (CFA) 
for EAC and SOS.  More generally, the survey consisted of 
instructional Likert scale items contributing to measurement 
of our two main constructs (EAC and SOS). Indirect items 
were designed to elicit teachers’ reasoning about teaching 
decisions and how this influences students’ learning about 
mathematics (e.g., “More important than extended math 
discussions, students need a lot of practice with math prob-
lems”). Practice items were more traditional and direct. 
Here, we asked teachers to report the frequency with which 
they engaged in specific instructional activities associated 
with EAC and SOS (e.g., “Students listen to and critique 
others’ reasoning and solution strategies”). All of these items 
appear in online Table A5 in Appendix A organized around 
theoretical subconstructs within EAC and SOS.

Video-Based Instructional Measures.  The subset of 27 
teachers on whom we have video data was similar to our 
overall sample except it included a greater proportion of 
elementary teachers. Teachers were videotaped in the spring 
of 2014 for at least 120 minutes of instruction, typically 
spread over two consecutive lessons. Teachers were told to 
do “what they normally do,” and videographers were trained 
to capture both whole-class and small-group interactions. 
Specifically, they were trained to follow the teacher as he or 
she moved from group to group and to record (as much as 
possible) of the conversation and student work.

Lessons were first divided into tasks based on the arti-
facts used to conduct the lesson, a process that was done 
by two independent coders with 91% agreement.10 
Segmenting the lesson into identifiable tasks served to 
assure that coders were using the exact same portion of the 
lesson when ascribing codes.

Each task was coded individually for EAC and opportu-
nities for student struggle using a protocol developed spe-
cifically for this project (see online Appendix B). Videos 
were assigned randomly to three coders with expertise in 
mathematics education and/or coding of observations. 
Coders were trained to criterion with an agreement of 80% 
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with an expert coder before beginning coding assign-
ments.11 Twenty percent of the videos were double coded 
with an interreliability of 65% exact agreement across all 
codes and 82% agreement on scoring items as “high” or 
“low” across each code.12

Selected scores from the dimensions described on the 
coding protocol were used to create two composite scores: 
EAC and SOS. Specifically, the EAC score was a combina-
tion of the EAC code along with the degree of consolida-
tion and tie to canonical representations codes. The SOS 
score was a combination of the opportunities for student 
struggle code with codes for the type of discourse present 
in the classroom and the cognitive demand of the task as it 
was enacted. Finally, because of variability in the number 
and length of tasks, as well as differences in amount of 
time for the math lesson among teachers, codes for each 
dimension for each task were weighted by the proportion 
of time that respective task lasted relative to the amount of 
time devoted to the lesson.

Artifact-Based Instructional Measures.  Teachers were asked 
to submit their assignments and samples of student work for 
5 days that overlapped with the classroom videotaping. 
Teachers were asked to submit every assignment and instruc-
tional task used in their class along with two samples of high-
quality and two samples of medium-quality student work. 
Each assignment had an accompanying cover sheet on which 
the teacher described the nature of the assignment/task and 
how he or she would judge student performance on that 
assignment. All three of these items (cover sheet, assignment, 
and student work) were coded by three individuals using a 
protocol (see online Appendix C). The participating teachers 
were randomly assigned to one of three coders that scored all 
their submitted packets (including cover sheets, assignments, 
and student work). Coders were trained to a criterion of 80% 
agreement with an expert coder before beginning their cod-
ing assignments.13 All packets for 20% of the teachers were 
double coded with an exact agreement of 86%.14

Student Learning Measures.  We employ two available mea-
sures of student learning. Although acknowledging that the 
boundaries between items measuring procedures and con-
cepts are not always clear-cut, we make the case below that 
one assessment was primarily a skills-based measure and one 
was more conceptually based. The Tennessee Comprehensive 
Assessment Program (TCAP) was administered to all stu-
dents in Grades 4 through 8 in Tennessee in 2012–2013. Items 
on the TCAP were multiple choice, covering the following 
range of topics: mathematical processes, numbers and opera-
tions, algebra, geometry and measurement, and data analysis, 
statistics, and probability. The distribution of topics varied by 
grade level. For example, number and operations items repre-
sented 50% of the fourth-grade TCAP but only 24% of the 
eighth-grade TCAP. Most important for our analytic purposes, 

the vast majority of TCAP items require a single correct 
answer, and students receive credit based only on whether or 
not they have achieved that answer. We infer that most TCAP 
items are skills and/or procedures based on (a) a review of 
their released items (see examples in online Appendix D), (b) 
the fact that TCAP was operational during the No Child Left 
Behind era in which questions about the cognitive complexity 
of state tests were being raised (Lane, 2003), and (c) Tennes-
see’s standards for proficiency were found to be far below 
those of the National Assessment of Educational Practice, 
which has a reputation as including multiple-choice items that 
are more conceptual in nature (Resnick, Stein, & Coon, 2008).

Our second learning measure is from a CRA adminis-
tered in 2012–2013. Students at each grade level were pro-
vided four different tasks (an example item from Grade 7 
and its associated scoring rubric is included in online 
Appendix D). The rubrics were designed to assess both 
mathematical content and mathematical practices consis-
tent with the CCSS. These items are nonroutine problems, 
most of which require novel solution strategies. Many can 
be solved in more than one way; students’ achieve “credit” 
for being correct and for demonstrating conceptual under-
standing through appropriate representations or explana-
tions, not only for getting the correct answer. The CRAs 
were scored by Measurement Incorporated under contract 
with the state of Tennessee. A technical report delivered to 
the state demonstrated adequate reliability characteristics 
for the CRA scoring (Measurement Incorporated, 2013).

We examined differences in student growth by teacher on 
these two different outcomes. We used statewide data for 
Grades 4 through 8 in the following manner: We standard-
ized our outcome within grade so each student had a stan-
dardized score relative to his or her same-grade peers; we 
combined students across grades so that we could utilize all 
of the classrooms in our sample. We then generated covari-
ate-adjusted value-added scores for teachers using all fourth- 
through eighth-grade classrooms across the state on each of 
our two outcome measures (see online Appendix E for a 
write-up of the model).15 Although this is a simpler model 
than many value-added models in use today (see, e.g., limits 
of covariate-adjusted versus cross-classified models in 
Rowan, Correnti, & Miller, 2002; and for a description of 
different value-added approaches for the same outcome, see 
McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004), 
we expect there is more to be gained from comparing and 
contrasting across our two outcomes. For example, Papay 
(2011) observed large variation in value-added scores by 
outcome, more variation than typically experienced by using 
different model specifications.

Analytic Methods

Our data analyses were constructed to seek evidence 
that enables us to evaluate our four central claims. 
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Consequently we organize discussion of analytic methods 
around these claims.

Confirmatory Factory Analysis (Claim 1).  In order to evalu-
ate our first claim (that teaching practices reflect a tendency 
for teaching in one of the four quadrants), the underlying 
structure of the survey-based Likert indirect and direct 
“practice” items was theorized to measure two distinct con-
structs, namely, EAC and SOS. Additionally, several sub-
constructs were hypothesized to be present in the survey (see 
Table A5; e.g., the subconstruct of making connections 
among solution strategies or mathematical ideas was hypoth-
esized to be highly related to EAC). We used MPlus Version 
3.01 (Muthen & Muthen, 2010) to conduct a CFA.

We assessed the adequacy of our measures vis-à-vis our 
theoretical framework in two different ways. First, we exam-
ined the fit of our data to our hypothesized higher-order 
structure. More specifically, we sought evidence for confir-
mation of the presence of the overarching EAC and SOS 
factors as well as the subconstructs within them.16 This 
hypothesized structure dovetails with the typical second-
order factor structure in which the lower-level subfactors are 
substantially correlated and the presence of the higher-order 
factor explains the relationship between those subfactors 
(Chen, West, & Sousa, 2006). In other words, the subcon-
structs are correlated because they share a common source, 
namely, the second-order factor of EAC or SOS (Reise, 
Moore, & Haviland, 2010). Examination of absolute and 
comparative fit indexes provides evidence for how well the 
data fit the proposed model.

Second, we also conducted a model comparison to under-
stand whether our hypothesized second-order two-factor 
model fit the data better than a second-order one-factor 
model (Hoyle, 2000). Such a model comparison provides 
evidence about the dimensionality of the measured 
construct(s), EAC and SOS. If, for example, reform versus 
traditional instruction were the dominant explanation, then 
the one-factor model would demonstrate a better fit to the 
data and would be preferred for its model parsimony. 
Because the one-factor model is fully nested in the two-fac-
tor model, a comparison of χ2 statistics, adjusting for differ-
ences in degrees of freedom, provides a statistical test for 
model fit to the data (Hoyle, 2000).

LPA (Claim 2).  To understand the extent to which teach-
ers had a tendency for teaching practices consistent with 
our theoretical framework, we examined patterns of item 
responses utilizing an LPA. LPA was chosen for this pur-
pose as it is helpful in illuminating the relationship of a 
single categorical latent variable (teaching quadrant) with 
a set of continuous indicators (survey responses) (Vermunt 
& Magidson, 2002). We then interpreted the resultant pro-
files to be indicative of a tendency for teaching within one 
particular quadrant.

Ten variables were used to estimate the LPA model. Five 
of these variables were the percentage of time (0%–100%) 
teachers reported their instruction resembled the practices 
portrayed in each of five instructional vignettes previously 
described. The next four variables were the quadrant scale 
scores generated from theoretical notions of the pattern of 
responses teachers would record for particular items if they 
had a tendency toward one quadrant profile. The final vari-
able was scores on the MKT.

MPlus Version 3.01 (Muthen & Muthen, 2010) was used 
to conduct our LPAs. Evaluation of the output from extract-
ing four, five, six, seven, and eight classes resulted in the 
selection of a six-class solution. Indicating a classification 
utility similar to prior research (Pastor, Barron, Miller, & 
Davis, 2007), the entropy values for this model were .86. We 
used the output from this model to decide which of the four 
quadrants each of the six latent classes belonged in.

To uncover whether teaching tendencies carried mean-
ing related to our theoretical framework, we explored pat-
terns of responses on our subconstructs. We took the factor 
scores generated on our subconstructs from the CFA in 
order to understand differences in group means based on 
quadrant placements from the LPA. The sufficiency of our 
quadrant placements was determined by examining the 
means for factors and subfactor scores associated with 
EAC and SOS and the consistency of the response patterns 
on those factors and subfactors with the expected responses 
based on the operational definitions of the quadrants in our 
theoretical framework (i.e., Quadrant 2 teaching is defined 
by high levels of EAC and low levels of SOS, whereas 
Quadrant 3 teaching is the opposite).

Descriptive Analyses of Between-Group Differences (Claim 
3).  In order to evaluate our third claim (a teacher’s ten-
dency for teaching within a particular quadrant ought to be 
related to more objective measures developed from video- 
and artifact-based measures of teaching), we checked for 
convergence between our quadrant placements and our 
other objective measures of teaching: video-based scores of 
teaching on concepts and struggle (n = 27 teachers) and a 
subset of features of assignment-based scores (n = 54 teach-
ers). Given the small number of teachers overall, and in par-
ticular the fact that only two Quadrant 2 (high-EAC/
low-SOS) and three Quadrant 4 (low-EAC/low-SOS) teach-
ers were included in the video sample, we limit our analysis 
to a description of group means.

ANOVA for Between-Group Differences for Student Learn-
ing (Claim 4).  In order to evaluate our fourth claim (differ-
ences in teaching tendencies aligned with the quadrants 
ought to be related to student learning in theoretically mean-
ingful ways), we explored whether there were between-
group (quadrant) differences in the mean scores for our 
measures of student learning using ANOVA. The measures 
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captured teachers’ valued-added scores for the TCAP, a pre-
dominately skills-based assessment, and the CRAs, an 
assessment with considerably more attention to students’ 
conceptual understanding.

Results

Claim 1: Teaching Practices Reflect a Tendency for 
Teaching in One of the Four Quadrants

Confirmatory factor analyses were used to investigate 
the factor structure of eight hypothesized subconstructs. 
Three models were used for comparative purposes. Model 
1 tested a single general factor using all 38 items (i.e., 
items nested in one “reform” factor). Model 2 tested 
whether a second-order single-factor model was a better fit 
to the data (i.e., all eight subconstructs were nested in one 
“reform” factor). Finally, Model 3 tested whether the 
hypothesized second-order two-factor model (i.e., three 
subconstructs in EAC and five subconstructs in SOS) was 
a significant improvement beyond the second-order single-
factor model. Of primary interest was the comparison 
between Model 2 and Model 3 because it tests whether par-
ticipants responded differently to items thought to be theo-
retically contributing to EAC and SOS. The fit indexes for 
the three models shown in Table 2 confirm that Model 3 is 
the best fit to the data, suggesting EAC and SOS were dis-
tinct constructs captured through our survey.

Model 3 in Table 1 has the best demonstrated fit to our 
data. This is true in terms of absolute and comparative fit, 
where Model 3 (root mean square error of approximation 
[RMSEA] = .06, comparative fit index [CFI] = .794, Tucker-
Lewis index [TLI] = .779) is better than Model 1 (RMSEA 
= .09, CFI = .524, TLI = .497) or Model 2 (RMSEA = .07, 
CFI = .718, TLI = .698).17 Additionally, the χ2 difference 
tests reveal similar improvement in model fit from Model 1 
to Model 2, Δχ2(Δdf = 8, N = 256) = 571.95, p < .001, and 
from Model 2 to Model 3, Δχ2(Δdf = 1, N = 256) = 220.74, 
p < .001. The fact that the two-factor model is a better fit 
suggests that our survey captured data from teachers about 
their practice where our hypothetical constructs EAC and 
SOS are correlated (r = .40), but they also remain distinct 
(i.e., respondents were sometimes high on one construct but 
low on the other and vice versa).18

Claim 2: Teachers Had a Tendency to Endorse Teaching 
Practices Consistent With the Theoretical Framework

LPA Findings With Respect to Latent Profile Covariates.  In 
order to separate teachers according to their tendencies for 
teaching within a given quadrant, we examined patterns of 
their responses across 10 variables, five of which allowed 
them to indicate their preference for one type of teaching 
versus another (i.e., percentage of their time teaching in a 
manner similar to the teacher featured in each vignette). 
Our LPA identified six distinct groupings of teacher 
responses.19 We placed each of the six empirically identi-
fied latent classes into our theoretical framework (i.e., the 
four quadrants) based on the group means reported in the 
output for each latent cluster. Certain latent clusters had 
very distinct profiles. For example, Quadrant 4 teachers 
(see Figure 2, purple line; n = 42 teachers) formed a distinct 
group because their observed means demonstrated a stark 
contrast from the other groups in terms of strong tendencies 
to report teaching similar to the Ms. Smith vignette and 
strong tendencies to reject teaching like the other vignettes. 
Quadrant 1 teachers (see Figure 2, blue line; n = 77 teach-
ers) separated into two different latent classes with reported 
tendencies for (a) not teaching like Ms. Smith and (b) teach-
ing in ways similar to all other quadrants, especially Quad-
rant 1. When combined, Quadrant 1 teachers had observed 
means that were distinct from Quadrant 4 teachers because 
their tendencies were highest for Quadrant 1 and lowest for 
Quadrant 4, essentially mirroring the purple line.

These two diametrically opposed profiles represent just 
about half of all teachers surveyed. Thus, using patterns of 
responses to survey items, we identified many teachers 
whose tendencies in their mathematics teaching do not 
neatly fall into reform or traditional teaching designations. 
For example, Quadrant 3 (low-EAC/high-SOS) teachers 
(see Figure 2, green line; n = 90 teachers) are most distinct 
in that they reject Quadrant 4 teaching (low EAC/low SOS), 
but they fail to self-report a strong tendency for teaching like 
teachers in any of the other vignettes. Finally, Quadrant 2 
(high-EAC/low-SOS) teachers (see Figure 2, red line; n = 47 
teachers) also separated into two different latent classes that 
embraced elements of low-struggle teaching like instruc-
tional practices in Quadrant 4 (i.e., Ms. Smith) but differed 
from Quadrant 4 teachers on their average response to the 

Table 2
Fit Indexes for Competing Models of the Structure of Mathematics Teaching Practice From Survey Responses

Model df RMSEA CFI TLI SRMR AIC χ2 Δχ2 from previous

First-order single factor 665 .090 .524 .497 .113 23,846 2,046.79 —
Second-order single factor 657 .070 .718 .698 .112 23,290 1,474.84 571.95
Second-order two factor (correlated) 656 .060 .794 .779 .086 23,072 1254.10 220.74

Note. RMSEA = root mean square error of approximation; CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean square 
residual; AIC = Akaike information criterion.
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fencing task vignette about allowing students to struggle in 
context (Mr. Clayton). Furthermore, they also express the 
highest tendency for Quadrant 2 (i.e., Ms. Evans) and the 
second-highest for Quadrant 1 (Ms. Park). What is distinct 
about Quadrant 2 and Quadrant 3 teachers would be lost if 
we tried to measure reform teaching along just a single 
dimension, as teachers in both quadrants would likely be 
lumped in the same group together somewhere between the 
blue and purple lines.

LPA findings with respect to EAC and SOS factor scores 
from the CFA.  Corresponding to our second claim, as an 
empirical test of whether our interpretation of group means 
within our latent classes identified in the LPA resulted in 
theoretically meaningful quadrant designations, we exam-
ined the scores of teachers within each quadrant on the 
subconstructs identified in the CFA. We think of this 
empirical test as one of cross-validation within the survey 
itself, while also testing whether teachers have responses 
to survey items fitting our theoretically defined quadrants 
(i.e., are there high-EAC teachers who also provide lim-
ited SOS?). Our theory suggests Quadrant 1 teachers (see 
Figure 3, blue line) ought to be high on both EAC and 
SOS, and vice versa for Quadrant 4 teachers (purple line). 
Our theory further suggests that there would be teachers 
with differential scores on EAC and SOS; specifically, 
Quadrant 2 teachers ought to be high on EAC and low on 
SOS (and vice versa for Quadrant 3).

In general, these propositions hold (note the green and 
red lines crossing for EAC and SOS), helping to substanti-
ate the existence of our theoretical profiles in actual 

practice. Furthermore, we find Quadrant 2 (high-EAC/
low-SOS) teachers provided additional convergent evi-
dence because of their pattern of responses on the subcon-
structs. Take, for example, how the blue and red lines cross 
within EAC, which is theoretically consistent because 
Quadrant 2 teachers are likely to reject elements of stu-
dents’ being asked to struggle on their own, connoted here 
by minimal teacher input. Likewise, the crossing of the 
red and purple lines within SOS is seen as further conver-
gent evidence because Quadrant 2 teachers seem to 
embrace some elements of “productive struggle” (i.e., 
because they believe in providing meaning beyond proce-
dures, we would expect they would score higher on the 
latter three subconstructs than on the previous two subcon-
structs, which they do). Importantly, the pattern of find-
ings represented in Figure 3 suggests that our quadrant 
placements correspond to the theory of teaching specified 
initially to which we anchored our measurement work.

Claim 3: There is Some General Correspondence Between 
Survey-Based Quadrant Placements and Other Measures

In particular, video scores among our intensive video 
sample (see Figure 4) followed expectations. For example, 
consistent with theoretically based expectations, struggle 
scores were highest in Quadrants 1 (µ = 9.15) and 3 (µ = 
6.91) and lowest in Quadrants 2 (µ = 4.88) and 4 (µ = 5.60). 
In addition, conceptual instruction was highest in Quadrant 
1 (µ = 10.74). However, although Quadrant 2 teaching 
should theoretically be high on EAC, this was not the case 
for our two teachers with video evidence (µ = 6.64). There 

Figure 2.  Between-quadrant differences in group means for the variables contained in the latent profile analysis (Claim 1).
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are simply too few teachers, and too few days of sampled 
instruction, to know if this constitutes divergent evidence.

We also examined mean differences for some of our 
assignment scores. Here, too, we find some differences con-
sistent with our quadrant placements (see Figure 5). For 
example, Quadrant 4 (low-EAC/low-SOS) teachers pro-
vided tasks with more problems (µ = 14.9). Combined with 
the finding that they provided high-cognitive-demand tasks 
only 4% of the time, this seems to suggest they provided 
students with more problems for repeated practice applying 
procedures. Conversely, Quadrant 1 (high-EAC/high-SOS) 
and Quadrant 2 (high-EAC/low-SOS) teachers tended to 

provide fewer problems per task (µ = 8.2 and µ = 7.8, respec-
tively), which is consistent with the finding that approxi-
mately a quarter of their tasks were high cognitive demand 
(µ = 27% and µ = 22%, respectively). All in all, more objec-
tive measures of teaching practice through both video- and 
artifact-based scoring suggest convergence with our survey-
based quadrant placements. Moreover, the survey-based 
quadrant placements are not related to extraneous covari-
ates, such as grade level.20

Claim 4: Differences in Teaching Tendencies Aligned 
With the Quadrants Were Related to Student Learning in 

Theoretically Meaningful Ways

Finally, one-way ANOVAs suggest no significant mean 
differences across quadrant designations when covariate-
adjusted value-added scores from the TCAP were analyzed 
(F = 1.87, df = 189, p = .136). However, there were signifi-
cant mean differences across quadrant designations when 
covariate-adjusted value-added scores from the CRA were 
analyzed (F = 4.80, df = 189, p = .003). Post hoc tests using 
Bonferroni adjustments revealed significant mean differ-
ences between value-added estimates for students exposed to 
Quadrant 1 teaching relative to Quadrant 3 (effect size [ES] = 
.64, p = .004) and relative to Quadrant 4 teaching (ES = .68, 
p = .022). Although the trend for value-added scores on the 
TCAP were in the same direction as the CRA (see Figure 6), 
only the more conceptual test was sensitive to instructional 
differences implied by our survey quadrant placements. This 
pattern of findings is consistent with prior studies showing 

Figure 3.  Between-quadrant differences in group means for subconstruct and construct scores generated from the confirmatory 
factor analysis (Claim 2).
Note. These scales have been reverse scored to indicate high opportunities for productive struggle because each subconstruct indicates high proclivity for 
low struggle.

Figure 4.  Between-quadrant group means for scores from 
video observations of mathematics teaching (Claim 3). Graphic 
displays mean of explicit attention to concepts in light shade and 
mean of students’ opportunity to struggle in dark shade for each 
quadrant.
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greater instructional sensitivity for assessments with greater 
attention to students’ conceptual understanding.

Discussion

This work is being undertaken as a first step toward the 
building of a larger body of validity evidence that supports 
the development of self-report research measures aligned 
with our theory of teaching and learning. We examined 
whether teachers’ instructional tendencies matched our 
quadrant theory, whether teachers’ self-reports of their 
teaching practices aligned with the level of EAC and SOS 
theorized to represent the quadrant in which they were 
placed, and whether there was alignment between teaching 

tendencies within the quadrants and video- and artifact-
based measures and patterns of student learning as 
described by the theoretical framework that the measures 
were designed to operationalize.

Our findings are encouraging along a number of fronts. 
The results of the LPA give credence to our claim that 
teachers are responding in a variety of ways to the demands 
placed upon them by higher state standards and accompa-
nying examinations. The strength with which the LPA cap-
tured reform (Quadrant 1) and traditional (Quadrant 4) 
teaching was not unexpected. The fact that only half of the 
teachers were “covered” by those two profiles, however, 
provides us with impetus to continue to build and refine 
our multifaceted profile theory.

Figure 5.  Between-quadrant group means for features of students’ mathematics assignments (Claim 3).

Figure 6.  Between-quadrant differences in group means for covariate-adjusted value-added scores on two different assessments, the 
Tennessee Comprehensive Assessment Program and constructed response assessment (Claim 4).
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Although not included as part of the claims and evidence 
reported here, our video-based scoring of classroom lessons 
has unveiled a variety of lesson formats that appear to fit 
Quadrant 2 teaching (high EAC/low SOS) that do not con-
form to the quintessential version of Quadrant 2 instruction 
(tightly structured, conceptually based instruction with min-
imal tolerance for student struggle). For example, a lesson 
might incorporate bounded moments of student struggle into 
a larger, teacher-controlled classroom discussion about 
deriving a procedure. Understanding the different varieties 
of teaching within our larger quadrants is important not only 
from a measurement perspective but, even more important, 
from a development perspective (more on this below). As 
we continue this work, we will seek to better understand, and 
perhaps label, these different patterns of teaching, even 
within the four quadrants espoused here.

It is one thing to have LPA create four groups of teachers 
with teaching tendencies that appear fairly well aligned with 
our four quadrants. It is another thing to demonstrate that 
teachers who “fall into” a particular quadrant also report 
engaging in instructional practices consistent with the 2 × 2 
matrix in Figure 1. With the evidence we have presented for 
Claim 2, we were able to show the expected finding that 
Quadrant 1 and Quadrant 4 teachers were universally high 
and low, respectively, on EAC and SOS. However, we also 
showed that Quadrant 2 (high-EAC/low-SOS) and Quadrant 
3 (low-EAC/high-SOS) teachers were alternately high on 
one dimension but low on the other. We think this is impor-
tant variation to attend to not only for researchers but for 
mathematics educators.

Quadrant placements also aligned well with our expected 
patterns of student learning. That we found significant dif-
ferences in value-added scores on the CRA that were consis-
tent with our theoretical predictions is a particularly 
important signal that we are on the right track in our mea-
surement and analytic endeavors. One aspect that our theo-
retical framework has not yet tackled is the identification of 
specific factors that may be associated with teachers’ ten-
dencies to teach in a particular quadrant. We have used a 
measure of teachers’ mathematical knowledge as one factor 
that could potentially contribute to the placement of teachers 
into teaching profiles. Going forward, we think it will be 
important to investigate whether and how knowledge pre-
dicts teaching practices and also how teaching practices 
interact with knowledge to produce student learning.

We assume these associations are complex and deserve 
careful consideration beyond the scope of analyses pre-
sented here. However, an important distinction to keep in 
mind between knowledge and the self-reported teaching 
practices is proximity to student learning opportunities. 
Whereas knowledge is a distal factor with potential to influ-
ence and/or amplify teaching practice, self-reported teach-
ing practices allow for inferences about the direct influence 
of teaching for generating students’ learning opportunities. 

Our preliminary analyses suggest that our quadrant place-
ments (with or without teachers’ knowledge as part of the 
LPA) are a more powerful explanatory variable for student 
learning than knowledge by itself.

Limitations

The theoretical framework was useful for testing research-
based claims, but it is not without limitations. First, the tech-
niques employed in this manuscript relied on quadrant 
placements as a heuristic, which we have demonstrated to be 
useful as an initial instantiation of multidimensional mea-
surement of mathematics teaching. We do not mean to pro-
pose that quadrant placements are an end in themselves, as 
we ascribe to the view that measurement of teaching is our 
goal as opposed to the placement of teachers.21 Furthermore, 
the quadrants are reductionist by nature. On our surveys, we 
observed more than one latent class per quadrant, indicating 
more than four patterned responses on the surveys. When 
coding our videos, we have observed similar variations in 
teaching within quadrants. Thus, we think there are more 
“patterns of teaching” than quadrants. By examining mean 
differences, we gloss over some of this variability. We think 
this variability is worthy of further exploration and do not 
mean to imply that four quadrants are sufficient to describe 
mathematics teaching in all its complexity.

Second, we have acknowledged well-known problems 
relying on self-reported behavior on surveys and how we 
have tried to address these by examining patterns of survey 
responses to many items. After ascribing teachers to quad-
rants using this method, we describe these quadrant profiles 
using factor scores from the same surveys. The factor scores 
and some of the items contributing to quadrant placements 
are not independent of one another.

We also think it is important to reflect on the replicabil-
ity of this work. It will be important to examine test-retest 
reliability of our survey as well as understand if there are 
any maturation effects. Additionally, the method of LPA for 
placing teachers in quadrants is highly reliant on the vari-
ables entered into the analysis. Going forward, we will 
seek to refine the variables in order to try to better distin-
guish elements of teaching that are unique to each quad-
rant. LPA is also sensitive to the sample, as patterns of 
responses for a teacher are being compared to other teach-
ers’ patterns. This led to some quite distinct patterns among 
teachers, as described for Quadrants 1 and 4 in the article. 
However, Quadrant 3 (low EAC/high SOS) appears less 
distinct, as the means for this group are closest to average 
for any of the groups. This could represent a legitimate pat-
tern, but the concern could also be that we have pulled out 
distinctive patterns, resulting in one group that is less 
coherent than the others.

On a related note, we do not have a means for assessing 
the degree to which our data and sample are or are not 
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compatible with other studies that measure mathematics 
instruction. A concern that could be raised is that the level of 
teaching presented herein is higher (more attention to con-
cepts, more productive struggle) than what typically has 
been reported for U.S. classrooms (see Schmidt et al., 2002). 
However, a direct comparison between studies is not possi-
ble because, in presenting our figures, we have standardized 
our scales so that readers can “see” on which variables the 
relative magnitude of the differences between groups is larg-
est. Thus, it is impossible to infer whether we have “too 
many” or “not enough” teachers in any given quadrant or 
scoring high or low on EAC and SOS. The only way to com-
pare our sample with other samples would be to administer 
similar survey items with similar Likert scales.

It is worth remembering that the primary purpose in 
developing survey measures aligned to our theoretical 
framework was to test whether such measures capture 
meaningful differences in teaching practice and, therefore, 
can be expected to be useful for large-scale research stud-
ies. Correspondingly, our strategy was largely about differ-
ences between teachers in our sample. In all of this work, 
we have not relied on comparing teacher responses on the 
survey against an objective standard. Observations that our 
sample appears to be performing at a “high level” imply 
that we might want to do that in the future. Nevertheless, 
we find it interesting and important that the variation we 
observed in our sample in teachers’ responses to our survey 
items is associated with meaningful differences in teaching 
and student learning.

Contribution of a Theoretical Framework

What role did our theoretical framework play in our 
endeavors? First, it drew our attention to empirically sup-
ported features of teaching that matter for students’ devel-
opment of conceptual understanding. We took a bet on the 
constructs of EAC and SOS—not only because of their 
empirical backing (Hiebert & Grouws, 2007) but also 
because they appeared to operate at an optimal grain size, 
meaning that they probably contain within them a coherent 
and somewhat stable constellation of subconstructs (such 
as those we identified and tested in Claim 2). Yet they are 
not so large that they mix together dozens of discrete fea-
tures whose interactions remain unexamined. Our approach 
contrasts with the use of larger categories of teaching, such 
as reform versus traditional instruction, that are used to 
refer to a wide variety of features (e.g., students’ working 
in small groups, the use of manipulatives, etc.) that—in 
different and often ill-defined configurations—are taken to 
define the category.

Second, the theoretical framework guided the develop-
ment of all of our measures, which ensures common con-
structs as a focus of measurement and provides the optimal 
environment for empirical tests for our claims contributing 

to a validity argument. Thus, we are testing whether teach-
ers’ responses to survey items and their resultant quadrant 
placement are observable in practice and whether they cor-
relate with other measures in ways that are expected and 
explainable by the theory.

Third, the theoretical framework provides meaning to 
instructional features and their interrelationships as well as 
their relationship to what and how students learn. As research-
ers, theory helps us to understand what we are studying and 
to make predictions. Theory is useful to teachers as well, in 
that it provides a conceptual framework for making sense of 
research findings and their own teaching. Without theory, 
teachers are left with isolated findings and little guidance on 
how and when to employ “proven” techniques.

Implications for the Common Core Era

Our quest to design measures of teaching at scale that 
validly represent ways in which teachers are responding to 
calls to “teach for conceptual understanding” has renewed 
relevance in the present Common Core environment. 
Because more states are using the Common Core or Common 
Core–related standards and assessments, increasing num-
bers of teachers—whose students’ learning will be judged 
based on these assessments—have begun to shift their prac-
tice to support students’ development of conceptual under-
standing. This state of affairs (large numbers of teachers 
working toward a common goal) is fertile ground not only 
for large-scale approaches to the development of curriculum 
and professional development but also for large-scale 
approaches to measuring teaching. Here, we have taken the 
first steps toward constructing a validity argument regarding 
the inferences that can be made about teaching based on 
teachers’ responses to one such large-scale measure of teach-
ing: survey items aimed at measuring theoretically based 
and empirically supported features of mathematics instruc-
tion that matter for student learning in the Common Core 
era. As our validity argument progresses, we will feel 
increasingly confident in the use of this instrument to pro-
vide an efficient means of tailoring large-scale efforts to 
improve teaching as well as its ability to provide initial 
insights (obtained through comparative analysis) into the 
kinds of experiences and settings that appear to foster—or 
not—the improvement of teaching and student learning.

In the current college-and-career-ready standards era, 
both students’ skill efficiency and conceptual understanding 
are valued outcomes. As noted by Hiebert and Grouws (2007) 
and others (Correnti, Matsumura, Hamilton, & Wang, 2013; 
Ruiz-Primo, Shavelson, Hamilton, & Klein, 2002), some 
measures of student outcomes, especially those assessing 
higher-cognitive-demand thinking and reasoning and con-
ceptual understanding, may be more sensitive to differences 
in instruction than others. Such was the case in this study. Our 
findings support the claim that teaching that provides 
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opportunities for student struggle and explicitly attends to 
concepts (Quadrant 1) is associated with better performance 
on assessments of conceptual understanding. Interestingly, 
students who experienced instruction that was less tolerant of 
sustained student struggle (and slightly lower in attention to 
concepts; Quadrant 2) performed well but not as well as the 
Quadrant 1 students. This suggests that there could be affor-
dances for learning associated with struggle but that some 
forms of bounded struggle might be worth exploring as well 
(given the high performance of students in Quadrant 2 class-
rooms). Overall, the existence of Quadrant 2 forms of teach-
ing opens the door to a discussion about how much and what 
kind of struggle is worthwhile as well as further exploration 
of the role EAC plays amid bounded struggle. Student strug-
gle is usually associated with student-centered “reform” 
instruction. The findings herein lead to questions regarding 
what kinds of structures might mitigate the potentially poor 
effects of struggle (as seen in Quadrant 3 teaching) and bring 
out the positive aspects of bounded struggle.

Potential Implications for Measurement At-Scale

As we move to the next iterative refinement of our theo-
retical framework and measures, a logical next step is to 
explore whether our survey measures can be put to use in 
large-scale studies of teaching change. Generalizable empir-
ical studies of instructional change in the field of mathemat-
ics education have been exceedingly rare (Munter & 
Correnti, 2016). To the extent our measures allow us to 
detect changes in teaching (as we are proposing to do in a 
separately funded study of coaching), we can gain insight 
into how interventions produce changes in EAC and SOS.

Additionally, we might also benefit from thinking about 
how measures can be incorporated into a measurement sys-
tem (Bryk, Gomez, Grunow, & LeMahieu, 2015). For exam-
ple, how can the theory and aligned measures be put to use by 
teachers and instructional leaders for improvement purposes? 
We believe that an important test of the theory and measures 
is whether they are useful in monitoring and supporting 
large-scale instructional improvement in this new Common 
Core standards-based era. We have reason to be optimistic on 
this front. The quadrants have resonated deeply with our part-
ners in the Tennessee Department of Education because of 
their potential to communicate a vision for instruction with 
practitioners; we are currently exploring whether associated 
patterns of more specific teaching practices (see Stein, Kelly, 
Moore, Correnti, & Russell, 2016) can be combined with the 
information provided by surveys to carry even more specific 
and actionable guidelines for how to teach differently and 
how to support large-scale instructional improvement efforts.

Notes

  1. This may point to a technical rather than a theoretical prob-
lem in prior research efforts, as researchers have had a hard time 

disentangling explicit attention to concepts (EAC) and students’ 
opportunity to struggle (SOS) when creating measures from survey 
items, and as others have conceptualized the same 2 × 2 matrix in 
their own work (J. Stigler, personal correspondence, February 24, 
2016). Among our technical advances in the early stages of our 
work has been the ability to disentangle EAC and SOS on our sur-
vey measurement where our second-order two-factor confirmatory 
factor analysis (CFA) has desirable fit statistics and demonstrates a 
fairly modest correlation (r = .40) between EAC and SOS.

  2. According to direct instruction advocates, this teaching profile 
is an unfair caricature of direct instruction, which they claim teaches 
concepts as well as procedures (Munter, Stein, & Smith, 2015).

  3. Allowing for student struggle while also keeping the math-
ematical concepts in play (Quadrant 1 teaching) is challenging; 
unfortunately, reform messages are often (mis)interpreted as let-
ting students learn the mathematics on their own (with mantras 
like “Whoever is doing the talking is doing the thinking”). This 
profile of teaching, in which a disproportionate amount of atten-
tion is devoted to struggle (accompanied by lack of attention to 
concepts), has been referred to by Stein, Grover, and Henningsen 
(1996, p. 478) as “unsystematic exploration.”

  4. Viewing reform and traditional teaching as a system of 
interacting features represents an advance over the process-product 
research that used discrete features.

  5. The assumptions we make by pursuing this course of action 
are as follows. First, teachers’ self-reports can be imbued with mea-
surement error because it is hard to accurately reflect over long time 
periods (Sudman, Bradburn, & Schwartz, 1996). Second, teach-
ers attempt to provide accurate information about their teaching 
(Schmidt, McKnight, & Raizen, 2002). Third, teachers have tenden-
cies toward particular approaches to teaching that can be measured 
on the two constructs (EAC and SOS) that undergird our theoreti-
cal framework of teaching and learning. Fourth, we can identify 
teachers’ tendencies to teach in one of the four quadrants from their 
self-reported preferences for a method of teaching as expressed by 
a vignette aligned with that quadrant and by identifying patterns of 
responses to particular items. Fifth, quadrant placements of teachers 
represent tendencies for a particular approach to teaching—or how 
we might reasonably assume teaching practice would be character-
ized within a given classroom the majority of time.

  Because an interpretive argument is only as strong as the weak-
est link in the chain of evidence from observations to observed 
scores, from observed scores to universe scores, and from universe 
scores to target scores (Kane, Crooks, & Cohen, 1999), ideally we 
would elucidate and test all of our scoring assumptions. Although 
space precludes us from doing so, consistent with Sireci’s (2013) 
focus on validity arguments, we have tried to present our assump-
tions for our empirical tests while not belaboring generalizations 
within our interpretive argument.

  6. Although it is true that teachers may vary their instruction 
from day to day or even from task to task, we assume that, by and 
large, teachers have a tendency to teach in a particular way, espe-
cially when measured at the grain size exemplified by our quadrant 
placement. EAC and SOS were selected as our major instructional 
constructs because of their empirical support (Hiebert & Grouws, 
2007) and because their interaction made transparent four quali-
tatively different ways in which teachers might respond to calls 
for teaching for conceptual understanding. We acknowledge that 
the survey measure is a blunt instrument that bases assignment to 
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quadrants on holistic self-reports and does little to address vari-
ability within each teacher’s classroom. We can, however, and will 
look for within-teacher variability in our video data. Further valid-
ity studies are needed to address the question of how many video 
days are required to get a stable placement of a given teacher.

  7. We intentionally chose the order we wanted to present the 
quadrants (Quadrant 3, Quadrant 1, Quadrant 4, Quadrant 2) because, 
for example, we thought if we began with a Quadrant 1 vignette 
(which is mathematically rich and high in student involvement), the 
attractiveness of the teaching in the Quadrant 3 vignette would have 
been diminished. This is important because we think teachers’ initial 
perceptions of how often they teach like Quadrant 3 can be informa-
tive about how they accept or reject this particular teaching profile; 
nevertheless, we assess teachers’ reports on all of the vignettes for 
consistency—using other item types later on in the survey in order to 
validate inferences about their teaching tendencies.

  8. We used a similar process for additional items a Jones-like 
teacher would disagree with.

  9. The partial credit system was informed by the distribution of 
teacher responses on each item for identifying cut points. Once cut 
points were identified, higher scores were provided for more extreme 
answers (e.g., strongly agree scores 1 whereas agree scores .5).

10. Task chunks are distinguished by the artifact or worksheet on 
which students are currently working. Tasks can range from quick 
5-minute warmups where students are focusing on a single problem 
on the chalkboard to an hour-long investigation of an open-ended 
problem and its subsequent whole-class discussion.

Exact agreement was calculated by dividing the number of 
agreements by the total possible agreements across the 10 codes 
found in online Appendix B. Reliability for the chunking procedure 
was separately calculated by dividing the total number of chunks 
agreed upon by the total number of coded chunks.

11. Coders were trained by watching six exemplar videos (at 
least one in each of the four quadrants) and discussing each of their 
codes with our expert coder. Trainees then coded four additional 
videos that were used to check their agreement with our expert 
coder. To meet criterion requirements, coders had to agree with 
experts on at least 80% of all substantive codes (Items 1–3 and 5–11 
in online Appendix B) when averaged across the four videos and 
agree with the high/low coding of at least 70% of the anchor EAC 
and SOS items (Items 5 and 6 in online Appendix B). Only one of 
three candidates qualified for training to join our two expert coders.

12. Both measures of interrater reliability were calculated across 
all tasks. Agreements based on high or low scores on coded items 
were found by following the same reliability procedure after first 
collapsing the multipoint scales into low (scores of 1 or 2) and high 
(scores of 3, 4, or 5) on the main EAC and SOS items.

13. Coders were trained by first learning how to score cognitive 
demand of written materials (Stein, Smith, Henningsen, & Silver, 
2009) by discussing the various demand levels and evaluating sev-
eral examples. An expert coder then thoroughly explained each 
item in the rubric (online Appendix C) and demonstrated how it 
would be applied to various samples of assignments. To meet cri-
terion requirements, coders had to agree with an expert coder on 
at least 80% of rubric items when averaged across two complete 
packets of assignments and student work.

14. Exact agreement was calculated by dividing the number of 
agreements by the total possible agreements across the 20 codes 
(excluding Items 1, 5, and 16) found in online Appendix C.

15. In the covariate-adjusted model, we adjusted for student’s 
previous-year mathematics scale score (academic year 2011–2012) 
and student background characteristics, including gender, race, des-
ignation as English language learner, English as a Second Language 
1 or English as a Second Language 2, and different levels of spe-
cial education designation. We also examined a model adjusting for 
prior achievement at the classroom level. The value-added scores 
for teachers (i.e., residuals) from the models with and without class 
achievement added were nearly identical because we extracted the 
empirical Bayes residuals from our two-level hierarchical linear 
modeling model, which automatically account for group-level per-
formance. For parsimony, we present only the model without the 
addition of prior achievement at the classroom level in this article.

16. During our exploratory phase, we examined a two-factor 
exploratory factor analysis. Of the 38 items included in the CFA, 
only one item (intended to be SOS) had a higher-magnitude factor 
loading on EAC (–.163 versus .126), and no EAC items had a higher 
loading on SOS. Thus, prior to running the CFA, we first confirmed 
that items intended to measure EAC loaded with other EAC items 
and items intended to measure SOS loaded most highly with other 
SOS items. Table available upon request from lead author.

17. It is instructive to consider model fit against an external cri-
terion using multiple fit indexes simultaneously. For example, Hu 
and Bentler (1999) proposed fairly conservative criteria for accept-
able model fit of .06 or below for root mean square error of approx-
imation (RMSEA) and values for comparative fit index (CFI) and 
Tucker-Lewis index (TLI) above .95 (as cited in Brown and Moore, 
2012). In considering our model, we find acceptable fit based on 
RMSEA but not for CFI or TLI. Although model fit to the data is 
important, adhering to strict cutoffs is not common practice, espe-
cially because more complex measurement models might neces-
sitate different standards (Brown & Moore, 2012). Furthermore, 
inferences in this article are based on an equally important criterion 
for demonstrating whether the measured constructs have the mean-
ing we intended them to have—that is, whether inferences about 
the measures are supported by theoretical relationships with other 
variables. Going forward, we think it will be important to improve 
model fit as well as replicate the theoretical relationships seen here.

18. Table A6 in online Appendix A displays the covariance 
(lower diagonal) and correlation (upper diagonal) matrices from 
the CFA. Table A6 shows that the magnitude of the three EAC sub-
constructs correlated with each other (.87, .84, and .97) is greater 
than their correlation with any of the five SOS subconstructs (rang-
ing from .04 to .45) and vice versa. These intercorrelations further 
demonstrate the dimensionality of the second-order factors.

19. The six-class solution turned out to be the best fit with this 
sample. We assume this will vary by sample, and perhaps as we 
add more unique teachers, we will identify more unique clusters 
within each cell of the theoretical framework. We overidentified 
clusters (i.e., we went beyond a four-class solution) because we 
assumed there might be different profiles of teaching within each of 
the quadrants defined by our theoretical framework. Thus, once we 
identified our clusters, we then examined the group means for that 
cluster in order to identify which of the four cells in our theoretical 
framework each cluster belonged in. As we go forward, it will be 
important to see if replication samples identify the same number of 
clusters, reproduce similar mean differences, and identify similar 
theoretical relationships with, for example, teaching and student 
learning (e.g., Morin, Meyer, Creusier, & Biétry, 2015).
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20. We examined the cross-tabulation of quadrant placement by 
grade level and found that the chi-square statistic (χ2 = 14.37, df = 
12, p = .27) indicated no significant association between students’ 
grade level and quadrant placement. We also examined an ANOVA 
to examine whether teachers’ reports of the number of minutes they 
taught math per week differed by quadrant (F = .21, df = 251, p = 
.89) and again found there was not a significant association.

21. Indeed, a shift toward quadrant placements as the intended 
purpose of measurement could cause data from our surveys to 
become less valid, as a shift toward high-stakes consequences (as 
would be the case if used as an evaluative tool) might cause teach-
ers to try to “game the survey.” To be clear, our purpose in this 
article is strictly limited to uses for large-scale research.
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