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In the past two decades, there has been extensive focus on 
how to calculate power for cluster-randomized trials, or 
CRTs (e.g., Bloom, 2005; Bloom, Bos, & Lee, 1999; Donner 
& Klar, 2000; Hedges & Rhoads, 2009; Konstantopolous, 
2008; Murray, 1998; Raudenbush, 1997; Raudenbush & Liu, 
2000; Raudenbush, Martinez, & Spybrook, 2007; Schochet, 
2008). Adequate statistical power for intervention studies 
helps researchers avoid making Type II errors—errors in 
which a researcher fails to detect an effect in a sample where 
that effect indeed exists in the population. Type II errors can 
occur when there is an insufficient number of participants in 
the study and/or the effect is smaller than expected. 
Underpowered studies can lead to inconclusive results that 
inhibit knowledge accumulation in a field, particularly when 
the same inconclusive findings are cited repeatedly.

Intervention research in science education is in its infancy 
in comparison to other fields such as mathematics and read-
ing. Small studies and studies lacking comparison groups 
abound. In this study, we identified fewer than 2% of 6,600 

reports since 2001 that reported impacts from a design con-
ducive to generating confident causal inferences and statisti-
cal conclusions (e.g., had a comparison group, included at 
least 60 participants). From this result, it follows naturally 
that replications of rigorous impact studies are also rare 
(Makel & Plucker, 2014; Taylor et al., 2016).

While it is the case that meta-analyses can detect the exis-
tence of a significant overall effect from a set of nonsignifi-
cant impact estimates, this is contingent on whether there are 
sufficient studies of an intervention for this meta-analytic 
utility to come to bear. A lack of conclusive and unbiased 
findings from primary studies can severely inhibit knowl-
edge accumulation in science education. With so few studies 
of intervention impacts, the science education field needs 
more than replications and meta-analyses. Science education 
needs more sufficiently powered primary studies of program 
impacts. Once strong causal impact studies with promising 
effects emerge, replications and meta-analyses will be able 
to advance the science education field even further.
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In this paper, we present the results of a meta-analysis 
designed to support a priori power analyses in science edu-
cation research as well as policy or programmatic decisions 
about intervention effects more broadly. Primary researchers 
can use the effect size estimates generated by our work in 
combination with recently published estimates for the intra-
class correlation (ICC) and covariate correlation (e.g., 
Spybrook, Westine, & Taylor, 2016, Westine, Spybrook, & 
Taylor, 2013) to inform the designs of their own causal 
impact studies in science education. Policymakers and other 
decision makers can use our estimates to develop realistic 
expectations about the types of effects to expect from inter-
ventions with specified characteristics. We note here, how-
ever, that the most reliable sources of information about the 
effectiveness of a given intervention are impact estimates 
from prior studies of that intervention and/or meta-analyses 
of effects from that or similar interventions. The parameter 
estimates from this study are meant to refine effect size 
expectations beyond these primary sources of evidence or 
provide general guidance in the absence of any extant effect 
size information.

Although we focus here solely on the effects of science 
education interventions, this meta-analysis has characteris-
tics that make its findings informative to researchers and 
decision makers in other education disciplines. This study 
examines the relationship between the effect size magnitude 
and key study characteristics, including students’ grade 
level, design of the study, outcome measure type, or inter-
vention focus. Researchers synthesizing intervention studies 
outside of science education have found noteworthy varia-
tion in these very same intervention study characteristics 
(Cheung & Slavin, 2016; Hill, Bloom, Black, & Lipsey, 
2008). As such, we assert that our findings are unique but 
likely cumulative with those of syntheses outside of science 
education.

Researchers often use a priori power analyses to estimate 
the number of participants needed in a study. In cluster ran-
domized trials, accurate a priori power analyses rely on hav-
ing accurate estimates of the three key design parameters 
mentioned previously: the ICC (a measure of the between-
cluster variance as a fraction of the total variance), the extent 
to which covariates can account for variation in the outcome, 
and the estimated effect size. Any a priori power analysis is 
only as accurate as the design parameter estimates. If any of 
the design parameter estimates are inaccurate, then too many 
or too few subjects may be recruited, resulting in higher than 
necessary costs or an underpowered trial.

Recognizing the importance of accurate power analysis 
parameter estimates and finding none in the science educa-
tion literature, the BSCS Science Learning and Western 
Michigan University began a joint project to provide empir-
ical estimates of these design parameters. Spybrook et al. 
(2016), Westine et al. (2013), and Westine (2016) are prod-
ucts of this collaboration and examined the ICC and the 

variance explained by covariates. This manuscript comple-
ments that prior work by examining effect sizes from inter-
vention research in science education and does so in a way 
that extends the scope and approach used in prior synthesis 
efforts, most notably, the two syntheses of inquiry-based 
science instruction (Furtak, Seidel, Iverson, & Briggs, 
2012; Minner, Levy, & Century, 2010) and the more broadly 
focused syntheses of elementary science interventions 
(Slavin, Lake, Hanley, & Thurston, 2014) and secondary 
science interventions (Cheung, Slavin, Kim, & Lake, 2016). 
Our study extends the scope of the two syntheses of inquiry 
instruction by examining a much broader array of science 
education interventions. In the latter two syntheses, 
researchers extracted one effect size per study and excluded 
studies with researcher-developed outcome measures out of 
a concern about overalignment of outcome to treatment. 
Our screening and analytic approach contrasts that of 
Cheung et al. (2016) and Slavin et al. (2014) by modeling 
the effects of test developer (possible overalignment) 
instead of using it to exclude studies and extracting multiple 
effect sizes per study while accounting for the dependency 
among those effects.

The primary research question of this meta-analysis is: 
What is the relationship between the magnitude of the inter-
vention effects and key study characteristics? The study 
characteristics of interest included the design (randomized 
studies compared to matched quasi-experimental studies), 
whether the outcome measure was developed by the study 
authors, who receives the intervention (e.g., students only, 
teachers only, both students and teachers), the science disci-
pline targeted by the intervention, the treatment provider’s 
role (e.g., researcher or teacher), and the grade level of the 
students. Together, the suite of papers provides essential 
information for study designers in science education to con-
duct a priori power analyses.

Method

Eligibility Criteria

Eligible interventions were those implemented in either 
formal education settings or education lab research settings 
with students in primary and secondary schools. We included 
only studies published in English because we lacked capac-
ity for translation. We included an array of science achieve-
ment outcome measures, including content knowledge, use 
of scientific practices, and outcomes related to understand-
ing of the nature of science. Eligible interventions are 
school-based or lab-based interventions of any duration 
whose efficacy was reported between 2001 and 2014. We 
selected 2001 as the start of our collection of studies because 
it was the year of the passage of the No Child Left Behind 
Act—an act that called attention to the need for experimen-
tal intervention research in education and established fund-
ing mechanisms for conducting such studies.
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We define lab-based interventions as those delivered to 
students at a university or other research site (e.g., nonprofit 
site). Interventions in museums only met eligibility require-
ments if the instruction was formalized. For example, a 
study of formal lecture demonstrations to classes of students 
at a museum was included, but studies of free-choice learn-
ing at a museum were not included. We included no studies 
from homeschool settings.

Eligible interventions included curriculum programs 
(including computer software activities for students to use), 
professional development programs with student-level out-
comes, and use of specific instructional approaches or 
teaching strategies. Eligible comparison conditions include 
actual control groups (no intervention), “business-as-usual” 
(BaU) comparison groups (extant programs or practices), or 
a sham treatment (watching a movie that was not expected 
to be particularly beneficial). We did not include alternative 
interventions as eligible comparison groups. Our decision 
to exclude treatment-treatment studies was based on the fact 
that effect sizes from these studies would likely be smaller 
than (incomparable to) treatment-control, treatment-BaU, 
or treatment–sham treatment studies. To be eligible, the 
study design had to include at least two groups whose out-
comes could be compared. We included studies in which 
group assignment was determined randomly (person-ran-
domized or cluster randomized) or nonrandomly (e.g., 
quasi-experiment). Quasi-experiments were only included 
when they had clear matching on pretests prior to assign-
ment to treatment or comparison conditions. To limit risk of 
bias, we required studies to have at least 30 students 
assigned to either the treatment or comparison group. This 
decision was informed by the work of Turner, Bird, and 
Higgins (2013), who concluded that in meta-analysis with 
at least two well-powered studies (like this one), underpow-
ered studies contribute little additional insight. This finding 
is further supported by more recent work associating small 
studies with increased heterogeneity (IntHout, Ioannidis, 
Borm, & Goeman, 2015) and risk of bias (Afshari & 
Wetterslev, 2015).

In summary, each study in the ultimate set of eligible 
studies met all the following criteria:

•• based either in a school or an educational research lab 
setting

•• included either primary or secondary students
•• published in English
•• included at least one student achievement outcome
•• published between 2001 and 2014
•• studied a specific science education intervention
•• included at least two groups that could be compared 

on the outcomes (i.e., treatment-control, treatment–
business as usual, treatment–sham treatment)

•• included a pretest or other measure to estimate base-
line equivalence

•• included random assignment or matching on pretest 
for quasi-experiments

•• included at least 30 students in each treatment or 
comparison group

•• focused on a general population of students (e.g., did 
not have an explicit focus on students with learning 
disabilities).

Information Sources and Search Strategies

The study used several information sources to locate 
qualifying studies: Ulrich’s Web (ulrichsweb.serialssolu-
tions.com), the Web of Science database (www.isiknowl-
edge.com), the ProQuest Dissertation Abstracts database 
(www.proquest.com/products-services/dissertations), and 
reference lists of eligible studies (i.e., reference harvesting). 
We also identified organizations that were likely to conduct 
science education research studies and contacted them about 
unpublished manuscripts (see Search Strategies for 
Unpublished Studies, in the following).

Search strategies for published studies.  We used 
Ulrich’s Web (the online version of Ulrich’s Periodicals 
Directory) to search for education journals published in 
English that focused on science education and education 
research. Specifically, we used the subjects: Education–
Teaching Methods and Curriculum and Sciences: Compre-
hensive Works and English language as a delimiter to search 
Ulrich’s Web. The resulting list included 23 journals that 
publish science education research (see list in online Supple-
mental Appendix S1).

To search within these journals, we created a search string 
for use in Web of Science that we intended to capture a wide 
range of experimental and quasi-experimental studies in sci-
ence education. The search string was: [TS= (intervention 
OR control OR treat* OR Experiment* OR Quasi* OR 
Effect* OR Compar* OR Trial OR Efficacy OR Random 
OR Assign*) AND PY = (2001 OR … 2014) AND SO= 
(“Journal of Research in Science Teaching” OR…)] with the 
additional 22 journals not shown here. We chose to do a 
journal-specific search because our search was so broad—
our original open searches were leading to hundreds of thou-
sands of abstracts. We followed our initial journal-specific 
search for published studies by examining references of 
included studies. This reference harvest led to studies from a 
total of 71 journals (see journal list in online Supplemental 
Appendix S2).

Search strategy for unpublished studies (grey literature).  
Our grey literature search included: a search string employed 
within ProQuest Dissertation Abstracts, a request sent to 
listservs, and a search of the websites of 55 research organiza-
tions (see online Supplemental Appendix S4) informed by a 
list used for a similar purpose in the Science Review Protocol 

www.isiknowledge.com
www.isiknowledge.com
www.proquest.com/products-services/dissertations


Taylor et al.

4

of the What Works Clearinghouse (Institute for Education 
Sciences, 2012). The full dissertation search string including 
delimiters is provided in online Supplemental Appendix S3. 
This search string returned 3,516 dissertations completed 
between 2001 and 2014 that were potentially eligible. After 
two screeners independently reviewed the abstracts of these 
studies, we identified 496 dissertations that met abstract 
screening criteria, and this subset was included in the full-
text screening stage of the study. Combined, the request to 
listservs and the various research organizations resulted in 
30 manuscripts submitted to the research team for full-text 
screening.

Data Collection and Coding

Researchers coding the full text of manuscripts used a 
FileMaker Pro database. For each study coded, we obtained 
a portable document format (PDF) file and embedded a link 
to the file directly into the database for coding and archival 
purposes. Coders could highlight the PDFs and make com-
ments. Training involved collaborative coding tasks to 
establish coding norms and independent coding tasks to esti-
mate intercoder reliability. Across all codes, the average 
level percentage agreement for independent coding was 
83%. The coding team held weekly meetings to ask ques-
tions and resolve issues that had arisen during the previous 
week. When discrepancies arose, the PIs made final coding 
decisions. The database was hosted on a server such that all 
team members could access the database simultaneously.

Key information about the characteristics of a study or 
statistical information needed to extract effect sizes was 
often missing from published reports. In these situations, 
coders contacted study authors directly to inquire about the 
missing information. Specifically, 59 study authors were 
queried requesting various information, including interven-
tion dosage, demographic information, details about the 
instrument used in study outcomes, timing of the posttest, 
the type of assignment to groups (e.g., RCT), and requests 
for means and standard deviations used in analyses. Most 
often, requests were for more specific information about the 
frequency or duration of the intervention (dosage), requested 
in 24% of the queries, and demographic information disag-
gregated by treatment group, requested in 20% of the que-
ries. Nineteen percent of queried authors responded, sharing 
important information relevant to coding the studies. In the 
remaining instances, authors no longer had access to the data 
or did not respond to our query.

Variables coded.  In addition to the bibliography and 
eligibility tables, there were four tables in the database: 
header (data related to the study as a whole), groups (data 
about each treatment and comparison group in the study), 
dependent variables (data about each outcome variable in 
the study), and effect sizes (data about group means, standard 

deviations, observed sample sizes, and/or other informa-
tion used to estimate effect sizes, including t tests, p val-
ues, or hand-calculated effect sizes). Each table included 
a space for notes related to coding problems. Studies were 
required to pass criteria from the full-text eligibility table 
first before additional coding ensued. These initial eligi-
bility requirements entailed coder assessments of whether 
the intervention was in science education and in either a 
school- or lab-based setting and the study occurred in a rel-
evant timeframe (after 2001) with a relevant outcome and 
was conducted with a policy-relevant K–12 student sample 
and met methodological requirements, such as using an eli-
gible comparison group and meeting a minimum sample 
size threshold, and reported impacts in such a way that an 
effect size could be extracted. See specifics for these codes 
in online Supplemental Table S1.

Choice and coding of moderators.  Our choices of effect 
size moderators to test were influenced by our desire to pro-
vide evidence that either corroborates or challenges findings 
in the extant literature. For example, Hill et al. (2008) exam-
ined the extent to which the nature of the outcome measure 
(broadly focused standardized test vs. specialized topical 
test) and the grade level of the students (elementary school 
vs. middle school vs. high school) influenced effect size 
magnitudes from multiple disciplines, finding larger effect 
sizes for specialized topical tests and middle school inter-
ventions. Extending these analyses using a multiple regres-
sion approach (meta-regression), Cheung and Slavin (2016) 
also tested the effects of outcome measure type and grade 
level, finding larger effect sizes in studies with researcher-
made measures and studies of elementary school students. 
Additionally, Cheung and Slavin (2016) tested the effects of 
study design (RCT vs. QED). The approach in the current 
study sought to build on these prior efforts.

We primarily used binary codes but in one case used a set 
of related indicator (dummy) codes. RCT is a binary study 
design variable designating randomized (coded 1) or quasi-
experimental studies (coded 0). TCHONLY and TCH&STU 
are dummy variables that indicate who received the inter-
vention. In this coding scheme, the reference group 
(STUONLY) includes interventions received only by stu-
dents (e.g., curriculum materials without professional devel-
opment support for teachers). TCHONLY indicates that the 
intervention is delivered only to teachers (e.g., a professional 
development program; coded 1 if it is teacher only and 0 
otherwise), and TCH&STU indicates that the intervention is 
delivered to both teachers and students (e.g., curriculum 
materials plus supporting professional development for 
teachers; coded 1 if it is an intervention for both teachers and 
students and 0 otherwise). The SCITYPE variable is a binary 
variable that describes the science discipline under investi-
gation. We grouped life science (including biology), multi-
disciplinary science, and earth/space science together (coded 
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0) as science disciplines that generally do not include math-
ematics at the high school level and grouped physical sci-
ence, physics, and chemistry together (coded 1) as science 
disciplines that do generally involve mathematics. TESTDEV 
reflects whether an outcome was developed by study authors 
(coded 1 for author developed assessments, 0 otherwise). 
The HIGRD variable is a binary variable with 0 representing 
primary and middle school students (K–8 in the U.S. con-
text) and 1 representing upper secondary school students 
(9–12 in the United States). Finally, the TRTPROV variable 
is a binary variable with 1 indicating that the teacher was the 
intervention provider and 0 indicating that the intervention 
provider was someone other than the teacher (e.g., a 
researcher).

Inclusion of multiple effect sizes.  In traditional meta-
analyses, each study contributes one effect size and the 
effect size estimates are independent across studies. How-
ever, researchers frequently report multiple effects. In some 
instances, researchers might use multiple outcome measures 
with the same individuals (e.g., one assessment might mea-
sure students’ understanding of science content, and another 
might measure students’ understanding of scientific prac-
tices such as the development of explanations). In other 
instances, multiple outcome measures arise from testing the 
same students at multiple timepoints (posttest and delayed 
posttest models fall in this category). Some studies have two 
or three treatment groups and each treatment group is com-
pared to the same comparison group.

Effect size calculation.  The 636 effect sizes (Hedges’ 
g) extracted from the eligible studies were a combination 
of pretest and posttest effect sizes. Of the 636 effects, 292 
were posttest effect sizes that were the focus of our analy-
sis. The magnitude and variance of each of the 292 effect 
sizes are provided in online Supplemental Table S2. Of 
the 292 effect sizes, 220 were calculated using unadjusted 
means but had a pretest effect size for the same dependent 
variable and treatment/comparison group contrast. Another 
72 effect sizes were calculated using means adjusted for 
covariates. For the 220 studies with a matched set of pre-
test and posttest effect sizes for each outcome, we calcu-
lated the difference between effect sizes (posttest treatment 
effect minus pretest treatment effect). All effect sizes, 
including those from cluster-randomized or cluster quasi-
experimental designs, were standardized on the individual-
level, treatment group–specific, standard deviations and 
sample sizes.

Frequently, studies using cluster-randomized or cluster 
quasi-experimental designs failed to use appropriate analy-
ses. That is, the study used cluster assignment (e.g., entire 
classes or schools were assigned to treatment or comparison 
conditions), but the analyses did not account for clustering 
(analyses were conducted as if individual students were 

assigned to treatment or comparison conditions). In such cir-
cumstances, the reported sample size is too large, and the 
analyses use underestimated standard errors. Higgins and 
Green (2011) describe how meta-analysts can adjust for 
such mismatched analyses by calculating a reduced, effec-
tive sample size for the study. Equation 1 conducts this 
adjustment:

N N M ICCadj = + −/ [ ( ) ],1 1 	 (1)

where M is the average cluster size for the study, N is the 
original number of student participants, and ICC is the intra-
class correlation. We used a value of .172 for the ICC as this 
value is the eighth-grade science ICC estimate from Westine 
et al. (2013) and was chosen because it approximates a mid-
dle school ICC and thus a median position along the K–12 
continuum.

If the number of clusters for a given group was 1 (e.g., 
cluster assignment with one treatment class and one com-
parison class), no adjustment is made. This design feature 
occurred in 15 studies, and we report results of sensitivity 
analyses in online Table S3 that compare results with these 
studies included versus omitted. In addition, we did not 
adjust the number of participants for studies in which indi-
vidual students were assigned to the treatment or compari-
son condition.

After we adjusted the number of participants based on 
cluster size, we Winsorized the effective sample sizes (N) 
computed in equation 1. We used the Winsorized values of N 
along with the standardized mean difference effect sizes to 
calculate Hedges’ g effect sizes for each study. Finally, we 
Winsorized the Hedges’ g effect sizes. We used Winsorized 
values so particularly large studies and studies with particu-
larly large effect sizes did not have a disproportionate influ-
ence on the results.

Statistical model.  Our data included 636 effect sizes 
across 96 studies (an average of 6.6 effect sizes per study). 
Effect sizes within studies are correlated, and this depen-
dence needs to be accounted for in the analysis. As infor-
mation on the correlation between these effect sizes was 
not reported in primary studies, we used a method that was 
robust to misspecification of the correlation structure. For 
this reason, we used weighted least squares to estimate the 
meta-regression model and adjusted the standard errors 
for dependence within studies through use of robust vari-
ance estimation (RVE; Hedges, Tipton, & Johnson, 2010). 
Unlike standard model-based methods such as multivariate 
meta-analysis (Jackson, Riley, & White, 2011), RVE does 
not require the correlation structure to be correctly speci-
fied when calculating standard errors and hypothesis tests; 
instead, it estimates the standard errors empirically using a 
sandwich-estimator (for a tutorial, see Tanner-Smith, Tipton, 
& Polanin, 2016).
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Additionally, we use small-sample corrections to RVE 
(Tipton, 2015; Tipton & Pustejovsky, 2015). These small-
sample corrections involve the specification of a “working 
model” for the correlation structure—here we use a “corre-
lated effects” model—and use of a t distribution with 
Satterthwaite degrees for the reference distribution. These 
degrees of freedom are a function of both the number of 
studies and features of the covariates. Importantly, these 
small-sample adjustments allow RVE to appropriately 
account for dependence even when degrees of freedom are 
as small as 4 or 5. Even though a working model is specified, 
a wide range of simulations shows that the resulting standard 
errors and hypothesis tests are robust to misspecification 
(Tipton, 2015; Tipton & Pustejovsky, 2015).

Working model and weighting.  In most studies in this 
meta-analysis, the effect sizes were dependent because they 
were measured on the same individuals. For this reason, 
we assumed the “correlated effects” model as our working 
model in RVE. We also used this model to define approxi-
mately inverse-variance weights, defined as

w
k v

ij

j j

=
+•

1
2( )
,

τ
	 (2)

where w
ij
 is the weight for effect size i in study j, τ2 is the 

between-study random effect estimated using Equation 15 
from Hedges et al. (2010), v

_
• j is the unweighted average of 

the variances of the effect size estimates in the jth study, and 
k j  is the number of effect sizes from study j.

Meta-regression.  Our meta-regression model for the pri-
mary analysis was estimated using the R package robumeta 
(Fisher, Tipton, & Hou, 2017) and specified as:
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β
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7
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We grand mean centered all variables in the regression. As a 
result, the intercept is an estimate of the average effect size 
at the grand mean of all predictors. We assessed statistical 
significance of an estimated regression coefficient (β

j
) with 

the test statistic t j
R :

t
b

Sj
R j

j
R= , 	 (4)

where S j
R  is the robust standard error including adjustments 

for small samples (Tipton, 2015).
The test statistic is compared with critical values from 

student’s t distribution with η
j
 degrees of freedom (these 

degrees of freedom are estimated and can vary from covari-
ate to covariate; see Tipton, 2015).

Missing data handling  We were unable to determine 
the treatment provider’s discipline (teacher or other) for 
16 effect sizes across four studies. Rather than lose the 
data completely, we conducted a single imputation and 
ran the meta-regression on a complete data set. We used 
MPlus to run a multilevel imputation to account for the 
nested structure of the data. We conducted a sensitivity 
analysis, comparing the values of the coefficients for the 
unimputed data set to those from the imputed data set and 
found little difference. The largest difference was in the 
coefficient for TRTPROV, with β  = .040 for the unim-
puted set and β  = .013 for the imputed set (with virtually 
identical standard errors). Taking this one step further, we 
tested whether the results of our single imputation were 
stable over 10 imputations and found very little difference 
in estimates across imputations (see online Supplemental 
Table S3 for details).

Results

Study Selection

The abstract screen culled the list to 1,174 unique studies 
that underwent a full-text screen. The full-text screen 
reduced the number of eligible studies to 96, and these stud-
ies came from a total of 21 different countries: United States 
(43), Turkey (15), Israel (7), Taiwan (6), Canada (3), 
Germany (3), Nigeria (3), Jordan (2), Kenya (2), Brazil (1), 
China (1), England (1), Finland (1), Greece (1), India (1), 
Korea (1), Netherlands (1), New Zealand (1), Singapore (1), 
Slovenia (1), and Switzerland (1). Figure 1 identifies the 
number of studies at each stage of our process. In this figure, 
a “record” refers to a single citation from one database. 
Because we used multiple databases, sometimes different 
databases located the same record. We identified 6,622 
records through database searching (raw number, including 
duplicates), along with 30 additional records through our 
grey literature search. The combined total number of unique 
records was just 6,637 after excluding 15 duplicates. We use 
the term articles to refer to unique records. Our abstract 
screen of 6,637 articles led to the inclusion of 1,286 articles 
that met our abstract screen criteria.

It was essential that coders not include effect sizes for the 
same outcomes from the same participants more than once. 
This problem can arise when authors publish more than one 
article from the same research study. We searched author 
names across all 1,286 articles to look for articles that 
appeared to report findings from the same participants. We 
combined multiple articles into a single “study” and coded at 
the study level. The process of linking related articles into 
unique studies brought our number of studies down to 1,174. 
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Of these, a full-text eligibility screen (using information 
from all linked articles for each study) yielded 96 studies 
that met our full inclusion criteria.

We excluded studies during the full-text screen for a vari-
ety of reasons. Many abstracts were sufficiently vague that 
we included the associated articles in the full-text screen for 
no reason other than there was insufficient information in the 
abstract to make an eligibility determination. For example, 
an abstract might refer to “impacts of an intervention” but 
not mention the existence or absence of a comparison group. 
Other abstracts might refer to “students” without clarifying 
(in the title, abstract, or keywords) whether they were pri-
mary, secondary, or undergraduate students.

Occasionally, study coders continued coding beyond 
identifying a reason for excluding a study. This occurred 
particularly when coders were unsure of a disqualifying 
coding decision and sought consultation with the larger 
team before excluding a study. Thus, some studies had 
multiple reasons listed for their exclusion while others 

had just one. Table 1 provides a summary of the reasons 
studies were excluded. However, without further coding 
of all disqualifying features of every study, the percent-
ages should not be interpreted as complete; in fact, they 
likely underestimate the number of studies lacking a 
characteristic.

As the table shows, the two most common reasons for 
excluding a study related to study design. Twenty-two per-
cent of the excluded studies did not include an eligible com-
parison group (this includes studies that had no comparison 
group as well as those that had an alternative treatment com-
parison group). We excluded 21% of studies because the stu-
dent sample size was too small (fewer than 30 students in 
either the treatment or comparison group). A substantial por-
tion (14.7%) were excluded because there were no reported 
measures of baseline equivalence. We included studies pro-
vided that the baseline measures were reported but did not 
use magnitude of the baseline equivalence effect size as an 
exclusion criterion.

Figure 1.  Number of records, articles, and studies identified and retained at each stage of the selection process.
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Overall Statistics

Table 2 shows the mean posttest effect size, standard 
deviation, and study sample size for each category of study 
design or intervention characteristic. The weighted average 
pretest effect size was −0.01 standard deviations, suggesting 
that although we did not disqualify studies based on baseline 
equivalence, it does not appear to have introduced substan-
tial bias in the impact estimates.

In addition, we report several other statistics of importance. 
The intercept (β 0  = 0.489) of the meta-regression provides 
an estimate of the overall mean effect size for the study sam-
ple, and the 95% confidence interval around this intercept 
[0.368, 0.610] provides a sense of the precision of this 
estimate.

The overall average effect, however, is not particularly use-
ful when there is heterogeneity in effect sizes across studies. 

Table 1
Reasons Studies Were Excluded From Meta-Analysis

Reason for exclusion Number excluded Percentage excluded

Did not include a science education intervention 147 13.6
Neither school-based nor education research lab–based 25 2.3
Did not include an eligible student outcome 74 6.9
Did not include at least one eligible comparison group 237 22.0
Not conducted with primary or secondary students 125 11.6
Not published in or after 2001 6 0.6
Did not have at least 30 students per treatment group 228 21.2
Did not include a measure of baseline equivalence 158 14.7
Did not include any achievement outcome 34 3.2
Included only special populations 23 2.1
A quasi-experiment without pretest matching 110 10.2
Did not provide sufficient information for coding effect sizes 10 0.9

Table 2
Mean Effect Size by Study Design or Intervention Characteristic

Variable
Reference group
(n = No. of ES)

Mean ES (SD)
Reference group

No. of studies in 
reference group

Indicator group
(n = No. of ES)

Mean ES (SD)
Indicator group

No. of studies in 
indicator group

RCT Matched quasi-
experiments (n = 50)

0.49 (0.32) 9 RCTs (n = 242) 0.45 (0.48) 87

STUONLY NA NA Interventions for 
students only (n = 59)

0.36 (0.46) 24

TCHONLY NA NA Interventions for 
teachers only (n = 29)

0.47 (0.28) 6

TCH&STU NA NA Interventions for both 
teachers and students 
(n = 204)

0.58 (0.48) 66

SCITYPE Life, earth/space, and 
multidisciplinary science 
(n = 155)

0.49 (0.42) 49 Physics, chemistry, and 
physical science  
(n = 137)

0.45 (0.46) 47

TESTDEV Assessment developer 
is not the author or 
researcher (n = 79)

0.29 (0.43) 32 Assessment developer 
is the author or 
researcher (n = 213)

0.67 (0.47) 64

HIGRD Highest grade in study 
includes primary and 
lower secondary students 
(K–8) (n = 102)

0.41 (0.47) 41 Highest grade in 
study includes upper 
secondary students 
(9–12) (n = 190)

0.53 (0.45) 55

TRTPROV Treatment provider is not 
a teacher (n = 64)

0.49 (0.44) 20 Treatment provider is a 
teacher (n = 212)

0.45 (0.45) 76
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To understand the true variation in study-average effect 
sizes, a prediction interval is useful. In this study, the 95% 
prediction interval for study-average effect sizes is [–0.393, 
1.371], indicating that while the average study produced a 
positive effect, in some studies, the true effect was negative 
(and in others, the effect was positive and much larger). This 
interval is based on the fact that the variation in effect sizes 
across studies was high (I2 = 77.36%, τ = 0.45).

Study and Intervention Characteristics as Moderators

Moderator effects from the meta-regression.  Table 3 
shows the parameter estimates from our meta-regression 
using RVE with correlated effects weights, conducted using 
Equation 3. Note that sensitivity analyses for the effect of 
Winsorizing (vs. not Winsorizing) the effect sizes indicated 
no difference in any parameter estimate to three decimal 
places. Sensitivity analyses were also conducted with regard 
to including studies with a single cluster per treatment  
condition. Two noteworthy differences emerged, and these 
results are reported and discussed in Table S3 online.

The interpretation of the meta-regression coefficients 
(slopes) is conceptually similar to any multiple regression 
using binary indicators—each regression coefficient is a 
covariate-adjusted difference in mean effect size between 
groups of effect sizes that differ on the target characteristic. 
For example, the regression coefficient of −0.004 for RCT 
represents the model-based estimate of the difference in 
average effect size for RCTs compared to QEDs. That is, 
controlling for all covariates, RCT effect sizes are estimated 
to be 0.004 standard deviations smaller than that of matched 
QEDs, on average. Similarly, the effects from researcher-
developed assessments were estimated to be nearly 0.258 
SD larger, on average, controlling for other study, sample, 
and outcome characteristics. This effect was statistically 
significant.

Also notable (though not significant) is that interventions 
with components for both students and teachers produced 
higher effect sizes than those that target students only with 
an adjusted difference of 0.149 standard deviations. When 
an intervention was conducted in a science discipline that 
tends to be more mathematical, the adjusted effect sizes 
were slightly smaller (0.044 standard deviations) than those 
in science disciplines that are less mathematical. Interventions 
for secondary students (Grades 9–12) showed slightly higher 
effects than for students in primary and lower secondary 
(K–8) grades, with an adjusted difference of 0.053 standard 
deviations. Finally, when teachers delivered an intervention, 
the effects were nearly identical (adjusted difference = 0.005 
SD) to those from interventions delivered by a researcher (or 
other nonteaching personnel). Note that we also explored 
publication bias using a similar analytic approach, and these 
ancillary results are provided in online Supplemental 
Appendix S6.

Using the Meta-Regression Parameter Estimates in A 
Priori Power Analyses

When conducting a priori power analyses, a study 
designer should first consider whether there are existing 
meta-analyses or effect sizes from isolated primary studies 
of the same or similar interventions. In the absence of such 
information, we propose use of our meta-regression param-
eter estimates to arrive at an empirically based effect size 
estimate. The least precise approach would be to use the 
intercept estimate, which provides the overall average 
(weighted) of all 292 effect sizes in the meta-analysis. We 
don’t anticipate that this would be appropriate in the major-
ity of cases as most study designers will have information on 
at least a subset of the study and/or outcome characteristics 
that can be used to adjust the overall mean effect size esti-
mate. Optimally, a study designer would have information 

Table 3
Results of Robust Variance Estimation Meta-Regression Using 96 Studies With 292 Effect Sizes

Parameter Estimate SE t value df p
95% CI
Lower

95% CI
Upper

Intercept 0.489 0.060 8.161 43 <.001 0.368 0.610
RCT −0.004 0.179 −0.024 11 .98 −0.397 0.388
TCHONLY 0.060 0.148 0.405 9 .69 −0.276 0.396
TCH&STU 0.149 0.136 1.097 40 .28 −0.125 0.423
SCITYPE −0.044 0.120 −0.363 61 .72 −0.284 0.196
TESTDEV 0.258 0.102 2.522 48 .02 0.052 0.463
HIGRD 0.053 0.114 0.463 68 .65 −0.175 0.280
TRTPROV −0.005 0.139 −0.036 22 .97 −0.295 0.284

Note. RCT, 1 = randomized design; TCHONLY, 1 = intervention with teachers only; TCH&STU, 1 = intervention for both teachers and students; SCITYPE, 
1 = physics, chemistry, or physical science; TESTDEV, 1 = assessment developer is author or researcher; HIGRD, 1 = highest grade in study includes upper 
secondary (Grades 9–12); TRTPROV, 1 = treatment provider is a teacher. See Table 2 for the reference group of each variable.



Taylor et al.

10

on all variables and make the eight corresponding adjust-
ments to the grand mean, based on the magnitude of the 
meta-regression coefficients in Table 3. Yet another varia-
tion that leverages existing impact information would be to 
use an extant impact estimate or summary effect from a 
meta-analysis in place of the intercept from our model and 
then make the corresponding adjustments using our meta-
regression coefficients.

To facilitate accurate and convenient computation of pre-
dicted effect sizes based on selected study/outcome charac-
teristics, we developed a Web-based application that uses the 
results generated by the R robumeta and clubSandwich 
(Pustejovsky, 2015) packages. The application can be found 
at https://effectsizecalculator.bscs.org. For details on how 
the online application computes predicted effect sizes from a 
combination of the parameter estimates in Table 3 and user 
input, see the online Supplemental Appendix S5.

Example: Using meta-regression estimates to estimate 
an effect size.  Here we present an example of how science 
education researchers may use our meta-regression results in 
a power analysis. Assume a researcher has developed a high 
school (HIGRD = 1) biology intervention (SCITYPE = 0) that 
provides curriculum materials for students and professional 
development for teachers (TCHONLY = 0; TCH&STU = 1), 
and the teachers implement the curriculum materials with 
students (TRTPROV = 1). The researcher wants to conduct a 
cluster (i.e., school) randomized efficacy trial (RCT = 1) and 
would like to determine how many schools are needed for 
the study to achieve 80% power. The researcher plans to use 
a state standardized test (TESTDEV = 0) as an outcome mea-
sure for the efficacy trial. Entering these study and outcome 
characteristics into the online application yields a predicted 
effect size of 0.377.

In addition to reporting an estimated effect size, the online 
application also indicates the precision of this estimate. A 
95% confidence interval is computed for each expected effect 
size based on the set of observed covariate values. These 
intervals are calculated using

Est +/- t .025, SE Estη( ) ( ), 	 (5)

where both the degrees of freedom (η) and standard error 
(i.e., SE[Est]) are estimated based on the small-sample F test 
(Tipton & Pustejovsky, 2015). Importantly, the degrees of 
freedom η here will differ for different predicted effect sizes. 
For the aforementioned example, the application computes a 
95% confidence interval around the predicted effect size 
(0.377) with a lower and upper limit of 0.164 and 0.590 stan-
dard deviations, respectively.

Using findings from Westine et al. (2013), study planners 
can obtain a reasonable estimate of the school-level intra-
class correlation for 10th-grade outcomes (ICC = 0.196) and 
the variance explained by a school-level pretest covariate 

(R2 = 0.868). Combining this information with the predicted 
effect size of 0.377 standard deviations and using Optimal 
Design v. 3.1 (Spybrook et al., 2011), one finds that a cluster 
randomized trial must maintain an analytic sample of 13 
schools with 50 students each to achieve 80% power (5% 
significance level). Similarly, although the merits of doing 
so are debatable, a study designer could choose to take either 
an ultraconservative or ultraliberal approach and use the 
lower (conservative) or upper (liberal) limit of the effect size 
confidence interval in the power analysis. Using the same 
values as previously described for the R2, ICC, cluster size, 
significance level, and desired power, Optimal Design yields 
an analytic sample estimate of 52 schools using the lower 
limit and 8 schools using the upper limit. Given this wide 
range, we would recommend instead using extant effect size 
information (if available) from prior primary studies or 
meta-analyses of the intervention or similar interventions.

Discussion

Comparisons to Extant Research

The average effect size (the intercept).  The grand mean 
effect size we estimated for this study, 0.489, is larger than 
any of the sample size weighted mean effect sizes reported in 
recent synthesis studies of science education interventions. 
Two recent studies are particularly relevant to the present 
study. The first, Slavin et al. (2014), synthesized a total of 
23 effect sizes for elementary school science interventions, 
finding the following summary effects for three intervention 
categories: 0.02 SD for science kits, 0.36 SD for professional 
development programs, and 0.42 SD for technology applica-
tions. Similarly, Cheung et al. (2016) synthesized 21 effects 
from secondary school science interventions, finding the 
following average effects across four intervention catego-
ries: 0.17 SD for instructional process programs, 0.47 SD for 
technology programs, –0.02 SD for science kits, and 0.10 SD 
for innovative textbooks, each smaller than the grand mean 
effect size of this study. The differences between our results 
and that of other recent studies can be attributed in part to 
differences in the sample of effect sizes synthesized. The 
studies described previously synthesized a total of 44 effect 
sizes, as opposed to the 292 in the current study. The sample 
differences between the prior research and the current study 
arise from differences in inclusion criteria (e.g., publication 
date, minimum intervention duration, and the eligibility of 
studies that used experimenter-developed outcome assess-
ments) as well as differences in analytic approach. Regard-
ing the analytic approach, the studies described previously 
used fixed effects variances and traditional meta-analytic 
approaches to estimate summary effect sizes, whereas the 
present study extracted multiple effect sizes per study and 
estimated adjusted mean effects using meta-regression that 
modeled within-study dependence of effect sizes through 
robust variance estimation.
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The effect of study design.  The effect of study design 
was very small but consistent with recent work in this area. 
Although we observed a smaller effect of design than that 
observed by Cheung and Slavin (2016), the direction of the 
effects is the same, with both studies estimating smaller 
effects for randomized designs.

The effect of bundled interventions.  The results of this 
analysis are suggestive that there is a positive effect of 
developing bundled interventions that provide products and/
or services for both teachers and students. Unfortunately, 
this tentative result cannot be corroborated by the two recent 
syntheses by Slavin and colleagues as they categorized inter-
ventions differently than we did in the present study.

The effect of science discipline type.  The effect of disci-
pline type was quite small, and the possibility that this effect 
is spurious is too high to support a confident claim. Further 
study is needed around whether a noteworthy effect of disci-
pline exists in the effect size population.

The effect of who develops the outcome measure.  The 
finding that stands out dramatically is the positive relation-
ship between use of researcher-developed outcome assess-
ments and the magnitude of the treatment effect. This can 
result from either overalignment of outcome measures to 
treatments, insensitivity of standardized measures to treat-
ment effects, or both. We cautiously assert that the primary 
source of this relationship in our data is likely the tendency 
of broadly focused standardized assessments to be insensi-
tive to treatment effects. We found in our coding of each 
study’s methodological approach only a few instances of 
treatment-outcome overalignment but acknowledge that 
assessments of overalignment can be subjective and no clear 
definition exists.

The effect of students’ grade level.  Slavin et al. (2014) did 
not report an overall summary effect for the 23 effect sizes 
in their synthesis of elementary school science interventions, 
nor did Cheung et al. (2016) report the like for the 21 effects 
of secondary school science interventions in their synthesis. 
However, both studies reported the individual study effects 
and sample sizes necessary to compute overall summary 
effects by grade span (elementary vs. secondary). Using this 
information, we conducted a random effects meta-analysis 
with student sample size weighting, finding for elementary 
school interventions a weighted summary effect of 0.33 SD 
and for secondary school interventions, a weighted summary 
effect of 0.21 SD. This finding is consistent with results from 
Hill et  al. (2008), who found larger average effects in the 
earlier grades for interventions in mathematics and reading.

It would appear that the findings of the present study, 
where the weighted average of effect sizes for secondary 
school interventions is higher than for elementary school 

interventions, diverge from that of the prior syntheses. 
However, this appears to be an artifact of how the grade inter-
vals were coded in the present study (K–8, 9–12) as opposed 
to the other syntheses. For example, the grade intervals in the 
Slavin et  al. (2014) and Cheung et  al. (2016) studies were 
K–5 and 6–12, respectively. When we disaggregate our effect 
sizes into these new grade intervals, we see a similar effect of 
grade level, with the weighted average effect size for inter-
ventions in the K–5 grade interval estimated at 0.09 standard 
deviations greater than the weighted average effect size for 
interventions in the Grades 6–12 interval. This is largely con-
sistent with the mean effect size difference across these grade 
intervals from the Slavin et al. and Cheung et al. work.

The effect of who delivers the intervention.  The effect of 
who delivers the intervention was also quite small and incon-
clusive. Although further study is needed to assess whether 
an effect of treatment provider exists in the effect size popu-
lation, the lack of a clear effect challenges conventional 
wisdom in education that larger effects will be observed (all 
else equal) when the intervention developer also delivers the 
intervention (e.g., proof of concept or efficacy studies) as 
opposed to when a nondeveloper implements the interven-
tion (e.g., scale-up studies).

Limitations

This study had several notable limitations. First, across 
the set of eligible studies, there was significant imbalance 
across the categories of several nominal variables. This 
required us to dichotomize planned moderators to achieve 
better balance and statistical power or in some cases elimi-
nate the moderator altogether.

Omitted moderators included participant characteristics 
such as percentage minority, a contrast for lab- versus school-
based intervention, and intervention duration. Percentage 
minority could not be used due to insufficient reporting in 
general and by treatment condition in particular. The lab- ver-
sus school-based intervention contrast could not be used due 
to extreme imbalance (4 lab-based, 92 school-based interven-
tions). Outcome type could not be used as a variable because 
too few effect sizes for affective outcomes existed. The mod-
erator for comparison group type suffered the same fate as 
only 5 studies used a no intervention comparison group, 
while 91 used a business-as-usual counterfactual. Finally, 
intervention duration could not be used because the data were 
extremely skewed and the resulting meta-regression degrees 
of freedom were less than 4, the minimum cutoff for trust-
worthy results suggested in the robumeta documentation. 
This was unfortunate as intervention duration is something 
that study planners do tend to know prior to study implemen-
tation, and it seems reasonable to hypothesize that duration 
would explain variance in effect size magnitude. We acknowl-
edge that the omission of these planned moderators could 
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have introduced unknown confounds in the interpretation of 
the remaining coefficients. Further, correlations among the 
remaining moderators could have affected the results. For 
example, it is intuitive that the TCHONLY and TCH&STU 
variables might be correlated, and indeed, the phi coefficient 
for this pairing is the largest of all bivariate relationships 
(0.51). However, overall, the relationships among the mod-
erators are not strong, with the average absolute value of all 
pairwise bivariate correlations (phi) = .14.

The planned moderator that required a collapse into 
binary categories was SCITYPE. The original coding 
included six categories of science subject matter foci, but 
there was poor balance across the categories. Across the 96 
studies, the percentage of interventions with each subject 
matter focus was biology/life science (37.8%), chemistry 
(19.5%), physics (20.7%), earth/space science (3.7%), mul-
tidisciplinary science (11%), and physical science (7.3%). 
Ultimately, we decided to combine physics, chemistry, and 
physical science into a category of disciplines that tend to be 
more quantitative at the K–12 level and contrast that with a 
reference group of traditionally less quantitative disciplines 
at the K–12 level: biology/life science, earth/space science, 
and multidisciplinary science. We acknowledge that in doing 
so, we sacrificed a more fine-grained set of categories and 
comparisons for better balance and statistical power.

Some unbalanced moderators remained (particularly 
RCT), and the combination of lingering imbalance and 
parameter estimates that tended to be small in magnitude 
resulted in poor statistical power and nonsignificant results. 
Therefore, the coefficients will not support definitive claims 
or generalizations about the relative efficacy of one inter-
vention approach over another outside of this sample in the 
larger population of science education intervention effect 
sizes (with the exception that effect sizes from outcomes 
developed by the researchers tend to be larger). However, 
the coefficients provide a useful starting place for a priori 
power analyses as they provide some empirical basis for 
design decisions, reflecting variation of effect sizes within 
this sample of studies. The estimates from this study can also 
help policymakers and other decision makers in science edu-
cation begin to set clearer expectations for the magnitude of 
effects that are likely to be observed from interventions with 
various characteristics. Finally, this meta-analysis was lim-
ited to school- or lab-based interventions. Online interven-
tions and interventions based in informal settings were 
excluded, limiting the extent to which the study findings 
apply in an emerging digital age.

Implications

For Power Analyses

The field of intervention research in science education is 
in its infancy. After searching over 6,600 abstracts, we found 
just 96 that met our full inclusion criteria. The lack of a wide 

research base means that few intervention researchers have 
data from a comparison group study on which to base their 
own power analyses for future work. Even when they do, 
those results may be based on design characteristics that dif-
fer in important ways from what a researcher might propose 
in a larger efficacy trial. Specifically, as Lipsey and Wilson 
(2001) have suggested, pre-post (one group) effect sizes are 
incongruent with comparative (two group) effect sizes, 
although a conversion can be made between the two if the 
pre-post correlation is known (Borenstein, 2009). As we 
have shown, overestimating an effect size can lead to drastic 
underestimation of required sample sizes. When designing 
studies, a researcher can (and should) use relevant pilot 
effect sizes, provided that they map to the design of their 
planned study. Alternatively, a researcher would be wise to 
use meta-analytic findings (should they exist) for interven-
tions that are a close match to their own invention. Barring 
that, the use of data from our set of studies would allow 
researchers who might otherwise have little information on 
which to base effect sizes for a priori power analyses to 
make empirically based decisions in this important stage of 
study design. At a minimum, researchers will have some 
idea of whether their proposed effect size might be conserva-
tive or optimistic based on what we have seen in the science 
education literature. Using results from our meta-analysis, 
intervention researchers in science education will be better 
able to design studies of causal impacts. Better designed 
studies are more likely to be funded and published. We pro-
pose that an important implication of our work will be an 
improvement in the quality and quantity of impact studies in 
science education.

Further, the use of adequately powered intervention stud-
ies in science education has importance for the field (beyond 
what it means for individual researchers). The tendency of 
the field to discount studies with nonsignificant p values 
(and ignore effect sizes), justifiably or not, means that we are 
likely to overlook important interventions simply because 
impact studies of those interventions were underpowered. 
Inconclusive findings can only lead to stagnation of the 
accumulation of knowledge about science education 
interventions.

For Programmatic Decisions

Over and above its utility for study designers (i.e., power 
analyses), the results of this study help establish an effect 
size “landscape” for science education. The prediction inter-
val described previously establishes a range of plausible val-
ues for individual effect sizes, indicating that for interventions 
like those in this study, 95% of the effect sizes are likely to 
fall between −0.393 and 1.371 standard deviations. In terms 
of central tendency, merely interpreting the intercept estimate 
(β 0 = 0.489) suggests that the average effect size for science 
education interventions like those in this meta-analysis is 
about half of a standard deviation. Further, the confidence 
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interval of this intercept [0.368, 0.610] establishes a range of 
likely values for the overall effect size in the larger effect 
size population, with the lower limit suggesting the most 
conservative expectation and the upper limit the most lib-
eral. Beyond these overall findings, relationships observed 
in the moderator analyses can be helpful to decision makers 
in education. For example, our largest moderator effects 
suggest that (all else equal) effects on scores from researcher-
developed tests are more likely to be larger than effects on 
other outcomes measures (e.g., state standardized tests) and 
that interventions that target both teachers and students (e.g., 
teacher professional development bundled with curriculum 
materials for students) are more likely to yield larger effects 
than interventions that target students only.

For Synthesis Methods

To date, most of the oft-cited work around benchmarks 
for effect sizes estimates have used a univariate approach to 
aggregating and summarizing average effect sizes (e.g., 
Cheung et al., 2016; Hill et al., 2008; Slavin et al., 2014). 
Considering our findings, we join recent calls to decrease the 
use of this approach (Polanin & Pigott, 2015). Although in 
general the adjusted mean differences from our meta-regres-
sion coefficients mirror the raw differences in mean effect 
sizes from the descriptive statistics table (Table 2), both in 
magnitude and direction, important differences remain. For 
example, we highlight the TRTPROV variable where the dif-
ference in raw mean effect size between the set of effects 
where the teacher provided the intervention are 0.15 stan-
dard deviations larger than for the set of effects where a non-
teacher provided the intervention. The meta-regression 
coefficient also represents a mean difference in favor of 
teacher-provided interventions, but that estimated difference 
is less than 0.01 standard deviations. Such a difference, 
when brought into an a priori power analysis, could have a 
significant influence on minimum sample size estimates or 
minimum detectable effect sizes. Given the growing litera-
ture base suggesting that meta-regression estimates obtained 
using RVE are trustworthy even with small sample sizes (see 
simulations in: Tipton, 2013, 2015; Tipton & Pustejovsky, 
2015), we conclude that the adjusted mean differences from 
the meta-regression are more precise and point a way for-
ward for future research in this area.

For Future Research

In this age of evolving technology, science education 
interventions are becoming more transportable to other for-
mats, contexts, and learning environments. As such, parallel 
work is desperately needed for online interventions and those 
implemented in informal settings (e.g., museums, science 
centers). A second key charge for the future is to conduct 
similar research in other disciplines using the techniques of 

this study. Specifically, we advocate for the use of meta-
regression to estimate mean effect size differences across cat-
egories while controlling for other influential moderators. 
Until this work is conducted by the field using comparable 
techniques, accumulating knowledge about effect size mod-
eration will be challenging.

Until then, our current challenge is to encourage study 
designers to use the information provided here to more pre-
cisely estimate required sample sizes for science education 
intervention studies. Doing so will decrease the likelihood 
that study designers will over- or under-recruit schools, 
teachers, and students, conserving the precious human and 
financial resources the field needs to continue an agenda of 
rigorous intervention research.
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