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Abstract: The purpose of this article is to report on the strategies of 

secondary mathematics pre-service teachers (PSTs) as they solved 

conceptually rich problems. Using the Structure of Observed Learning 

Outcomes by Biggs and C (1982) (SOLO) Taxonomy, 15 PSTs’ 

solutions (in groups of 3 or 4) were analyzed by a panel of three 

mathematics educators.  In addition, the authors studied questions 

posed by PSTs during their student teaching experiences through 

video analysis.  Questions were then categorized using Crespo’s 

criteria of problem posing. Results showed a significant majority of 

the problems posed were procedural while PSTs own problem 

solutions showed a lack of conceptual understanding and depth of 

knowledge. The authors found the SOLO Taxonomy, together with 

PSTs scores on the state licensure exam and Crespo’s (2003) problem 

posing practices criteria to be a useful combination of tools to explore 

connections between PSTs’ mathematical and pedagogical content 

knowledge. 

 

 

Introduction 

 

Jim Noble, Head of Mathematics at the International School of Toulouse (IST), France, 

developed the idea of ‘One Question Lessons’ while teaching mathematics to 11-18 year olds.  One 

Question Lessons consist of tasks that begin with the expression of a single, question that 

subsequently takes students on multi-stepped exploratory journeys (Noble, 2013b).  According to 

Noble (2013a), key elements of One Question Lessons include: 

● The end goal of the task (not the journey/task itself) has to be easily explained and 

understood.   

● The task has to draw people in and make them want to approach it.  As such, the task has to 

appear possible and achievable by all students and appeal to them. 

● There must be opportunities for students to make conjectures, challenge misconceptions and 

get feedback on their efforts straight away. 

● There must be opportunities to discover some fairly profound mathematics. (para. 2) 

Noble (2013a) illustrates his One Question Lessons framework through a task titled ‘Making 

Cones’, in which the nets of three-dimensional cones are constructed by hand given specific physical 
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requirements.  When managed productively, the One Question Lessons framework and Making 

Cones task provide a space for students to explore and develop meaning for relationships between 

properties of cones; reason with one another about what is the same or different, what is in 

proportion; and test their own conjectures along with their classmates’ (Noble, 2013a). 

This report describes how the One Question Lessons framework and Making Cones task 

were presented within the context of a pre-service secondary (grades 7-12 licensure) mathematics 

education class.  The activity was designed to demonstrate Skemp’s (1976) theory of relational and 

instrumental understanding, and provide pre-service teachers (PSTs) with an experience at posing 

problems that encourage relational understanding.  The purpose of the study was to examine PSTs’ 

thinking using the Structure of Observed Learning Outcomes by Biggs and Collis (1982) (SOLO 

taxonomy following their engagement with the activity.  Following this activity, during student 

teaching, PSTs were asked to develop (or find) and implement tasks that had the potential to engage 

their own students in relational understanding with a description of high and low demand tasks 

defined by Smith and Stein (2011).   

The study addressed the following research questions:  

1. When engaged in the Making Cones task, what levels of thinking did PSTs coincide with on 

the SOLO taxonomy? 

2. How might PSTs’ levels of thinking (as indicated on SOLO taxonomy) relate to their 

capacities to problem pose in their own classrooms?  

3. What other influences may contribute to PSTs’ capacities to problem pose during student 

teaching?  

 

 

Theoretical Framework 

 

In the United States, recent standards reforms (Board of Education Commonwealth of 

Virginia, 2016; National Governors Association Center for Best Practices & Council of Chief 

State School Officers, 2010) not only provide greater focus, coherence, and rigor regarding 

content, but also focus on providing students with opportunities to engage in mathematical sense 

making, reasoning, modeling, generalizing, and communicating.  According to The 

Mathematical Education of Teachers II (MET II) (Conference Board of Mathematical Sciences 

[CBMS], 2012), doing mathematics in ways consistent with such standards is “likely to be a 

new, and perhaps, alien experience for many teachers” (p. 11).  Therefore, MET II (CBMS, 

2012) recommends:  

All courses and professional development experiences for mathematics teachers 

should develop the habits of mind of a mathematical thinker and problem-solver, 

such as reasoning and explaining, modeling, seeing structure, and generalizing. 

Courses should also use the flexible, interactive styles of teaching that will 

enable teachers to develop these habits of mind in their students (CBMS, 2012, 

p. 19). 

Such flexible, interactive teaching styles that support the development of these habits of 

minds in students requires learning how to construct rich problems, analyze student responses, 

and manage activities in ways that promote student discourse, thinking, and reasoning (Crespo, 

2003).  Mathematics teacher preparation must play a significant role in providing mathematics 

PSTs with such experiences.  
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To address the research questions, the study employed: (1) Skemp’s (1976) theory on 

instrumental and relational understanding, (2) the SOLO taxonomy (Biggs & Collis, 1982), and (3) 

Crespo’s (2003) problem posing practices framework.  

 

 
Mathematical Understanding 

 

Skemp (1976) posited the existence of two types of mathematical understanding that 

could be generated by mathematics learning and teaching in schools: instrumental and relational.  

For Skemp (1976), instrumental understanding was the product of rote learning through rules and 

theorems and specific applications. Conversely, relational understanding was the product of a 

learner's personal involvement with mathematical objects, situations, problems, and ideas.   

At each stage in a relational learning cycle the learner is personally involved with the 

available data. The data are products of the learner's own investigations. In contrast, the data 

available in instrumental learning are given to the learner to memorize by some external source 

(usually the teacher, textbook, or computer).  Skemp (1976) believed many students possessed 

only instrumental understanding of numerous mathematical concepts, having a collection of 

unrelated procedures for retrieval rather than an appropriate conceptual schema.   

A significant portion of PSTs’ methods curriculum at this university involves examining 

and discussing Skemp’s (1976) seminal work of relational and instrumental understanding.  As 

such, Skemp’s theory was examined with PSTs as part of their participation in the study.  

Furthermore, PSTs were asked to develop (or find) and implement tasks they believed would 

engage their own students in relational understanding during student teaching. 

To provide an analysis of mathematical tasks that PSTs use as they plan their lessons and 

select problems, the authors required students to utilize Smith and colleagues’ (2008) “Thinking 

Through a Lesson Protocol” and Smith and Stein’s (2011) “Five Practices for Orchestrating 

Mathematical Discussions.”  Using these resources, PSTs were to implement the following 

criteria in designing tasks:  

• Lesson activities should provide opportunities for all students to be engaged in the 

exploration, discovery, application, practice, and/or discussion of the mathematical ideas 

in the lesson. Some lesson activities should provide opportunities for students to make 

sense of mathematical ideas, procedures, theorems, etc. 

• PST’s should justify that the cognitive demands of task are appropriate for achieving 

goals/objectives by giving attention to ensure the learning opportunities are 

developmentally appropriate. PST’s should use support their choice of tasks with 

appropriate outside resources. 

• The PST’s should use problem solving and provide solution strategies for the lesson 

task(s). They should identify possible student-strategies and how they connect to the 

mathematical goals/objectives for the lesson. Through this process, the PST’ should pay 

attention to students’ conceptual understanding and help students develop and test 

conjectures.   
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The SOLO Taxonomy 

 

The Structure of Observed Learning Outcomes (SOLO) was designed as an instrument 

for the evaluation of the quality of student responses to a problem-solving task (Biggs and Collis, 

(1982).  There are two main features in the SOLO Taxonomy: modes of thinking and levels of 

response.  SOLO’s modes of thinking (i.e., iconic, concrete-symbolic, formal) are similar to 

Bruner’s (1966) modes (or stages) of representation in that both develop successively in the 

learner but then remain simultaneously available (Pegg & Tall, 2005).   

The second main feature in SOLO Taxonomy which is pertinent to the current study, is 

the level of response, or the individual’s ability to respond with increasing sophistication to the 

task. Because the SOLO taxonomy describes levels of progressively complex understanding 

through five general stages that are intended to be relevant to all subjects within all disciplines 

and has been used by numerous studies (Olive, 1991), the authors deemed it an appropriate 

rubric for the Making Cones task. The level of response is similar to Askew, Rhodes, & 

William’s (1997) connectionist approach to teaching. This approach bases PSTs beliefs towards 

learning mathematics around the methods and strategies used to establish connections within the 

math. Teachers who follow a connectionist orientation are more likely to have students produce 

greater gains in their understanding than those who believe in discovery or transmission. In this 

practice PSTs go beyond teaching toward memorization by having students identify 

relationships, find connections, develop flexible mental strategies, and hold high expectations for 

success (Askew, Rhodes, & William, 1997).  

In SOLO, understanding is conceived as an increase in the number and complexity of 

connections students make as they progress from incompetence to expertise.  Each level is 

intended to encompass and transcend the previous level (Potter & Kustra, 2012).  

1. Pre-structural. In this first stage, the students do not really have prior knowledge to aid in 

their understanding of a topic. For example, the student may not engage in the task, they 

may give completely unassociated data, will not know the answer, may not understand 

the question, may provide irrelevant information, or just repeat something they’ve been 

told.  

2. Unistructural.  During this second stage, students may have limited knowledge on the 

topic or know just a few isolated facts. For example, the student can use one piece of 

information to respond to a task but does not see connections between ideas. They may 

apply memorization of ideas in a procedural and predetermined manner and provide 

facts/concept in isolation. 

3. Multistructural.  Progressing onto stage 3, students may know a few facts about the topic 

but still are unable to connect them together. For example, the student may use several 

pieces of information but does understand the organization and significance behind the 

ideas. Ideas are alienated from each other as they are concrete in nature. Student’s 

answers may provide several relevant facts or correctly identify characteristics of a 

phenomenon, but these facts are not integrated. 

4. Relational.  Moving toward a higher level of thinking, students in stage 4 are able to link 

information together and explain several ideas pertaining to a topic. For example, the 

student may integrate separate pieces of information to produce a viable solution to a 

task. Student’s answers provide explanations that relate and integrate relevant details. 

They may often express their answers in terms of abstract ideas with concrete facts.  
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Student may use prior knowledge to explain and provide context. (Note: this is not 

Skemp’s relational thinking)    

5. Extended Abstract.  In the final and most complex stage, students thinking is abstract. 

They are able to link many ideas together and connect them to larger concepts through 

reflection and evaluation. For example, the student can derive a general principle from 

the integrated data and apply it to new situations.  Student’s answers go a step further, 

applying reasoning, anticipating possibilities, making multiple connections, and 

incorporating (or devising) principles to apply knowledge to new situations. (Biggs & 

Collis, 1982). 

 

 
Crespo’s Problem Posing Practices Framework 

 

During student teaching, PSTs were asked to develop (or find and possibly modify) and 

tasks to implement which contained the potential to engage their own students in relational 

understanding.  Such tasks are often referred to as “rich” problems or tasks.  Brahier (2009) 

describes a rich problem as “non-routine and can be solved in a variety of ways” (p. 14).  For 

Swan (2005), a rich task (a) is accessible and extendable; (b) allows for decision making by the 

learner; (c) involves testing, explaining, proving, interpreting, and reflecting; (d) promotes 

communication and discussion; (e) encourages invention and originality; (f) encourages 

questions that focus on “what if” and “what if not”; and (g) is enjoyable and provides an 

opportunity for surprise.   

In analyzing the problem posing practices of elementary pre-service teachers, Crespo 

(2003) utilized a six-criteria framework which emerged through meta-analysis of existing 

research.  Table 1 is an adaptation of Crespo’s framework that was developed and utilized in the 

current study, including descriptions of problems, tasks, and associated support questions PSTs 

posed to their own students.  Such samples were part of the data corpus (e.g., lesson plans, video- 

and audio-recordings of lessons) PSTs were asked to collect as part of a required pre-service 

performance-based assessment during student teaching. 

 

Problem/Question Posing Practice Features of the practice 

Simplified Problems and Questions - Teacher makes adaptations that narrow mathematical scope of original 

version of problem and uses hints to lead students to the answer 

- Example: Teacher asks, “What’s 5x7? (When practicing how to factor)” 

Familiar Problems and Questions - Teacher poses problems that students already know the answer to for 

quick interpretation 

- Example: “Look at the graph, what is happening?”    

Blind Problems and Questions - Teacher poses problem without fully thinking of the solution pathway or 

understanding the mathematics 

- Example: “Do you want to use FOIL or the distributive property?”  

Unfamiliar Problems and Questions - Problems are less straight-forward and more multi-step, requiring more 

than speed and accuracy 
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- Example: “So what do you think is going to happen if we continue this 

pattern?” 

Challenging Problems and Questions - Problems introduce new ideas and challenge student understanding  

- Example: “How does this graph relate to the problem?” 

Cognition-Eliciting Problems and 

Questions  

- Problems require students to communicate their ideas and share/explain 

their thought process 

- Example: “How do you know that, what is your evidence?” 

Table 1: Criteria of Problem and Question Posing Practices - Adapted from Crespo (2003) 

 

The first three practices in Table 1 were categorized by the authors as “low-demand” 

problem solving practices, while the second three were categorized as “high-demand” as they 

required more in depth thinking on behalf of the student.    

 

 

Methodology 
Study Participants 

 

Participants consisted of 15 secondary pre-service teachers enrolled in a senior capstone 

course for integrated mathematics majors (grades 7-12 licensure) at a large Midwestern 

university.  Six participants were male, nine female.  At the time of the study, students had 

completed six semester hours of mathematics methods courses and at least 30 semester hours of 

college-level mathematics content courses.   

 

 
Making Cones Task 

 

 PSTs were given the following task to solve (as students of mathematics) in groups that were 

self-selected: “You are to make a drawing on 45.72 cm. x 60.96 cm. (18 in. x 24 in.) paper that will 

make a cone.  The radius is 10 cm. and the height is 24 cm.”   

Although the problem statement is clear and direct, the mathematics behind the question is 

more complex.  A productive strategy for students (i.e., PSTs) to employ is to imagine a constructed 

cone of radius 10 cm and height 24 cm, as illustrated in Figure 1. 

 

 
Figure 1: Illustration of constructed cone. 
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 If PSTs imagine cutting along the slant height (ℓ), cutting out the circular base of the cone, 

and opening up the remaining sector, they are left with the net illustrated in Figure 2.  

 

 
Figure 2:  Net of the cone. 

 

As illustrated in Figure 2, the net of the cone is made up a circle of radius r (the net of the 

base of the cone) and a sector of a circle of radius ℓ and central angle 𝜃 (constructed from the 

opened lateral surface of the cone).  As a cone, the arc of the sector of the net wraps around the 

circular base of the cone.  Therefore, arc length of sector = circumference of base of cone, or 2𝜋𝑟 =

ℓ𝜃.  Solving for 𝜃 yields: 𝜃 =
2𝜋𝑟

ℓ
 radians or 𝜃 =

2𝜋𝑟

ℓ
∙

360

2𝜋
= 360 (

𝑟

ℓ
) degrees.  In Figure 1, given the 

radius of the base of the cone (r = 10 cm) and the height of the cone (h = 24 cm), PSTs can utilize 

the Pythagorean theorem to calculate ℓ = √𝑟2 + ℎ2 = √102 + 242 = 26 cm.  PSTs will need to 

construct their drawings on the 45.72 cm x 60.96 cm paper so they have a circle of radius 10 cm 

(Area = 𝜋 ⋅ 102 ≈ 314.2 𝑐𝑚2) and a sector of a circle of radius ℓ = 26 cm (Area of sector = Area of 

lateral surface of cone = 𝜋𝑟ℓ = 𝜋 ⋅ 10 ∙ 26 ≈ 816.8 cm2).  Constructing this sector requires 𝜃 =

360 (
10

26
) = 138.5°. 

Additional relationships can be found by attempting to construct the cone from a circle of 

radius ℓ (Ranucci, 1990).  Not only are the inherent relationships in the Making Cones task essential 

in creating nets, they also demonstrate a model of the problem which can displayed as a table and 

operationalized in order to classify students’ levels on the SOLO Taxonomy.  

 

 

Data Analysis 

 

To answer the research questions, the authors first classified and investigated patterns 

among PSTs’ problem solving in groups using the SOLO taxonomy based on responses to the 

Making Cones task.  Next, the authors compared PSTs’ SOLO taxonomy levels with their levels 

of problem posing practices during student teaching.  
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Pre-service Teacher One Question Task 
 

  In order to produce contextualized SOLO descriptors and to categorize students' 

responses at each SOLO level for each task, it was necessary to: develop a comprehensive 

explanation to identify the structural complexity within which a range of possible responses 

might be exhibited, develop a descriptor for each SOLO category that could be operationalized 

for the purposes of categorizing students' responses in relation to the comprehensive explanation 

within each of the SOLO categories; and to identify an illustrative example from the student data 

for each SOLO category descriptor. The production of the comprehensive explanation involved a 

considerable amount of discussion around the following question: “How do secondary 

mathematics majors perform on one question type problems and how are they then expected to 

provide support to their students?” The attempt to answer this question involved an iterative 

dialogue: with research on secondary pre-service teachers’ knowledge of problem solving, the 

author’s experiences as teachers of secondary mathematics teachers and students’ responses.  

 Table 2 illustrates the analysis of the Making Cones task solved by the PSTs (as students 

of mathematics) in groups of 3 to 4.  The SOLO Taxonomy was used to analyze and categorized 

each group’s solution to identify the structural complexity in which the task was solved. 

 

SOLO 

Taxonomy 

Student Responses Evidence  

Prestructural Group 4: After cutting the net out, students (i.e., PSTs) realized 

this did not complete a net. They found it may be helpful to draw 

a 3-D view with numerical values. Students didn’t realize a net 

was asked for or did not think it was possible with the given 

information; they simply produced a drawing of an inverted cone.     

                             

Unistructural Group 3: This group responded by drawing a circle disjoined 

from the triangular section of the cone. No numerical values 

were given, only a pictorial representation was displayed. This 

does not imply students completely understood the relationship 

between the 3-dimensional cone and its’ net. Another condition 

of unistructural thought was the lack of coordination of the 

cone's surface by wrapping items around and cutting the excess 

of the cone’s lateral surface.  
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Multi- 

structural 

Group 2: Students gave a pictorial representation of the net of a 

cone with attached pieces. This group also considered the 

formulas for area of a circle, area of the net, and the diameter of 

the circle; and determined the diameter of the circle in the cone 

was equal to 10 (no unit given). 

Group 1: This group drew the net of a cone and gave the cone 

dimensions with numbers such as identifying the radius of the 

circle or base of the cone, labeling points on the lateral section of 

the cone as A, B, C, and D, and determining that the length from 

A to B was 31.4 (no unit). This was not described as it related to 

the circle and no parts were identified in length on the circle.  

 

In both groups, students used objects such as string, protractors, 

and rulers, to recognize the size and length of the triangle were 

related to the base of the cone and instead of a triangle, the shape 

needed was a sector of a circle. 

 

 

Relating 

(Note: this 

is not 

Skemp’s 

relational 

thinking) 

Students relate objects together using circumference proportions, 

sector area, and the Pythagorean Theorem. Students relate all 

content together and generalize beyond given numbers to 

demonstrate knowledge. No students (i.e., PSTs) used the 

Pythagorean theorem to identify sections of the cone or create the 

net of the cone. None of the PSTs identified all parts in detail 

relative to their measurements or connected between the lateral 

side and base of the cone.  

s 

 

See Figure 2 above 

Table 2: Analysis of Pre-service Teacher Answers to the Making Cones Task 

 

 
Categorization of Pre-service Teachers Problem Posing Practices 

 

The authors used descriptive qualitative methods to analyze the problems posed by PSTs 

(those who solved the Making Cones task) during student teaching.  Fifteen PSTs agreed to post 

videos of the implementation of at least one problem with their own students.  Each problem and 

supporting questions were coded by a panel of three university mathematics educators in terms 

of whether the problem or question met each of the criteria for problem-posing practices 

developed by Crespo (2003).  To ensure trustworthiness, the videos were examined multiple 

times to categorized the type of problems and questions posed by PSTs.  The categorization of 

PST’s group problem posing and question practices are presented in Table 3.  

 

Group  Simplified 

Problems and 

Questions 

Familiar 

Problems and 

Questions 

Blind 

Problems and 

Questions 

Unfamiliar 

Problems and 

Questions 

Challenging 

Problems and 

Questions 

Cognition-

Eliciting 

Problems and 

Questions 

Group 1 18% 53% 13% 0% 5% 11% 

Group 2 29% 23% 1% 0% 20% 27% 

Group 3 19% 35% 13% 10% 10% 13% 
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Group 4 27% 55% 5% 7% 1% 5% 

Group Avg. 23% 42% 8% 4% 9% 14% 

Table 3: Categorization of PST’s Problem and Question Posing Practices 

 

 
Additional Data Sources  

 

  Because connections between teachers’ mathematics and pedagogical content knowledge 

when solving conceptually rich problems and their own problem and question posing abilities is 

complex (Authors, 2014), the authors examined other available data sources to identify potential 

patterns.  These sources included PSTs’ content knowledge of secondary mathematics (grades 7-

12) as measured by the state licensure exam, type of textbook used (reform or traditional), and 

demographics (school and student).  

The state licensure exam passing score is 220, the PST group averages in this study were 

as follows: Group 1: 271, Group 2: 235, Group 3: 234.5, and Group 4: 243; all participating 

PSTs that took the exam passed and 2 PSTs have not taken the exam.  This is a 4 ½ hour exam 

comprised of 150 problems focusing on the areas of number, geometry, algebraic operations, 

data and probability, and calculus.  Table 4 below indicates: (1) the percentage of low level 

problems and associated support questions each PST asked during their video recorded lesson, 

(2) whether PST was located in a middle (MS, grades 6-8) or high school (HS, grades 9-12), (3) 

whether PST used a textbook that was traditional or conceptual (T or C), (4) the type of school 

district (suburban, urban, or rural) each PST was placed during student teaching, and (5) if more 

than one-third of PST’s students were identified with math-specific learning disabilities (yes or 

no).   

 

Students 

in each 

group  

% of low level 

problems 

Middle (M) /High 

School (HS) 

Traditional (T) or 

Conceptual (C) 

Textbook 

School 

Demographic 

Math-specific 

learning disabilities 

(n > 1/3 class) 

1A 100 M T Suburban N 

1B 67 HS C Suburban N 

1C 73 HS C Suburban Y 

1D 100 HS T Urban N 

2A 63 M T Suburban Y 

2B 60 M T Suburban N 

2C 91 M C Suburban Y 

2D 0 HS C Suburban N 

3A 100 HS T Urban Y 
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3B 38 M C Suburban N 

3C 100 HS T Rural Y 

3D 30 HS T Suburban N 

4A 84 HS T Suburban N 

4B 92 M T Suburban Y 

4C 84 HS T Rural N 

Table 4: Problem Classification and School, Class, and Student Demographics 

 

 

Findings 

 

Only 3 PSTs (2D, 3B, and 3D) used a larger amount of high demand problems/question 

posing practices (i.e., problems and associated support questions) during their instruction.  The 

remaining 12 PSTs relied solely on low demand problem-posing practice (>50% of questions 

asked), neglecting students’ capacities for higher-order thinking.  For example, in one urban 

Algebra I class, during a lesson on factoring polynomials, a PST (3A) asked questions such as 

“What is 3 x 5?” or “What are the factors of 6 and 12?”  In spite of PSTs’ exposure to higher-

order problems and tasks throughout two semesters of mathematics methods courses, the 

majority of PSTs focused on asking low level problems and support questions.  A number of 

studies align with these results, indicating teachers tend to ask more low demand than high 

demand questions (e.g., Long & Sato, 1983; Yang, 2006).  

 

 
Comparing PSTs’ SOLO Taxonomy Levels with their Problem Posing Practice Categories 

 

Groups 1 and 2 performed at the Multistructural Level on the SOLO Taxonomy (highest 

level of participating PSTs as defined in Table 2).  Students comprising Group 3 had the lowest 

group average on the state licensure exam (234.5), while students in Group 2 had the second 

lowest group average (235) of the four PST groups. Although one would assume that the highest 

average mathematics score on the state licensure exam should result in a higher-level thought 

process when problem solving, this was not the case.  In addition, although Group 1 performed at 

the highest level on the SOLO Taxonomy (Multistructural Level) and had the highest group 

average on the state licensure exam, they asked the second fewest high demand problems and 

supporting questions (Table 4). 

Group 3 performed at the Unistructural Level on the SOLO Taxonomy (middle level of 

participating PSTs) and students comprising Group 3 had the lowest group average on the state 

licensure exam.  Although Group 3 performed at a low level on the SOLO Taxonomy 

(Unistructural Level) and had the lowest group average on the state licensure exam, they asked 

the largest percent of high demand problems and supporting questions.  These findings do not 

align well with existing research which has found that teachers' content-specific knowledge, 

beliefs, and attitudes are generally assumed to influence students' learning outcomes (De Corte, 
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Greer, & Verschaffel, 1996; Fennema & Loef, 1992; Shulman, 1986; Verschaffel, Greer, & De 

Corte, 2000). 

 

 
Other Influences to Pre-service Teachers’ Problem Posing Practices 

School Demographics 

 

In comparing the types of support questions PSTs posed, the authors found the highest 

percentage of low level questions in Rural and Urban demographic settings.  Only 3 of the 15 

pre-service teachers asked more than 50% of their classroom questions at a higher level.  In 

urban districts, both teachers only asked low level questions during teaching segment.  The two 

student teachers in the rural districts asked more low level questions (>60%).  All three of the 

teachers who asked a greater number of higher level questions were in suburban districts.  

Ladson-Billings (1995) analyzed characteristics and qualities of culturally relevant teaching.  

According to Ladson-Billings (1995), culturally relevant teachers’ conceptions or beliefs about 

knowledge includes knowledge that “is not static; it is shared, recycled, and constructed” (p. 

481). 

Ladson-Billings’ (1995) criteria are in stark contrast to the knowledge exhibited by PSTs 

in this study; the knowledge of PSTs placed in urban and rural schools was static.  It did not 

motivate students and instead kept students at a level focused on low level problems and support 

questions.  

 

 
Student Teaching Demographics 

 

 Six PSTs taught at middle schools, while nine taught at high schools. Three of the six 

PSTs in middle school placements and three of the nine PSTs in high school placements had 

classes where more than ⅓ of the students were identified with math-specific learning 

disabilities.  Five out of the six middle school PSTs asked more low level problems and 

questions (>50% of the time) while all 3 out of the 3 middle school teachers within the classes 

with higher populations of inclusion students asked low level problems and questions.  Seven of 

the nine high school PSTs asked low level problems and questions (>50% of the time), while all 

3 of the 3 PSTs in those classes with higher levels of inclusion asked low level problems and 

questions (> 50% of the time).  This information indicates the PSTs with more students 

identified with learning disabilities asked a higher percentage of lower level questions than their 

counterparts (middle or high school level). 

 

 
Mentors 

 

PSTs in this study had limited influence over their instruction and the curriculum they 

used because of their cooperating teacher (i.e., mentor), school and district mandates.  The 

school may have required a specific curriculum for all teachers to follow not allowing PSTs 

much freedom.  Since this was not the PST’s classroom, the rules and organization of the room, 

which influence the culture of the classroom, had already been in place.  Therefore, students may 
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have been comfortable with low level problems or questions, and less-demanding expectations 

already put in place by the cooperating teacher that were unable to be changed by the PSTs.  

 

 

Conclusion 

 

The authors found the SOLO Taxonomy, together with PSTs scores on the state licensure 

exam and Crespo’s (2003) problem posing practices criteria to be a useful combination of tools to 

explore connections between PSTs’ mathematics and pedagogical content knowledge. One 

conclusion that can be draw from this study is that even after receiving extensive coursework 

emphasizing higher-order problem posing and associated support questions, PSTs had to follow the 

multiple variables or constraints at work in their cooperating teacher’s classroom.  These constraints 

may have contributed to their ways of operating in the classroom.  A second conclusion that can be 

drawn from this study is that the level of PSTs problem solving does not directly relate to the level 

of questions they ask in a classroom setting. This can be influenced by the environment (Rural, 

Suburban, Urban), the cooperating teacher’s rules and expectations what were pre-established, the 

school atmosphere (curriculum map, expectations, textbooks, etc.), class structure (gifted, IEPs, full-

inclusion, etc.), and PST’s prior beliefs on teaching and learning.  

 SOLO Taxonomy evaluations and analyses of PSTs’ student teaching data corpus (e.g., 

lesson plans, video- and audio-recordings of lessons) can benefit teacher educators and programs 

for assessment and diagnosis purposes.  Further research can support this study by investigating: 

(1) connections between teachers’ own capacities to problem solve and their problem and 

question posing abilities and (2) connections between teachers’ mathematics and pedagogical 

content knowledge. Additional One Question Lesson activities, similar to the Making Cones 

task, and corresponding SOLO Taxonomy evaluations might lead to better alignment between 

PSTs’ levels of thinking (as indicated on SOLO taxonomy) and their scores on the state licensure 

exam or indicate areas where such rich tasks are not aligned with state exams.   
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