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Abstract 

To identify the ways teachers and educational systems can improve learning, researchers need to make causal 

inferences. Analyses of existing datasets play an important role in detecting causal patterns, but conducting 

experiments also plays an indispensable role in this research. In this article, we advocate for experiments to be 

embedded in real educational contexts, allowing researchers to test whether interventions such as a learning activity, 

new technology, or advising strategy elicit reliable improvements in authentic student behaviours and educational 

outcomes. Embedded experiments, wherein theoretically relevant variables are systematically manipulated in real 

learning contexts, carry strong benefits for making causal inferences, particularly when allied with the data-rich 

resources of contemporary e-learning environments. Toward this goal, we offer a field guide to embedded 

experimentation, reviewing experimental design choices, addressing ethical concerns, discussing the importance of 

involving teachers, and reviewing how interventions can be deployed in a variety of contexts, at a range of scales. 

Causal inference is a critical component of a field that aims to improve student learning; including experimentation 

alongside analyses of existing data in learning analytics is the most compelling way to test causal claims. 

Notes for Practice 

• Learning Analytics, as a field, should ultimately strive to make strong causal inferences, identifying the 
specific interventions that optimize and improve learning. 

• The most straightforward and compelling research method for supporting causal inference is 
experimentation. 

• In this article, we advocate for embedding experiments within pre-existing learning contexts, in order 
to improve the strength of causal claims in learning analytics, and also to close the research/practice 
loop. 

• We review practical matters in the design and deployment of embedded experiments and highlight the 
benefits of including experimentation in the learning analytics toolkit. 
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1. Causality in Learning Analytics 

Learning analytics, as a field, is universally defined with a specific purpose in mind: optimizing and improving student 

learning. Towards this goal, research in learning analytics should not only explain learning processes within our educational 

systems, but should also bridge the research and practice gap to produce “actionable intelligence” (Norris, Baer, Pugliese, & 

Lefrere, 2008; Arnold, 2010; Elias, 2011; Clow, 2012, 2013) — developing systems, predictions, interventions, or insights to 

improve outcomes in authentic learning environments. As members of a learning analytics research community, we should 

aim to make strong, actionable, causal inferences: “my research suggests that if you do this, student outcomes will improve.” 
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Although a key goal of learning analytics is to ultimately make causal inferences, the conventional methods of learning 

analytics have excluded standard research tools for supporting such inferences. Until recently, most characterizations of 

learning analytics research methods were limited to observation of student data generated from real educational systems (Cope 

& Kalantzis, 2015b), with inferences gleaned primarily from statistical modelling, visualizations, and dashboards based on 

these extant data resources (Baker & Yacef, 2009; Bienkowski, Feng, & Means, 2012; Chatti, Dyckhoff, Schroeder, & Thüs, 

2012; Siemens, 2012, 2013; Dietz-Uhler & Hurn, 2013; Khalil & Ebner, 2015; for a constructive critique of these 

characterizations, see Lodge & Corrin, 2017). The booming availability of large datasets, offering the ability to quickly search 

and summarize records across an entire student population’s educational landscape, created enticing new research 

opportunities, typically emphasizing the discovery of relationships using exploratory data analysis (Enyon, 2013; Baker & 

Inventado, 2014) and predictive models of future outcomes (Macfadyen & Dawson, 2010). These analyses can reveal important 

and useful relationships that have previously been completely unobservable. But why stop there? 

We suggest there is something missing, an epistemological gap, in the conventional view of the learning analytics toolkit. 

Analyses of existing datasets can play an important role in detecting and discovering causal patterns, but an indispensable 

aspect of this research, if we truly aim to create reliable actionable intelligence, is the conduct of experiments. In addition to 

harnessing data traces, learning analytics should rigorously explore ways of manipulating these traces, conducting experiments 

to evaluate an action’s effect on intended outcomes. 

We are not the first to voice this argument. Developing Kolb’s (1984) theoretical work, Clow (2012) prominently asserted 

that, once learning analytics produces actionable intelligence, a critical next step is to develop this insight into an intervention, 

actively experimenting to examine whether an action causes a change in learner behaviour (see also Koedinger, Stamper, 

McLaughlin, & Nixon, 2013). Similarly, Reich (2015) argued that, without experimental intervention research, the causal links 

between aspects of course design and student performance are unclear. Some have also recently noted that online courses, in 

particular, provide researchers with the opportunity to easily implement experiments that clarify the relationship between 

design choices and student achievement (Williams & Williams, 2013), as well as addressing broader questions about 

educational practices (Kizilcec & Brooks, 2017). 

The benefit of experimentation is that it represents the single most persuasive way to support a causal inference (Shadish, 

Campbell, & Cook, 2002). This is because, in an experiment, exposure to a causal antecedent (a learning activity, a new 

technology, an advising strategy, etc.) is manipulated by the researcher, enabling direct assessment of whether some 

consequence (e.g., a learning outcome) can be causally attributed to the specific change in treatment. The hallmark of an 

experiment is that the unit under observation (a student, a teacher, a class, etc.) should be randomly assigned to different 

conditions. In this way, there should be no differences between treatment groups other than the experimental treatment itself. 

Nevertheless, experimenters should be sensitive to the possibility that some consequential difference other than the 

treatment could be lurking between randomly assigned comparison groups. Statistical analyses are used, in part, to quantify 

the likelihood of this error, and the possibility of imbalance can be minimized by using large samples and only accepting results 

that meet conservative statistical thresholds. Additional methods for randomly assigning treatments to subgroups within the 

sample (e.g., blocking; Higgins, Sävje, & Sekhon, 2016), or repeating random assignment until balance is achieved on pre-

specified dimensions (rerandomization; Morgan & Rubin, 2012) may further mitigate the possibility of imbalance. These may 

be uniquely appropriate techniques in learning analytics, where researchers typically have more background data on research 

subjects than in other fields. Alternatively, a more common approach would be to include model-based estimators (e.g., 

regression adjustments) to control for other variables that might produce imbalance in the comparison groups. None of these 

techniques fully eliminates the possibility of error in random assignment, but with appropriate design and analysis choices, 

experimenters can minimize this risk. 

In total, evidence from an experiment satisfies the strong requirements of causal inference by demonstrating that changes 

in treatment modify an outcome in a specific direction (ruling out reverse causality) while minimizing (by randomization and 

other methods) the possibility that some other factor caused changes in the outcome. 

It bears mention that these conditions might also be satisfied (to some degree) using quasi-experimental or even non-

experimental methods. Particularly when taking into account the temporal ordering of variables and causally relevant 

background variables, some observational analyses are able to provide distinguishing evidence for causal relationships over 

mere covariance (Pearl & Verma, 1995; Spirtes, Glymour, & Scheines, 2000; Russo, 2010; Murnane & Willett, 2010; Kumar, 

Clemens, & Harris, 2015). As Tufte (2003) pronounced, “Correlation is not causation, but it sure is a hint” (p. 4). Our goal is 

not to suggest that experimentation is the only way to offer empirical support for a causal claim or to suggest that it is infallible 

(Imai, King, & Stuart, 2008), but to assert that it is a uniquely powerful tool when assessing the effect of an intervention — 

particularly so, considering the goals of learning analytics and educational research in general (US Department of Education, 

2016, 2017). 
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This assertion is not without historical controversy in the broader study of teaching and learning (Angrist, 2004). For 

example, theorists have questioned whether causality is a meaningful theoretical construct in education (e.g., Maxwell, 2004), 

whether control is possible in an educational setting (e.g., Barab & Squire, 2004), and whether it is feasible to identify 

individual causal relationships for complex problems in education (e.g., Morrison & van der Werf, 2016). These are reasonable 

concerns (which similarly apply to descriptive and correlational work), and programs of experimental research in learning 

analytics should certainly aim to make precise and meaningful theoretical claims (Wise & Shaffer, 2015), should utilize 

research implementations that have external validity (Lockyer, Heathcote, & Dawson, 2013), and should be sensitive to the 

complexity of educational systems (Koedinger, Booth, & Klahr, 2013). Experimentation that includes these features can be 

difficult to implement and is not always possible. However, the challenges of conducting experiments in education do not 

justify ignoring the epistemological value of experiments in education. 

Even beyond providing strong evidence for a causal relationship, experiments can also help by pinpointing the precise 

conditions under which an outcome should be observed. As such, the details of an experiment can help researchers evaluate 

whether a causal relationship should generalize to new situations. It is likely that additional variables (such as learner 

demographics, the educational context, or the nuances of the situation) will moderate the effect of a treatment. The “mileage” 

of any intervention may vary between different situations, and controlled experiments can help prevent overgeneralization by 

providing clear estimates of a causal effect within a specific context (e.g., Kizilcec & Cohen, 2017). For these reasons, we see 

tremendous promise for the field of learning analytics researchers deploying experiments in a diversity of learning contexts. 

Why, then, has experimentation only recently started to appear in catalogues of the methods of learning analytics? To our 

knowledge, no learning analytics researcher has ever voiced an argument against experimentation, but we can postulate a few 

concerns. Perhaps experiments, traditionally associated with laboratories, rigour, and control, seem incompatible with the 

opportunities afforded by the surge in big, messy, authentic student data. Perhaps the act of manipulating exposure to different 

educational interventions seems unethical in real classes. Perhaps an experimental operationalization of a learning treatment 

would be considered artificial or unrepresentative of natural instruction. And perhaps a randomly assigned learning intervention 

seems too challenging to implement at scale. 

These hurdles are not insurmountable, and the benefits of explicitly including experimentation in the “learning analytics 

cycle” (Clow, 2012) greatly outweigh the challenges. In this article, we address each of these postulated challenges, and 

ultimately provide a framework to expand the scope of learning analytics research methodology, from pure extant data mining 

to the inclusion of embedded experimental research that aims to manipulate student outcomes and draw stronger causal 

inferences. 

2. Embedded Experiments 

Thus far, we have argued for the unique inferential power that experimental interventions have for determining causality, and 

that they should be a major component in the learning analytic toolkit. Assuming the acceptance of this general claim, a logical 

next question becomes: What would these experiments look like? 

Consistent with the focus of learning analytics on measuring learner data within educational contexts such as classrooms, 

museums, online tutoring, and on-the-job training, we would like to advocate for embedded experimentation. By embedded 

experimentation we mean experiments conducted within pre-existing educational contexts, including both formal classrooms 

and informal learning settings, including both schools and workplace environments, and making use of authentic learning 

materials and assessment instruments that are relevant to the pre-existing learning goals. 

The notion of embedded experimentation shares considerable common ground with proposals for in vivo experiments 

(Koedinger, Corbett, & Perfetti, 2012; Koedinger et al., 2013a), but we favour the “embedded experimentation” term because 

it emphasizes that learning is a major activity across the lifespan, in both educational and workplace training contexts, and in 

both informal and formal settings. Diverse and elaborate institutions have been established to foster learning, including 

classrooms, museums, studios, workshops, special interest groups, and online tutorials, and these offer unique opportunities to 

study societally relevant learning. By bringing experimentation to these contexts — by embedding experiments in these pre-

existing institutions — we can assure that the results are pertinent to at least some naturally occurring situations, and we can 

take advantage of the learning infrastructures that have been created with much expense and time. While learning in both 

research laboratories and university classrooms is arguably in vivo in that it is taking place in an intact, whole organism, only 

learning in university classrooms would count as embedded learning. Embedded learning focuses on studying learning in the 

“wild” — in the natural, albeit socially constructed contexts in which it has developed on its own, independent of researchers’ 

theories and paradigms. 
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To many ears, the very phrase “embedded experimentation” may sound like an oxymoron. Experiments may be assumed 

to be what researchers do within laboratory contexts: Learners are brought into a laboratory, settled into their own private 

cubicle, presented with artificial materials to be learned, and subsequently tested on their acquisition and generalization of 

these materials. Although this is the dominant paradigm within cognitive psychology, there is also a long, if sometimes 

forgotten history of conducting learning experiments in pre-existing contexts outside of the psychology laboratory (Bryan & 

Harter, 1899; Hall, 1891). 

Embedding experiments within already established learning contexts has several advantages over laboratory investigations. 

First, learners are less likely to be self-conscious and more likely to use the kinds of learning strategies that they normally 

employ. Laboratories are unfamiliar environments that almost inevitably put the learner at a disadvantage in terms of authority, 

control, and comfort. Second, if a researcher wants to better understand likely learning outcomes in a specific context, it is 

wise to study them within that context. There have been many well-documented cases in which learning processes and 

outcomes differ profoundly across cultures, schools, and contexts (see Medin & Bang, 2014). Third, the archetype of the 

solitary learner acquiring information in a generic context is never, in fact, realized (Greeno et al., 1998). Learning is always 

situated in a context, and whatever learning takes place is always an interaction between the learner and their context. 

Embedding experiments within those contexts allows a researcher to understand how an intervention affects the broader, 

distributed system of learning. For example, an intervention that encourages students in a class to talk to their peers about the 

course material may improve not only their own understanding, but the understanding of their peers as well (Crouch & Mazur, 

2001). These indirect benefits would only be discoverable when the peer-instruction intervention is deployed in the context of 

a course complete with other students, and not when the students are isolated in their own laboratory cubicles. 

The core characteristic of an embedded experiment is that some learners learn with one form of the intervention while other 

learners learn with another form of the intervention. This comparison between interventions may or may not resemble 

traditional laboratory experiments in which compared conditions are selected to differ in only one way. By virtue of this 

flexibility in choosing apt comparisons, we are more optimistic about the feasibility of conducting genuine experiments in 

embedded contexts than others who have emphasized the expense and difficulty in deploying randomized control trials, or 

RCTs (see Sullivan, 2011). Our optimism stems from an open, ecumenical stance towards experimental design. Different 

experimental designs are appropriate for different contexts, and if one permits oneself flexibility in terms of design choices, 

then one can usually find an embedded experimental design that warrants qualitatively stronger causal inference than is possible 

without intervening on the educational system (Pearl, 2000). Our optimism also stems from the surging availability of online 

data traces in contemporary educational systems; an experiment that randomly assigns different versions of an online 

homework activity can yield detailed behavioural data on-par with what had previously only been possible in a laboratory with 

specialized software (Cope & Kalantzis, 2015a). 

One important design consideration concerns the choice of the treatment conditions to compare. For the purposes of 

isolating a key contributing factor in a learning context, establishing very similar groups that differ only on that factor is 

desirable. By keeping the materials and the student population constant across conditions, differences between even subtly 

different experimental conditions can be detected that would otherwise be missed. For example, Roediger, Agarwal, McDaniel, 

and McDermott (2011) conducted a series of embedded experiments to compare the benefit of frequent quizzing with the 

benefit of re-reading. For the study, the authors selected a subset of different materials covered in the students’ curricula and 

normal class activities to be included in the study. Pre-test and post-test measures were specifically created for these materials 

and different materials were assigned to be quizzed or re-read for different individual participants (i.e., which subset of 

materials were re-read or quizzed varied across students). This strategy of designing minimally contrastive conditions is 

particularly useful when: 1) a researcher can identify and manipulate a key factor governing learning that is likely to arise in 

many different learning contexts, 2) the choices of factor levels (i.e., quizzed vs re-read for the factor “study type”) along 

different factors (i.e., curriculum topic) are at least partially independent of each other, and 3) the difference in learning 

outcome likely to be found for different factor levels is small-to-moderate and may be swamped by variation along many other 

factors. 

While minimally contrastive interventions are valuable for isolating the effect of a single contributing factor, they are by 

no means the only game in town, and other experimental designs are better in other contexts. One alternative, oftentimes 

effectively employed after several influential minimally contrastive interventions have been identified, is to compare a 

condition in which all empirically favourable levels of factors are combined on a “Dream Team” package of pedagogical 

changes and compared to a condition in which neutral or status quo levels of these factors are combined. A good example of 

this strategy was adopted by the National Research & Development Center on Cognition & Mathematics Instruction1 in their 

                                                           
1 https://www.iesmathcenter.org 
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effort to create an improved mathematics textbook by applying established principles of the cognitive science of learning 

(Booth et al., 2017). Although this approach — contrary to the minimal contrastive approach — does not allow a single factor 

to be unambiguously identified as impacting learning outcomes, it offers the countervailing advantage of determining whether 

a set of independent design decisions complement each other when combined so that the entire system confers pedagogical 

benefits. Furthermore, the “Dream Team” condition may often show large, statistically robust benefits even when each of the 

factors has only a small effect size. If the package of changes does show a robust benefit, then subsequent experiments 

employing minimally contrastive interventions can be deployed to isolate the most potent ingredients of the composite 

intervention. 

Another possible way to choose the interventions to compare is inspired by the notion of “pragmatic trials” in medicine. 

Contrasted with “explanatory trials” designed to test if and how an intervention confers medical benefits compared to placebo 

controls using RCT, pragmatic trials investigate whether an intervention confers benefits in real life contexts compared to other 

viable alternatives (Patsopoulos, 2011). For example, in testing whether liposuction is an efficacious treatment for obesity, 

comparing its effects to those produced by putting patients on a regular schedule of exercise would count as a pragmatic trial. 

These strategies for treating obesity differ in a variety of important ways, and for that reason, even if one strategy, say exercise, 

is clearly superior to the other, one still would not know whether this is because it requires the active involvement of the patient, 

does not require invasive surgery, is persistent, or some other factor. Still, if one is a doctor trying to devise a sensible long-

term policy for treating patients, the results from this pragmatic trial may be exactly what one is looking for. Likewise, teachers 

trying to choose between different curricula, tutoring systems, or textbooks may simply need an experimental “cook off” 

comparison of some of the most prime facie plausible possibilities, testing whether one reasonable instructional design is better 

than another. An example of this type of approach to embedded experimentation is the study conducted by Kirchoff, Delaney, 

Horton, and Dellinger-Johnston (2014) to test the efficacy of a computer-based perceptual training intervention. The authors 

tested whether training software aimed at improving student recognition of plants (that incorporated several design features 

known to benefit perceptual training) would improve student learning in a plant systematics course. To this end, they compared 

learning outcomes when students used the software and when they used status quo classroom practices. Although this study 

does not allow one to determine which feature(s) of the software contribute to improved performance, the results do suggest 

that perceptual training can contribute to improved conceptual learning. 

One advantage of embedded over laboratory experiments is that they encourage researchers to consider comparing 

interventions that make sense in real world contexts. For example, cognitive psychologists studying concept learning in the 

laboratory often make the assumption that learners must learn a set of concepts via pure induction — by seeing examples, 

attempting to categorize the examples, and then receiving feedback on the correctness of their categorization (Goldstone, 

Kersten, & Carvalho, 2017). Perhaps this assumption is a vestige from early animal learning research (in which it would be 

impossible to provide verbal instruction to a rat, for example, that shape but not brightness is relevant), but in educational 

contexts this represents a rather ineffective pedagogical strategy. By contrast, teachers, coaches, and parents have all found 

that even though wisdom cannot always be directly told to learners (Bransford, Franks, Vye, & Sherwood, 1989), well-crafted 

words, rules, and instructions can often be used to dramatically expedite both performance and understanding (Klahr & Nigam, 

2004; Ellis, 2005). Laboratory-focused researchers might end up comparing artificial learning conditions, such as perfect 

alternation between concepts to be learned (e.g., sequencing the examples of two concepts in the order ABABABAB) versus 

perfectly blocked concepts (e.g., AAAABBBB), without adequate acknowledgment of the possible irrelevance of this 

comparison for real world learning environments. Researchers engaging in embedded experimentation are more likely to 

consider interventions that generally conform to educational best practices such as well-timed instructions, informative 

feedback, verbal help, and hints. 

The general point is that choosing minimally contrastive interventions to compare is indeed an appropriate experimental 

design strategy, but it is not the only important consideration. It is also appropriate to consider the real-world relevance of the 

interventions to actual instructional practice, and the current state-of-the-art in teaching of the discipline. For example, if it is 

generally appreciated in a teaching community that simple re-reading is not an effective study method, then an experiment that 

compares re-reading as part of a group versus independent re-reading will risk being largely irrelevant to practice. The choice 

of interventions to compare should be based on their prevalence, demonstrated efficacy, and practicality, in addition to their 

precision in isolating single factors, depending on the research question. 

In sum, embedded experiments can support a variety of causal inferences. In some cases, the inference will be specific to 

a particular factor that affects learning outcomes. In other cases, the inference will be about a general approach or strategy 

without isolating the factor(s) responsible for the improvement. The nature of a particular embedded experiment will depend 

on the theoretical goals of the research and the practical constraints of the educational situation. 
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3. Ethical Considerations 

The notion of intentionally manipulating a learner’s educational experience for the purpose of research raises an important 

ethical question: What if condition B is reliably inferior to condition A? Has the research harmed the learners in this case? 

Before addressing this question specifically, consider for a moment that teachers, at all levels, are encouraged, if not expected, 

to experiment in their classrooms routinely. Experimenting with different instructional methods is viewed as a positive feature 

of teachers’ professional development and growth (Guskey & Huberman, 1995), where a teacher tries new things (on a full 

student cohort) and reflects on the efficacy of the new approach. Under this scheme, whether new tactics “work” can only be 

judged by subjective reflection, because there is no balanced comparison condition to make valid analytical contrasts. Thus, 

unbeknownst to them, students in practically all classrooms are participants in a vast enterprise of uncontrolled 

experimentation. This enterprise carries the same risk of inferior treatment as what we are proposing (and perhaps more, 

because negative effects might not be readily apparent to subjective reflection) but affords none of the benefits of causal 

inference. Perhaps ethical considerations do not hinge on whether experiments should be embedded in classrooms, but whether 

well-designed, controlled experiments should be embedded. 

At the most basic level, a manipulation that is known to negatively impact learning would be of no use as a comparison 

condition in an embedded study. Similarly, unnaturally deprived control conditions would be inappropriate for experimental 

contrast, as these would overestimate the manipulation’s performance against realistic alternatives (as discussed in the previous 

section). At the very least, an embedded experiment should contrast sensible design options, and should not administer a 

treatment known to or believed to potentially cause decrements in learning outcomes. 

Even so, a practical way to avoid any possibility that a group will experience disproportionate risk is to administer all 

treatments to all groups but staggered in time. A crossover or delayed treatment design allows one to compare a group that 

received a treatment with a group that has not yet received that treatment. For example, in examining the benefits of instruction 

using library archives, Krause (2010) embedded an experiment in an undergraduate history class: one half of the class initially 

received the experimental exposure to archival instruction, and the other half received the same instruction and assignments 

four weeks later. Incidentally, in addition to addressing potentially ethical issues, this approach might also improve the 

statistical and exploratory power of the study, potentially allowing replications within the same cohort (Heath, Kendzierski, & 

Borgida, 1982). 

Rather than avoiding risks (by balancing the different treatments within comparison groups), another option would be to 

simply minimize possible risks of different treatment. An embedded experiment could focus on a relatively small aspect of the 

course, so that any differences between groups are practically negligible for an individual student. For example, an intervention 

could be designed to only affect performance on just a few target questions on a single test, such as in the study we mentioned 

above testing the benefits of frequent quizzing (Roediger et al., 2011). One of the benefits of scale (see next section) is the 

opportunity to embed experiments with a very large number of students, making it possible to measure reliable differences in 

treatment, even with small effect sizes. With unknown consequences of treatment, it is best to keep modest aims when 

embedding an experiment in a real learning context. For example, in an embedded experiment including over 2,000 students, 

Carvalho, Braithwaite, de Leeuw, Motz, & Goldstone (2016) tested whether the way students choose to organize their study 

influenced their learning outcomes. The authors did this by choosing a single class topic (measures of central tendency) for 

their intervention and included only four test questions (on a single exam pertaining to that topic) as a post-test measure. The 

large sample allowed inferences to be drawn from a short intervention with a small effect size. 

How do the risks of embedded experimentation compare with laboratory experimentation? Arguably, generalizing from 

small-scale laboratory studies with limited samples carries a bigger potential of deploying detrimental interventions. Instead, 

by embedding experiments in authentic contexts, interventions are tested in natural settings using appropriate sample sizes that 

represent the diverse population of students. This means that embedded studies have the potential benefit of a more inclusive 

study setting capable of reaching populations not typically studied in the laboratory. 

In our view, with proper care as described above, this type of study risks no greater harm than any number of pedagogical 

decisions that teachers make every day. By working with teachers to create truly embedded studies, using appropriate tools 

and large-scale data collections, we believe the benefits to the research participants can be maximized. Under these terms, one 

might argue that conducting an experiment is more ethical than uncontrolled pilots in educational environments, particularly 

when one is uncertain about which of several plausible interventions to implement. If an intervention is worth doing, it’s worth 

systematically testing its effects against reasonable alternatives. By conducting an actual experiment on an intervention’s 

efficacy, its benefits will be more convincing to other researchers and teachers. We suggest there is risk in not conducting 

experiments: genuinely beneficial instructional innovations will be ignored if they are not supported by compelling, rigorous 

data. 
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4. Embedded Experiments at Scale 

It is possible to conduct embedded experiments at all scales. Whereas small scale “drop-in” studies that involve one small 

manipulation in a single classroom are common (Arnold et al., 2017; Butler, Marsh, Slavinsky, & Baraniuk, 2014), it is also 

possible to create carefully controlled studies embedded in educational contexts that span several classes, schools, populations, 

and geographical areas. For example, it is possible to perform the same experimental manipulation in different content areas 

(Cantor & Marsh, 2017), across different classes of the same course (Carvalho et al., 2016), in large-scale massive online 

courses (Chen, Demirci, Choi, & Pritchard, 2017; Zheng, Vogelsang, & Pinkwart, 2015; Kizilcec, Pérez-Sanagustín, & 

Maldonado, 2016; Williams & Williams, 2013), or across multiple schools (Fyfe, 2016; Koedinger & McLaughlin, 2016). 

One of the powers of embedded experimentation lies in combining it with institution-level data collection in the learning 

analytics tradition, commonly by using online learning platforms or massive courses (e.g., Renz, Hoffmann, Staubitz, & 

Meinel, 2016; Heffernan & Heffernan, 2014). Larger studies integrating across multiple populations will support more 

sensitive comparisons and/or more robust causal inferences. Moreover, when outcome measures are joined with existing 

institutional data, these can also provide better information about demographic factors that correlate with observed effects. 

Still, although large-scale embedded experiments have great potential, scaling up to a large coordinated experiment across 

multiple populations can present substantial challenges. 

The internet is an obvious tool for solving the scaling challenge. The most straightforward use of the internet is as a 

distribution platform. For example, the PhET Interactive Simulations project (Wieman, Adams, & Perkins, 2008) has 

developed dozens of simulations for teaching concepts in STEM fields. These simulations can be accessed by any teacher or 

researcher through a web browser, and used as part of a classroom activity or an embedded experiment (Finkelstein et al., 

2005; Moore, Herzog, & Perkins, 2013). Going a step further, the internet can also be used to create efficient coordination for 

collecting and aggregating data across multiple classrooms. One example of this approach is the ASSISTments platform 

(Heffernan & Heffernan, 2014). Researchers can use ASSISTments to develop student activities that contain a manipulation 

of one or more factors and collect data from students in classrooms. Teachers are (partially) involved in the process because 

they can choose which activities in ASSISTments are relevant for their class. 

A more flexible approach is to create custom experiment materials using web-friendly technology so that the experiment 

can be deployed online and yet retain the flexibility of traditional classroom activities. Increasingly, cognitive scientists are 

utilizing online tools to conduct experiments over the internet (Stewart, Chandler, & Paolacci, 2017), and several platforms 

have been created to make the development of custom online experiments easier (de Leeuw, 2015; Henninger, Mertens, 

Shevchenko, & Hillbig, 2017). Embedded experiments using online survey platforms (Day, Motz, & Goldstone, 2015), and 

custom JavaScript (Carvalho et al., 2016) highlight the utility of this approach. However, building an online experiment still 

requires a relatively burdensome amount of technical knowledge, and so is presently only available to researchers and teachers 

who themselves have expertise, or a substantial budget. 

Even when studies themselves are performed at small scale in isolation, open-science tools like DataShop (Koedinger et 

al., 2010) and LearnSphere2 — where data from embedded studies can be stored, shared, combined, and analyzed — can 

facilitate the kinds of statistical power that would be possible with large-scale experiments (e.g., Koedinger & McLaughlin, 

2016; Koedinger, Booth, & Klahr, 2013). These tools exemplify an alternative approach to scaling up embedded experiments: 

individual researchers and teachers conduct experiments at relatively small scales, but data collection is aggregated across 

research sites to realize the power of large-scale experimentation. In psychology, a series of ManyLabs projects have allowed 

researchers to pool resources in this way to investigate questions best answered with distributed large-scale experiments (Klein 

et al., 2014; Ebersole et al., 2016; Frank et al., 2017). 

In an ideal world, the technology for creating large-scale embeddable experiments would be user-friendly enough that 

teachers and researchers can use it as they would use any other piece of software to create classroom activities. For example, 

we imagine a world where a teacher could decide that she wants to compare different strategies for practicing factoring 

polynomials and is able to create a homework assignment that randomly assigns different strategies to students. Perhaps the 

teacher deploys this experiment in one or two classes of 30 students, finds the exercise to be generally useful, but the sample 

size too small to draw any robust conclusions. The teacher shares the materials with her colleagues, who do no additional work 

other than assigning the work to their students, perhaps by directing them to a website or a module in a learning management 

system. The data from multiple classes is then aggregated and made available for analysis using hierarchical models that take 

into account different levels of variability in this type of nested data (for example, independent variation in individual student 

knowledge, as well as classroom differences, teacher differences, etc.). 

                                                           
2 http://learnsphere.org/ 
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This scenario is certainly possible with today’s technology (Severance, Hanss, & Hardin, 2010), but it is neither easy nor 

commonplace to run embedded experiments. For this vision to become a reality, we need technology that enables highly 

customizable experiments and instructional materials, that is accessible to teachers and researchers without substantial 

additional training or expertise, and that can operate at any scale. Currently available options often have one or two of these 

features, but not all three. This, of course, does not mean that embedded experiments are not feasible with current technology, 

but rather that there is no universal solution yet. 

5. Involvement of Teachers 

An experiment involves comparing different treatment conditions, and considering that these treatments are, fundamentally, 

educational tools and interventions, teachers ought to be involved in the design and analysis of these embedded experiments. 

This may seem a blatantly obvious and unnecessary statement, seeing as how many learning analytics researchers are teachers 

ourselves. But in a field that has traditionally defined itself by analysis of second-hand observational data, a shift toward 

experimental manipulation within live learning settings requires additional involvement of teachers as content experts and as 

users in the areas being investigated. Specifically, we advocate for increased involvement of teachers in embedded experiments 

so that interventions are authentic and feasible. 

The results of an embedded experiment must be feasible in order to advance the goal of optimizing and improving learning. 

Just because an experiment is embedded in an authentic pre-existing learning environment does not mean that the experimental 

manipulation is useful. The results of a well-controlled experiment that pays money to real students for time spent studying, 

for example (see Fryer, 2011), would be inapplicable to the vast majority of learning environments, because they wouldn’t be 

able to afford to monetize self-regulated studying behaviours at scale. Effectively embedding an experiment in a learning 

environment means more than just administering treatment to real students; it also means developing a treatment that fits within 

the constraints of the learning environment. Teachers should be involved to help identify these constraints, ensuring that the 

experimental manipulation could be realistically implemented in similar environments, which is an important aspect of 

providing actionable intelligence. Again, an analogy can be drawn to medicine, where many practicing physicians are also 

involved in research, and the participation of doctors who are also seeing patients is a good thing, benefiting the clinicians, as 

well as the quality of the research (Lader et al., 2004; Rahman et al., 2011). It helps identify implementation challenges, and 

bottom-up ideas for treatments. The same is analogously true for teachers. 

Teachers, as content experts, can also crystalize and constrain our assumptions about how experimental interventions are 

appropriately embedded into our courses’ and institution’s educational goals (Gašević, Dawson, & Siemens, 2015; Bakharia 

et al., 2016). In this way, the involvement of experienced teachers will help learning analytics researchers avoid 

overgeneralization and build precision, tailoring experiments to address precise and practical questions about learning. This is 

important because different learning goals require different teaching moves; an experiment demonstrating a reliable effect in 

one domain may not generalize to other domains, and this is true at many levels of granularity (Gašević, Dawson, Rogers, & 

Gašević, 2016). For example, at a very coarse level, how we teach skills is not the same as how we teach declarative knowledge. 

At a very fine level, there may be uniquely useful models for teaching specific topics, like teaching fractions with pizza slices, 

or teaching the genetics of inheritance using Punnett Squares. Experimental interventions should be sensitive to these 

contingencies, avoiding manipulations that are orthogonal to the learning goals, while leveraging best-practice teaching 

approaches within the discipline so that the treatment is authentic and broadly feasible. 

For STEM educators, the contingencies of what “works” when teaching different forms of knowledge (e.g., computer 

science, biology, engineering, physics, etc.) have catalyzed the emergence of a new field — discipline-based educational 

research (DBER; National Research Council, 2012). Among the tenets of DBER is the view that disciplinary expertise is a 

core component of learning research, and that consideration of how students learn in different disciplines does not lead to the 

degradation of this research. After all, there is not a one-size-fits-all approach to education. Similarly, embedded experiments 

may aptly uncover different causal patterns in different learning contexts. As such, increasing teacher involvement in learning 

analytics experimentation can help yield more precise theories, hypotheses, and inferences. 

Another product of learning analytics (besides actionable knowledge of learning processes) may be institution-wide data-

driven dashboards and visualizations to inform teachers, advisors, and students themselves about learning behaviours and 

student properties (Govaerts, Verbert, Duval, & Pardo, 2012; Motz, Teague, & Shepard, 2015; Duval, 2011; Tervakari, Silius, 

Koro, Paukkeri, & Pirttila, 2014). In this mode, learning analytics is responsible for providing an analytical viewport to improve 

teaching and learning, enabling a user to become better-aware of student propensities (Verbert, Duval, Klerkx, Govaerts, & 

Santos, 2013). Such a lens might be useless if teachers were not involved in its development. For example, as Lockyer and 

colleagues (2013) observed, the value of learning management system (LMS) data to predict student success is limited to 
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academic disciplines that make heavier use of digital infrastructure for coursework. When the goal of learning analytics is to 

produce such a lens, teachers should be involved, both as designers of the system and as users in an embedded experiment 

pilot, so that the visualization tool is congruent with classroom practice, and so that the tool augments teaching and learning 

effectively (Plaisant, 2004). 

6. Conclusion 

The understanding that comes from embedded experiments at scale is an indispensable element of a research enterprise that 

aims to improve learning. It allows us not only to understand the causal relationship between an intervention and the learning 

outcomes, but also to uncover its limitations — when it might work differently in different implementations. By embedding 

experiments in real educational contexts, one can also uncover treatment effects that were not suggested by previous theory or 

by laboratory experimentation, and test predictions suggested by exploration of existing data. In the end, embedded large-scale 

experimentation should play a fundamental role in the learning analytics toolkit, bridging research and practice, and helping 

to identify better learning interventions, better models of learning, and better suggestions for teaching and advising practice. 

Acknowledgements 

The authors are grateful to two anonymous reviewers whose expert commentary elevated the quality of this article.  

Declaration of Conflicting Interest 

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. 

Funding 

Support for this work comes from the “Learning: Machines, Brains, and Children” Emerging Area of Research Initiative at 

Indiana University. 

REFERENCES 

Angrist, J. (2004). American education research changes tack. Oxford Review of Economic Policy, 20(2), 198–212. 

http://dx.doi.org/10.1093/oxrep/grh011 

Arnold, K. E. (2010). Signals: Applying academic analytics. EDUCAUSE Quarterly, 33(1). 

https://er.educause.edu/articles/2010/3/signals-applying-academic-analytics 

Arnold, K., Umanath, S., Thio, K., Reilly, W., McDaniel, M., & Marsh, E. (2017). Understanding the cognitive processes 

involved in writing to learn. Journal of Experimental Psychology: Applied, 23(2), 115–127. 

http://dx.doi.org/10.1037/xap0000119 

Baker, R., & Inventado, P. (2014). Educational data mining and learning analytics. In J. A. Larusson & B. White (Eds.), 

Learning Analytics: From Research to Practice (pp. 61–75). New York: Springer. http://dx.doi.org/10.1007/978-1-

4614-3305-7_4 

Baker, R., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of 

Educational Data Mining, 1(1), 3–17. https://jedm.educationaldatamining.org/index.php/JEDM/article/view/8 

Bakharia, A., Corrin, L., de Barba, P., Kennedy, G., Gašević, D., Mulder, R., Williams, D., Dawson, S., & Lockyer, L. 

(2016). A conceptual framework linking learning design with learning analytics. Proceedings of the 6th International 

Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 329–338). New 

York: ACM. http:dx.doi.org/10.1145/2883851.2883944 

Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. Journal of the Learning Sciences, 

13(1), 1–14. http://dx.doi.org/10.1207/s15327809jls1301_1 

Bienkowski, M., Feng, M., & Means, B. (2012). Enhancing teaching and learning through educational data mining and 

learning analytics: An issue brief. Washington, DC: US Department of Education, Office of Educational Technology. 

Booth, J., McGinn, K., Barbieri, C., Begolli, K., Chang, B., Miller-Cotto, D., Young, L., & Davenport, J. (2017). Evidence 

for cognitive science principles that impact learning in mathematics. In D. Geary, D. Bearch, R. Ochsendorf, & K. 

Koepke (Eds.), Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts (Vol. 3, pp. 297–

327). Cambridge, MA: Academic Press. 

Bransford, J. D., Franks, J. J., Vye, N. J., & Sherwood, R. D. (1989). New approaches to instruction: Because wisdom can’t 

be told. In S. Vosniadou & A. Ortony (Eds.), Similarity and Analogical Reasoning (pp. 470–497). New York: 

Cambridge University Press. 

Bryan, W., & Harter, N. (1899). Studies on the telegraphic language: The acquisition of a hierarchy of habits. Psychological 

http://dx.doi.org/10.1093/oxrep/grh011
https://er.educause.edu/articles/2010/3/signals-applying-academic-analytics
http://dx.doi.org/10.1037/xap0000119
http://dx.doi.org/10.1007/978-1-4614-3305-7_4
http://dx.doi.org/10.1007/978-1-4614-3305-7_4
https://jedm.educationaldatamining.org/index.php/JEDM/article/view/8
http://dx.doi.org/10.1145/2883851.2883944
http://dx.doi.org/10.1207/s15327809jls1301_1


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 56 

Review, 6(4), 345–375. http://dx.doi.org/10.1037/h0073117 

Butler, A., Marsh, E., Slavinsky, J., & Baraniuk, R. (2014). Integrating cognitive science and technology improves learning 

in a STEM classroom. Educational Psychology Review, 26. http://dx.doi.org/10.1007/s10648-014-9256-4 

Cantor, A., & Marsh, E. (2017). Expertise effects in the Moses illusion: Detecting contradictions with stored knowledge. 

Memory, 25(2), 220–230. http://dx.doi.org/10.1080/09658211.2016.1152377 

Carvalho, P., Braithwaite, D., de Leeuw, J., Motz, B., & Goldstone, R. (2016). An in vivo study of self-regulated study 

sequencing in introductory psychology courses. PLOS ONE, 11(3), e0152115. 

http://dx.doi.org/10.1371/journal.pone.0152115 

Chatti, M., Dyckhoff, A., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal 

of Technology Enhanced Learning, 4(5/6), 318–331. http://dx.doi.org/10.1504/ijtel.2012.051815 

Chen, Z., Demirci, N., Choi, Y.-J., & Pritchard, D. (2017). To draw or not to draw? Examining the necessity of problem 

diagrams using massive open online course experiments. Physical Review Physics Education Research, 13, 010110. 

http://dx.doi.org/10.1103/PhysRevPhysEducRes.13.010110 

Clow, D. (2012). The learning analytics cycle: Closing the loop effectively. Proceedings of the 2nd International Conference 

on Learning Analytics and Knowledge (LAK ʼ12), 29 April–2 May 2012, Vancouver, BC, Canada (pp. 134–138). New 

York: ACM. http://dx.doi.org/10.1145/2330601.2330636 

Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683–695. 

http://dx.doi.org/10.1080/13562517.2013.827653 

Cope, B., & Kalantzis, M. (2015a). Sources of evidence-of-learning: Learning and assessment in the era of big data. Open 

Review of Educational Research, 2(1), 194–217. http://dx.doi.org/10.1080/23265507.2015.1074869 

Cope, B., & Kalantzis, M. (2015b). Interpreting evidence-of-learning: Educational research in the era of big data. Open 

Review of Educational Research, 2(1), 218–239. http://dx.doi.org/10.1080/23265507.2015.1074870 

Crouch, C., & Mazur, E. (2001). Peer instruction: Ten years of experience and results. American Journal of Physics, 69, 

970–977. http://dx.doi.org/10.1119/1.1374249 

Day, S., Motz, B., & Goldstone, R. (2015). The cognitive costs of context: The effects of concreteness and immersiveness in 

instructional examples. Frontiers in Psychology, 6, 1876. http://dx.doi.org/10.3389/fpsyg.2015.01876 

de Leeuw, J. R. (2015). jsPsych: a JavaScript library for creating behavioral experiments in a Web browser. Behavior 

Research Methods, 47(1), 1–12. http://dx.doi.org/s13428-014-0458-y 

Dietz-Uhler, B., & Hurn, J. (2013). Using learning analytics to predict (and improve) student success: A faculty perspective. 

Journal of Interactive Online Learning, 12(1), 17–26. 

Duval, E. (2011). Attention please!: Learning analytics for visualization and recommendation. In P. Long, G. Siemens, G. 

Conole, & D. Gašević (Eds.), Proceedings of the 1st International Conference on Learning Analytics and Knowledge 

(LAK ʼ11), 27 February–1 March 2011, Banff, AB, Canada (pp. 9–17). New York: ACM. 

http://dx.doi.org/10.1145/2090116.2090118 

Ebersole, C., Atherton, O., Belanger, A., Skulborstad, H., Allen, J., Banks, J., Baranski, E., … & Nosek, B. (2016). Many 

Labs 3: Evaluating participant pool quality across the academic semester via replication. Journal of Experimental 

Social Psychology, 67, 68–82. http://dx.doi.org/10.1016/j.jesp.2015.10.012 

Elias, T. (2011). Learning analytics: Definitions, processes and potential. 

http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPotential.pdf 

Ellis, R. (2005). Principles of instructed language learning. System, 33, 209–224. 

http://dx.doi.org/10.1016/j.system.2004.12.006 

Enyon, R. (2013). The rise of big data: What does it mean for education, technology, and media research? Learning, Media 

and Technology, 38(3), 237–240. http://dx.doi.org/10.1080/17439884.2013.771783 

Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., Reid, S., & LeMaster, R. 

(2005). When learning about the real world is better done virtually: A study of substituting computer simulations for 

laboratory equipment. Physical Review Physics Education Research, 1(1), 1.010103. 

http://dx.doi.org/10.1103/PhysRevSTPER.1.010103 

Frank, M., Bergelson, E., Bergmann, C., Cristia, A., Floccia, C., Gervain, J., Lew‐Williams, C., Nazzi, T., Panneton, R., 

Rabagliati, H., Soderstrom, M., Sullivan, J., Waxman, S., & Yurovsky, D. (2017). A collaborative approach to infant 

research: Promoting reproducibility, best practices, and theory‐building. Infancy, 22(4), 421–435. 

http://dx.doi.org/10.1111/infa.12182 

Fryer, R. G., Jr. (2011). Financial incentives and student achievement: Evidence from randomized trials. The Quarterly 

Journal of Economics, 126(4), 1755–1798. http://dx.doi.org/10.3386/w15898 

Fyfe, E. (2016). Providing feedback on computer-based algebra homework in middle-school classrooms. Computers in 

Human Behavior, 63, 568–574. http://dx.doi.org/10.1016/j.chb.2016.05.082 

http://dx.doi.org/10.1037/h0073117
http://dx.doi.org/10.1007/s10648-014-9256-4
http://dx.doi.org/10.1080/09658211.2016.1152377
http://dx.doi.org/10.1371/journal.pone.0152115
http://dx.doi.org/10.1504/ijtel.2012.051815
http://dx.doi.org/10.1103/PhysRevPhysEducRes.13.010110
http://dx.doi.org/10.1145/2330601.2330636
http://dx.doi.org/10.1080/13562517.2013.827653
http://dx.doi.org/10.1080/23265507.2015.1074869
http://dx.doi.org/10.1080/23265507.2015.1074870
http://dx.doi.org/10.1119/1.1374249
http://dx.doi.org/10.3389/fpsyg.2015.01876
http://dx.doi.org/s13428-014-0458-y
http://dx.doi.org/10.1145/2090116.2090118
http://dx.doi.org/10.1016/j.jesp.2015.10.012
http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPotential.pdf
http://dx.doi.org/10.1016/j.system.2004.12.006
http://dx.doi.org/10.1080/17439884.2013.771783
http://dx.doi.org/10.1103/PhysRevSTPER.1.010103
http://dx.doi.org/10.1111/infa.12182
http://dx.doi.org/10.3386/w15898
http://dx.doi.org/10.1016/j.chb.2016.05.082


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 57 

Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 

64–71. http://dx.doi.org/s11528-014-0822-x 

Gašević, D., Dawson, S., Rogers, T., & Gašević, D. (2016). Learning analytics should not promote one size fits all: The 

effects of instructional conditions in predicting academic success. The Internet and Higher Education, 28(1), 68–84. 

http://dx.doi.org/10.1016/j.iheduc.2015.10.002 

Goldstone, R. L., Kersten, A., & Carvalho, P. F. (2017). Categorization and Concepts. In J. Wixted (Ed.) Stevens’ Handbook 

of Experimental Psychology and Cognitive Neuroscience, 4th ed., Volume Three: Language & Thought (pp. 275–317). 

New Jersey: Wiley. 

Govaerts, S., Verbert, K., Duval, E., & Pardo, A. (2012). The student activity meter for awareness and self-reflection. 

CHI’12 Extended Abstracts on Human Factors in Computing Systems (pp. 869–884). New York: ACM. 

http://dx.doi.org/10.1007/978-3-642-25813-8_20 

Greeno, J. G., & Middle School Mathematics through Applications Project Group. (1998). The situativity of knowing, 

learning, and research. American Psychologist, 53(1), 5–26. http://dx.doi.org/10.1037/0003-066X.53.1.5 

Guskey, T., & Huberman, M. (1995). Professional development in education: New paradigms and practices. New York: 

Teachers College Press. 

Hall, G. (1891). The contents of children’s minds on entering school. The Pedagogical Seminary, 1(2), 139–173. 

http://dx.doi.org/10.1080/08919402.1891.10533930 

Heath, L., Kendzierski, D., & Borgida, E. (1982). Evaluation of social programs: A multimethodological approach 

combining a delayed treatment true experiment and multiple time series. Evaluation Review, 6(2), 233–246. 

http://dx.doi.org/10.1177/0193841X8200600205 

Heffernan, N., & Heffernan, C. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers 

together for minimally invasive research on human learning and teaching. International Journal of Artificial 

Intelligence in Education, 24(4), 470–497. http://dx.doi.org/10.1007/s40593-014-0024-x 

Henninger, F., Mertens, U. K., Shevchenko, Y., & Hillbig, B. E. (2017). lab.js: Browser-based behavioral research. 

http://dx.doi.org/10.5281/zenodo.597045 

Higgins, M., Sävje, F., & Sekhon, J. (2016). Improving massive experiments with threshold blocking. Proceedings of the 

National Academy of Sciences of the United States of America, 113(27), 7369–7376. 

http://dx.doi.org/10.1073/pnas.1510504113 

Imai, K., King, G., & Stuart, E. (2008). Misunderstandings between experimentalists and observationalists about causal 

inference. Journal of the Royal Statistical Society: Series A (Statistics in Society), 171(2), 481–502. 

http://dx.doi.org/10.1111/j.1467-985X.2007.00527.x 

Khalil, M., & Ebner, M. (2015). Learning analytics: Principles and constraints. In S. Carliner & N. Ostashewski (Eds.), 

Proceedings of the World Conference on Educational Media and Technology (EdMedia 2015), 22–24 June 2015, 

Montréal, Canada (pp. 1789–1799). Waynesville, NC: Association for the Advancement of Computing in Education 

(AACE). www.learntechlib.org/results/?q=Khalil&source=EDMEDIA%2F2015%2F1 

Klahr, D. & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction 

and discovery learning. Psychological Science, 15(10), 661–667. http://dx.doi.org/10.1111/j.0956-7976.2004.00737.x 

Kirchoff, B. K., Delaney, P. F., Horton, M., & Dellinger-Johnston, R. (2014). Optimizing learning of scientific category 

knowledge in the classroom: The case of plant identification. CBE Life Sciences Education, 13(3), 425–436. 

http://dx.doi.org/10.1187/cbe.13-11-0224 

Kizilcec, R., & Brooks, C. (2017). Diverse big data and randomized field experiments in MOOCs. In C. Lang, G. Siemens, 

A. Wise, and D. Gašević (Eds.), Handbook of Learning Analytics (pp. 211–222). Society for Learning Analytics 

Research. http://dx.doi.org/10.18608/hla17.018 

Kizilcec, R., & Cohen, G. L. (2017). Eight-minute self-regulation intervention improves educational attainment at scale in 

individualist but not collectivist cultures. Proceedings of the National Academy of Sciences of the United States of 

America, 114(17), 4348–4353. http://dx.doi.org/ 10.1073/pnas.1611898114 

Kizilcec, R., Pérez-Sanagustín, M., & Maldonado, J. (2016). Recommending self-regulated learning strategies does not 

improve performance in a MOOC. Proceedings of the 3rd ACM Conference on Learning @ Scale (L@S 2016), 25–28 

April 2016, Edinburgh, Scotland (pp. 101–104). New York: ACM. http://dx.doi.org/10.1145/2876034.2893378 

Klein, R., Ratliff, K., Vianello, M., Adams Jr., R., Bahník, Š., Bernstein, M., Bocian, K., … & Nosek, B. (2014). 

Investigating variation in replicability. Social Psychology, 45, 142–152. http://dx.doi.org/10.1027/1864-9335/a000178 

Koedinger, K. R., Baker, R. S., Cunningham, K., Skogsholm, A., Leber, B., & Stamper, J. (2010). A data repository for the 

EDM community: The PSLC DataShop. In C. Romero, S. Ventura, M. Pechenizkiy, & R. S. Baker, Handbook of 

Educational Data Mining. Boca Raton, FL: CRC Press. 

Koedinger, K., Booth, J., & Klahr, D. (2013a). Instructional complexity and the science to constrain it. Science, 342(6161), 

http://dx.doi.org/s11528-014-0822-x
http://dx.doi.org/10.1016/j.iheduc.2015.10.002
http://dx.doi.org/10.1007/978-3-642-25813-8_20
http://dx.doi.org/10.1037/0003-066X.53.1.5
http://dx.doi.org/10.1080/08919402.1891.10533930
http://dx.doi.org/10.1177/0193841X8200600205
http://dx.doi.org/10.1007/s40593-014-0024-x
http://dx.doi.org/10.5281/zenodo.597045
http://dx.doi.org/10.1073/pnas.1510504113
http://dx.doi.org/10.1111/j.1467-985X.2007.00527.x
http://www.learntechlib.org/results/?q=Khalil&source=EDMEDIA%2F2015%2F1
http://dx.doi.org/10.1111/j.0956-7976.2004.00737.x
http://dx.doi.org/10.1187/cbe.13-11-0224
http://dx.doi.org/10.18608/hla17.018
http://dx.doi.org/%2010.1073/pnas.1611898114
http://dx.doi.org/10.1145/2876034.2893378
http://dx.doi.org/10.1027/1864-9335/a000178


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 58 

935–937. http://dx.doi.org/10.1126/science.1238056 

Koedinger, K., Corbett, A., & Perfetti, C. (2012). The knowledge–learning–instruction framework: Bridging the science–

practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757–798. 

http://dx.doi.org/10.1111/j.1551-6709.2012.01245.x 

Koedinger, K., & McLaughlin, E. (2016). Closing the loop with quantitative cognitive task analysis. In T. Barnes et al. 

(Eds.), Proceedings of the 9th International Conference on Educational Data Mining (EDM2016), 29 June–2 July 

2016, Raleigh, NC, USA (pp. 412–417). International Educational Data Mining Society. 

Koedinger, K., Stamper, J., McLaughlin, E., & Nixon, T. (2013b). Using data-driven discovery of better student models to 

improve student learning. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Proceedings of the 16th 

International Conference on Artificial Intelligence in Education (AIED ʼ13), 9–13 July 2013, Memphis, TN, USA (pp. 

421–430). Springer. 

Kolb, D. (1984). Experiential learning: Experience as the source of learning and development. Upper Saddle River, NJ: 

Prentice Hall. 

Krause, M. (2010). Undergraduates in the archives: Using an assessment rubric to measure learning. The American Archivist, 

73, 507–534. http://dx.doi.org/10.17723/aarc.73.2.72176h742v20l115 

Kumar, V., Clemens, C., & Harris, S. (2015). Causal models and big data learning analytics. In Kinshuk & R. Huang (Eds.), 

Ubiquitous learning environments and technologies (pp. 31–53). Springer. 

Lader, E., Cannon, C., Ohman, E., Newby, L., Sulmasy, D., Barst, R., Fair, J., Flather, M., Freedman, J., Frye, R., Hand, M., 

Van de Werf, F., Costa, F., & American College of Cardiology Foundation (2004). The clinician as investigator: 

Participating in clinical trials in the practice setting. Circulation, 109, 2672–2679. 

http://dx.doi.org/10.1161/01.CIR.0000128702.16441.75 

Lockyer, L., Heathcote, E., & Dawson, S. (2013). Informing pedagogical action aligning learning analytics with learning 

design. American Behavioral Scientist, 57(10), 1439–1459. http://dx.doi.org/10.1177/0002764213479367 

Lodge, J., & Corrin, L. (2017). What data and analytics can and do say about effective learning. npj Science of Learning, 

2(5). http://dx.doi.org/10.1038/s41539-017-0006-5 

Macfadyen, L., & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of 

concept. Computers & Education, 54(2), 588–599. http://dx.doi.org/10.1016/j.compedu.2009.09.008 

Maxwell, J. (2004). Causal explanation, qualitative research, and scientific inquiry in education. Educational Researcher, 

33(2), 3–11. http://dx.doi.org/10.3102/0013189X033002003 

Medin, D., & Bang, M. (2014). Who’s asking? Native Science, Western Science and Science Education. Cambridge, MA: 

MIT Press. 

Moore, E. B., Herzog, T. A., & Perkins, K. K. (2013). Interactive simulations as implicit support for guided-inquiry. 

Chemical Education Research and Practice, 14, 257–268. 

Morgan, K., & Rubin, D. (2012). Rerandomization to improve covariate balance in experiments. The Annals of Statistics, 

40(2), 1263–1282. http://dx.doi.org/10.1214/12-AOS1008 

Morrison, K., & van der Werf, G. (2016). Large-scale data, “wicked problems,” and “what works” for educational policy 

making. Educational Research and Evaluation, 22(5/6), 255–259. http://dx.doi.org/10.1080/13803611.2016.1259789 

Motz, B., Teague, J., & Shepard, L. (2015). Know thy students: Providing aggregate student data to instructors. EDUCAUSE 

Review, 3. https://er.educause.edu/articles/2015/3/know-thy-students-providing-aggregate-student-data-to-instructors 

Murnane, R., & Willett, J. (2010). Methods matter: Improving causal inference in educational and social science research. 

New York: Oxford University Press. 

National Research Council. (2012). Discipline-based education research: Understanding and improving learning in 

undergraduate science and engineering. Washington, DC: National Academies Press. 

Norris, D., Baer, L., Pugliese, L., & Lefrere, P. (2008). Action analytics: Measuring and improving performance that matters 

in higher education. EDUCAUSE Review, 43(1), 42–67. https://er.educause.edu:443/articles/2008/1/action-analytics-

measuring-and-improving-performance-that-matters-in-higher-education 

Patsopoulos, N. (2011). A pragmatic view on pragmatic trials. Dialogues in Clinical Neuroscience, 13(2), 217–224. 

Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge, UK: Cambridge University Press. 

Pearl, J., & Verma, T. (1995). A theory of inferred causation. Studies in Logic and the Foundations of Mathematics, 134, 

789–811. http://dx.doi.org/10.1016/S0049-237X(06)80074-1 

Plaisant, C. (2004). The challenge of information visualization evaluation. Proceedings of the 2nd International Working 

Conference on Advanced Visual Interfaces (AVI ’04), 25–28 May 2004, Gallipoli, Italy (pp. 109–116). New York: 

ACM. http://dx.doi.org/10.1145/989863.989880 

Rahman, S., Majumder, M., Shaban, S., Rahman, N., Ahmed, M., Abdulrahman, K. B., & D’Souza, U. (2011). Physician 

participation in clinical research and trials: Issues and approaches. Advances in Medical Education and Practice, 2, 

http://dx.doi.org/10.1126/science.1238056
http://dx.doi.org/10.1111/j.1551-6709.2012.01245.x
http://dx.doi.org/10.17723/aarc.73.2.72176h742v20l115
http://dx.doi.org/10.1161/01.CIR.0000128702.16441.75
http://dx.doi.org/10.1177/0002764213479367
http://dx.doi.org/10.1038/s41539-017-0006-5
http://dx.doi.org/10.1016/j.compedu.2009.09.008
http://dx.doi.org/10.3102/0013189X033002003
http://dx.doi.org/10.1214/12-AOS1008
http://dx.doi.org/10.1080/13803611.2016.1259789
https://er.educause.edu/articles/2015/3/know-thy-students-providing-aggregate-student-data-to-instructors
https://er.educause.edu/articles/2008/1/action-analytics-measuring-and-improving-performance-that-matters-in-higher-education
https://er.educause.edu/articles/2008/1/action-analytics-measuring-and-improving-performance-that-matters-in-higher-education
http://dx.doi.org/10.1016/S0049-237X(06)80074-1
http://dx.doi.org/10.1145/989863.989880


 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 59 

85–93. http://dx.doi.org/10.2147/AMEP.S14103 

Reich, J. (2015). Rebooting MOOC research: Improve assessment, data sharing, and experimental design. Science 

(Education Forum), 347(6217), 34–35. http://dx.doi.org/10.1126/science.1261627 

Renz, J., Hoffmann, D., Staubitz, T., & Meinel, C. (2016). Using A/B testing in MOOC environments. Proceedings of the 6th 

International Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 

304–313). New York: ACM. http://dx.doi.org/10.1145/2883851.2883876 

Roediger, H. L., Agarwal, P. K., McDaniel, M. A., & McDermott, K. B. (2011). Test-enhanced learning in the classroom: 

Long-term improvements from quizzing. Journal of Experimental Psychology: Applied, 17(4), 382–395. 

http://dx.doi.org/10.1037/a0026252 

Russo, F. (2010). Causality and causal modeling in the social sciences. Springer. 

Severance, C., Hanss, T., & Hardin, J. (2010). IMS learning tools interoperability: Enabling a mash-up approach to teaching 

and learning tools. Technology, Instruction, Cognition, & Learning, 7, 245–262. 

Shadish, W., Campbell, D., & Cook, T. (2002). Experimental and quasi-experimental designs for generalized causal 

inference. Boston, MA: Houghton Mifflin. 

Siemens, G. (2012). Learning analytics: Envisioning a research discipline and a domain of practice. Proceedings of the 2nd 

International Conference on Learning Analytics and Knowledge (LAK ʼ12), 29 April–2 May 2012, Vancouver, BC, 

Canada (pp. 4–8). New York: ACM. http://dx.doi.org/10.1145/2330601.2330605 

Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380–1400. 

http://dx.doi.org/10.1177/0002764213498851 

Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search. Cambridge, MA: MIT Press. 

Stewart, N., Chandler, J., & Paolacci, G. (2017). Crowdsourcing samples in cognitive science. Trends in Cognitive Sciences, 

21(10), 736–748. http://dx.doi.org/10.1016/j.tics.2017.06.007 

Sullivan, G. (2011). Getting off the “gold standard”: Randomized controlled trials and education research. Journal of 

Graduate Medical Training, 3, 285–289. http://dx.doi.org/10.4300/JGME-D-11-00147.1 

Tervakari, A., Silius, K., Koro, J., Paukkeri, J., & Pirttila, O. (2014). Usefulness of information visualizations based on 

educational data. Proceedings of the 2014 Global Engineering Education Conference (EDUCON 2014), 3–5 April 

2014, Istanbul, Turkey (pp. 142–151). IEEE Computer Society. http://dx.doi.org/10.1109/EDUCON.2014.6826081 

Tufte, E. (2003). The cognitive style of PowerPoint. Cheshire, CT: Graphics Press. 

US Department of Education. (2016). Using evidence to strengthen education investments (Non-regulatory guidance). 

Washington, DC. https://www2.ed.gov/policy/elsec/leg/essa/guidanceuseseinvestment.pdf 

US Department of Education. (2017). What works clearinghouse standards handbook, Version 4.0. Washington, DC: 

Institute of Education Sciences. 
https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_standards_handbook_v4.pdf 

Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. (2013). Learning analytics dashboard applications. American 

Behavioral Scientist, 57(10), 1500–1509. http://dx.doi.org/10.1177/0002764213479363 

Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PhET: Simulations that enhance learning. Science, 322(5902), 682–

683. http://dx.doi.org/10.1126/science.1161948 

Williams, J., & Williams, B. (2013). Using randomized experiments as a methodological and conceptual tool for improving 

the design of online learning environments. http://dx.doi.org/10.2139/ssrn.2535556 

Wise, A., & Shaffer, D. (2015). Why theory matters more than ever in the age of big data. Journal of Learning Analytics, 

2(2), 5–13. http://dx.doi.org/10.18608/jla.2015.22.2 

Zheng, Z., Vogelsang, T., & Pinkwart, N. (2015). The impact of small learning group composition on student engagement 

and success in a MOOC. In O. C. Santos et al. (Eds.), Proceedings of the 8th International Conference on Educational 

Data Mining (EDM2015), 26–29 June 2015, Madrid, Spain (pp. 500–503). International Educational Data Mining 

Society. 

 

http://dx.doi.org/10.2147/AMEP.S14103
http://dx.doi.org/10.1126/science.1261627
http://dx.doi.org/10.1145/2883851.2883876
http://dx.doi.org/10.1037/a0026252
http://dx.doi.org/10.1145/2330601.2330605
http://dx.doi.org/10.1177/0002764213498851
http://dx.doi.org/10.1016/j.tics.2017.06.007
http://dx.doi.org/10.4300/JGME-D-11-00147.1
http://dx.doi.org/10.1109/EDUCON.2014.6826081
https://www2.ed.gov/policy/elsec/leg/essa/guidanceuseseinvestment.pdf
https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_standards_handbook_v4.pdf
http://dx.doi.org/10.1177/0002764213479363
http://dx.doi.org/10.1126/science.1161948
http://dx.doi.org/10.2139/ssrn.2535556
http://dx.doi.org/10.18608/jla.2015.22.2

