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The modern web-based technology greatly popularizes computer-administered

testing, also known as online testing. When these online tests are administered

continuously within a certain “testing window,” many items are likely to be

exposed and compromised, posing a type of test security concern. In addition, if

the testing time is limited, another recognized aberrant behavior is rapid

guessing, which refers to quickly answering an item without processing its

meaning. Both cheating behavior and rapid guessing result in extremely short

response times. This article introduces a mixture hierarchical item response

theory model, using both response accuracy and response time information, to

help differentiate aberrant behavior from normal behavior. The model-based

approach is compared to the Bayesian residual-based fit statistic in both

simulation study and two real data examples. Results show that the mixture

model approach consistently outperforms the residual method in terms of cor-

rect detection rate and false positive error rate, in particular when the pro-

portion of aberrance is high. Moreover, the model-based approach is also able

to correctly identify compromised items better than residual method.

Keywords: response time; aberrant behavior; item preknowledge; person-fit; mixture

model; item response theory

1. Introduction

Modern web-based technology has greatly popularized computer-

administered testing, which is also known as online testing. For instance, in
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educational assessment, 44 states currently have operational or pilot versions of

online tests for their statewide or end-of-course assessment (Dean & Martineau,

2012). In employment settings, many organizations have provided Internet-based

assessment for job applicants in personnel selection and recruitment (Lievens &

Chapman, 2009; Sackett & Lievens, 2008). To ensure test scores are reliable and

valid, statistical procedures for detecting aberrances are essential to identify

flaws in the design of a test or irregular behavior of the test takers. Aberrances

usually come in different forms such as bad test items, ambiguous instructions,

special accommodated examinees, speededness of the test, answer coping, and

test cheating. The focus of this article is particularly on the identification of

aberrances in online testing that exemplifies as extremely short response times,

which usually imply cheating or rapid guessing behaviors.

Taking cheating as a form of aberrant behavior, it is defined as any activity

that violates the established rules governing the administration of a test (Cizek,

1999). Different from the answer-copying or answer-changing behavior that is

normally seen with paper-and-pencil test, the security breach of online and/or

adaptive testing is often due to the item overexposure. This is because online

testing is usually administered to small groups of examinees at frequent adjacent

time intervals within a certain “testing window,” known as “continuous admin-

istration.” As a result, examinees who take the test earlier may share information

with those who take it later, imposing the risk that items may become known to

many examinees before they take the test (Wang, Zheng, & Chang, 2014). When

some items become less difficult over a defined life span, it is reasonable to

believe that the performance changes are because of its content having been

distributed outside valid usage boundaries (such as published in unauthorized

testing review guides), and these items are usually called compromised items.

Compromised items should be duly detected, removed, and replenished by new

items to ensure test security and validity.

Another commonly observed type of aberrant behavior is rapid guessing

(Wang & Xu, 2015; Wise, 2017; Yang, 2007), which is defined as quickly

obtaining an answer without carefully processing the meaning of the item

(Wise & Kong, 2005). It occurs either due to test speededness or lack of

motivation. In the former situation, rapid guessing often happens toward the

end of the tests, whereas in the latter situation, rapid guessing can happen on

any item. Compared to cheating behavior, rapid guessing also results in

extremely short response times, but with a much lower correct response

probability. The main objective of this article is not to differentiate cheating

behavior from rapid guessing but rather to differentiate aberrant behavior

from normal solution behavior. As the article unfolds below, two methods

will be compared in terms of their power of detecting aberrant behavior,

namely, the mixture hierarchical modeling approach and the Bayesian resi-

dual method. The two methods will also be evaluated with respect to their

power of detecting item compromise when cheating is a concern.
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In what follows, we will briefly review the existing methods for aberrance

detection within the framework of residual analysis. We will then review the

mixture modeling approach relevant for detection of aberrant behavior and

introduce van der Linden’s (2007) hierarchal model that forms the basis of the

mixture model.

1.1. Residual Analysis

Detecting test takers’ aberrant behavior and item compromise (we also use

item preknowledge exchangeably hereafter) are pivotal to correctly interpret test

scores. The traditional approach of detecting aberrant behavior at the person level

is to analyze the response vectors for patterns of unexpected responses. This type

of analysis is known as person-misfit analysis (McLeod & Lewis, 1999; Meijer &

Sijtsma, 1995; van Krimpen-Stoop & Meijer, 2000) and belongs to the broader

class of problems of outlier detection (or residual analysis) in statistics. In a

review paper by Meijer and Sijtsma (2001), they showed that there are over 40

available statistics to evaluate person-fit. Key to this approach is the availability

of a psychometric model that adequately represents regular behavior. Karabatsos

(2003) evaluated the performance of 36 person-fit indices side by side, and one

main finding in Karabatsos (2003) is that when the proportion of aberrant beha-

vior increases, the power of correct detection drops. This is unsurprising because

the reference formed by the “remaining examinees” is contaminated. This is in

fact the limitation shared by almost all person-fit indices because when the

proportion of aberrancy increases, the separation between normal and aberrant

observations is blurred, making the outlier detection harder.

While all person-fit indices reviewed in Meijer and Sijtsma (2001) and Kar-

abatsos (2003) are constructed from response patterns, it was soon realized by

researchers that response time (RT) provides additional information to help

detect aberrant behavior (e.g., Marianti, Fox, Avetisyan, & Veldkamp, 2014;

van der Linden & Guo, 2008; van der Linden & van Krimpen-Stoop, 2003).

When assessments are delivered via computer-based devices, collecting response

times for each item and person combination becomes straightforward. The ben-

efit of RT usually comes in two different forms including (1) improving the

precision of both item (van der Linden, Klein Entink, & Fox, 2010) and person

parameter estimation (e.g., Wang, Fan, Chang, & Douglas, 2013b), such that the

discrepancy between observation and model prediction from aberrant responses

becomes more prominent due to more precise “model prediction” and (2) con-

structing residuals based on RT (van der Linden & van Krimpen-Stoop, 2003)

because aberrant behavior usually manifests itself by irrationally shorter RT.

Several person-misfit indices using RTs were proposed. For example, Mar-

ianti, Fox, Avetisyan, and Veldkamp (2014) proposed a Bayesian standardized

person-fit index based solely on RT and it worked well in both simulation and

real data analysis. On the other hand, van der Linden and van Krimpen-Stoop
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(2003) proposed to construct residuals based on both responses and RTs and seek

for a combination of undesirably negative residual for RTs and positive residual

for responses as indicators of item preknowledge. They considered both classical

and Bayesian checks when constructing the residuals. For classical checks, the

detection rate is .30 and the false-alarm rate is .05. For Bayesian checks, the

detection rate doubled relative to the classical checks, but at the cost of a con-

siderable increase in the false-alarm rate. Later, van der Linden and Guo (2008)

proposed a fully Bayesian procedure based on the hierarchical model of van der

Linden (2007). The primary idea is to form a posterior predictive distribution of

RTs as a reference distribution to which the actual RT is compared. This distri-

bution of RTs is constructed based on information accrued through RTs and

responses on all other administered items. If the actual RT is too small relative

to the posterior predictive distribution, this implies the potential aberrant beha-

vior. Note that because this index is computed for each person-by-item encoun-

ter, it can be aggregated at either person level or item level to flag aberrant

examinees or to detect item compromise (Qian, Staniewska, Reckase, & Woo,

2016). In this regard, no separate item-misfit index is needed. Their index will be

used as a reference to which the mixture modeling approach is compared.

1.2. Mixture Modeling Approach

Different from detecting aberrance via residuals, another commonly seen

approach is to directly model the aberrant behavior (rapid guessing behavior

mostly) using mixture models. Earlier, only response information enters into the

mixture model (e.g., Bolt, Cohen, & Wollack, 2002; Boughton & Yamamoto,

2007; Chang, Tsai, & Hsu, 2014; Goegebeur, De Boeck, Wollack, & Cohen,

2008). For instance, Bolt, Cohen, and Wollack (2002) classify examinees into

one of the two classes: speeded or nonspeeded, and all examinees who belong to

the speeded class tend to engage in solution behavior at first but switch to rapid

guessing behavior at the same fixed switching point. Boughton and Yamamoto’s

(2007) HYBRID model allows individual change-point locations for different

examinees, and thus, it is more flexible. Goegebeur, De Boeck, Wollack, and

Cohen (2008) further propose a speeded item response theory (IRT) model, and

their model includes an examinee-specific change-rate parameter, such that it

models a smooth, gradual switch from solution behavior to rapid guessing. Of

note, a common assumption shared among all these models is that just one

change point appears in the entire test-taking process.

In parallel, various mixture models have been proposed to represent divergent

RT distributions from solution behavior and rapid guessing such as the two-state

model by Schnipke and Scrams (1997) and the effort-moderated IRT model by

Wise and DeMars (2006). In particular, when the two types of behaviors coexist,

the resulting RT distribution is likely bimodal, and the two-state model intends to

curve fit the bimodal shape of RT distribution (Schnipke & Scrams, 1997). Each
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item therefore has two sets of parameters quantifying the lognormal RT distribu-

tions from the two behaviors. However, person parameters are not included in the

model, and hence, the model is suitable for evaluating speededness of a test but

not suitable for detecting rapid guessing behavior at person level.

Very recently, a few mixture models have been proposed that take into

account both RT and response information. For instance, Meyer’s (2010) model

assigns examinees to either a speeded or a nonspeeded latent class with each

latent class having separate item and population mean/variance parameters.

However, the classification is at person level that provides no clue on which

item rapid guessing actually happens. Wang and Xu (2015) propose a mixture

hierarchical model that can differentiate rapid guessing from solution behavior

for each item by person encounter. Their model includes a latent indicator vari-

able that implies the underlying behavior of the test taker on a specific item,

whether it be normal (solution based) behavior or rapid guessing behavior. Our

model bears close resemblance to Wang and Xu’s model, but the main difference

is we replace their person-level guessing propensity parameter (pi) by an item-

level parameter pj. The justification is, in case of cheating, items that are over-

exposed are more likely to be compromised, yielding higher pj. In case of rapid

guessing, items that are placed toward the end of the tests are more likely to be

rapidly guessed on, also leading to higher pj. In addition, different from Wang

and Xu (2015), another main objective of this article is to compare the perfor-

mance of mixture modeling approach versus the Bayesian residual method side

by side.

As emphasized earlier, residual analysis is theoretically underpowered if a

certain, nonignorable proportion of examinees exhibit aberrant behavior. There-

fore, it will be important to check the conditions under which the Bayesian

residual method will perform equally, better, or worse than the mixture modeling

approach in terms of detecting aberrant behavior at person level, as well as

identifying item preknowledge at item level.

2. Method

2.1. A Mixture Hierarchical Model

When modeling responses and RTs jointly (e.g., van der Linden, 2007; Wang,

Chang, & Douglas, 2013a; Wang et al., 2013b), the hierarchical model of van der

Linden (2007) is by far one of the most popular models for responses and RTs,

and this model has become the standard approach to model responses and RTs in

standardized testing (Ranger, 2013).

As the name entails, the core of van der Linden’s (2007) model is a hierarch-

ical structure that integrates the responses and RTs through a second-level cov-

ariance structure. In particular, the two levels are (1) a measurement model level,

wherein RT follows a lognormal model and response accuracy comes from a
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three-parameter logistic (3PL) model and (2) a subject model that specifies

correlation between speed and ability at a population level.

In adhering to the conventional notation, let aj, bj, and cj denote the item

discrimination, difficulty, and pseudoguessing1 parameters for item j, and let yi

denote the ability for person i, then the probability that person i answers item j

correctly using “solution-based” behavior is summarized by the 3PL model as

follows:

PðYij ¼ 1jyiÞ � PjðyiÞ ¼ cj þ
1� cj

1þ exp½�ajðyi � bjÞ�
: ð1Þ

Other IRT models, such as the 2PL model, 1PL model, partial credit model, or

graded response model, can be supplied in this framework depending upon the

nature of the assessment and the type of responses collected (i.e., either dichot-

omous or polytomous responses).

In parallel with the parameterization in Equation 1, let aj and bj denote the

discrimination power and time intensity of item j with respect to RTs, and let ti

denote the latent speed parameter of person i. The RT person i spends on item j,

tij, follows a lognormal distribution. That is, the log-transformed RT follows a

normal distribution as

logðtijÞjti*Nðbj � ti; a�2
j Þ: ð2Þ

As seen from Equation 2, items with higher time intensity (i.e., larger bj)

require longer time to finish, items with higher discrimination power (i.e., larger

aj) better distinguish fast and slow responders, and persons with faster speed (i.e.,

larger ti) spend shorter time on items. When test takers engage in solution

behavior, the resulting item RT distribution is usually positively skewed, making

lognormal model an ideal choice. However, other parametric models (Rouder,

Sun, Speckman, Lu, & Zhou, 2003) and semiparametric models (Wang et al.,

2013a, 2013b) are also available whenever the lognormal model shows poor fit.

At the second level, it is assumed that the latent ability and speed parameters,

ξi ¼ ðyi; tiÞT, follow a bivariate normal distribution with a mean vector of

�p ¼ ðmy; mtÞ, and a covariance matrix of ∑p ¼
s2
y syt

syt s2
t

� �
. The covariance

parameter syt can be either positive or negative, and positive covariance means

more able test takers tend to work faster. Throughout this article, the boldface

notation denotes both vectors and matrices.

The mixture model is a natural extension of van der Linden’s (2007) hier-

archical model. Let Dij denote whether person i has aberrant behavior on item j,

Dij ¼ 1 indicates aberrant behavior and Dij ¼ 0 otherwise. The observed RT,

T obs
ij , is assumed to have a decomposition as

T obs
ij ¼ ð1� DijÞTij þ DijCij: ð3Þ
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Tij is the RT for person i on item j from a solution-based behavior, and it

follows a lognormal distribution specified in Equation 2; Cij denotes the time

person i spends on item j using aberrant behavior. Cij is also assumed to follow a

lognormal distribution, but with a common mean parameter of mc and a variance

of s2
c . This treatment implies that the time spent on an item via cheating or rapid

guessing behavior does not depend on either person’s speed or item’s time

intensity.2 Similarly, the correct response probability of person i on item j can

be written as

PðYij ¼ 1jDij; yiÞ ¼ PðYij ¼ 1jyi; aj; bj; cj;Dij ¼ 0Þð1� DijÞ þ djDij: ð4Þ

In Equation 4, when the person engages in solution behavior, the correct

response probability follows the typical 3PL model in Equation 1; otherwise,

the correct response probability is quantified by dj. For compromised items, dj

might be close to 1 because the chance of answering a compromised item cor-

rectly should be high, regardless of the item difficulty or person’s ability level. If

a person engages in rapid guessing, dj will be close to the chance level of one

over the number of options for a multiple-choice item.

Imitating van der Linden’s (2007) hierarchical structure, the latent ability and

speed parameters, ξi ¼ ðyi; tiÞT, in this mixture model also follow a bivariate

normal distribution. The aberrance indicator, Dij, is assumed to be dependent on

an item-level parameter via pj ¼ PðDij ¼ 1Þ, in which pj is defined as the

propensity of item j being compromised or rapidly guessed on. When cheating

is of concern for high-stakes tests, then items that have longer time in use will

have higher chance of being compromised, hence higher pj, than newer items.

When rapid guessing happens due to lack of motivation, then pj is likely just be a

random value bounded between 0 and 1.

Please note that in our mixture model, we used item level parameter, pj, to

indicate the propensity of item being problematic, whereas Wang and Xu (2015)

used a person-level parameter, pi. The decision between two model parameter-

izations should be made with caution. If a test contains items with different

features, such as old and new items, then a model with pj makes more sense.

On the other hand, if the test is given to a heterogeneous sample in which the

examinees’ test-taking behaviors may differ dramatically (i.e., students with

different backgrounds or motivations), then a model with pi is more appropriate.

Depending upon the type of mixing proportion parameter included in the model,

item-level or person-level covariates can be included in the future to predict the

severity of aberrance. With our model set up, the estimated p̂j can be used to

indicate item compromise.

In sum, the parameters that need to be estimated in model calibration include

item parameters, aj; bj; cj; dj; aj; bj, pjðj ¼ 1; :::; jÞ, mc, and s2
c ; person para-

meters, yi, and ti (i ¼ 1, . . . , N); the latent indicator, Dij; and the population

parameters s2
t and syt. The constraints my ¼ 0; mt ¼ 0;s2

y ¼ 1 are imposed to
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ensure model identifiability (Wang & Xu, 2015). The typical local independence

assumptions in IRT still hold here. That is, the responses and response times on

all items for a person are locally independent conditioning on yi, ti, and Dij. In

addition, for item j with pj, Dij are identically and independently distributed

(i.i.d.) Bernoulli trials. A fully Bayesian Markov chain Monte Carlo (MCMC)

algorithm is developed for model calibration. In the rth iteration of MCMC, the

aberrance indicator, Dij, is updated for each i and j based on its posterior distri-

bution, which is a Bernoulli distribution with parameter

pr
ij ¼ PðDr

ij ¼ 1jall other model parametersÞ. This parameter is a function of all

model parameters from the (r � 1)th iteration; for details, please refer to the

Online Appendix (e.g., Equation S1–S6 in the Online Appendix). Within each

iteration of the Markov chain, if pr
ij � pD, then D̂ij ¼ 1, and 0 otherwise. Then,

average over the post burn-in iterations of the D̂ij chain to obtain P̂ ðD̂ij ¼ 1Þ.
Here, P̂ ðD̂ij ¼ 1Þ is considered the average posterior probability of D̂ij ¼ 1, after

taking into account the uncertainty of passing the cutoff of pD in each iteration of

the Markov chain. Then, compare P̂ ðD̂ij ¼ 1Þ to another cutoff pD. If

P̂ ðD̂ij ¼ 1Þ � pD, then the (i, j) pair is flagged as aberrant. Usually, both pD and

pD can be fixed at 0.5. The detailed algorithm is provided in the Online Appen-

dix. The full code is written in R (R core team), and it is available from the

authors upon request.

2.2. Bayesian Residual Analysis

As a comparison to the mixture modeling approach, the Bayesian residual

method (van der Linden & Guo, 2008) is introduced in this subsection. To be

specific, let t �ij denote the log-transformed observed RT for person i and item j,

the “asterisk” denotes log-transformed RT. Let t �ði=jÞ and yi=j, respectively, denote

the vector of log-time and the vector of responses for person i on all items except

item j. After fitting the data with the nonmixture hierarchical model, we compute

the posterior predictive density of ~t
�
ij (denote the model predicted log-time) as

f ð~t �ij jt �i=j; yi=jÞ ¼
Z

f ð~t �ij jtiÞf ðtijt �i=j; yi=jÞdti: ð5Þ

In Equation 5, f ð~t �ij jtiÞ is the lognormal density of ~t
�
ij , given ti that can be

obtained from Equation 2. The term f ðtijt �i=j
; y

i=j
Þ is the posterior density of ti

given responses and RTs, and it is computed as:

f ðtijt �i=j
; yi=jÞ / f ðt �

i=j
jtiÞf ðtijyi=jÞ¼

Q
f ðt �

i=j
jtiÞ

h i
f ðtijyi=jÞ;

where f ðtijyi=jÞ ¼
R

f ðtijyiÞf ðyijyi=jÞdyi. Assuming ŷi from the IRT model fol-

lows a normal distribution, which is often the case when test length is long, the

posterior predictive distribution in Equation 5 is normal with a mean of
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bj �

syt

s2
t�s2

ytþs
2
yts

2
yjyi=j

myjyi=j
þ
P

k 6¼ja
2
k ðbk � t�ij lntijÞ

ðs2
t � s2

yt þ s2
yts

2
yjyi=j
Þ�1 þ

P
k 6¼ja

2
k

;

and a variance of

a�2
j þ s2

t � s2
yt þ s2

yts
2
yjy=j

� ��1

þ
X

k 6¼j
a2

k

� ��1

;

which are essentially Equations 36 and 37 in van der Linden and Guo (2008).

According to their suggestions, myjy=j and s2
yjyi=j

could be the posterior mean (i.e.,

EAP) and posterior variance of y from responses yi=j.

The fully Bayesian posterior predictive p value is computed by comparing t �ij
with respect to the posterior predictive density in Equation 5, and a small p value

(in relative to a nominal a level) implies that person i engages in aberrant

behavior on item j. This information is again aggregated over all persons for

each item separately to obtain p̂j. In practice, the estimated p̂j can be compared to

a prespecified tolerance level. For instance, threshold of 10% means if there is

10% cheating behavior, among all test takers, on item j, then this item is flagged

as a compromised item and it should be deleted (e.g., Qian et al., 2016; van der

Linden & Guo, 2008). Due to the good power and low Type I error of this

method, the mixture model–based approach is compared against this method

in the simulation study and real data analysis. Note that for the Bayesian residual

model, following van der Linden and Guo (2008), the flagging is conducted after

model fitting; hence, no iterative cleansing procedure is considered. A more

sophisticated approach is, therefore, to refit the hierarchical model each time

when an item-by-person encounter is flagged. This approach is beyond the scope

of the current study, but it is worth pursing in the future.

3. Simulation Study

3.1. Design

The simulation study was designed to evaluate (1) if the proposed MCMC

algorithm can successfully recover model parameters as a sanity check, (2)

whether the indicator variable Dij can correctly distinguish aberrant behavior

from normal behavior, and (3) if the indicator variable Dij can help correctly

identifying compromised items. To test the second objective, we compared the

correct and false detection rates of the proposed mixture model against the

Bayesian residual method (van der Linden & Guo, 2008). To keep the simulation

study coherent and to differentiate the study from Wang and Xu (2015), we

considered cheating as a form of aberrant behavior. However, similar results

will hold if rapid guessing behavior is simulated.
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Two factors were manipulated in the simulation study, aberrance size and

aberrance severity. Aberrance size is defined as the proportion of problematic

items and aberrance severity is determined by the magnitude of pj, implying the

proportion of aberrance exhibiting on the problematic items. Examinee sample

size was fixed at N ¼ 1,000; test length was fixed at J ¼ 30. Neither sample size

nor test length was manipulated to keep the scope of the study manageable. Two

levels of aberrance size were considered, they are 10% (low) and 20% (medium),

yielding the number of compromised items as either 3 or 6. The aberrance

severity varied between two levels, low (i.e., simulate pj from uniform (0,

0.5)) and high (i.e., simulate pj from uniform (0.25, 0.75)). A null condition with

no aberrance was added as well. To facilitate the fair comparison between the

mixture model approach and residual approach, the “true” data were generated

from either mixture model or residual approach (with details given below).

Table 1 summarizes the manipulated conditions in this study. It is expected that

the proposed method outperforms the Bayesian residual method especially when

the proportion of cheating behavior is high.

3.2. Data Generation

For solution-based behavior, the response pattern was simulated from the 3PL

model according to Equation 1, with aj*Uð1; 2:5Þ, bj*Nð0; 1Þ, and

cj*Uð0; 0:2Þ, where “U” denotes uniform distribution and “N” denotes normal

distribution. The RTs were simulated from the lognormal model in Equation 2,

with aj*Uð1:5; 2:5Þ and bj*Uð�0:2; 0:2Þ. These distributions were selected

to ensure that the resulting RT distribution mimics the real data closely (van der

Linden, 2007; Wang et al., 2013a; Wang & Xu, 2015). As to the aberrant beha-

vior, since we considered cheating as a form of aberrance, the correct response

TABLE 1.

Simulation Design Conditions

Aberrance Severity

True Model

Mixture Residual

Aberrance severity/

Proportion

0% 10% 20% 10% 20%

Low: pj*Uniform

(0, 0.5)

Condition 0 Condition 1 Condition 2 Condition 5 Condition 6

0% 2.5% 5% 2.5% 5%
High: pj*Uniform

(0.25, 0.75)

Condition 3 Condition 4 Condition 7 Condition 8

5% 10% 5%

Note. The “proportion of aberrant behavior” (i.e., 2.5% in the table) is defined as the proportion of all

item–person encounters that are resulted from aberrant behavior.
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probability, dj, was drawn from U(0.67, 1), resulting in an average correct

response probability of 0.8. When the true model is the mixture model, the

aberrant RTs were simulated from the lognormal distribution, lognormal(0.1,

0.1), yielding a relatively short RTs (i.e., mc ¼ 0:1 and s2
c ¼ 0:1). When the true

model conforms to the residual analysis setting, the aberrant RTs from item j

were considered as “outliers” as compared to normal behavior; hence, they were

generated from a uniform distribution with a lower bound of exp(�5) and upper

bound being the 5% percentile of RT on item j with t ¼ 0. This way, we ensured

that the RT from aberrant behavior fall within the lower 5% of the normal

behavior. Person’s ability parameters, yj and ti, were simulated from a bivariate

normal distribution with a mean vector of (0, 0) and a covariance matrix of

1 0:25

0:25 0:25

� �
. In so doing, the correlation between yi and ti was fixed at a

moderate level, 0.5, indicating that high ability examinees tend to answer items

faster (e.g., Fan, Wang, Chang, & Douglas, 2012; Wang et al., 2013b). For a

given problematic item j and level of aberrance severity pj, the aberrant behavior

was drawn randomly for the N ¼ 1,000 persons. Twenty-five replications were

conducted per condition, and within each replication, a new set of item and

person parameters were simulated from respective distributions to ensure full

randomness.

3.3. Model Calibration

Both the new mixture hierarchical model and van der Linden’s (2007) hier-

archical model were calibrated using the Bayesian MCMC algorithm written in

R. Prior specification and initial values are briefly mentioned for the mixture

model in this section.

The priors we chose for the item parameters are: pðajÞ*lognormal ð0; 1Þ,
pðbjÞ*Nð0; 1Þ, pðcjÞ* bð2; 10Þ, pðajÞ* gð1; 0:5Þ, and pðbjÞ* Nðmb;s2

bÞ
3

with the hyperparameters (mb, s2
b) following a conjugate normal-inverse-gamma

prior, pðdjÞ*bð5; 1Þ, pðmcÞ* lognormal ð�3; 0:5Þ, pðs2
cÞ* Inv�gð10; 0:1Þ.

The priors for pðrytÞ*N½�1;1�ð0; 10Þ, which is a truncated normal distribution

truncated between �1 and 1; pðs2
t Þ* Inv�gð5; 1Þ and pðpjÞ*bð1; 5Þ.

The conjugate priors are preferred to invoke direct Gibbs sampling, making

the chain more efficient. Otherwise, if no conjugate prior exists, we adopted

widely used priors (i.e., normal, beta, or uniform) depending upon the property

of the parameter (whether it is bounded or unbounded). The specification of the

hyperparameter values of the prior also requires careful delineation. We chose

the specific hyperparameter values through trial and error to ensure fast mixing

and convergence of the Markov chain. Of note, during the MCMC update, to

ensure that the covariance matrix is positive definite, we first freely update the

variance term, s2;r
t , at the rth iteration. Then, when we update the off-diagonal
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term, syt, we repeat the sampling until the resulting covariance matrix is positive

definite. In addition, a known estimation challenge with mixture model is label

switching. With MCMC, the labels could switch across iterations of a Markov

chain. To suppress label switching, we added an inequality constraint. That is,

when the sampled bj is smaller than the mean of log-transformed RT from

aberrant cases, which implies that label switching occurs, then we forced the

label to switch back for all Dij’s pertinent to item j.

The initial values of the parameters were set up as follows. Regarding solution

behavior, aj ¼ 1, cj ¼ 0.1 for j ¼ 1, . . . , J; b parameters were initialized to using

normal percentiles with the percentage equal to the proportion correct for that

item (see Wang et al., 2013a). Person parameter y was initialized using

maximum likelihood estimator (MLE) given the initial values of item 3PL para-

meters; t was initialized again using the normal percentiles by ranking the

examinees with respect to their total RTs. The covariance of y and t was initi-

alized as 0.1. a and b were initialized using MLE that has closed form expres-

sions, namely, bj ¼ 1
N

PN
i¼1

ðlogtij þ t̂iÞ and aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NPN
i¼1 ðlogtij � b̂jÞ2

r
, where t̂i

and b̂j denote the initial values of t and b, respectively. As to the cheating

parameters, set Dij ¼ 0 for all i and j, mc ¼ 0:05, and sc ¼ 0:05, dj ¼ 0:9 for

all j and pj ¼ 0:05 for all j.

Both dynamic trace lines and time-series lines indicate the chains converge

before 1,000 iterations. Thus, the length of each Markov chain is 10,000, with the

first 1,000 as burn-in. The final parameter estimates are the average of the post

burn-in iterations. The Monte Carlo standard error is the standard deviation of the

post burn-in iterations.

4. Results

4.1. Parameter Recovery

Parameter recovery is evaluated by average bias and mean squared error

(MSE) computed on each type of parameter. For instance, for item-level para-

meter including aj, bj, cj, aj, bj, and pj, average bias was computed as the mean

difference between true and estimated parameters over all items in a test, that is,

Bias(a) ¼ 1
J

PJ
j¼1

ðaj � âjÞ. Then, this bias was averaged across all replications.

Similarly, MSE for the discrimination parameter was computed as MSE (a) ¼
1
J

PJ
j¼1

ðaj � âjÞ2 from one replication and then averaged over replications. The

average bias and MSE for fixed parameters such as syt, s2
t , mc, and s2

c were

simply computed across replications.
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We considered results from Table 2 as a quality control check to evaluate

whether the proposed MCMC algorithm performed well with the mixture

model. It can be seen from Table 2 that the parameters for both mixture and

nonmixture models are recovered precisely in Condition 0 (no cheating). Starting

from Condition 1, the mixture model produces more accurate parameter recovery

as compared to the nonmixture model. The improvement in estimation precision is

more profound regarding parameters a, a, and b because mistakenly treating

responses/RTs generated from aberrant behavior as if they are from solution

behavior result in biased parameter estimates. In particular, the item difficulty,

discrimination, time intensity, and time discrimination are all underestimated

with the nonmixture model. A further exploration of the results reveals that the

large negative bias of item parameters from nonmixture model is predominantly

caused by compromised items. The estimation bias for noncompromised items is

mostly negligible from the nonmixture model and hence comparable to the

results from the mixture model.

4.2. Classification of Aberrant/Normal Behavior

Table 3 summarizes the average true positive rate (TPR) and false discovery

error (FDR) rate of both the mixture model approach and the Bayesian residual

method. TPR is defined as the proportion of cheating behavior that is correctly

flagged, and false discovery error rate is defined as the ratio between incorrectly

flagged behavior and the total flagged behavior. Both indices are computed based

on all person-by-item encounters and averaged over 25 replications. For the

mixture model approach, we fixed pD ¼ 0:5 and pD ¼ 0:6. This value of pD ¼
0:6 will later be justified.

As clearly shown in Table 3, the mixture model approach demonstrates excel-

lent TPR in virtually all manipulated conditions (except Condition 5, which is

slightly low), whereas the residual method shows visibly worse TPR, especially

when the cheating proportion is high. In Conditions 3 and 4, the TPR of the

residual method is even lower than 0.15. This observation is consistent with the

power study in van der Linden and Guo (2008; Tables 3 and 4). An interesting

observation from Table 3 is that the aberrance severity is more devastating than

the aberrance size to the TPR of the residual method. One possible explanation is

that in the residual method, for each individual, the RT on a certain item is

compared against the responses/RTs from the remaining items—high aberrance

severity distorts the posterior predictive distribution (see Equation 3) formed by

the remaining items and, thus, adversely affects the TPR. The results presented in

Table 4 are consistent with the findings in Table 3. That is, the lower TPR of the

residual method is because this method misclassifies many aberrant behaviors as

normal behavior. In terms of the false detection rate (FDR), the mixture approach

still yields low error rate, whereas the residual method generates slightly higher,
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TABLE 2.

Parameter Recovery of Both Mixture Model and Nonmixture Model in Simulation Study I

Parameters

Condition 0 Condition 1

Mixture Model Nonmixture Model Mixture Model Nonmixture Model

Bias MSE Bias MSE Bias MSE Bias MSE

a �.028 .067 �.057 .066 �.056 .065 �.096 .102

b .021 .015 .022 .015 .022 .016 �.003 .032

c .013 .003 .013 .003 .013 .003 .019 .004

a .001 .002 �.002 .002 .000 .002 �.093 .098

b .002 .000 .000 .000 .001 .001 �.053 .041

y �.002 .108 �.002 .108 �.001 .111 �.001 .112

t �.001 .008 �.002 .008 �.001 .008 �.001 .009

syt �.005 .000 �.006 .000 �.006 .000 �.007 .000

s2
t .006 .000 .002 .000 .002 .000 .000 .000

p .011 .000 .012 .000 .001 .000 �.004 .005

d NA NA NA NA �.003 .001 �.007 .003

mc NA NA NA NA .000 .000 NA NA

s2
c NA NA NA NA .001 .000 NA NA

Condition 2 Condition 3

a �.054 .073 �.167 .165 �.059 .073 �.144 .174

b .024 .017 �.027 .054 .024 .016 �.038 .091

c .014 .003 .027 .005 .014 .003 .025 .005

a �.001 .002 �.203 .227 .000 .002 �.117 .142

b .000 .001 �.116 .090 .000 .000 �.110 .138

y �.001 .113 .000 .118 �.002 .113 .002 .116

t �.001 .008 �.001 .010 �.002 .008 .000 .009

syt �.006 .000 �.009 .000 �.006 .000 �.008 .000

s2
t .002 .000 �.004 .000 .002 .000 �.002 .000

p .001 .000 �.023 .010 .001 .000 �.031 .022

d �.005 .000 �.006 .001 �.001 .000 .006 .006

mc .000 .000 NA NA .000 .000 NA NA

s2
c .000 .000 NA NA .001 .000 NA NA

Condition 4

a �.061 .071 �.242 .294

b .024 .017 �.119 .220

c .014 .003 .040 .008

a .000 .002 �.238 .294

b .000 .001 �.230 .291

y �.001 .117 .004 .123

t �.002 .009 .002 .010

(continued)
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TABLE 2. (continued)

Parameters

Condition 0 Condition 1

Mixture Model Nonmixture Model Mixture Model Nonmixture Model

Bias MSE Bias MSE Bias MSE Bias MSE

syt �.007 .000 �.010 .000

s2
t .002 .000 �.008 .000

p .001 .000 �.080 .047

d �.002 .000 �.013 .004

mc .000 .000 NA NA

s2
c .000 .000 NA NA

Condition 5 Condition 6

a �.052 .070 �.097 .103 �.048 .076 �.163 .163

b .018 .023 �.001 .032 .026 .016 �.022 .064

c .014 .003 .019 .004 .013 .003 .028 .005

a �.006 .009 �.115 .143 �.004 .003 �.247 .327

b �.005 .009 �.067 .067 �.001 .001 �.147 .145

y .000 .111 .000 .113 �.001 .114 .000 .117

t �.001 .008 .000 .009 �.001 .009 .000 .010

syt �.006 .000 �.007 .000 �.006 .000 �.008 .000

s2
t .002 .000 .001 .000 .003 .000 �.001 .000

p .003 .000 �.001 .003 .002 .000 �.017 .006

d �.027 .011 �.012 .004 �.004 .000 .003 .001

mc NA NA NA NA NA NA NA NA

s2
c NA NA NA NA NA NA NA NA

Condition 7 Condition 8

a �.055 .079 �.142 .179 �.043 .073 �.243 .305

b .023 .019 �.041 .093 .029 .018 �.121 .228

c .014 .003 .025 .005 .013 .003 .039 .008

a �.012 .014 �.140 .202 �.007 .004 �.285 .418

b �.008 .006 �.140 .224 �.002 .001 �.291 .468

y �.002 .114 .002 .116 �.001 .119 .006 .124

t �.001 .009 .000 .009 �.001 .009 .002 .010

syt �.006 .000 �.007 .000 �.006 .000 �.008 .000

s2
t .002 .000 .000 .000 .004 .000 �.003 .000

p �.001 .001 �.023 .014 .003 .000 �.061 .029

d �.006 .001 .001 .000 �.001 .000 .000 .001

mc NA NA NA NA NA NA NA NA

s2
c NA NA NA NA NA NA NA NA

Note. For Conditions 5�8, the recovery of mc and s2
c is not available because the aberrant RT was not

simulated from a separate lognormal distribution.
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yet still acceptable FDR. The classification results reported in Table 4 can further

shed light on the classification behavior of both approaches.

Table 4 presents the direct comparison between the mixture approach and the

residual-based approach in terms of a 2� 2 contingency table for each simulation

condition. It appears from Table 4 that the mixture modeling approach generates

much fewer misclassified cases than the residual method. As mentioned earlier,

the large misclassification error of the residual method is due to incorrectly

classifying an aberrant behavior as a normal behavior, yielding drastically low

correct detection rate.

If one computes the false positive rate as the proportion of normal behavior

that is misflagged as aberrant behavior (analogy to Type I error), then the false

positive error rate for both methods does not adhere to a typical nominal .05 rate.

This is because the decision is not made from a hypothesis testing perspective but

rather it is made by simply comparing P̂ðD̂ij ¼ 1Þ to a cutoff value. Thus, false

positive error rate is preferably as low as possible. Compared to the mixture

approach, the false positive error rate of the residual method is also on the

conservative side, but the appeal of having low error in the presence of high

cheating proportion is offset by the drastically decreasing TPR.

4.3. Selection of Threshold

In the proposed mixture modeling approach, choosing an appropriate thresh-

old value to which the estimated probability, P̂ðD̂ij ¼ 1Þ, compares is important

for classifying cheating behavior from solution behavior for person i and item j.

Figure 1 presents the varying TPR and FDR of the mixture model approach

against threshold value under four selective simulation conditions (i.e., Condi-

tions 1, 2, 7, and 8) and one replication to save space. The figure shows that

TABLE 3.

Summary of the True and False Detection Rates of Both Methods Under Different

Manipulated Conditions in Simulation Study I

True ¼ Mixture True ¼ Residual

pj U(0, 0.5) U(0.5, 0.75) U(0, 0.5) U(0.5, 0.75)

Number of

compromised

0 3 6 3 6 3 6 3 6

Condition Number 0 1 2 3 4 5 6 7 8

True Positive Mixture NA .999 .999 1.000 1.000 .878 .924 .924 .953

Residual NA .349 .351 .132 .113 .481 .471 .312 .301

False Discovery Mixture .000 .000 .000 .000 .000 .003 .001 .001 .003

Residual .012 .011 .010 .011 .011 .011 .010 .011 .011
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FIGURE 1. The false detection rate (a.k.a. false discovery rate) and true positive rate

(a.k.a. power) as a function of threshold in the mixture modeling approach.
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threshold value of 0.5 or 0.6 provides high TPR and low FDR. Thus, the value of

0.6 was chosen in our simulation study, but practitioners may very well choose

either 0.5 or 0.6 with no appreciable difference.

4.4. Compromised Item Detection

As alluded to earlier in Section 3.1, the correct detection of compromised

items hinges on the proper recovery of pj. From Table 2, the bias of p̂j from

residual method is much higher than that from the mixture model approach. The

absolute size of bias of p̂j seems to be low, which is because the majority of the

items are noncompromised that average out the bias of p̂j. A more useful message

is conveyed in Figure 2.

Figure 2 presents the item detection for the eight manipulated conditions from

one replication. The plots are compelling and reveal an eminently good detection

of the proposed mixture model approach. The arrows indicate the manipulated

compromised items, and the numbers beneath the arrow indicate the true aber-

rance size.

Specifically, when the aberrance size is generated from U(0, 0.5) (i.e., Con-

ditions 1 and 5), the estimated proportion of aberrance for these 3 items shows

excellent adherence to the true value. On the contrary, the estimated p̂j for the

remaining items is very low, all of which are close to 0. This pattern holds

regardless of the true model, whether it conforms to the mixture model or resi-

dual approach. Furthermore, the same pattern remains when the aberrance size

increases and when the number of compromised item increases. In the worst

scenario when there are 6 compromised items, and aberrance size is from U(0.5,

0.75) (i.e., Conditions 4 and 8), the mixture model approach still successfully

recovers p̂j for both compromised and secure items.

In contrast, the residual method starts out working fine, with acceptable detec-

tion when the aberrance size is low, irrespective of the number of the compro-

mised items. In this case, the estimated p̂j s for the compromised items are close

to the true value, whereas the estimated p̂j s for the secure items are markedly

lower. This is reflected in Figure 2(a) and (b) for those items with true aberrance

severity lower than 0.2. However, when the cheating severity increases, p̂j s for

the compromised items are drastically lower than the true value (see Figure 2(c)

and (d), for instance), even though there is still a clear distinction between secure

and compromised items in terms of p̂j. This distinction becomes less apparent

when aberrance severity further increases.

Therefore, in sum, the results show favoritism to the mixture model approach

because it not only successfully flags compromised items but also precisely

recovers the severity of compromise (by showing how much percentage of sam-

ple engage in cheating behavior on each compromised item). This piece of

information will be invaluable for test administrators to decide whether to

replace those items.
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5. Real Data Examples

5.1. A Low-Stakes Computerized Testing Example

In this subsection, we illustrate the proposed mixture model approach

using a real data set from Acuity Indiana English/Language Arts Test grade

10, 2012–2013 administration. The purpose of the test is to provide diagnos-

tic measures and standards-aligned performance data, which support an edu-

cator’s ability to inform instruction at the student, class, school, and

corporation level. The data set contains 1,776 students, each has responses

and RTs recorded on 35 items. For data preprocessing, we deleted all records

with 0 RT and deleted all records with total RTs shorter than a cutoff value

of 4.736 minutes (resulting in log-RT of �2) because those examinees might

not respond to any items via solution behavior probably due to lack of

motivation. The resulting sample size that enters into final analysis is

1,682. Figure 3 presents the histogram of item response time for all persons

and all items in the sample. It is clear the RT follows a bimodal distribution

(Meyer, 2010; Wise & Kong, 2005), implying that there might be two

underlying behaviors, normal behavior and aberrant behavior.

Because this test is relatively low stakes, we intended to (and actually are

more likely to) find aberrance due to rapid guessing because of lack of time

toward the end of the test. Cheating might not be a problem for this data set. Both

FIGURE 3. Log-response time of the 1,682 examinees and 35 items.
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the proposed mixture model and the nonmixture model were fit to the data set.

The same priors are used as in the simulation study, except the prior for bj

becomes Nðmb;s2
bÞ, and the hyperparameters ðmb;s2

bÞ have a conjugate

normal-inverse-gamma prior, NIGðmb0
; k0; n0; u0Þ. Similar to van der Linden

(2007), mb0
¼ 0, k0 ¼ 1, and n0¼ u0 ¼ 0:1. The Markov chain length is

50,000, with the first 10,000 as burn-in. Note that both rapid guessing behavior

and cheating behavior result in short RTs, but the item parameter dj (see Equation

5) may help differentiating whether the majority of aberrance on item j, if it

happens, is due to cheating (i.e., high value of dj) or rapid guessing (i.e., low

value of dj). A uniform (0, 1) prior is imposed on dj. The DIC from the mixture

model is 84,581.19, whereas the DIC from the nonmixture model is 92,681.64,

implying that mixture model shows better fit. For the mixture model, m̂b ¼
�0:825 and ŝ2

b ¼ :034, and for the nonmixture model, m̂b ¼ �0:935 and

ŝ2
b ¼ :072. Because the nonmixture model classifies the aberrantly short

response times as normal, it is unsurprising that the mean of the item time

intensity parameter is slightly lower. The difference between the two models

is small because, as the results unfold below, the proportion of aberrant behavior

in this data example is low. Note that the response time is reported on the unit of

minute; hence, the mean of �.825 implies that the average response time for a

person with a speed of 0 (i.e., t ¼ 0) is about 60 � exp(0.825) � 26 seconds.

Figure 4 further presents the histogram of log RTs classified as from

solution and aberrant behaviors, marked by blue and red colors separately.

Not surprisingly, the mixture model approach gracefully classifies the RTs

FIGURE 4. Histogram of log-response time classified by two behaviors (Real Data

Example 1).
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constituting the first mode as from the aberrant behavior and the RTs con-

stituting the second mode as from the normal behavior. On the other hand,

residual method seems not to have enough power to flag aberrance, yielding

a huge overlap between RTs from aberrant behavior and RTs from normal

behavior. This outperformance of the mixture approach continues to be true

even when looking at the item level RT distribution, as shown in Figure 5,

for Items 2 and 26, as an example.

To further identify the specific type of aberrant behavior, Figure 6

presents the estimated d̂j, for each item in the test, labeled by the propor-

tion of aberrant behavior on the respective item. As reflected in Figure 6,

items positioned in the second half of the test (e.g., Items 24–35) show

higher proportion of aberrance, and their estimated d̂j s are close to the

chance value of 0.2*0.25. This observation indicates that the aberrant

behavior is likely the rapid guessing behavior that leads to aberrantly short

RTs. However, further analysis need to be conducted to verify such a

conclusion because using dj alone is not enough to differentiate rapid

guessing from cheating.

5.2. A High-Stakes Computerized Adaptive Testing Example

This data set comes from a large-scale, high-stakes, computerized adaptive

test. The item bank consists of 620 multiple choice items, and examinees’

responses are recorded as either right or wrong. Examinee sample size is

2,106. Test length is 37 and testing time is 75 minutes. Due to the adaptive

design, every item is answered by a different set of examinees, and the examinee

sample size per item varies between 5 and 364. RT distribution of all item-by-

person encounters again reveals a bimodal structure, which implies that the

examinees are from a mixture of two populations with potentially different

behaviors. Even though this is a high-stakes test, the data come from well-

protected testing sites, and the items used for this data collection are secure

items. Hence, we expect the aberrant behavior mainly takes the form of rapid

guessing rather than cheating. Similar to the previous example, both mixture

hierarchical model and nonmixture model were fitted to this data set, and the

Markov chain length is 50,000 with the first 10,000 as burn-in. The DIC from

mixture model is 281,399, whereas the DIC from nonmixture model is 616,367.

Again, mixture model exhibits better fit. For the mixture model, m̂b ¼ 0:474 and

ŝ2
b ¼ :209, and for the nonmixture model, m̂b ¼ 0:415 and ŝ2

b ¼ :246. As in the

first real data example, the response time is reported using the minute unit.

Figure 7 presents the histogram of log RTs classified as from solution and

aberrant behaviors. Mixture model method flagged 1,194 aberrant behaviors (i.e.,

1.52% of aberrance) from 336 examinees, whereas residual method flagged

10,118 behaviors (i.e., 13.1% of aberrance) from 1,967 examinees. As shown
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in Figure 7, many of the cases flagged by the residual method do not have

extremely short RTs; in fact, those observed log-RTs are between �1 and 0

(i.e., 22–60 seconds), which can hardly be considered as “rapid” guessing. In

this regard, we suspect that those behaviors flagged solely by residual method are

false detection. One possible explanation is that in the residual method, the cutoff

of the Bayesian posterior predictive p value determines the number of false

alarms in case there is no irregular responding. Hence, a more stringent cutoff

(i.e., lower than typical .05) might help lower the false alarm rate.

FIGURE 6. Estimated correct response rate for the aberrant behavior for each item, labeled

by the proportion of aberrant behavior on the respective item (Real Data Example 1).

FIGURE 7. Histogram of log-response time classified by two behaviors (Real Data

Example 2).
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To further verify our conjecture, we plotted the box plot of the estimated t̂s for

examinees diagnosed with aberrant behaviors from both methods in Figure 8. As

indicated in the figure, the average estimated t̂s from residual method are much

higher and also vary widely across examinees diagnosed with aberrant behavior.

On the other hand, the estimated t̂s from the mixture model are much lower,

which is in line with the hypothesis that examinees with lower speed tend to rush

through toward the end of the test. Therefore, the results from mixture model are

more reasonable than that of the residual method.

6. Discussion

Online testing or web-based assessment is becoming a mainstream form of

modern testing due to the internet’s flexibility, accessibility, and potential capa-

cities for faster data analysis and reporting. In web-based standardized testing,

RT can be recorded conjointly with the corresponding responses. This broadens

the scope of potential modeling approaches because RTs can be analyzed in

addition to analyzing the responses themselves. One appealing application of

RT is to help distinguish aberrant behavior from normal behavior and to help

diagnose problematic items. From psychometrics perspective, failing to recog-

nize the existence of different behaviors can be detrimental to the validity of

FIGURE 8. Boxplot of estimated t̂ for persons diagnosed with aberrant behavior from two

methods in Real Data Example 2.
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inferences based on the test scores. Moreover, the existence of compromised

items in the test may also inflate the test score and result in invalid inferences.

Looking into the literature, most statistical analysis to identify aberrant

behavior or item compromise belongs to the broader class of residual analysis

or outlier detection (e.g., van der Linden & Guo, 2008; van der Linden & van

Krimpen-Stoop, 2003; Wang, Shu, Shang, & Xu, 2015; Wise, 2017). This class

of methods is flexible as they make no assumptions concerning the form of

irregular behavior. However, it has low power if a large proportion of exam-

inees exhibit aberrant behavior, as demonstrated in both the simulation studies.

The performance of this class of methods could potentially be improved by

employing an iterative purifying approach. That is, one refits the model repeti-

tively using a “cleansed” data set after removing the aberrant responses/RTs.

This approach is worth exploring in future studies. In this article, we introduce

a mixture hierarchical model to account for the dependency between item

responses and item RTs with a special focus on differentiating between normal

and aberrant behavior. The mixture model also offers an indicator showing the

severity of item compromise (i.e., pj). This indicator effectively distinguishes

compromised items from secure items in virtually all manipulated conditions,

whereas the Bayesian residual method has heavy reliance on the severity of

aberrance. The latter leads to low power and sometimes high false detection

rate when the aberrance severity is high. While previous papers either focus on

person-fit analysis or item fit analysis and those focus on item fit analysis have

either rarely considered item misfit due to item compromise or have not

included RT information, our article combines both objectives together

to demonstrate that the mixture model approach offers checks on both items

and persons.

The successful execution of the proposed mixture model approach requires

using sophisticated model calibration algorithm. Different from the Monte Carlo

expectation-maximization (MCEM) algorithm used in Wang and Xu (2015), we

used the fully Bayesian MCMC algorithm. There are several reasons for making

this choice. First, MCMC allows natural incorporation of certain prior information

about the model parameters into the estimation processes. Second, it is relatively

more straightforward than MCEM for complex models. Third, we can obtain the

entire posterior distribution of each parameter from MCMC rather than just the

point estimate. Therefore, statistical inference on certain parameters can be carried

out easily if necessary. The details of the algorithm are provided in the Online

Appendix, and the R code is available from the authors. Alternatively, the com-

prehensive prior information and initial values presented in the previous sections

enable readers to try out this model using other available Bayesian packages.

We acknowledge that this article is limited in a few aspects. First, the

response time is assumed to follow lognormal distributions throughout this

article, and a wrongly specified RT distribution will greatly deteriorate the
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performance of any model-based approach. However, one flexibility of the

hierarchical model, as well as its mixture extension, is that any model can be

plugged in to model RT distribution. It does not have to be lognormal model,

but it can be exponential, gamma, or even semiparametric models. Second, the

current approach cannot differentiate rapid guessing and cheating for each item

and person encounter, unless these two aberrant behaviors result in different RT

distributions. In this case, a three-class mixture model would be ideal. How-

ever, from our real data example (see, e.g., Figure 4 or Figure 5 for item-level

RT distributions), the majority of the item-level RT distributions exhibit a two-

mode shape rather than a three-mode shape, implying that based on RT, only a

two-class mixture model will be identified. At the very least, the objective of

this article is to differentiate aberrant behavior from normal behavior, instead

of differentiating cheating behavior from rapid guessing behavior. This latter

objective is hard to achieve at person-by-item level without separation of RT

information. At the item level, in practice, if we know certain items are likely to

be compromised (e.g., being active for a long period), then we can restrain the

prior of dj to a certain range accordingly to speed up its convergence. Even so,

using dj alone is not sufficient to identify the specific type of aberrant behavior,

future research needs to delve into this challenge further. Third, a well-

recognized issue with mixture modeling approach is that if the difference

between regular and irregular behavior is small, mixture model might not

perform well (e.g., Depaoli, 2013; Tolvanen, 2008). Fourth, in the case of rapid

guessing, the mixture model can be further extended to include the dependency

of the type of behavior on elapsed testing time.

In closing, the aforementioned limitations need to be weighed against the

potential advantages of the proposed mixture model approach, as exemplified

in the simulation studies. Even though preventing aberrant behavior by carefully

proctoring exams, enlarging item bank, increasing testing time, and increasing

the number of parallel forms are commendable—prevention is better than cure—

given that writing and calibrating new items are extremely expensive, routinely

analyzing responses/RTs to diagnose any possible aberrant behavior and item

compromise still has profound practical value. Last but not least, detection of

aberrant behavior (especially cheating behavior) is sensitive in reality, so instead

of merely relying on statistical evidence, careful qualitative analyses of the entire

RT pattern for flagged test takers and items and corroborating evidence such as

reported irregularities during the testing session should also be taken into con-

sideration. Overall, we present an improved and efficient method for detecting

aberrant behavior during testing that would also permit precise identification of

compromised items.
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Notes

1. Note that the c-parameter captures the “normal” guessing behavior, that is,

persons with infinitely low ability resorting to guessing a response after

carefully considering other options (Wang & Xu, 2015); hence, the RTs from

this type of guessing are normal. This is different from the rapid guessing,

which results in extremely short RTs.

2. This choice is made based on two reasons. First, allowing RT distribution to

vary at item level for aberrant behavior will make the model overly complex

and even not identifiable. Second, as alluded to in the “common-guessing

mixture model” by Schnipke and Scrams (1997), item characteristics should

not affect RT distributions arising from rapid guessing behavior.

3. In the simulation study, we considered a simpler prior of N(0, 1) because it

was relatively weakly informative compared to the true U(�.2, .2) distribution

where b was simulated from. However, future researchers can consider even

less informative prior for b such as N(0, 10).
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