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Article

National mathematics standards emphasize that, by the end 
of second grade, students should demonstrate fluency with 
addition and subtraction facts and understand the algo-
rithms for adding and subtracting multi-digit numbers 
(National Governors Association Center for Best Practices 
& Council of Chief State School Officers [NGA & CCSSO], 
2010). Fluency with facts related to multiplication and divi-
sion should be established by the end of third grade, and 
students should understand and apply algorithms for solv-
ing multi-digit multiplication and division by the end of 
fourth grade. Even with this emphasis on developing strong 
computation skill during the elementary grades, students 
continue to struggle with whole-number computation 
beyond elementary grades and into secondary school 
(Calhoon, Emerson, Flores, & Houchins, 2007). With this 
in mind, we conducted a study to investigate differences in 
the frequency and types of computation errors among third-
grade students identified as at risk for mathematics diffi-
culty (MD) and not at risk for MD.

In this introduction, we review the importance of stu-
dents developing computation skills, describe previous 
research on computation errors, discuss the limitations of 
this previous research, and provide the purpose and research 
questions guiding this study.

Importance of Computation

Computation is defined as mathematics problems in the 
four primary operations (i.e., addition, subtraction, multi-
plication, and division) that involve an understanding of 

place value and algorithms. To effectively perform different 
computations, students must have a strong understanding of 
mathematics facts and the place-value system (Russell, 
2000). Beyond the elementary grades, mastery of computa-
tion provides the foundation for more complex mathematics 
skills, such as problem solving and algebra (Fuchs et  al., 
2014; Siegler et al., 2012). Because of the role of computa-
tion within higher level mathematics, computational flu-
ency was named goal for all students, as outlined on national 
sets of mathematics standards (e.g., National Council of 
Teachers of Mathematics [NCTM], 2000).

Because developing efficiency with computation is 
important for higher level mathematics, it is important to 
understand why students have difficulty with computation. 
Typically, students with MD have demonstrated lower com-
putation performance than students without MD. One dif-
ficulty with computation for students with MD stems from 
the learning and remembering of arithmetic facts (Chong & 
Siegel, 2008; Geary, 1993; Geary & Hoard, 2001; Gersten, 
Jordan, & Flojo, 2005; Jordan, Hanich, & Kaplan, 2003a). 
As Mabbott and Bisanz (2008) noted, fluency with arithme-
tic facts allowed for more fluid computation procedures and 
less taxation on working memory for students with MD. 
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Beyond facts, students with MD have also demonstrated 
difficulty performing computation procedures (Miller & 
Milam, 1987; Zhang, Ding, Barrett, Xin, & Liu, 2014). 
Results of teacher-reported student computation difficulties 
indicated that, through high school, students with MD made 
regrouping errors, disregarded decimals while performing 
computation, and misread operation signs within computa-
tion problems (Bryant, Bryant, & Hammill, 2000).

With regard to errors, students have added both factors 
in a multiplication problem (e.g., 3 × 4 = 7) or committed 
errors that suggested students were unaware of the correct 
procedures or symbol meaning (5 × 2 = 52; Siegler, 1988; 
Zhang et al., 2014). In other instances, students with MD 
executed errors unrelated to the specific operation featured 
in the problem (e.g., subtraction in multistep division; 
Bryant et al., 2000; Miller & Milam, 1987). Because stu-
dents with MD struggle with many aspects of computation 
and because computational skills are directly related to 
mathematics performance in later grades (Geary, 2011; 
Primi, Ferrão, & Almeida, 2010), there is a need to provide 
focused instruction on computation.

Current intervention efforts in the elementary grades 
focus on individualizing intervention for students with MD 
who demonstrate low or no response to intervention (Powell 
& Stecker, 2014). Suggestions for intensification of inter-
vention include breaking down problems into smaller steps, 
using worked examples, and using manipulatives. To inform 
instruction for students without MD, it is necessary to con-
duct an examination of the types of computation errors stu-
dents frequently commit. This type of analysis could change 
classroom practice. To inform intensive intervention for 
students with MD, in which teachers may want to use 
worked examples and break down problems into smaller 
steps, an understanding of error patterns for students with 
MD could be used to design and inform instructional inter-
vention practices. This is especially true if error patterns 
were substantively different for students with and without 
MD. Researchers have collected empirical data about error 
patterns, and we discuss this collection of research in the 
next section.

Research on Specific Computation 
Errors

As described by Ashlock (2010), teachers can improve 
mathematics instruction when using student work as a diag-
nostic. When students solve problems incorrectly, an in-
depth analysis of misconceptions and error patterns can 
help teachers understand if errors are idiosyncratic or 
whether errors stem from misunderstandings in conceptual 
or procedural learning. Ashlock notes that error analyses 
provide an initial snapshot of student understanding; teach-
ers should also employ open-ended assessments and inter-
views to get at the root of error patterns. In this section, we 

describe the research base related to computation error pat-
terns to understand which errors emerge as persistent.

McLeod and Armstrong (1982) evaluated teachers’ 
responses to a survey regarding observations of students 
with learning disabilities (LD) in sixth through 12th grade. 
Teachers frequently observed student deficits in computa-
tion of multiplication and division of whole numbers and 
computation involving fractions, decimals, and percent-
ages. Bryant et  al. (2000) also gathered teacher-reported 
data regarding computation difficulties. Teachers reported 
that behaviors within multistep problems and regrouping 
errors explained most of the variance between students with 
and without LD. Based on the idea that many students with 
LD struggle with many aspects of computation, researchers 
have introduced scoring techniques to identify specific 
errors in computation with the goal of providing teachers 
with valuable information to address computation deficits 
with instruction. Two common scoring techniques to iden-
tify specific computation errors include individual error 
analysis and the error ratio analysis technique.

Miller and Milam (1987) used individual error analysis 
to examine the types of errors committed by students with 
LD on one multiplication item and on one division item. 
The authors reported a wide variety of errors. Students 
responded with 96 different answers to the multiplication 
item and 93 different answers to the division item. Results 
indicated that many student mistakes did not reflect errors 
of multiplication and division. In other words, 42% of the 
mistakes on the division problem were related to subtrac-
tion and multiplication used within division. Räsänen and 
Ahonen (1995) also analyzed computation errors of indi-
vidual participants in their study; the authors, however, only 
administered items with whole-number addition, subtrac-
tion, and multiplication (i.e., division and items with frac-
tions were not included). Räsänen and Ahonen compared 
the computation performance of typically achieving stu-
dents and students with MD in a secondary analysis of stu-
dent data. Students in third through sixth grade with MD 
made significantly more computation errors than typically 
achieving students in all categories of errors coded by the 
authors including but not limited to, wrong operation, algo-
rithm errors, rule errors in addition and subtraction, and ran-
dom errors.

In another study, Cox (1975) examined individual errors 
on a systematic level (errors that students committed at least 
three times on the same problem type) across second through 
sixth grade for addition, subtraction, multiplication, and 
division. Authors identified the types and frequency of sys-
tematic errors across the sample. For example, some of the 
most common systematic errors with addition were adding 
each digit separately (e.g., for 34 + 2 student adds 3 + 4 + 2), 
not adding the “regrouped 10” number (e.g., 48 + 3 = 41), 
and subtracting instead of adding. Cox reported that of the 
students who committed systematic errors, 23% of those 
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students were still committing systematic errors 1 year later. 
Cox examined the individual errors that students committed 
and determined that multiplication items resulted in 67 dif-
ferent systematic errors, which was the largest number of 
different errors across the four operations.

Cawley, Parmar, Yan, and Miller (1996) introduced an 
error ratio analysis technique as a class-wide or group scor-
ing procedure for computation. Error ratio analysis was 
considered more time efficient than individual item error 
analysis and provided more instructional information about 
students than the total correct scoring method. To perform 
error ratio analysis, first, the number of incorrect answers 
per problem type is counted (e.g., number of wrong answers 
for all single-digit by single-digit multiplication). Then, the 
number of different types of errors made per problem type 
is counted (e.g., calculation, regrouping). The error ratio 
was the ratio of the number of different incorrect responses 
to the total number of incorrect responses. Larger ratios of 
approximately 70:100 or greater symbolized a larger num-
ber of different error types within a classroom compared 
with the actual number of errors; a smaller ratio, less than 
30:100, represented only a few different errors (Cawley 
et al., 1996; Miller & Carr, 1997).

Cawley et al. (1996) compared typically achieving stu-
dents and students with LD regarding response variability 
on 92 computation items (i.e., addition, subtraction, multi-
plication, and division). Cawley et al. concluded that items 
with higher ratios were placed later in the curriculum and 
represented multistep problems that required students to 
perform many steps to reach the correct answer, therefore 
leading to more variability in student responses. Items with 
lower ratios were likely due to simple procedural errors, 
such as performing the wrong operation. Cawley et al. also 
reported that many errors in multiplication and division 
were actually the result of incorrect addition or subtraction 
in one of the earlier steps of solving the item.

Though most studies that have conducted error analysis 
have examined computation with whole numbers, Malone 
and Fuchs (2016) examined individual responses on items 
specific to fractions as a method for assessing understand-
ing of part–whole concepts. Participants in this study were 
identified as at risk in mathematics by performing below the 
35th percentile on a mathematics screening measure. 
Participants were administered items that required them to 
correctly order and estimate fractions according to value, 
demonstrate part–whole understanding in word problems, 
and verbally explain why one fraction was greater than or 
less than another fraction. Results indicated that when 
ordering fractions, one of the most common errors students 
committed was applying whole-number values to fractions 
(i.e., they incorrectly ordered fractions based on either the 
numerator or denominator). Another common error was 
that students treated fractions with the smallest denomina-
tor as the largest fraction, regardless of the numerator. This 

indicated that students may have been aware that the larger 
denominator represented larger fraction parts. Finally, the 
authors reported that students at risk for MD had difficulty 
verbally explain their procedures for comparing fraction 
values.

Limitations of Previous Studies

In the present study, we aim to address the limitations of 
previous studies on computation error analysis in several 
ways. First, much of the research on error analysis was con-
ducted several decades ago (e.g., Cawley et al., 1996; Cox, 
1975; Miller & Milam, 1987). Based on a search of the lit-
erature, even the most recent error analyses were conducted 
more than 20 years ago, which is prior to national initiatives 
to raise standards for student learning, such as the Common 
Core State Standards (NGA & CCSSO, 2010) or the NCTM 
content and process standards (NCTM, 2000) and Focal 
Points (NCTM, 2006). We would anticipate that instruc-
tional practices related to computation may have changed 
since the inception of these different sets of standards with 
higher expectations related to computation. A primary goal 
of this study was to provide current estimates of students’ 
computation abilities and specific information regarding 
types of errors that students commit, especially as it relates 
to students with MD.

Second, ambiguous results from studies are difficult to 
generalize to all students and specific subgroups of students 
(such as students with LD or MD) for several reasons. For 
example, studies analyzed only one item type (e.g., multi-
plication), compiled results from several item types and 
generalized to all computation, included multiple grade lev-
els with students of varying computation abilities, or 
reported data on a small number of items. We examined 
individual errors committed by third-grade students on a 
diverse set of addition, subtraction, multiplication, and divi-
sion items with whole and rational numbers to increase gen-
eralization of errors to other similar computation problems. 
We focused on third-grade students because the national 
standards and recommendations for instruction (NCTM, 
2000; NGA & CCSSO, 2010) emphasize that by the end of 
third grade, students should be able to solve problems 
involving the four operations, understand the properties of 
the four operations, and understand and use place value to 
solve problems involving the four operations.

Purposes and Research Questions of 
the Present Study

The purposes of this study were to investigate the frequency 
and types of computation errors among third-grade students 
and determine differences, if any, according to students’ 
risk of MD considering the frequency with which types of 
errors were committed. This information could inform 
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classroom instruction and intervention development related 
to typically achieving students and students with MD. 
Specifically, we asked the following research questions:

Research Question 1: What are the most common errors 
(e.g., miscalculation, wrong operation) on individual 
computation items and within categories of computation 
items for third graders (e.g., all addition items)?
Research Question 2: Which items were most difficult 
for third graders to solve correctly, and which items and 
item categories resulted in the largest error ratios?
Research Question 3: Were error ratios by item cate-
gory different for students with MD versus typically 
achieving students?

Method

Participants and Setting

Participants (N = 478) were sampled from third-grade class-
rooms in a school district in a state in the Southwest. 
Demographics were available for 60% of participants. 
Approximately 51.4% of participants were female, and the 
sample identified as Hispanic (47.2%), Caucasian (25.9%), 
African American (11.7%), Asian (6.7%), American Indian 
(5.7%), and Other (2.8%). The average age of participants 
was 8 years 8 months. Overall, 5.7% of the sample had been 
retained one grade level, 4.8% received special education 
services, and 44.8% were English learners.

Measures

We measured computational knowledge with the Math 
Computation subtest of the Wide Range Achievement Test 4 
(WRAT4; Wilkinson & Robertson, 2006). The examiner 
read directions aloud and students worked independently. 
Students had 15 min to answer 40 written computation 
problems of increasing difficulty. According to the WRAT4 
administration manual, students answering four or fewer 
written problems correctly are administered 15 oral arith-
metic problems. In the current study, no students required 
administration of the oral arithmetic section of Math 
Computation. Students received one point for each correct 
answer. Because no students required administration of the 
15 oral arithmetic problems, every student was awarded 15 
additional points to their raw score. The maximum possible 
score is 55. As reported by Wilkinson and Robertson (2006), 
median reliability for students in third grade is .88. 
Cronbach’s alpha for this sample was .82.

Procedures

The WRAT4 Math Computation was administered within a 
battery of mathematics assessments for a larger study during 

the second week of September; whole-class screening was 
conducted in one 45-min session with 15 min dedicated to 
the WRAT4. Examiners were graduate research assistants 
from a local university working on master’s or doctoral 
degrees in education-related fields. All examiners partici-
pated in a 2-hr training to review the screening protocols. 
During administration, all examiners read directly from a 
screening script.

For scoring, teams of research assistants entered student 
responses on 100% of the screening protocols for each mea-
sure on an item-by-item basis into two separate databases. 
We compared the databases and rectified all discrepancies 
to reflect the student’s original response, ensuring data 
entry was 100% accurate.

Coding responses and errors.  Student responses to each item 
on WRAT4 Math Computation were scored as correct or 
incorrect, and when student responses were incorrect, we 
recorded the error, when identifiable (e.g., wrong operation, 
regrouping, miscalculation). To code the errors, first, the 
authors created a list and description of potential errors 
from previous research on error analysis (e.g., Cox, 1975; 
Räsänen & Ahonen, 1995). The authors expanded this list 
by calculated what the answer would be for each problem if 
the student committed one of the errors. The list and answers 
for each error for each problem were agreed upon by both 
authors. For example, for an item “3 + 2” the authors prede-
termined that any answer of “1” would be coded as “wrong 
operation–subtraction.” From there, errors were coded sys-
tematically. Each error only received one code. When errors 
were not initially identifiable from the predetermined list, 
authors worked together to determine what error a student 
may have committed to receive the incorrect answer. In 
instances where authors were not equally confident that a 
student may have committed a specific error (rather than 
guessing), or if authors could not determine the steps a stu-
dent took to obtain an answer, the error was coded as 
“unknown.” Initially, the first author coded all incorrect stu-
dent responses according to the error that the student com-
mitted. Then, the second author coded errors for 30% of 
students for each item. Interrater reliability was calculated 
as total [agreements ÷ (agreements + disagreements) × 
100]. The interrater agreement for this sample was 96%. 
Discrepancies between the predetermined list of errors and 
the database were discussed and resolved. Please note that 
due to test copyright and security, any examples provided in 
tables or text are not representative of the WRAT4 Math 
Computation, and not all subtype information for individual 
items is presented in the tables.

Data Analysis

Regarding common error types, each student’s response to 
every item on the WRAT4 Math Computation was coded 
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for the type of error that was committed. The frequencies of 
error types were calculated for each item and similar items 
(e.g., all addition items). The item difficulty index was cal-
culated as the proportion of students who answered an item 
correctly; the calculation of item difficulty included “blank” 
responses as “incorrect” responses. The error ratio repre-
sents the ratio of the number of different incorrect responses 
to the total number of incorrect responses (Miller & Carr, 
1997) and was calculated as the number of different incor-
rect responses (n) divided by the total incorrect answers (k) 
or [(n ÷ k) × 100]. When examining differences between 
students identified typically achieving or as having MD, 
students were categorized based on their performance on 
the WRAT4 Math Computation assessment. Students were 
identified as MD if they scored at or below the 25th percen-
tile on the WRAT4 Math Computation, similar to other 
research related to students with or at risk for MD (Hecht & 
Vagi, 2010; Jordan, Hanich, & Kaplan, 2003b; Locuniak & 
Jordan, 2008). Students were identified as typically achiev-
ing if they scored at or above the 35th percentile on the 
WRAT4 Math Computation; we intentionally selected the 
35th percentile to allow for a gap between students we clas-
sified as typically achieving and students with MD (Vukovic 
& Siegel, 2010). When students have scores that fall near a 
cut score, it is more difficult to discriminate between groups 
of students (i.e., students classified as scoring ≤ 25th per-
centile may not really be that different from students who 
score at the 26th percentile).

Of the 478 students who participated in this study, 120 
students (25.1%) were identified as students with MD (i.e., 
scoring below the 25th percentile on the WRAT4 Math 
Computation) and 312 students (65.3%) were identified as 
typically achieving (i.e., scoring above the 35th percentile 
on the WRAT4 Math Computation). Overall, 46 fell in the 
“buffer zone” between the 25th and 35th percentiles and, 
therefore, were not included when examining the differ-
ences between MD and typically achieving students in error 
ratio analysis and percent correct by item category.

Results

The average score for all participants on the WRAT4 Math 
Computation was 25.33 (SD = 3.40). Originally, our intent 
was to use the first page of the WRAT4 Math Computation 
(Items 1 through 25) to evaluate error patterns because the 
majority of items on the second page of the WRAT4 Math 
Computation (Items 26 through 40) represented mathemat-
ics content typically introduced after third grade. For exam-
ple, most of the items on the second page require operations 
with fractions and percentages. After an examination of the 
items on the first page of the WRAT4 Math Computation, 
we determined that students in this study consistently 
attempted Items 1 through 21. Fewer than 72 students 
(15%) attempted Items 22 through 25, and fewer than 90 

students (19%) attempted Items 26 through 40. Only one 
student responded correctly to Items 22, 23, 24, and 25; 
therefore, the results of this study focus only on Items 1 
through 21.

Common Errors

We examined common error patterns for Items 1 through 
21, and Table 1 displays the common errors across items. 
Table 1 also provides criteria for the error as well as an 
example of the error. We discuss the results for common 
errors within specific item categories (e.g., subtraction with 
single digits) within the text.

Common errors across all items.  On Items 1 through 21, stu-
dents committed 2,427 total errors, with 650 unique errors 
across items. Of these errors, the authors were able to iden-
tify 1,724 errors (71.0%); the remaining 29.0% of errors 
were not identifiable and were coded as unknown. The most 
common set of errors across all items was use of the wrong 
operation (20.0%), meaning that the student performed the 
incorrect operation in the item prompt (e.g., the student 
added instead of multiplied). The error of wrong operation–
addition (i.e., the student added instead of subtracted on a 
subtraction problem) was the most common error of all the 
wrong operations (addition, subtraction, multiplication). 
Students also committed errors that suggested they had not 
been taught the correct algorithm or had not yet mastered 
the procedures for performing addition and subtraction. For 
example, across six items students added all of the digits 

separately (e.g., 1

3
 + 1

3
 = 1 + 3 + 1 + 3; 22 + 6 = 2 + 2 + 6) 

resulting in 227 (9.4%) of the total errors. In two other 
items, students performed subtraction with multi-digit num-
bers but committed a procedural error when they always 
subtracted the smaller digit from the larger digit, regardless 
of the digit’s placement in the item. This resulted in nearly 
200 (7.8%) of the total errors committed.

Other common errors included simple miscalculation 
errors with addition and subtraction, mistakes with regroup-
ing, not completing all of the steps to obtain the correct 
answer, and reporting a close multiplication fact as the 
answer (i.e., student performed multiplication on the mul-
tiplication item but reported an incorrect fact in the same 
fact family; e.g., reported 3 × 4 = 9 due to reported the 
close fact of 3 × 3). Curiously, students also copied part or 
all of the item prompt and used this as their answer, which 
suggests that students may not have understood the steps to 
solve the item prompt. This type of error only accounted 
for 4% of the total errors committed and the error was 
recorded in 20 of the 21 items; however, there was not a 
pattern across problems or within students that would sug-
gest this error was due to the students not hearing the direc-
tions correctly.
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Common errors across specific items.  Regarding single-digit 
addition and subtraction items, results indicate that students 
committed the most errors in both item categories of mis-
calculation and wrong operation. The proportion of errors 
due to miscalculation was nearly identical across single-
digit addition items (32.7%) and single-digit subtraction 
items (31.8%); however, more errors in single-digit addi-
tion items were due to students committing the wrong oper-
ation (45.2%) compared with wrong operations in 
single-digit subtraction items (22.7%).

A somewhat similar pattern emerged with the multi-digit 
addition and multi-digit subtraction items. The second most 
common error in multi-digit addition was miscalculation 
(22.7%) and wrong operation in multi-digit subtraction 
(18.1%). Though, in both categories students more fre-
quently committed other errors. Students displayed diffi-
culty with regrouping procedures (30%) in multi-digit 
addition. With multi-digit subtraction, students commonly 

disregarded digit placement and subtracted the smaller digit 
from the larger digit (31.2%).

Other than the many unknown errors (41.8%) that stu-
dents committed on single- and multi-digit multiplication 
items, the most frequent identifiable error was reporting a 
close multiplication fact as the correct answer (20.0%). The 
next most common error was coded as incomplete proce-
dure (7.4%) and included instances where a student per-
formed part of the multiplication problem but not all steps 
were completed so the recorded answer was incorrect. 
Regarding single- and multi-digit division items, students 
continued to display difficulty with items by performing the 
wrong operation. Students more frequently performed addi-
tion instead of division (31.9%) compared with performing 
subtraction instead of division (22.3%).

The final category of items we examined included addi-
tion with fractions. Students frequently treated the numera-
tor and denominator of the fraction as separate numbers 

Table 1.  Common Identifiable Errors Across Items.

Error Errors (n)
Items With 
Error (n) Criteria Example (Student Action in Bold)

Total errors 2,427 21  
Unknown 705 21 Answer was incorrect; error was 

idiosyncratic
32 + 40 = 953 (action unknown)

Wrong operation–addition 246 11 Performed addition instead of the 
signaled operation

7 – 3 = 10 (7 + 3)

Added all digits 227 6 Added all digits as separate 
numbers

½ + ½ = 6 (1 + 2 + 1 + 2)
21 + 13 = 7 (2 + 1 + 1 + 3)

Miscalculation (+, –) 202 14 Close miscalculation or counting 
error

9 + 6 = 14

Subtracted smaller integer 189 2 Subtracted the smaller integer 
from the larger integer; ignored 
regrouping procedures

   721
– 358
   437 (7 – 3; 5 – 2; 8 – 1)

Regrouping 172 7 Regrouping error    39
+ 45
   74 (did not regroup the 10)

Procedural error 254 9 Performed some steps to 
complete the problem but did 
not perform all steps

   12
   30
+ 21
   42 (12 + 30)

Wrong operation–subtraction 212 7 Performed subtraction instead of 
the signaled operation

6 + 4 = 6 (6 – 4)

Copied prompt 97 20 Copied all or part of the item 
prompt

16
2

 = 16
2

Close fact (× ÷, ) 77 4 Close multiplication fact 3 × 5 = 12 (3 × 4)
Wrong operation–multiplication 28 2 Performed multiplication instead of 

the signaled operation
3 + 3 = 9 (3 × 3)

Did not understand prompt 18 6 Error that was identifiable but 
clear student did not understand 
the prompt

2 × 3 = 23 (put numbers 
together)

Note. This table represents errors for the full sample (N = 478 students). The examples in this table are a similar format to the actual errors students 
committed, but the items represented here are not identical to the items on the WRAT4 Math Computation.
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(54.4% of errors), which resulted in students adding all of 
the digits in the problem to reach the solution.

Item Difficulty and Error Ratio Analysis

Results of the item difficulty and error ratio analysis by 
item on the WRAT4 Math Computation (Items 1 through 
21) are presented in Table 2, and results for item difficulty 
and error analysis according to item categories, and sepa-
rated by typically achieving versus MD, are highlighted in 
Table 3. First, we calculated item difficulty (i.e., percentage 
of students who correctly answered the item) and error ratio 
at the individual item level. The calculation of item diffi-
culty included “blank” responses as “incorrect” responses. 
Then, we analyzed trends across subtypes of items (e.g., all 
addition items).

Item difficulty.  In this section, reported percentages repre-
sent item difficulty or the percentage of students who 
answered the item correctly. Generally, item difficulty 
increased (i.e., fewer students answered the item correct) 
with each successive item on the WRAT4 Math Computa-
tion. More than 50% of students who attempted the items 
with single- and multi-digit computation with and without 

regrouping (addition and subtraction) and single-digit mul-
tiplication solved the items correctly; however, there was an 
obvious decrease in the number of students who attempted 
and solved correctly items that introduced single-digit divi-
sion, subtraction with regrouping, addition with three- and 
four-digit numbers, and fractions.

Regarding items presented as whole numbers only, items 
that required the use of addition (n = 6) were answered cor-
rectly more often (72%) than items that required subtraction 
(n = 6; 62%). Fewer items (n = 3) required multiplication or 
division, and students had more difficulty (33% answered 
correctly) with those items than both addition and subtrac-
tion (72% and 62%, respectively). Regarding the subtype of 
whole-number addition, subtraction, multiplication, and 
division items, difficulty varied according to whether the 
item required regrouping and by the number of digits in the 
item. Students had less difficulty with items that did not 
require regrouping or were math facts (n = 11; 76% of stu-
dents answered correctly) than items that required regroup-
ing procedures (n = 4; 18% of students answered correctly). 
Furthermore, items that required whole-number operations 
where both operands were only one digit (e.g., 1 + 4) were 
easier (n = 8; 78%) for students to solve than items (n = 7) 
where at least one operand was multi-digit (e.g., 12 × 6; 

Table 2.  Error Ratio Analysis and Percent Correct by Item.

Item Type Correct Correct Attempt Incorrect
Different 
Incorrect Error Ratio (%)

1 Addition 472 98.3% 100% 6 2 33.3%
2 Subtraction 445 92.7% 98.5% 26 6 23.1%
3 Number line 443 92.3% 95.2% 12 10 83.3%
4 Subtraction 440 91.7% 97.1% 24 8 33.3%
5 Addition 429 89.4% 96.2% 41 10 24.4%
6 Addition 409 85.2% 97.5% 57 10 17.5%
7 Subtraction 408 85.0% 93.3% 38 11 29.0%
8 Addition 360 75.0% 89.1% 66 40 60.6%
9 Subtraction 318 66.3% 89.7% 111 29 26.1%

10 Multiplication 270 56.3% 75.5% 91 27 29.7%
11 Addition 311 64.8% 91.6% 127 37 29.1%
12 Division 141 29.4% 55.9% 126 19 15.1%
13 Subtraction 132 27.5% 82.6% 263 44 16.7%
14 Addition 103 21.5% 60.3% 185 66 36.7%
15 Multiplication 66 13.8% 45.8% 153 64 41.8%
16 Subtraction 53 11.0% 64.4% 255 97 38.0%
17 Rounding 76 15.8% 51.0% 168 35 20.8%
18 Division 12 2.5% 41.0% 184 26 14.1%
19 Addition 9 1.9% 50.6% 233 31 13.3%
20 Addition 12 2.5% 38.7% 173 40 23.1%
21 Algebra 43 9.0% 27.5% 88 38 43.2%

Note. This table represents errors for the full sample (N = 478 students). For clarity in interpreting the magnitude of the error ratio, the error ratio 
is presented as a percentage (e.g., a ratio of 15:100 would be represented in the table as 15% and means 15 different incorrect answers to 100 total 
incorrect responses). Larger percentages represent items with more variability in the number of different incorrect responses; smaller percentages 
represent items with less variability in the number of different incorrect responses.
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40%). Although some students attempted the few items (n = 
3) that contained fractions, students answered these items 
correctly less often (2%) than items that contained only 
whole numbers (n = 18; 57%).

Error ratio.  In this section, we converted the error ratio to a 
percentage for ease of interpretation (e.g., a ratio of 15:100 
is represented as 15% and is the equivalent of the ratio 15 
different incorrect answers to 100 total incorrect responses). 
Regarding the ratio of the number of different incorrect 
responses to the total number of incorrect responses, the 
types of items that had the largest average error ratio (i.e., 
more incorrect responses per total incorrect responses) val-
ues included multi-digit items (38%), multi-digit items that 
also required regrouping (38%), and items that required the 
use of addition to solve correctly (36%). On average, one-
digit by one-digit operations had lower error ratios (26%), 
as did the three items that contained fractions (17%). Lower 
error ratio values represented items that had few different 
incorrect responses compared with the total number of 
incorrect responses. With regard to items that contained 
fractions, the majority of students (56%) who committed an 
error, committed the same error of adding all the digits as 
part of the fraction to arrive at the solution. The fact that 
most students committed the same error accounts for the 
low error ratio.

Particular items that resulted in larger error ratios, and 
therefore, much more variability in student response, 
included an item that required students to fill in the missing 
number in a sequence (error ratio = 83%), and items with 

multi-digit addition. The specific multi-digit items that 
resulted in the largest error ratios included an item that 
required students to add three two-digit numbers without 
regrouping and another addition item that introduced num-
bers with three and four digits. These items produced 40 
and 66 different incorrect responses, respectively.

Typically achieving students versus students with MD.  Table 3 
reports results for the percent correct (i.e., item difficulty) 
and the error ratio of item categories, but results are dis-
played by student risk status (typically achieving vs. MD). 
Interestingly, there were only minor differences in the per-
cent correct by item category for students with MD versus 
typically achieving students. Across item categories, stu-
dents with MD always answered items correctly less often 
on average, with most item categories having a relatively 
little difference in average correct response (i.e., approxi-
mately a 0% to 3% difference). The largest difference in 
average percent correct was with the three multiplication 
and division items (a 17.1% difference). Interestingly, there 
were more noticeable differences with regard to the error 
ratios by item category for students with MD versus typi-
cally achieving students. Error ratios by category were 
always larger for students with MD, with large differences. 
This suggests that on average, students with MD consis-
tently reported many different incorrect answers for an 
item, compared with typically achieving students. Error 
ratios for students with MD were higher than 52:100 the 
majority of the time, while error ratios for typically achiev-
ing students were typically lower than 43:100.

Table 3.  Error Ratio Analysis and Percent Correct by Item Category for Students With MD and Typically Achieving Students.

Category Items (n)

Percent Correct and Attempted Error Ratio

TA MD TA MD

Correct (Attempt) % Correct (Attempt) %    M   (SD)    M    (SD)

Items with whole numbers
  Whole numbers 18 58.5 79.1 56.8 76.9 39.9 (17.4) 56.6 (22.5)
  Addition 6 73.0 63.1 74.4 88.3 42.7 (15.5) 62.3 (30.2)
  Subtraction 6 64.2 87.9 61.8 86.6 31.1 (9.8) 53.3 (22.4)
  Multiplication / division 3 37.2 55.1 20.1 51.2 26.6 (30.9) 48.8 (23.8)
  No regrouping necessary 8 86.4 95.1 86.8 95.0 36.1 (13.2) 60.5 (27.8)
  Regrouping necessary 4 33.0 75.6 30.7 72.4 38.4 (17.0) 52.3 (23.8)
  Single-digits only 8 79.9 89.7 78.6 88.3 33.7 (11.5) 58.0 (25.6)
  Multi-digit 7 42.0 73.1 38.9 69.0 41.3 (15.8) 55.3 (23.9)
Items with fractions
  Fractions 3 2.6 43.7 3.0 42.3 19.4 (7.5) 27.4 (7.2)

Note. This table represents errors for only students who scored below the 25th percentile on the WRAT4 Math Computation (MD; n = 120) and 
students who scored above the 35th percentile on the WRAT4 Math Computation (TA; n = 312). Items presented with fractions are not presented 
with subcategories due to the small number of items with fractions. Regrouping and regrouping categories reflect whole-number computation items 
only presented as addition and subtraction problems. TA = typically achieving; MD = mathematics difficulty.
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Discussion

We assessed the computation skill of 478 third-grade stu-
dents on the WRAT4 Math Computation. Based on compu-
tation scores, we selected students as with or at risk for MD 
when the standard score of the WRAT4 Math Computation 
was at or below the 25th percentile (n = 120). We catego-
rized students scoring at or above the 35th percentile (n = 
312) as typically achieving. Of the 21 WRAT4 Math 
Computation items included in this analysis, 12 of the items 
were listed as first- or second-grade standards. Because par-
ticipants were in third grade, we were surprised that very 
few students demonstrated proficiency with these items. In 
summary, the average score for students with MD was 
20.96 (SD = 2.19); typically achieving students scored 
27.25 (SD = 2.11).

Common Errors

Regarding common errors, our results were consistent 
with previous research. For example, we know from previ-
ous research that students who are low achieving or identi-
fied as MD generally have difficulty with retrieving basic 
facts and performing correct calculations (Geary, 1993; 
Geary & Hoard, 2001; Jordan et  al., 2003b). We also 
understood that students often performed the wrong oper-
ation (e.g., performed addition when the item signaled 
subtraction; Cox, 1975) and committed procedural errors 
(Cawley et al., 1996).

With our first research question, we investigated the 
common errors on individual computation items and within 
categories of computation items for all students. The 478 
third-grade students in this analysis committed 2,427 errors, 
and we were able to identify 71% of the error patterns. Of 
the identifiable error patterns, the most consistent error was 
that of using the wrong operation. When students made this 
mistake, students often added when the operation of the 
problem signaled for subtraction. Making this error may be 
due to the way that operations are practiced in the class-
room. First, all mathematics curricula introduce addition 
before subtraction, so students have received more expo-
sure to addition than any other operation. In introducing 
addition first, students receive exposure to the plus sign (+), 
yet students do not always connect the plus sign to the oper-
ation of addition because every problem practiced with the 
teacher is addition. In this way, students become condi-
tioned to not paying attention to the operational symbols of 
mathematics. This trend has also been noted with student 
interpretation of the equal sign (McNeil & Alibali, 2005). 
Second, because of the lack of attention to operational sym-
bols, students may become conditioned to computation 
based on the initial item. On the WRAT4 Math Computation, 
the first item is an addition item. Therefore, we hypothesize 
that some students may assume subsequent problems 

require addition, when, in fact, the second item requires 
subtraction.

That 20% of the errors were related to using the wrong 
operation indicates that teachers must provide more focused 
instruction on the symbols of mathematics and help stu-
dents become aware of the meaning of a symbol before 
starting to perform a computation (Powell, 2015). Teachers 
should provide more opportunities for students to discern 
among symbols and decide which operation needs to be 
performed. By teaching students to briefly assess any prob-
lem before working the problem, students might not make 
this very common mistake as often.

The next most prevalent error pattern also involved addi-
tion, but this error involved students adding all digits as 
separate numbers. This error was related to problems with a 
plus sign, but the complexity of the multi-digit whole num-

bers (e.g., 22) or rational numbers (e.g., 1

3
) contributed to 

student errors. These results are similar to the findings of 
Malone and Fuchs (2016) as students in this study also mis-
applied whole-number concepts to fractions (i.e., students 
treated numerators and denominators as separate numbers). 
As teachers introduce computation beyond single-digit 
numerals, it may be important to discuss the differences 
between single-digit computation and computation with 
multi-digit whole numbers and fractions. Because students 
have only received practice adding or subtracting single 
digits, it is understandable that students would transfer this 
skill to more complex problems if appropriate instruction is 
not provided.

The other more common error pattern was related to sub-
traction. In multi-digit subtraction, students subtracted the 
digit that was less from the greater digit regardless of digit 
placement. This result was not too surprising as many stu-
dents, not only those with MD, struggle with subtraction 
and previous research indicates that this is a common error 
(Miller & Milam, 1987). Similar to the previous error, this 
is a creative error that students use to work around not 
knowing what to do when the problem is not presented as a 
greater number minus the number that is less. When teach-
ers introduce single-digit subtraction (e.g., 7 – 2), they may 
instruct students to “always take away the smaller number 
from the greater number.” Although this may appear to be a 
helpful recommendation for students, it creates confusion 
when students are taught multi-digit subtraction where stu-
dents must observe place value (Karp, Bush, & Dougherty, 
2014). If students have been taught this technique or pro-
duced this conclusion independently, the procedure does 
not work for more complex problems (e.g., 32 – 17). For 
this reason, teachers must provide explicit instruction on 
common misconceptions related to this error.

Other errors included calculation mistakes (e.g., 2 + 7 = 
8; 3 × 4 = 9), mistakes with regrouping, only completing 
part of a problem, or rewriting part or all of the item prompt 
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as the answer. Each of these mistakes could be lessened 
with multiple practice opportunities practice on the con-
cepts and procedures for operations and explicit use of 
worked examples and nonexamples (Booth, Lange, 
Koedinger, & Newton, 2013; Renkl, 2017). For example, 
by the end of second grade, all students should have devel-
oped fluency with addition and subtraction mathematics 
facts so that 2 + 7 = 8 is not a mistake that students should 
make teachers may consider providing students with regu-
lar and daily opportunities to become fluent in grade level 
skills (Gersten et  al., 2009). In addition, helping students 
understand and practice the concepts of regrouping, rather 
than merely memorizing regrouping procedures, may help 
with the error patterns of some students. Competence with 
mathematics skills such as computation relies on students 
linking procedural fluency and conceptual understanding 
(Rittle-Johnson, Siegler, & Alibali, 2001).

Error Ratios

A consistent finding across this study and previous research 
is that some items produced many different incorrect 
responses (Miller & Milam, 1987); however, our study 
extends the work on error analysis by investigating the error 
ratios for a larger set of computation items and exploring 
whether error ratios were different for typically achieving 
students and students with MD. Although we knew that 
accuracy rates for students with MD would be lower than 
that of typically achieving students, research has not exam-
ined whether error types and error ratios are different 
between these two groups of students. If the error ratios are 
different, that may suggest that instruction to remediate 
misconceptions and computation mistakes may also have to 
be designed differently. To our knowledge, this is the first 
study that examines and compares error ratios for students 
with and without MD with this level of detail.

Students made the most errors with multi-digit items 
including those that involved regrouping. Typically, multi-
digit addition and subtraction is introduced in first or sec-
ond grade, with second grade as the school year in which 
multi-digit addition and subtraction skill should become 
firm. From the error ratios, it is obvious that many students 
still have difficulty with this task and require more opportu-
nities for learning and practice. Given that multiplication 
and division is a primary focus within third grade (i.e., the 
grade level of the students in our sample), we expected stu-
dents to have difficulty with multiplication and division 
computation problems. It is surprising, therefore, that the 
largest error ratios related to multi-digit computation prob-
lems with addition as the operation. It may be important to 
provide students with more addition and subtraction prac-
tice before introducing multiplication and division, espe-
cially because students need to understand the relationship 
between addition and multiplication.

Students also had difficulty with solving for an unknown 
addend. This skill is introduced in first-grade standards, but 
it is likely that students do not receive much practice on 
determining addends. Besides not receiving enough prac-
tice opportunities, students may not understand the equal 
sign as a balance between two sides of the equation (Powell, 
2015). Teachers must give students opportunities to solve 
problems where the sum, difference, product, or quotient is 
not always the answer. This pre-algebraic reasoning would 
likely help improve understanding of operations within 
computation but also lay foundational knowledge related to 
equation solving.

In terms of typically achieving students and students 
with MD, the error ratios were greater for students with MD 
(but students with MD and typically achieving students did 
have similar rates of attempting items within each cate-
gory), and the differences in error ratios were stark. For 
example, for problems without regrouping, which should be 
easier for all students, students with MD made errors over 
60% of the time compared with typically achieving students 
(36% error ratio). The error ratios provide evidence that stu-
dents with MD provide many different answers for a single 
item. For teachers, the multitude of errors may make it dif-
ficult to pinpoint areas for computation instruction. In these 
cases, the most judicious instructional pathway may be 
focusing on the concepts and procedures and ensuring stu-
dents understand both while providing many practice 
opportunities with immediate feedback. Teachers may also 
focus on the most prevalent errors and engaging students in 
activities that alleviate such error patterns.

Limitations

We have limitations worth declaration. First, we used one 
assessment given at a single time point. This computation 
assessment is widely used in both the classroom and 
research (e.g., Fuchs et al., 2014; Swanson, 2011) and is 
highly reliable (Wilkinson & Robertson, 2006). We wanted 
to collect error pattern information for groups of students 
on a wide range of computation problems, and the WRAT4 
Math Computation provided us with such an instrument. 
Yet most types of problems (e.g., subtraction with regroup-
ing) only had one or two items for each student to solve. 
Furthermore, some item categories had low percentages of 
attempted items for both students with MD and those who 
were typically achieving (e.g., multiplication and division 
items were attempted approximately 50% of the time). 
Future research should provide more of each item type to 
learn whether errors are idiosyncratic or perpetual. If there 
are more opportunities for students to respond to each type 
of item, larger proportions of students might also attempt 
certain problem types. Low attempt rates for certain item 
categories may create less variability in error ratios, which 
has implications for how researchers and practitioners 
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apply the results of studies or practices that use error ratio 
analysis.

Other limitations of this study include the small subset of 
items per item category and the need for a larger sample in 
order to identify more defined error patterns. For example, 
only one item was attempted by 100% of participants, and a 
larger sample of students would allow for more responses 
per item. Items that are not attempted by participants do not 
add value to understanding error patterns. Furthermore, 
each item category had only a small number of items, which 
makes it difficult to draw conclusions and generalize results 
for specific item categories. A larger sample of students and 
items would provide more detailed information for teachers 
to design and customize instruction.

Implications for Practitioners

The results of this study and the error ratio analysis tech-
nique for computation have implications for practitioners. 
When conducting error ratio analysis, teachers must review 
student work in a step-by-step fashion to determine whether, 
and where, students made mistakes in the solution (Ashlock, 
2010). This allows teachers to determine whether groups of 
students have conceptual understanding or procedural flu-
ency deficits in particular areas of mathematics to target 
whole group core instruction or intervention content for 
specific subgroups of students. For example, when pre-
sented with the item 3 × 4, an incorrect student response of 
16 may indicate a procedural fluency deficit or difficulty 
with retrieval; however, an incorrect response of 7 may 
indicate a conceptual misunderstanding of multiplication 
and its meaning. This is useful information for teachers 
because matching interventions to specific student deficits 
in a customized manner results in greater student growth 
during the intervention (Burns et  al., 2015). Previous 
research shows that interventions such as cover–copy–com-
pare (Codding, Chan-Iannetta, Palmer, & Lukito, 2009), 
incremental rehearsal (Burns, 2005), and taped problems 
(McCallum, Skinner, Turner, & Lee, 2006; Poncy, Skinner, 
& Jaspers, 2007) are generally effective in addressing com-
putation deficits (Codding, Hilt-Panahon, Panahon, & 
Benson, 2009), as are interventions that incorporate the 
concrete–representational–abstract framework for teaching 
computation (Flores, Hinton, & Strozier, 2014; Mancl, 
Miller, & Kennedy, 2012).

Despite the potential benefits of error ratio analysis for 
practitioners in designing instruction and intervention for 
groups of students who commit computation errors, it is 
also important to note the amount of time needed to con-
duct error ratio analysis as well as the content expertise 
required to understand what error and when in the process 
a student commits an error. In this study, we conducted 
error ratio analysis for nearly 500 students on a set of 21 
items. Creating a systematic process of reviewing the 

student answers and errors committed was invaluable and 
allowed us to efficiently determine what error patterns 
existed in this sample. Teachers may employ a similar pat-
tern by examining student responses for each item, before 
proceeding to the next item for each student. Furthermore, 
to save on time and resources, teachers may consider tar-
geting the computation items that most students answered 
incorrectly first.

Conclusion

Computation is foundational to all domains of mathematics; 
therefore, it is necessary for students to establish strong 
computational skill across the elementary grades. Despite 
the importance of computation, since the inception of 
national initiatives such as the Common Core State 
Standards (CCSS) and the NCTM Focal Points, to our 
knowledge, an analysis of computation errors has not been 
conducted. Furthermore, most of the research on computa-
tion error analysis is more than 20 years old and many stud-
ies only examined a handful of items or a particular type of 
computation items. This limitation makes it difficult to gen-
eralize to all types of computation problems and particu-
larly to students who are expected to meet higher standards 
due to national initiatives.

In this analysis of the computational error patterns of 
typically achieving third-grade students and students with 
MD, we learned that, collectively, students made hundreds 
of different errors. The sheer number of errors may over-
whelm teachers who want to design effective computation 
instruction, so we categorized errors according to type of 
error. Students had more difficulty with multi-digit compu-
tation than single-digit computation and made errors related 
to using the wrong operation for solution, regrouping, and 
adding all numerals involved in the problem. Students with 
MD made significantly more errors than typically achieving 
students. To alleviate computational difficulties, teachers 
must focus on correcting errors or teaching about errors 
before students have the opportunity to learn incorrect com-
putational concepts and procedures.
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