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ON TEACHING OF GENERALIZED CATALAN NUMBERS WITH 
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Francisco Regis Vieira Alves 

Abstract: In Brazil we have identified a predilection of the authors of Mathematical History books 

for the discussion of the fundamentals of Differential and Integral Calculus. On the other hand, when 

we consider the teaching of Mathematics in the school context, it is essential to know the teaching 

of the historical and dynamic evolution of the concepts, moreover, mathematical objects more close 

to the Brazilian school reality. Thus, the present work discusses the notion of Catalan numbers, 

including its generalization process and epistemological aspects, with the adoption of some 

assumptions of Didactic Engineering. The work also presents a series of matrices and combinatorial 

properties that can be explored with the CAS Maple wih the scope to attract a larger number of 

students to a teaching that shows the historical, mathematical and evolutionary epistemological 

aspects of the generalized Catalan numbers. In this way, it is observed that the teacher must present 

an extensive knowledge about the notion of “numbers” and not only of the fundamentals of 

Differential and Integral Calculus.  
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1. Introduction 

In Brazil we record historical and epistemological knowledge as especially important for mathematics 

teachers. However, in a hegemonic way, the books of History of Mathematics (Boyer, 1968; Eves, 1976; 

Roque, 2012) usually devote greater space to the discussion of the foundations of the Infinitesimal 

Calculus, originating from the thought of Leibinitz and Newton in the 17th century. On the other hand, 

certain historical knowledge remains disregarded and not divulged among the professors of Mathematics 

in the schools relative to the current advance of Mathematics (Alves, 2016).  

Moreover, in our researches (Alves, 2016; 2017) directed to the field of initial mathematics teacher 

education developed in Brazil, we have developed an approach design that adopts the presuppositions 

of Didactics of Mathematics (Brousseau, 1986), according to the tradition of the french research, aiming 

the initial formation of teachers with attention to the context of the classroom. In particular, in teaching 

in the context of the History of Mathematics, the research methodology named Didactic Engineering 

can contribute in the sense of describing a way to a new approach of certain historical contents that, in 

general, are not available in the History books of ordinary mathematics. 

Besides that, a field of research that acquires greater visibility provides the teaching of Mathematics, 

within the context of the historical context, from the aid of technology. In our work, we have exposed 

the use of GeoGebra and CAS Maple softwares with the aim of exploring certain mathematical 

properties neglected by the History of Mathematics books (Alves, 2017). Particularly, in the present 

work, we will explore certain matrices involving representations of Catalan numbers and some resulting 

properties en virtue some generalization and it´s evolutionary process (Bobrowski; 2015; Koshy & 

Salmassi; 2006; Ribenboin, 1996; Varadarajan, 2006; Shapiro, 1976; Stanley, 2015). 

Nevertheless, in order to describe certain structured didactic situations, in view of the teaching and 

training of Mathematics teachers in Brazil, we used the perspective originated from Didactic 

Engineering (Margolinas & Drijvers, 2015), with emphasis on the character of teacher training and that 

aims at proposing a didactic transposition aiming at the contents of the history of Mathematics. Thus, in 
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the following section we will describe some elements of a didactic engineering and, aiming at the 

formation of Mathematics teachers for the teaching in a historical context.  

2. Some elements of didactic engineering 

Didactic engineering emerged in France in the context of major educational reforms in the sixties and 

seventies. From a strong concern with the changes and paradigms of mathematics teaching, didactic 

engineering takes a systematic perspective of preparation for research aiming to understand the 

phenomena of teaching and learning at all levels (Margolinas & Drijvers, 2015). We note two aspects 

of didactic engineering. The first area of study dedicated, in a deeper way, to the understanding of the 

role and the learning of the student exposed to the teaching of Mathematics, according to the real 

conditions of operation of the classroom. On the other hand, we recorded the didactic engineering of 

second generation or didactic engineering of training in order to a deeper research about the formation 

and initial preparation of the Mathematics teacher (Margolinas, 2005). 

We find, therefore, the emergence of the terminology Didactic Engineering - ED that, despite the 

evolution of its premises, was used to designate/involve a research about the modus operandi or as a 

methodology for the analysis of didactic situations. In this context of reforms, since its inception, 

research in DM in France was built on the recognition of the need to develop their own theoretical and 

conceptual frameworks. We also recall that the term Didactic Engineering designates a set of sequences 

of classes designed, organized and articulated in time, in a coherent way by a teacher-engineer, in order 

to carry out a learning project for a specific population of students. It should be emphasized that, 

according to the design of research design and the precise rule in a research depends strongly on an 

educational culture. In addition, in this case, we make a special reference to the French didactic culture 

(Margolinas, 2005). 

In this way, we can not disregard an extended framework for the adoption of new paradigms in France, 

especially the paradigms coming from universities. In fact, in a context, markedly of French tradition, 

originated in the sixties and of development and use of several notions of engineering (Chevallard, 

1982), described by Leclercq (2002, p. 75) as: social engineering, pedagogical engineering and, at a 

point between the two previous ones, the engineering of formation (see Figure 1). "The notion of 

application and use of engineering in a field of training has been frequent" (Leclerc, 2002, p.76). In 

figure 1, Leclerq (2002, p.80) indicates the situation and the notion of engineering of formation that 

derived strong impregnation with several foundations for Didactics and the formation of adults. We also 

divided the pedagogical triangle into 2D, whose vertices are defined by the terms: savoir, teacher 

(professeur) and student/learner (élêve or apprenant). 

 

Figure 1. Descriptive picture of the notions of engineering developed in France in the 1960 (Leclercq, 2002) 

Margolinas & Drijvers (2015, p. 890) explain that "didactic engineering provides at least one existence 

theorem. They show that teaching is possible under certain conditions. But such conditions may be 

difficult to satisfy in ordinary teaching”. The authors emphasize that at that time the risk of the desired 

transformations in the education system was observed, and that the official teaching system itself was 

not prepared to integrate such transformations. Thus, in the following section, we will develop a 

historical and epistemological analysis aimed of the teaching Catalan numbers and a systematic way for 
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of its exploitation by the teacher, with the help of technology. Next, we will discuss some matrix 

representations that allow the exploration of technology for the investigation and generalization of 

properties derived from mathematical induction that can be explored in the school. 

3. Some historical aspects about the generalized numbers of Catalan 

The Belgian mathematician Eugene C. Catalan discovered, in 1838, the numbers that acquired the 

greatest circulation within the mathematical studies of his time and, despite a modest initial 

mathematical contribution that involved the description of the following formula or formal definition 
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n n
C C n n

n n

   
      

   
by means of a process of determining the quantity of triangles, by 

different modes, circumscribed in polygonal figures. The idea comes from the problem of the classical 

problems of triangulation of L. Euler, presented by himself in 1751 (Koshy, 2009, p.107). Euler 

introduced the closed formula itself (Stanley, 2015, p.178). The following numerical list indicated by 

Koshy (2009) describes some of the first numbers of Catalan below:  

 1,  1,  2,  5,  14,  42 ,132 ,429 ,1.430 ,4.862 ,16.796 ,58.786 ,208.012 , ,C , ,nK K K (*) 

The recent discovery by Luo Jianjin in 1988 approached and describes the first appearance of Catalan 

numbers due to the work of the Chinese mathematician Ming Antu (c.1692-c.1763) who wrote a book 

in 1731 which included some trigonometric expansions involving Catalan numbers (Stojadinovic, 

2015). Stanley examines the ubiquity of Catalan numbers (2015, p.177) in the following excerpt:  

In the modern literature of Mathematics, Catalan numbers are extraordinarily ubiquitous. 

Although they occur under varying aspects, we have made use of mathematics with them 

around and it is difficult to imagine the time when they were unknown or, obscurely known 

and not appreciated. It may then be a surprise that Catalan numbers have a rich history and 

multiple discoveries, even recently. Here we have preceded a review of about 200, from 

its discovery to the present. (Stanley, 2015). 

In 1751, Leonhard Euler (1707-1783) found a closed formula for such numbers. The mathematician 

Christian Goldbach (1690-1764) also confirmed some results provided by L. Euler lacking a necessary 

formal proof. However, only with the results of E. Catalan that the subject acquired greater popularity. 

In fact, the mathematician Eugene Charles Catalan (1814 - 1894) was born in Bruges, Belgium. He 

studied at the École Polythenique de Paris, occupying the simple role of repeater (Bilu, Bugeaud & 

Mignotte, 2010, p.1) and received, according to Koshy (2007, p.105), his doctorate in Sciences in 1841. 

Catalan he became a professor of mathematics at the Chalonssur-Marne College and then in France, he 

became professor of analysis at the Université of Liège in Belgium. He published works such as 

Élements de Geometriè and Notions d'Astronomie, in 1843 and 1860, respectively. In the field of 

advanced mathematics, he published numerous articles in the field of multiple integrals, surface theory, 

mathematical analysis, calculus and probabilities (Koshy, 2007; 2012). 

Grimaldi (2012, p.147) recalls that Gabriel Lamé (1795-1870) was the first to provide an elegantly 

prove, using the models of the Combinatorial, the results introduced, without the formal treatment 

preliminarily required by L. Euler and L von Segner. Its results were published in some mathematical 

articles in the year 1838. In addition, a little later, in 1839, Catalan wrote several articles on the subject, 

where he determined the number of forms or paths of a chain of (n + 1) symbols with parentheses with 

'n' pairs so that it can envelop such symbols (Guimarães, 2012). 

Euler was in Berlin (Prussia) at that time, while his friend and former mentor Goldbach was in St 

Petersburg (Imperial Russia). They met for the first time when Euler arrived in St. Petersburg in 1727 

as a young man, and began a lifelong friendship with 196 letters between them (Varadarajan, 2006). In 

September 1751, Euler wrote a letter to Goldbach communicating the unexpected discovery of a species 

of numbers originating from an ancient problem of triangulation of regular polygons. 

In the image below we indicate some mathematicians who contributed directly or indirectly to the 

evolution of Catalan numbers. The Chinese mathematician Ming Antu, on the left side, then we see the 
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image of L. Euler. Then Christian Goldbach, and finally on the right side. L. Catalan. Here we observe 

a clear relevance of the evolutionary process of the numbers of Catalan, in view of the progressive 

contribution of several mathematicians over time. This mathematical evolutionary understanding is 

important for the Mathematics teacher. 

 

Figure 2. Some mathematicians who contributed to the evolution and generalization of Catalan numbers. 

Bilu, Bugeaud & Mignotte (2010, p.2) point to one of the first theorems provided by Catalan as a 

repeating teacher at the École Polytechnique, published in 1842, without the corresponding proofs. Two 

years later, Catalan wrote a famous letter to the famous newspaper Crelle's Journal, indicating the need 

for corrections of a published article by another author (See in Figure 3).  

 

Figure 3. Catalan wrote a letter indicating corrections in an important journal of Mathematics. 

 

We rescued a thought by Campbell (1984) that questioned the student's need to deal with a concrete and 

real problem in order to understand the role of Catalan numbers. To illustrate its field of application, 

Campbell (1984, p. 197-198) describes an imaginary dialogue between two students (see figure 4). The 

author seeks to mean to the reader that many problems, whose eminently theoretical origin, originated 

from the abstract and refined thought of mathematicians can be the object of several applications, above 

all, to the computational symbolic calculation. Note that Campell (1984), in the context of using Pascal, 

an old computational language, discusses how to obtain the factorization of the following large Catalan 

number: 

 
4 2 3

173 2 3 5 7 11 17 23 31 37 47 59 61 67 89 97 101 109 113 179 181 191 193 197 199C                         · 

211 223 227 229 233 239 241 251 257 263 269 271 273 279 283 293 307 311 313 317 331 337                      . 
 

Before concluding the current section, we will present the following important mathematical definitions 

that confirm an unstoppable evolutionary process of Mathematics and, in particular, an evolutionary 
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mathematical process and generalization of Catalan numbers (Brasil Junior, 2014). In figure 4 we 

observe a scenario that indicates the important relations between the nuneros of Catalan and the progress 

of the technology that involves the use of other methods for their systematic study (Varey, 2011). From 

now on we will see our first formal definition.  

 

Figure 4. Campbell (1984) dicusses the relations between Catalan numbers and computational technology. 

Definition 1: A Generalized Number of Catalan is defined by 
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Another definition of a generalized number of Catalan was provided by Gould (1972), as follows 
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number of Catalan as follows, in terms of the 'k' parameter 
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In fact, it is enough to employ the definition of the binomial number and write the equality 
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Note that it becomes rather complicated to decide whether such numbers are in fact integers. In fact, we 

see that: 
( )! ( )!
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 is divisible by the expression ( 1)kn  and, thus, a generalized number of Catalan 
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 is always an integer, for , 0n k  .  

In 1874, E. Catalan concluded that the numbers of the form 
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 are also integers 

and that some time later they were studied by several mathematicians (Gessel & Chin, 2006). Some time 

later, it appears in the specialized literature the following definition that received more attention from 

the work of Gessel (1992).  

Definition 2: Given the integers we define 
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 the super 

numbers Catalan or the bivariate Catalan numbers. (Gessel, 1992).  
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In 1890 the following identity 
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mathematician Koloman von Szily (Von Szily, 1893). A few years ago Gessel (1992) introduced the 

notion of super Catalan numbers. Let's see a lemma that corresponds to the important properties related 

to the super numbers of Catalan.  
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has an intimate relationship with Pascal's triangle. From this expression, let us see a second lemma. 
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n n
N

n n

n n

     
    

     
    
         

 and 1

1 0

2 1
N

 
  
 

,  

then 
1

2 2 2 2

 1   2
det det

2  2

 1

n n n

n n

n n
N C C

n n

n n



     
    

       
    
         

.  
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Proof. In fact, let us see that its determinant can be determined by 

2 2

2 1 2 1

2 1 2 12 1  1
det det 2

 1  112
2

1

n

x

n n

n nnn n
M

n nnn

n

     
                     
      
 

 

. Then, we will make some 

simplifications 
2 1 2(2 1)! 2 (2 1)! (2 )!

2 2
 1  ( 1)! ! ( 1)! ! ! !

n nn n n n

n nn n n n n n n

     
      

       
. On the 

other hand, the expression 
2 1 22 2 (2 1)! (2 )! (2 )!

 1 11 1 ( 1)!n! ( 1) ! ( 1)! ( 1)!( 1)!

n nn n n n n

n nn n n n n n n n

   
       

           
. 

Finally, we will replace 
2 1 2 1 2 22

det 2
 1  1  11

n n

n n n nn
M C

n n n nn

        
             

         
. Now 

let's look at item (ii). In fact, it is sufficient to observe that det nN   

2 2  2 2 2 2 (2n 2)! (2 )! (2 2)! (2 )!

 1 1   2  ( 1)!( 1)! ( 1)!( 1)! ( 2)!n! ! !

n n n n n n n

n n n n n n n n n n n

          
               

              
 

3 3

1 1 1 1 1 1
(2n 2)!(2 )! (2n 2)!(2 )!

( 1)!( 1)! ( 1)!( 1)! ( 2)!n! ! ! (( 1)!) ( 1)! ( 2)!(n!)
n n

n n n n n n n n n n

   
          

          
 

3 3

3 3 3

(2n 2)!(2 )! 1 (2n 2)!(2 )! 1

1 ((n!) ( 1)! ( 2)!(n!) (n!) ( 1)! ( 2)!

n n n n

n n n n

    
       

      
 

3
3 2

3 3 3

(2n 2)!(2 )! ( 1)( 1) (2n 2)!(2 )! (2n 2)!(2 )!
( 1)

(n!) ( 1)! ( 1)! (n!) ( 1)! (n!) ( 1)! 1

n n n n n n n n
n n n

n n n n

     
              

 

1

(2n 2)!(2 )! (2n 2)!(2 )! (2 2)! (2 )!
, 0

n!n!n!( 1)! 1 (n 1)!n!n!( 1)! ( 1)!n! !(n 1)!
n n

n n n n n
C C n

n n n n


  
        

    
.  

Let us now consider the matrix indicated by ,

2 2

1 1

1    1    1

1

1

n k

x

kn n kn n

n n
M

kn n kn n kn n

kn n

       
    

     
    
 

 

. 

Then, using the relation indicated above  ( , ) ( 1) 1
     1 

kn n kn n
C n k k n

n n

    
       

   
 we will 

determine its determinant: ,

2 2

1 1

1    1    1
det det

1

1

n k

x

kn n kn n

n n
M

kn n kn n kn n

kn n

       
    

     
    
 

 

.  

Note that 
1 ( 1)! ( 1)! ( )!

   1      ( 1)!( )! 1 !( )! !( )!

kn n kn nkn n kn n kn n kn n kn n kn n

n nn n n kn n kn n kn

            
        

    

In a similar way, let's see 
1 ( 1)! 1 ( )!

   11 1 ( 1)!( )! 1 ( 1)!( 1)!

kn nkn n kn n kn n kn n

nkn kn n kn n kn

      
     
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 1

kn n

n

 
  

 
.  

In this way, let's see that: ,

2 2

1 1

1    1    1
det det

1

1

n k

x

kn n kn n

n n
M

kn n kn n kn n

kn n

       
    

       
    
 

 

 

1 11 1
( , )

   1    1      1 1 1 1

kn n kn n kn n kn nkn n kn n
C n k

n n n nkn n n kn kn n

                
                

                
. 

From the previous argument, we will state the following own lemma 3(*).  

Lemma 3(*): For any integer ( , ),n,k 1C n k  , we have that the generalized matrix 

,

2 2

1 1

1    1    1
( , )

1

1

n k

x

kn n kn n

n n
M M n k

kn n kn n kn n

kn n

       
    

       
    
 

 

has determinant equal to a 

generalized number of Catalan C(n,k) of order n. 

In the next section we will see some applications of technology for the investigation of Catalan numbers. 

We will list some properties that can be explored in the classroom around historical research. 

4. Applications of technology for the teaching of Catalan numbers with the Maple´s help.  

Now, we will explore some matrix representations related to Catalan numbers. We will verify that when 

we deal with the generalized numbers of Catalan the operational calculation becomes quite complicated 

and the use of software such as Maple can provide the exploration of an investigative process under the 

protection of an inductive thinking aiming at the confirmation of certain important properties. In a 

preliminary way, we present in the table below some particular cases of the generalized numbers of 

Catalan. Notice that the expressions that depend on the 'k' parameter become quite complex.  

In this section we will explore some properties of the dot matrix representations that we have introduced 

in the past sections and we have definined by: 

2 2

2 1 2 1

 1  1

2
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n n
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M
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     
    

     
 
 

 

, 

2 2 2 2
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N
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     
    

     
    
         
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1    1    1
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n n
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kn n kn n kn n

kn n

       
    

     
    
 

 

. We still observe that the 

super Catalan number 

2 2
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m n
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m n

m n m n m n
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 can be expressed by the matrix 
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defined by 

1
0

(2 )! 0 ! !
( , ) ( , ) ( , )

11 (2 )!
1

( )!

m m n
A m n B m n C m n

n

m n

 
  
    
  
  

. We 

easily determine that det ( , ) S(m,n)A m n   in view of det ( , ) det ( , ) det ( , )A m n B m n C m n  .  

In the table below we observe a preliminary list of the generalized numbers of Catala, dependent on a 

parameter. Note that apparently they are not integers, however, as we have shown in the previous 

section, all expressions can not be rational numbers.  

 

n Generalized Catalan Numbers - ( , )C n k  

5  

6  

7  

8  

9  

10 

 
11 

 
12 

 
13 

 

With the use of the software we can provide an investigative expedient for the exploration of the 

numerical behavior of the matrices. We observe in Figure 5 that, for a large set of numerical data, the 

mathematical property is invariant. We note that the result of the determinant is always an integer.  

Now, let's consider some identities introduced by Bessel (1992). The first derives from the following 

combinatorial expression 
(2 )!

6
!( 2)!

n

n n 
. Bessel (1992) comments that although it does not seem like 

such an expression will always correspond to an integer. With CAS Maple, we can investigate a large 

set of values and we can see that it is indeed correct. On the other hand, our investigative process aims 

to introduce the Catalan numbers. Gessel (1992) discussed the validity of the following identity  

1

(2 )!
6 4

!( 2)!
n n

n
C C

n n
 


, for all 0n  . Based on the research that seeks to understand the numerical 

behavior of the expression. Gessel (1992) employs a computational model with the objective of 

confirming certain properties related to the Catalan super numbers. In the Figure 6 below we present the 

numerical data that confirm the equality for a large set of particular cases.  
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Figure 5. With CAS Maple we can explore numerical and combinatorial relations derived from the matrix 

representations originated from Catalan numbers. (Source: Prepared by the author) 

 

Figure 6. With CAS Maple we can explore numerical and combinatorial relations derived from the matrix 

representations originated from Generalized Catalan numbers. (Source: Prepared by the author) 

 

We observe that the result of the determinant is always an integer number and when we evaluate the 

following difference 1

(2 )!
6 4 0

!( 2)!
n n

n
C C

n n
  


the software always indicates the value 0, numerical 
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behavior indicates the validity of the identity. In our next example, we recall the high operational cost 

of determining Catalan numbers dependent on a 'k' parameter, especially when such values tend to grow. 

On the other hand, the expressions indicated in the figure below can be tested and confirm their behavior 

according to Lemma 2. For example, we can explore the particular numerical behavior of the following 

generalized numbers of Catalan, and understand from the numerical results that the resulting value is 

always an integer.  

𝐶(11, 𝑘) =
1

3628800
(𝑘 + 1)(11𝑘 + 6)(11𝑘 + 7)(11𝑘 + 2)(11𝑘 + 8)(11𝑘 + 3)(11𝑘 + 9) ∙ 

∙ (11𝑘 + 4)(11𝑘 + 10)(11𝑘 + 5) 

In the context of the interpretation of the computational language, we can recall the interpretation of the 

numbers of Catalan through the intermediate known that the number of well-formed orderings of n open 

and n closed parentheses (Rubestein, 1993).  

 

 
Figure 7. With CAS Maple we can explore numerical and combinatorial relations derived from the matrix 

representations originated from Generalized Catalan numbers. (Source: Prepared by the author) 
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Let's look at one last property that can be exploited with CAS Maple. In this sense, in the figure below, 

we present the behavior of the matrix determinant whose entries are, precisely, the Catalan numbers. 

The first matrices that we indicate are given by the list 

0 1 2 1 2 3

0 1 1 2

3 4 5 4 5 6

2 3 3 4

6 7 8 7 8 9

, , , ,

m m n

m n n n m

C C C C C C C C
C C C C

C C C C C C
C C C C

C C C C C C C C



  

     
         
         
         

     

K

K M O M

L

, with 0n   

and  0,1m . We observed that with increasing order of the matrix, preserving the order of the indices, 

the values of the determinant are always constant equal to 1. We note that, according to the authors 

Mays & Mays (2000, p. 131) that any finite square submatrix has a positive determinant, that is, we can 

verify that det 0, ,

m m n

m n n n m

C C

m n IN

C C



  

 
 

   
 
 

K

M O M

L

. With the use of software in the investigative 

process we can study the behavior of the previous determinant, with increasing order, involving 

unexpected relations between Catalan numbers.  

 

Figure 7. With CAS Maple we can explore numerical and combinatorial relations derived from the matrix 

representations originated from Generalized Catalan numbers.  



38 Francisco Regis Vieira Alves 

 

Acta Didactica Napocensia, ISSN 2065-1430 

5. Conclusion 

In this work we will discuss some elementary properties on Catalan numbers. By means of a quick 

description of the professional mathematicians of the past we point out that E. Catalan was the 

mathematician who made known a subject of study that still preserves the interest of the current research 

on the subject and that contributed to the generalization of the numbers of Catalan, including the Fuss-

Catalan numbers (Andrews, 1971) and Catalan's bivariate numbers (Bernhart, 1999; Buescu, 2010; 

Koshy & Salmassi, 2006; Gessell 1992; Gessel & Xin, 2004). On the other hand, we have questioned in 

Brazil several HM books that usually point out the historical aspects of concepts distanced from school 

reality and basic Mathematics. Thus, with the adoption of the presuppositions of a Didactic Engineering, 

above all, a didactic engineering addressed to the teacher of Mathematics in a context of historical 

research, we emphasize some properties whose matrix and combinatory representations allow their 

exploitation in the context of school teaching (see lemma 1, 2 and lemma 3(*)). By this way, we suggest 

an approach and a teaching perspective affected by the understanding of the progress and 

systematization of the mathematical models and the deep knowledge of numbers on the part of the 

teacher, including his multiple conceptual relations and generalizations. 

Thus, in the previous sections, we have shown that several properties derived from the numbers of catala 

and their generalization can be explored in the context of teaching using technology. In the figures of 

the previous section we have approached some examples that, by means of simple commands of the 

software allow the appreciation of a great amount of elements and invariant properties pertaining to the 

numbers of Catalan.  

We emphasize the approach of some formal mathematical definitions that confirm a research and the 

current interest in the process of generalization of Catalan numbers. Thus, in the predecessor sections, 

we provide the reader or possibly the mathematics teacher with certain properties that are the object of 

current interest and confirm the unstoppable, evolving character and ubiquity of Catalan numbers. This 

perception is important for the teacher's understanding in the context of school education. 
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