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Variance heterogeneity is a common feature of educational data when 
treatment differences expressed through means are present, and often 
reflects a treatment by subject interaction with respect to an outcome 
variable.  Identifying variables that account for this interaction can 
enhance understanding of whom a treatment does and does not benefit in 
ways that can inform and improve the treatment.  Even in the absence of 
a treatment effect expressed through means studying variance 
heterogeneity offers insight into a treatment by identifying subject 
characteristics related to heterogeneity.  This study illustrates four 
methods of modeling variance heterogeneity for data from a study of the 
impact of an engineering design-based STEM curriculum on student 
achievement with a focus on multilevel models 
 

Introduction 
Research in education at the K-12 (e.g., Fortus, Dershimer, 
Krajcik, Marx, & Mamlok-Naaman, 2004; Mehalik, Doppelt, 
& Schuun, 2008; Schnittka & Bell, 2011; Wendell & Rogers, 
2013) and post-secondary level (e.g., Atadero, Rambo-
Hernandez, & Balgopal, 2015; Carberry & McKenna, 2014; 
Hsiung, 2012; Lawton et al., 2012; Van Meter et al., 2016) 
often examines intervention (treatment) effects that are 
designed to promote learning and achievement. Experimental 
and quasi-experimental designs are common, and educational 
studies  
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increasingly use multilevel models to analyze data in which 
the means of treatment and control conditions are compared. 
If an intervention is effective then treatment and control 
condition means differ in ways that reflect the impact of the 
intervention. 
 When treatments are implemented in clustered 
settings such as students clustered within teachers and 
teachers clustered within schools group differences in 
dispersion is a common characteristic of the data 
(Raudenbush & Bryk, 1987).  Snedecor and Cochran (1989), 
Raudenbush and Bryk (1987) and others have noted that 
when group means differ, group variances frequently differ in 
the same direction and that studying variances can provide 
important insights into the impact of an intervention.  
However, heterogeneity has usually been treated as a nuisance 
rather than a source of information about a treatment that 
should be studied (Bryk, 1977; Keppel, 1991; Raudenbush & 
Bryk, 1987), an unfortunate practice because variance 
heterogeneity is common in educational, behavioral, and 
psychological studies (Ruscio & Roche, 2012).  In fact, there 
is often no reason to assume an intervention will be equally 
effective for all subjects in the treatment condition due to 
individual differences or other factors (Bryk & Raudenbush, 
1988; Howell, 2013).  In some cases, an explicit goal of an 
educational intervention is to reduce variability among 
students’ outcomes (e.g., achievement gap reduction) based 
on the premise that successful schools should demonstrate 
high and relatively homogenous achievement (Kim & Choi, 
2008).  Therefore, studying variance heterogeneity should be 
central to data analysis. 
 The purpose of this study is to illustrate a series of 
methods for analyzing variance heterogeneity in multilevel 
models using data from an engineering design-based STEM 
curriculum program.  Section 2 provides an argument of the 
need to analyze variances and what can be learned from 
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doing so, and Section 3 draws on the statistics literature to 
outline four methods for modeling variances.  Section 4 
describes a design-based engineering curriculum program and 
Section 5 applies the four methods to these data.  Finally, the 
paper provides recommendations for using the four methods, 
how to interpret the results using data, and outlines 
implications of studying means and variances using the 
engineering curriculum study as an example. 
 

The Need to Analyze Variances  
Understanding the impact of an intervention reflected in 
means on an outcome variable can be enhanced by learning 
whether treatment and control variances are the same 
(homogeneity of variance) or different (heterogeneity of 
variance).  Equal treatment and control condition variances 
imply that an intervention had a similar effect on students 
(i.e., the pattern of scores on an outcome was similar), and 
unequal variances that an intervention caused scores to bunch 
together (students responded similarly to an intervention) or 
spread out (students varied substantially in their response to 
the intervention).  In both cases studying the pattern of 
variances can enhance understanding of who an intervention 
does and does not benefit in ways that can inform and 
improve the intervention. 
 General linear model-based analyses of means 
typically assume that samples come from populations sharing 
a common (error) variance; otherwise variances are 
heterogeneous.  These analyses typically rely on traditional t-
tests and F-tests that depend on data satisfying assumptions 
of independence, normality, and homogeneity of variance 
(Kutner, Neter, Nachtsheim, & Wasserman, 1996).  There are 
numerous examples in the educational research literature of 
using t-tests to examine mean differences due to an 
intervention (e.g., Atadero et al., 2015; Fortus et al., 2004; 
Kollöffel & de Jong, 2013; Mehalik et al., 2008; Schnittka & 
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Bell, 2011; Wendell & Rogers, 2013) and/or F-tests (e.g., Van 
Meter et al., 2016).  However, the homogeneity of variance 
assumption is rarely checked.  For instance, from the 
educational research literature cited above only one article 
reported to have tested such assumption (Van Meter et al., 
2016). 
 

Analysis of Variance in Multilevel Models 
A randomized cluster design in which students are clustered 
within classrooms is employed which leads to a multilevel 
model of the form: 

𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽𝑞𝑗𝑋𝑞𝑖𝑗 + 𝑒𝑖𝑗

𝑞

 0         (student model) (1) 

 

𝛽𝑝𝑗 = γp0 + ∑ γpr𝑊𝑟𝑗 + 𝑢𝑝𝑗

𝑟

        (classroom model) (2) 

 In equations (1) and (2) 𝑌𝑖𝑗 is the outcome of the i-th 

student in the j-th classroom, 𝛽0𝑗 is the intercept of the j-th 

classroom (j = 1,2,…,J), 𝛽𝑞𝑗 is the slope capturing the impact 

of the q-th student-level predictor 𝑋𝑞𝑖 which often represents 

a control variable, 𝑒𝑖𝑗 is a normally distributed student-level 

residual 𝑒𝑖𝑗~𝑁(0, 𝜎𝑗
2), 𝛽𝑝𝑗 is the p-th regression coefficient 

(p = 0, 1, 2, …, Q) for the j-th classroom, γp0 is a classroom-

level intercept, γpr is a slope capturing the impact of the 

classroom-level predictor 𝑊𝑟𝑗, and 𝑢𝑝𝑗 is a normally 

distributed residual for the classroom model (Raudenbush & 
Bryk, 2002). 
 Several authors have argued variance heterogeneity in 
hierarchical (multilevel) models should be studied (Kim & 
Choi, 2008; Kim & Seltzer, 2011; Leckie, French, Charlton, & 
Browne, 2014).  Consider a two-level randomized cluster 
design in which students (level 1) are nested within 
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classrooms (clusters, level 2) that is represented statistically in 
equations (1) and (2), and assume classrooms are assigned at 
random to a treatment or control condition.  Assume Y is an 
outcome variable measuring students’ achievement and both 

student (e.g., gender, race, i.e., 𝑋𝑞𝑖 in equation (1)) and 

classroom predictors (e.g., treatment indicator, percentage of 

English language learners, i.e., 𝑊𝑟𝑗 in equation (2)) appear in 

the model.  Variance heterogeneity is commonly conceived as 
the result of non-modeled interaction effects of student 
characteristics with treatment (Bryk & Raudenbush, 1988; 

Kim & Seltzer, 2011), i.e., student characteristics × treatment 
interactions are present in the data and have not been taken 
into account.  Such interactions can also occur between 
treatment and classroom characteristics and efforts to 
explicitly model interactions between treatment and 
covariates at both level 1 and 2 have been made (e.g., Mayer, 
Nagengast, Fletcher, & Steyer, 2014; Pituch, 2001; Plewis & 
Hurry, 1998).  Non-modeled student- and classroom-level 
characteristics x treatment effects are not the only sources of 
variance heterogeneity, for example, measurement error could 
cause unequal variances (Bryk & Raudenbush, 1988).  
Nonetheless, ignoring unequal variances may lead to biased 
estimates of treatment effects or to incorrect or incomplete 
interpretations of mean (fixed) effects (Bryk & Raudenbush, 
1988; Mayer et al., 2014).    
 A deeper understanding of the impact of a treatment 
on achievement is possible by examining both means and 
variances of Y.  The latter reflect error variances estimated 

for each classroom (σ̂j
2, j=1, 2,…, J classrooms) that 

represent variation in Y after student predictors have been 
taken into account.  The premise is straightforward: We 
desire a treatment that is effective for all treatment students 
which implies these students benefit in a similar fashion from 
exposure to the treatment; in this case the treatment 
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condition mean would be larger, and the classroom residual 
variances smaller than those of the control condition (i.e., 
student achievement variability around classroom means is 
smaller for the treatment condition).  An intervention that 
increases the treatment condition mean but produces larger 
variances compared to the control condition implies that, on 
average, the treatment is effective but treatment students do 
not benefit equally from exposure to the intervention. 
 In multilevel models the relationship between 
treatment and Y is assessed with a fixed effect, for example, a 

classroom-level slope (denoted by γ01 when treatment is 

considered the classroom predictor 𝑊1𝑗 in equation (2)) 

capturing the impact of the treatment on Y.  A statistical test 

of γ̂01 yields two possible results: (a) γ̂01 ≠ 0 meaning there 

is a treatment effect, (b) γ̂01 = 0 meaning there is no 
treatment effect.  If case (a) holds the treatment and control 

Y-means differ (conditional on the model) and if γ̂01 
(estimated treatment effect) > 0 the implication is that the 
treatment on average raised student scores.  A pattern in 

which treatment classrooms also showed larger  σ̂j
2 than 

control classrooms implies that some treatment students 
benefited more than others relative to treatment classroom Y-
means compared to control classrooms, i.e., there is a student 

× treatment interaction.  This pattern suggests one or more 

variables are responsible for the student × treatment 
interaction, and including these variables as predictors in a 

regression model in which  σ̂j
2 or some function of σ̂j

2 serves 

as the outcome can deepen our understanding of the 
treatment effect. Table 1 lists  
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Table 1: Possible outcomes of analyzing mean and variance differences in multilevel models  
Effect of 
treatment 

Variance Heterogeneity Variance Homogeneity 

σ̂jT

2 < σ̂jC

2  σ̂jT

2 > σ̂jC

2  σ̂jT

2 = σ̂jC

2  

Treatment 
is effective 
(γ̂01 > 0) 

Treatment students benefitted 
uniformly relative to treatment 
classroom Y-means compared to 
control classrooms. In this case, 
treatment had a homogenizing 
effect. 

Some treatment students benefited 
more than others relative to 
treatment classroom Y-means 
compared to control classrooms. 

Treatment on average 
raised treatment 
classroom Y-means and 
variability around 
classroom Y-means was 
similar. 

o treatment 

effect      

(γ̂01 = 0) 

Although the treatment/control 
mean difference was not 
significant, treatment tended to 
have a homogenizing effect on Y 
scores. 

Although the treatment/control 
mean difference was not 
significant, treatment students did 
not respond uniformly. Some 
treatment students benefitted more 
than others as reflected in variation 
in Y scores about the classroom Y-
means. 

Failure of the treatment 
to raise scores was 
consistent across student 
and teacher 
characteristics. 

Note. σ̂jT

2 : Estimated residual variance associated with treatment classrooms. σ̂jC

2 : Estimated residual variance 

associated with control classrooms. Y denotes the outcome variable of interest.  
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all possible outcomes of analyzing mean and variance 

differences in multilevel models.  

 

 

Methods for Studying Variances 
Several methods for analyzing variance heterogeneity in 
multilevel settings have been proposed in the statistics 
literature.  Raudenbush and Bryk (1987) introduced the use of 
a two-level hierarchical model along with a log-
transformation of residual variances to identify variables 
related to differences in residual variances across level 2 
clusters for an outcome variable.  These authors first estimate 
a standard two-level model (e.g., students within classrooms), 
and then apply a transformation to level-1 (within-classroom) 
residual variances involving the logarithmic function.  Finally, 
assuming normality, they fit a single-level linear regression 
model to the log-transformed residual variances using 
classroom-level (level 2) predictors.  Raudenbush and Bryk 
(1987) implemented this procedure in their Hierarchical 
Linear Modeling (HLM) software but only level-1 predictors 
can be used to model within-cluster variability in the current 
version [Version 7] (Raudenbush, Bryk, Cheong, Congdon, & 
du Toit, 2011).  This limits the ability to identify classroom-
related factors that might impact the variance of Y.  For the 
interested reader, Leckie et al. (2014) provide an extensive 
review of a series of model extensions that have been 
proposed in the literature to analyze unequal within-cluster 
variances in multilevel models. 
 The presence of variance heterogeneity has often 
triggered the use of a variance-stabilizing transformation for 
Y followed by a test of mean differences on the transformed 
data (Bryk & Raudenbush, 1988; Howell, 2013).  For 
instance, Kim and Seltzer (2011) proposed a single-level 
analysis of log-transformed residual variances obtained from 
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the estimation of a two-level hierarchical model.  Kim and 
Choi (2008) proposed an alternative to the log-transformation 
in the dispersion model by modeling the square root of the 
within-cluster residual variance (SD) as a function of 
classroom-level predictors.  Unfortunately successfully 
interpreting the results in the transformed scale may be 
challenging (Firth, 1988; Howell, 2013), and transforming the 
(previously transformed) data back to their original scale to 
enhance interpretation can be problematic because estimated 
differences among means can be reversed in the original scale 
(Grissom, 2000). 
 Alternatively, generalized linear models (GLMs) can 
be used to directly model the residual variance.  The 
generalized modeling framework subsumes a variety of 
distributional assumptions for the outcome variable and 
provides maximum likelihood estimates of the parameters of 
a regression model (McCullagh & Nelder, 1989; Neuhaus & 
McCulloch, 2011).  A gamma model is considered part of the 
family of GLMs, and the gamma distribution is particularly 
useful when modeling positively skewed data (McCullagh & 
Nelder, 1989), such as residual variance.  Another advantage 
of GLMs is the possibility of a straightforward interpretation 
of the results in the original scale (Firth, 1988; McCullagh & 
Nelder, 1989).  Thus the use of GLMs to directly model 
residual variances represents an important option to consider 
when analyzing heterogeneity. 
 The literature reviewed above directly provides three 
methods for modeling variance heterogeneity for multilevel 
data (Methods 1, 2, 3), and indirectly the foundation for a 
new method which we propose (Method 4).  These four 
methods share the goal of studying variability to deepen 
understanding of a treatment effect but employ different 

statistical procedures.  In all methods σ̂j
2 are computed using 

ordinary least squares (OLS). 
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Method 1 
The first method allows the impact of student and classroom 
predictors (including treatment) on variability to be modeled 
using a multilevel approach.  Equations (1) and (2) define the 
multilevel model being estimated.  The HLM7 software 

(Bryk, Raudenbush, & Congdon, 2011) allows unequal σ̂j
2to 

be modeled using student-level predictors in  conjunction 
with equations (1) and (2): 

Ln(𝜎̂𝑖𝑗
2 ) = α0 + ∑ αj𝐶𝑖𝑗

𝑗

                          (3)  

where ln represents the natural log, α0 an intercept, and αj a 

slope.  If residuals (𝑒𝑗 in equation (1)) are normally-

distributed, then ln 𝜎̂𝑗
2 is approximately normally-distributed 

with variance v𝑗 =
2

df
  (df = error degrees of freedom) which 

in a level 1 (student) regression model is v𝑗 =
2

nj−Q−1
 

(Raudenbush & Bryk, 1987), nj = cluster sample size, Q = 

number of student predictors. 𝐶𝑖𝑗 in equation (3) represents 

student predictors used to account for variance heterogeneity.   
 It is important to emphasize that the same student 
predictors could be used in the level 1 model in equation (1) 
as well as in equation (3).  For example, if gender is a 
significant predictor at level 1 with an estimated slope of 5 we 
would conclude that the Y-means of males and females differ 

by 5 units (conditional on the model).  In this case σ̂j
2 have 

had the effects of gender removed in terms of the average 
effect of gender on Y.  However, a slope of 5 tells us nothing 

about the ability of gender to predict variability of σ̂j
2.  

Including gender in equations (1) and (3) can provide 
information about whether means and variances differ across 
males and females.  In theory, level 2 (classroom) predictors 
such as treatment could also be included to explain variance 
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heterogeneity.  As noted earlier HLM7 limits equation (3) to 
level 1 predictors. 
 
 
 
Method 2 
Method 2 allows the impact of classroom predictors 
(including treatment) on variability to be modeled with a 
traditional normal-theory-based single-level regression. 
Initially a linear model (i.e., equation (1)) is fitted to each 

cluster (classroom) and ln 𝜎̂𝑗
2 are computed.  The ln 𝜎̂𝑗

2 are 

then analyzed using a single level, weighted least squares 

regression with classroom predictors and weights vj
−1 defined 

in Method 1 —weights capture differences in classroom 

sample sizes. Because σ̂j
2 is computed independently for each 

classroom using OLS, Method 2 can be performed without 
any reference to multilevel modeling or multilevel software.  
For example, using R statistical software (R Core Team, 2013) 
we would fit the same level 1 regression model to each 
classroom using OLS via the dplyr package in R and obtain 

σ̂j
2 and then apply the natural logarithm to σ̂j

2 

 
Method 3 
Method 3 also allows the impact of classroom predictors 
including treatment on variability to be modeled with a single-
level regression using a gamma model which is frequently 
recommended for continuous nonnegative data (Firth, 1988; 
McCullagh & Nelder, 1989).  The within-classroom variances 
are again obtained by fitting a linear model for each 
classroom as in Methods 1 and 2.  However, in this case the 
residual variance is modeled directly using a GLM (available 
in R statistical software via the glm function).  Specifically, the 
GLM can be written as follows:    
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𝜎̂𝑗
2~Gamma(𝜇𝑗, ϕ)

g(𝜇𝑗) = 𝜂𝑗

𝜂𝑗 = β0 + β1𝑊j

                                                         (4) 

 

where 𝜂𝑗 represents a linear predictor, 𝑊𝑗 is a classroom 

predictor, β0 is an intercept, β1 a slope, 𝑔(𝜇𝑗) represents the 

link function which in this case is the natural logarithm 

𝑔(𝜇𝑗) = ln (𝜇𝑗), and 𝜙 represents the dispersion parameter.  

The link function connects the mean of the response variable 

(𝜇𝑗) with the linear predictor (𝜂𝑗).  Hence the outcome 

variable is not transformed to estimate the model, as in 
Method 2; rather the logarithm function is applied to the 

expected value of the outcome variable.  Weights vj
−1 are also 

used in this method, where  vj =
2σj

2

nj−Q−1
 (Raudenbush & 

Bryk, 1987), nj = cluster sample size, and Q = number of 

student predictors. 
 
Method 4 
The fourth method examines the impact of treatment on 
variability using a meta-analytic approach that can be used 
when classrooms, teachers, schools, etc. are matched.  
Matching is widely recommended as a way to control for pre-
existing cluster differences and enhance causal arguments 
about a treatment (WWC, 2014). This produces a matched 
pair of treatment and control classrooms.  The difference 

between ln σ̂j
2 for each matched-pair is used to compute an 

effect size (δ) that serves as an outcome in a meta-analytic 
regression: 
 

𝛿𝑘 =  ln σ̂treat(k)
2 −  ln σ̂control(k)

2                                       (5)  
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In equation (5) ln σ̂treat (k)
2   is the natural logarithm of the 

estimated within-classroom error variance of the treatment 
classroom within the k-th (k = 1,2,…, K) matched pair, and 

ln σ̂control(k)
2  represents the same for the control classroom 

within the k-th matched pair.  A test based on Raudenbush 
(1997) is then used to test variability among the effect sizes 

𝛿𝑘 and the effect of moderators on 𝛿𝑘 
 

A Study of STEM Achievement 
To illustrate the four methods for modeling variance 
heterogeneity we use data from a National Science 
Foundation (NSF), Mathematics and Science Partnership 
(MSP)-funded project.  The project purpose is to increase 
student learning of engineering, science and mathematics 
concepts in Grades 4 - 8 using an engineering design-based 
approach to teacher professional development and curricular 
development.  Treatment teachers teach curricular materials 
developed within the project that reflect State and National 
standards in STEM.  In a three-week long summer workshop 
teachers developed the curricula and increased their 
understanding about a variety of science and mathematics 
concepts and learned about engineering and technology 
design.  During the subsequent school year teachers then 
implemented STEM curricular units.   
 Teachers who agreed to participate in the study but 
did not participate in the professional development served as 
a “business as usual” control condition. Because of the 
hierarchical nature of the data, two-level (students within 
classrooms) models were used to examine the impact of the 
treatment.  The main research question in the engineering 
design-based curriculum project asked was: In what ways 
does participation in the engineering design-based curriculum 
affect students’ content knowledge in the STEM disciplines? 
A second important question was Does the treatment reduce 
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gaps in achievement among students by race, gender, and 
limited English proficiency (LEP) status? Both mean and 
variance differences can help answer these questions.  
Accordingly, we first present the traditional multilevel results 
focused on mean differences and then use project data to 
study variance heterogeneity using the four methods 
described earlier. 
 
 
Population and Sample, Research Design, and Variables 
The sampled population(s) of the STEM achievement study 
consisted of students and classrooms/teachers for grades 4-8 
in a Midwest state. Treatment and control teachers were from 
three large school districts serving diverse student 
populations.  Outcomes consisted of project-constructed 
assessments designed to capture achievement in engineering 
(Authors et al., 2015).  Student achievement scores were 
reported in logits which are widely used in Rasch analyses of 
test data and estimate a student’s proficiency on an outcome.  
Both treatment and control students took engineering 
assessments at the beginning and end of the engineering 
design-based unit in which these topics were covered.  Thus 
both pretest and posttest data were available for these 
assessments, with posttest data serving as the outcome.  
 Student predictors consisted of gender (0 = male, 1 = 
female), race (Black, Asian, Hispanic, and White with the 
latter serving as a reference group), and the engineering 
pretest scores.  Classroom predictors included treatment 
(treatment = 1, control = 0), years of teaching experience, 
years in current position, percentage of special education 
students, and percentage of LEP students. 
 The study also used matching to provide a sensitivity 
test of findings from the two-level multilevel model with 
control variables. Treatment and control teachers were 
initially matched using propensity scores (Dehejia & Wahba, 
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2002), then using the MatchIt R package (Sekhon, 2011) we 
perform “one-to-one” matching. The final sample used in 
this study consisted of about 2,300 students: 1,443 students 
corresponding to 17 treatment teachers, and 852 students to 
17 control teachers (multiple sections of the same class taught 
by the same teacher were pooled into a single class).   
 
 
 

Applying the Four Methods for Studying Variances to 
STEM Achievement Data 

We first fitted the model specified in equations (1) and (2) 
with the above student and classroom predictors.  The results 
in Table 2 show that engineering pretest is a significant 
predictor of engineering posttest.  Notice that treatment was 
not a significant predictor of engineering posttest scores 

(γ̂01 = −.542, p = .052), meaning that there was not a mean 
difference in engineering posttest scores between treatment 
and control conditions (conditional on the model).  However, 
the Bartlett test of homogeneity of variances (available within 
HLM7) was used to detect heterogeneity and was statistically 
significant (p < .05).  Thus, there is a significant difference in 
residual variances across the J classrooms.  This signals that 

there is probably a student × treatment interaction, meaning 
that the treatment tended to produce scores that were 
bunched together or spread out (relative to control 
classrooms).  Figure 1 presents box plots to illustrate the 
range of the residual variance for treatment and control 
classrooms, treatment classrooms tend to have slightly 
smaller residual variances that show a greater range than 
those for control classrooms.   
Applying Method 1 to within-classroom residual variances 
(see Table 3) showed that (a) engineering pretest was not a 

significant predictor of ln𝜎̂𝑗
2 (α̂1 =  .003, p = .895) 
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suggesting that engineering pretest scores were unrelated to 
classroom variances, (b) females scored on average higher 

than males ( γ̂20 = .150, p = .002) but variability in posttest 

scores was the same across males and females (α̂2 =  − .122, 
p = .057), (c) Asian students scored on average lower than 

White students on the engineering posttest ( γ̂30 = −.208, p 
= .004) but their scores were less variable than White 

students (α̂3 =  − .181, p = .030).  Thus, when investigating 
the effect of level 1 predictors on differences in variability we 
found the STEM engineering intervention produced a 
homogenizing effect for  
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Table 2: Estimation results of the multilevel model for the engineering posttest outcome  

Fixed Effects Coefficient SE  t-ratio p-value 

For Intercept Level 1, β0 

    Intercept level 2, γ00 1.095 0.517 2.118 0.047* 

    Treatment, γ01 -0.542 0.263 -2.064 0.052 

    Level, γ02 -0.231 0.222 -1.040 0.311 

    LEP, γ03 0.114 0.097 1.172 0.256 

    Special education, γ04 -0.082 0.082 -0.999 0.330 

    Years teaching experience, γ05 -0.089 0.109 -0.811 0.427 

    Years current position, γ06 -0.026 0.118 -0.224 0.826 

    Years current school, γ07 -0.163 0.132 -1.234 0.232 

    Gender of teacher, γ08 -0.302 0.212 -1.424 0.170 

    Quality of curriculum unit, γ09 -0.038 0.137 -0.280 0.782 

    Type of eng. integration, γ010 0.217 0.162 1.338 0.196 

    RTOP, γ011 0.292 0.162 1.810 0.085 

For Engineering Pre Score slope, β1 

    Intercept level 2, γ10 0.588 0.134 4.402 0.000* 
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    Treatment, γ11 0.211 0.067 3.168 0.005* 

    Level, γ12 0.182 0.069 2.632 0.016* 

    LEP, γ13 -0.064 0.026 -2.501 0.021* 

    Special education, γ14 -0.070 0.021 -3.373 0.003* 

    Years teaching experience, γ15 0.058 0.035 1.636 0.117 

    Years current position, γ16 -0.047 0.032 -1.470 0.157 

    Years current school, γ17 0.015 0.038 0.406 0.688 

    Gender of teacher, γ18 -0.059 0.054 -1.084 0.292 

    Quality of curriculum unit, γ19 0.084 0.035 2.409 0.026* 

    Type of eng. integration, γ110 0.017 0.044 0.388 0.702 

    RTOP, γ111 -0.114 0.047 -2.421 0.025* 

For Gender of Student slope, β2 

    Intercept level 2, γ20 0.150 0.048 3.101 0.002* 

For Asian slope, β3    

    Intercept level 2, γ30 -0.208 0.072 -2.908 0.004* 

For Hispanic slope, β4    

    Intercept level 2, γ40 1.259 0.730 1.724 0.100 
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Table 2: Estimation results of the multilevel model for the engineering posttest outcome (cont.) 

Fixed Effects Coefficient SE t-ratio p-value 
 

    Treatment, γ41 0.041 0.318 0.129 0.899 

    Level, γ42 -0.136 0.299 -0.455 0.653 

    LEP, γ43 -0.083 0.125 -0.662 0.515 

    Special education, γ44 -0.049 0.108 -0.455 0.653 

    Years teaching experience, γ45 -0.152 0.149 -1.020 0.320 

    Years current position, γ46 -0.012 0.157 -0.074 0.942 

    Years current school, γ47 0.082 0.174 0.472 0.642 

    Gender of teacher, γ48 -0.322 0.234 -1.377 0.184 

    Quality of curriculum unit, γ49 0.064 0.165 0.385 0.704 

    Type of eng. integration, γ410 -0.501 0.218 -2.302 0.032* 

    RTOP, γ411 -0.009 0.210 -0.045 0.965 

For Black slope, β5 

    Intercept level 2, γ50 0.272 0.570 0.477 0.638 

    Treatment, γ51 -0.082 0.278 -0.295 0.771 

    Level, γ52 -0.476 0.272 -1.750 0.095 
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    LEP, γ53 -0.049 0.104 -0.467 0.645 

    Special education, γ54 -0.070 0.087 -0.808 0.429 

    Years teaching experience, γ55 -0.178 0.137 -1.306 0.207 

    Years current position, γ56 0.067 0.142 0.470 0.643 

    Years current school, γ57 0.013 0.160 0.082 0.936 

    Gender of teacher, γ58 -0.035 0.198 -0.176 0.863 

    Quality of curriculum unit, γ59 0.127 0.148 0.859 0.401 

    Type of eng. integration, γ510 -0.063 0.180 -0.351 0.729 

    RTOP, γ511 0.117 0.186 0.629 0.536 

Random Effect SD Variance Component Chi-square p-value 

Intercept level 1, U0 0.381 0.145 177.302 0.000 

Engineering Pre Score slope, U1 0.023 0.001 36.819 0.009 

Hispanic slope, U4 0.084 0.007 18.735 >.500 
Black slope, U5 0.187 0.035 29.832 0.054 
Note. * = statistically significant (p < .05). Gender is coded 1 = female, 0 = male; Treatment is coded 1= treatment, 0 = control; Level is coded 1 = 
middle school, 0 = elementary; The Reformed Teaching Observation Protocol (RTOP) is coded into three quality of teaching categories 0 = Low, 1 
= Medium, 2 = High; Quality of curriculum unit is coded 0 = Not Present, 1 = Weak, 2 = Adequate, 3 = Good, 4 = Excellent; Type of engineering 
integration is coded 0 = add-on, 1 = implicit, 2 = explicit. Deviance = 6020.691; number of estimated parameters = 66. 
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Figure 1. Boxplot of OLS residual variance by treatment 

condition for all classrooms. 
 
Asian students compared with White students.  That is, the 
logarithms of the residual variance estimates were smaller for 
Asian students than for their White counterparts indicating 
the responses of Asian students to the intervention were 
more similar than those of White students; the latter suggest 
more scores varied more (higher or lower than the mean) for 
White students compared to the former.  This finding could 
guide efforts to better understand why there was greater 
variation in mastery of the material among White students.  
Changes in curriculum program or in teachers’ preparation 
could help assure patterns of scores do not differ by race, an 
important instructional goal 
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Table 3: Estimation results of multilevel modeling of 
log-transformed residual variances 

Parameter Estimate SE Z p-value 

Intercept, α0 0.198 0.058 3.403 0.001 

Pretest, α1 0.003 0.023 0.133 0.895 

Gender, α2 -0.122 0.064 -1.900 0.057 

Asian , α3 -0.181 0.083 -2.167 0.030 

Hispanic, α4 0.095 0.110 0.861 0.389 

Black, α5 0.038 0.088 0.437 0.662 

  
 Method 1 offers insight into the effect of level 1 
predictors on variance heterogeneity whereas Methods 2 and 
3 allow the impact of classroom-related factors on variability 
in the outcome variable to be investigated, and these are 
illustrated next.  
 For Method 2 we fitted a single regression model with 
one predictor to explain variance heterogeneity between 
treatment and control classrooms.  This model adopted the 
following mathematical representation:  
 

  ln𝜎̂𝑗
2 = β0 + β1𝑊𝑗 + 𝑒𝑗 ,                                         (6) 

 

where ln𝜎̂𝑗
2 represents the outcome variable, 𝑊𝑗 is the 

predictor representing the treatment condition for each 
classroom (1 = treatment, 0 = control), β0 is the intercept of 
the model and β1 is the slope for the treatment predictor 
which captures the impact of engineering curriculum 
implementation on residual variances.  We are interested in β1 
because this parameter indicates whether the variances of 
treatment classrooms were larger, equal to, or smaller than 
those of control classrooms.  Table 4 shows that the natural 
logarithm of the variance in treatment classrooms was on 
average significantly smaller than the natural logarithm of the 
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variance in control classrooms (β̂1 = −.226, p = .022).  This 
suggests that the engineering curriculum implementation 
tended to produce a homogenizing effect across students in 
treatment classrooms compared to students in control 
classrooms.  In other words, treatment did not on average 
raise posttest scores (since there was not a treatment effect 
resulting from equations (1) and (2)) but treatment seemed to 
produce less within-classroom variability compared to control 
classrooms.  This result is particularly important when 
programs are designed to decrease variability among students 
such as those aiming to reduce achievement gaps.  In this 
context, differences in variability would indicate that even 
though on average treatment students did not present higher 
scores, students reacted to the intervention in similar ways.     
 Method 3 used the generalized modeling framework 
to investigate the relationship between residual variances and 
the treatment condition.  The residual variance is a non-
negative positively skewed variable (skew = 2.169, kurtosis = 
7.188) that can be directly modeled by assuming a gamma 
distribution.  The model is represented in equation (4) in 

which σ̂j
2 is the outcome variable and Wj is a dichotomous 

variable representing the treatment condition for each 
classroom. Results in Table 4 show that the variance in 
classrooms where the treatment was implemented was 
significantly smaller than in classrooms under the business as 

usual condition (β̂1 = −.269, p = .007), indicating that 
treatment had a homogenizing effect.  The results for 
Methods 2 and 3  have the same practical interpretation but 
the advantage of Method 3 is the possibility of discussing 
differences in dispersion in the variance scale (as shown 
below) instead of in the log-variance scale (as in Method 2).   
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Table 4: Estimation results of Methods 2 and 3 

Variable Estimate SE t-ratio p-value 

Method 2: single level regression of log-transformed σ̂j
2 

(Intercept) 0.220 0.075 2.934 0.006 

Treatment -0.226 0.094 -2.414 0.022 

Method 3: generalized gamma linear model of σ̂j
2 

(Intercept) 0.155 0.086  0.071 

Treatment -0.269 0.099  0.007 
Note. Method 2: R-square = 0.158. Method 3: Deviance = 66.667, AIC = -59.682.  

 
As previously mentioned one of the advantages of the GLM 
framework is the possibility of a straightforward 
interpretation of the results in the original scale.  Since the 

link function in this model is the natural logarithm 𝑔(𝜇𝑗) =

ln(𝜇𝑗) = ηj = β0 + β1𝑊𝑗 , then 𝜇𝑗 = exp (β0 + β1𝑊𝑗).  

The estimated residual variance for the control condition 

(𝑊𝑗 = 0) equals exp(β̂0) = exp(. 155) = 1.167 (𝛽̂0 =

.155, p = .071), and for the treatment condition (𝑊𝑗 = 1) 

equals exp(β̂0 + β̂1) = exp(. 155 − .269) = .892.  Hence, 

the difference in variability between the treatment and control 

conditions is given by exp(β̂0 + β̂1) − exp(β̂0) = −.275, 

which means that the residual variance of the engineering 
scores in the treatment condition is .275 units smaller than in 
the control condition.   
 In the meta-analytic approach (Method 4) we 
estimated a unique effect size for each pair of matched 

classrooms by computing the difference in ln σ̂j
2 of the 

treatment and control classrooms (see equation 5).  In total 
we obtained 17-effect sizes and then estimated the average 
weighted effect size across pairs as -.215, which suggests that 
on average treatment classrooms were less variable than 
control classrooms.  Our next step was to perform a 
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statistical test to examine variability among the effect sizes 
(Raudenbush, 1997), which was statistically significant 
(148.456, p < .001) and indicates that effect sizes were 
heterogeneous, meaning some classrooms showed similar 
variation in treatment-control variances whereas others 
showed greater variation.  This finding suggest non modeled 
teacher or classroom variables (e.g., years of experience, class 
size) may be responsible.   Notice the practical interpretation 
of this method is based on effect sizes rather than the residual 
variance as in Method 3 or in the log-residual variance as in 
Method 2.     
 In summary, a comprehensive investigation of 
treatment effects is possible by coupling mean-oriented fixed 
effects results of multilevel models with methods to analyze 
variance heterogeneity.  The four methods illustrated in this 
study serve different purposes which should guide adoption 
of one or more of these methods.  Method 1 focuses on 
examining the relationship between level 1 predictors and 
log-transformed residual variances, whereas Methods 2, 3 and 
4 investigate the effect of the level 2 treatment condition (a 
classroom-level predictor) on variability of the outcome 
variable.  Applying Method 1 to STEM achievement data 
showed Asian students presented less within-classroom 
variability (were more homogeneous given the model) than 
White students.  Methods 2, 3 and 4 provided the same 
general conclusion for the STEM achievement data in that 
students in the treatment condition showed less variability in 
posttest scores than students in the control condition (given 
the model).  Differences between the last three methods are 
due to the nature of the outcome variable: Method 2 employs 
a log-variance scale, Method 3 a within-classroom residual 
variance scale, and Method 4 uses effect sizes.  The results of 
all methods provide insight into whether students reacted 
similarly or not, and if the latter should prompt additional 
investigation to identify sources of differences in variances. 
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Discussion   
The current study described and illustrated four methods for 
investigating variance heterogeneity that can deepen 
understanding of a treatment using data from an engineering 
design-based STEM curriculum study.  Using a traditional 
multilevel modeling approach we found that integrated 
STEM instruction was not a significant predictor of 
engineering posttest scores (i.e., treatment and control 
conditions had the same mean achievement given the model).  
However, there was variance heterogeneity across treatment 
and control classrooms.  Method 1 analyzed the relationship 
between log-transformed residual variances and student level 
predictors, allowing the role of student characteristics on 
variability to be explored.  For example, the STEM 
engineering integration intervention produced a difference in 
engineering posttest means among male and female students 
but no relationship between classroom variances and gender.  
The latter finding implies that male and female students 
responded similarly on the outcome and suggests that the 
curriculum program does not need to be modified to help 
ensure gender is unrelated to dispersion.  On the other hand, 
the results also indicated that White students on average 
scored higher than Asian students on the engineering posttest 
and that Asian students showed less variability in scores 
(relative to classroom means) and White students more 
variability (relative to classroom means). Ideally White and 
Asian students would respond similarly to the curriculum 
program and these findings may suggest a need to examine 
the curriculum for clues about why differences in variability 
emerged. 
 Methods 2 and 3 use level 2 (classroom) predictors to 
explain variability in the outcome variable using a single-level 
regression model.  Method 4 provides an additional option to 
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investigate residual variances that, to our knowledge, has not 
been used in the educational literature.  Educational studies 
that allow the meta-analytic framework to be applied produce 
information about differences in effect sizes and their 
relationship with different predictors including treatment.  
Methods 2, 3 and 4 showed that students in the treatment 
condition generally demonstrated less dispersion in 
engineering posttest scores than students in the control 
condition. 
 Although Methods 2, 3 and 4 represent an option to 
investigate the effect of classroom level predictors and no 
special multilevel software is needed to implement them, 
there are important differences between the three methods 
worth noticing.  The difference between Methods 2 and 3 lies 
in the modeling framework that accommodates the outcome 
variable under study.  Method 2 is located under normal 
statistical theory and involves a nonlinear transformation 
(logarithmic) of the residual variance estimates.  Method 3 
deviates from the normality assumption and models the 
residual variance estimates directly by assuming a gamma 
distribution.  The practical implication of these two choices is 
the scale of the results: It is possible to have an interpretation 
in the original scale when using Method 3 but interpretations 
of the results for Method 2 need to be in the logarithmic 
scale.  Method 4 focuses on analyzing differences in effect 
sizes, that is, it examines whether classroom level predictors 
are related to differences in variability between matched pairs 
of treatment and control classrooms.  Notice that matched 
pairs of classrooms, teachers, schools, etc. are necessary to 
implement Method 4, which may impose a significant data 
restriction. 
 In general, the four methods represent different 
options for the analysis of variance heterogeneity in 
educational studies that provide evidence of whether 
treatment and control conditions and/or student and teacher 
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characteristics account for heterogeneity.  In conjunction with 
analyses of mean differences in multilevel models the results 
of modeling variance heterogeneity help to answer the 
research questions posed earlier in ways that enrich inferences 
about the impact of an educational intervention on students.  
We recommend Method 1 when the focus of research is on 
level 1 predictors only.  When classroom predictors are of 
interest, researchers should turn to Methods 2, 3 or 4 with the 
choice depending on the researcher’ preference for the 
outcome variable and interpretation of results.      
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