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Article

In 2002, two pieces of legislation put an increased emphasis 
on the establishment of an evidence base for the field of 
education. First, the reauthorization of the Elementary and 
Secondary Education Act (which renamed it as No Child 
Left Behind or NCLB) emphasized the use of “scientifi-
cally based research” as the basis for educational practices 
citing the term well over 100 times (No Child Left Behind 
Act, 2002). On February 6, 2002 Susan Neuman, then the 
assistant secretary for Elementary and Secondary Education 
at the U.S. Department of Education hosted a seminar on 
scientifically based research which framed the term and its 
use as the foundation for identification of effective practices 
in education (Neuman, 2002). Second was the signing of 
the Education Sciences Reform Act (ESRA) in November 
of that year which authorized the Institute for Education 
Sciences (IES) and established its mission to provide lead-
ership in expanding fundamental knowledge of education 
which includes effectiveness of educational practices 
(Education Sciences Reform Act, 2002). At the time, IES 
defined randomized controlled trials as the gold standard in 
a presentation to the American Educational Research 

Association by Russ Whitehurst, the first director of IES 
(Whitehurst, 2003). Because of the shift in emphasis to effi-
cacy of educational practices and programs, this was not an 
unexpected turn; however, the emphasis on generation  
of new knowledge has contributed to a “crisis of (non-) 
replication” (Cook, 2014, p. 233).

Replication is often considered to be at the heart of sci-
entific inquiry (Schmidt, 2009), and education is a field 
which prizes inquiry. Moreover, replication is important 
because it is a means of controlling for threats to both inter-
nal and external validity that are inherent in any single 
research study by allowing for a systematic examination of 
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the impact of those threats across studies (Schmidt, 2009). 
It is this aggregation that allows for the impartation of the 
term “evidence based” because through repeated study, the 
convergence of findings and understandings can be exam-
ined. This is a fundamental component of the scientific 
method (Gall, Gall, & Borg, 2006). Although the impor-
tance of replication is well-known, there remains little work 
detailing specifics of replication.

Although there are a few conceptual frameworks for 
types of replication (see Schmidt, 2009 for a review), a 
common current classification compares direct replication 
with conceptual replication. Direct replication uses the 
exact study design, sampling, and methods as the original 
research but can be conducted by the same or independent 
researchers. It is designed to examine the accuracy of spe-
cific results and data from the original study (Makel & 
Plucker, 2014). In contrast, conceptual replication uses dif-
ferent design, sampling, methods, and/or analysis to more 
fully explore the construct under study rather than the meth-
ods or data (Makel & Plucker, 2014). To date, when a study 
can be considered replicative, it generally is a conceptual 
replication so it can be framed as new (avoiding publication 
bias) and the results can be aggregated using meta-analytic 
methods. The different types of replication (i.e., direct and 
conceptual) are important to consider within the functions 
they serve.

Schmidt (2009) outlined five different functions of repli-
cation to (1) control for sampling error, (2) control for 
research artifacts, (3) control for fraud, (4) generalize find-
ings to a different population, and (5) verify underlying 
hypotheses. Although the functions do not align perfectly 
with direct and conceptual replication, Functions 1 to 3 tend 
to focus on the specific results of the original study (similar 
to direct replication), whereas Functions 4 to 5 focus on 
extending the findings or construct from the original study. 
Both are important, but the latter are more commonly repre-
sented in the published literature. See Makel et al. (2016), 
Lemons et  al. (2016), Cook, Collins, Cook, and Cook 
(2016), and Therrien, Mathews, Hirsch, and Solis (2016) 
for recent reviews of replication in special education.

A common theme of these four reviews and recent calls 
for increased replication in education (Cook, 2014; Makel 
& Plucker, 2014) is an exclusive focus on intervention 
research. This focus is likely for a few reasons. First is the 
emphasis on evidence-based practices and efficacy that are 
the current context of education in the United States (see 
above). Second, in order for a practice to be considered evi-
dence based, at least four experimental or quasi-experimental 
study replications (Gersten et al., 2005) or five single case 
study replications (Horner et al., 2005) should be present as 
a condition for “evidence based.” Third, a foundational 
principle of the U.S. education system is that teaching can 
effect learning and that learning is the heart of education 
(Webb & Metha, 2016). Similar to evidence-based practices 

in medicine which works on the belief that physicians using 
best practices increase patient health, in education, we gen-
erally operate with the belief that a teacher using effective 
practices will increase student learning. Within this context, 
this emphasizes that evidence-based intervention practices 
are crucial. However, replication is also important to con-
sider in assessment research because if our measurement 
tools and procedures are not as rigorously evidence based as 
the interventions and protocols, it introduces a source of 
error into research studies that will undermine confidence 
in the foundation of our evidence base.

Schmidt’s five functions of replication are just as crucial 
for assessment research as intervention research. Schmidt’s 
first three functions are important for the same reasons in 
assessment research as intervention research—to control for 
threats to the validity of inferences from the findings of a 
single research study. Sampling error or research artifacts 
(such as a close alignment of the instruction/intervention 
students receive and the content of the assessment tools) can 
affect assessment research. Functions 4 and 5 are also impor-
tant because it is important that the theory of the construct 
under measurement is not dependent upon the sample and 
that there is a consistency in measurement for different 
groups of students. In addition, classical test theory holds 
that any observed score from administration of an assess-
ment instrument is composed of two components—the true 
score and measurement error (Crocker & Algina, 2006). 
Ways of combating measurement error and therefore increas-
ing the reliability of measurement include adding items to a 
scale, having multiple scorers score the instrument, and 
increasing the frequency of administration through alternate 
forms, readministration of the same form, or ongoing prog-
ress monitoring. All of these are essentially methods of rep-
licating a finding to increase the confidence in the veracity 
of the result. Research into the technical adequacy of an 
instrument can benefit equally from replication, and there 
are some examples of syntheses demonstrating this utility. 
These syntheses serve Functions 4 and 5 well as they can 
control for sources of error across studies to look for patterns 
of consistency or inconsistency; however, direct replications 
are still needed to address Functions 1 through 3.

Reschly, Busch, Betts, Deno, and Long (2009) con-
ducted a meta-analysis of 41 studies that included at least 
one correlation between Oral Passage Reading (OPR) and a 
criterion-reading measure. None of the included studies are 
direct replications as all differed from each other on at least 
one aspect of design (e.g., sampling, participant characteris-
tics, criterion measure) and in many cases more than one. 
These conceptual replications allow a fuller examination of 
the construct of OPR—particularly when analyzed meta-
analytically so that mediating or moderating variables and 
publication bias could be examined empirically—but ignore 
the facets of method and design that may also impact the 
results.
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In math, Foegen, Jiban, and Deno (2007) examined 32 
studies of curriculum-based measurement (CBM). Although 
their synthesis did not include a meta-analysis, they exam-
ined the correlations between M-CBM and a variety of crite-
rion measures in grades ranging from preschool to secondary 
grades. No two studies in their review are direct replications 
but rather were conceptual in nature varying on one or more 
study characteristics. Similar to the Reschly et  al. (2009) 
review, this provides important information about the poten-
tial range of correlations and generalization to different pop-
ulations; however, without direct replication of any of the 
studies it is difficult to make inferences about the robustness 
of the findings. What is needed to extend the literature on 
replications in CBM research is a direct replication using the 
same methods and materials but with a different sample of 
students. This will provide for an examination of the random 
error present in assessment while attempting to control for 
all other variables. Conceptually, this is similar to single case 
experimental designs (Kennedy, 2005) in that control is 
maintained over all variables other than the one being exper-
imentally manipulated. This study includes such a compari-
son using CBMs to build off of the syntheses that have been 
conducted. This adds direct replication to the existing litera-
ture of more conceptual replications. Our focus was with 
postsecondary students with developmental disabilities 
(DD) because there is a lack of research on using CBM with 
this population; therefore, we next provide a rationale for 
their use.

Why Use CBM With Postsecondary 
Students With DD?

There is an increasing amount of postsecondary options for 
students with DD, with over 220 postsecondary programs 
for students with DD in the United States and Canada 
(Think College, 2014). Postsecondary education includes 
any education after the high school level, including voca-
tional training, community college, and 4-year college set-
tings. Programs for individuals with DD usually fall into 
one of three categories: hybrid model, substantially sepa-
rate model, and inclusive individual support model. The 
hybrid model allows for students with DD to participate in 
both social events and academic courses with nondisabled 
peers, as well as coursework designed specifically for stu-
dents with DD. In a substantially separate model, students 
with DD might participate in social activities with nondis-
abled peers, but courses are taken only with other students 
with disabilities. An inclusive individual support model is 
driven by the individual student’s academic and career 
goals, and generally does not include a campus program 
designed specifically for students with DD (Hart, Grigal, 
Sax, Martinez, & Will, 2006).

Regardless of the model, a majority of the programs 
focus on an outcome of gaining quality employment (Papay 

& Bambara, 2012). Basic proficiency in reading and math-
ematics is related to better employment options. Quality 
jobs with the highest growth rates require reading and math-
ematical skills, leaving struggling readers with fewer 
options for gainful employment (Liming & Wolf, 2008; 
National Joint Committee on Learning Disabilities 
[NJCLD], 2008). Insufficient reading skill and high rates of 
unemployment tend to go hand in hand (Iyengar et  al., 
2007). Low basic mathematical skills have also shown to 
have an effect on opportunities for employment. A study in 
Great Britain (Gross, Hudson, & Price, 2009) found that 
low mathematical performance had undesirable employ-
ment outcomes for adults, even more than low reading 
skills, leading to lower rates of employment, lower rates of 
pay, and longer terms of unemployment. Similar findings 
have been found in studies completed in the United States 
(Geary, 2013).

Knowledge of the importance of academic skills and 
employment leads to the need for reading and mathematics 
interventions for postsecondary students with DD (Hua, 
Hendrickson, et al., 2012; Hua, Therrien, et al., 2012; Hua, 
Woods-Groves, Ford, & Nobles, 2014; Woods-Groves, 
Therrien, Hua, Hendrickson, Shaw, & Hughes, 2012). 
Students who continue to struggle with academics are often 
victims of poor early instruction and may be able to catch 
up, given appropriate academic interventions (Torgesen, 
2005). With an emphasis on continued academic interven-
tions in the postsecondary setting, there is a need to deter-
mine reliable and valid measures that can be used to 
measure the effectiveness of interventions. One possible 
tool for this is CBM

Developed in the late 1970s at the University of 
Minnesota’s Institute for Research on Learning Disabilities 
(IRLD), CBM grew out of the idea that assessment and 
resulting instructional decisions based on those assessments 
should reference the curriculum used in the classroom 
(Deno, 1985). CBM is designed to be sensitive to growth in 
both general and special education settings, with quick 
administration and scoring leading to timely instructional 
decisions (Deno, 1985, 1992). Research has shown that the 
use of CBM measures in progress monitoring raises student 
achievement through responsive instructional decision 
making (Stecker, Fuchs, & Fuchs, 2005).

Existing research on CBM has largely been conducted at 
the elementary level (Foegen et al., 2007; Wayman, Wallace, 
Wiley, Tichá, & Espin, 2007). There is less research on 
CBM at the secondary level, but the few studies still support 
the strong research base for the use of CBM to monitor stu-
dent progress and as an indicator of academic performance 
(Foegen et  al., 2007; Johnson, Galow, & Allenger, 2013; 
Wayman, McMaster, Saenz, & Watson, 2010). This may 
also extend to the postsecondary level with recent research 
suggesting that CBMs can function as indicators of aca-
demic performance and growth for postsecondary students 
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with DD (Hosp, Hensley, Huddle, & Ford, 2014). Given the 
increasing number of postsecondary programs for students 
with DD and their emphasis on academic intervention and 
outcomes, this is an important step

In the aforementioned study, Hosp et al. (2014) analyzed 
CBM data for a group of postsecondary students with DD, 
all of whom attended a 2-year certificate program at a large 
university. Findings from the study are important as they 
provided preliminary support for criterion-related validity 
of CBM to function as an indicator of academic perfor-
mance for postsecondary students with DD. Hosp et  al. 
demonstrated that CBMs for reading, math, and writing dis-
play similar technical characteristics when used with post-
secondary students with DD as with students at the 
elementary and secondary level. Despite the importance of 
these findings, the small sample size and the fact that no 
single study can conclusively demonstrate evidence of tech-
nical adequacy limit the implications and illustrate the need 
for direct replication.

Purpose

Given the importance of replication in establishing the 
robustness of research findings and the dearth of research 
on academic assessment with postsecondary students with 
DD, the following research question guided this study:

Research Question: Can the criterion-related validity 
observed by Hosp et al. (2014) be directly replicated with 
different samples of postsecondary students with DD?

Method

Participants

Participants were students with cognitive/intellectual and 
DD (e.g., Autism) who enrolled at a 4-year public research 
institution in the Midwestern U.S. in a 2-year certificate 
program. The program is a hybrid program designed to 
facilitate young adults’ independence and community inte-
gration. Students live on campus with others in the program 
as well as with typical college students. Program course-
work includes instruction targeting career and independent 
life skills and integration in undergraduate courses with 
support. Academic coursework includes instruction in read-
ing (e.g., increasing oral reading rate), mathematics (e.g., 
applied computation such as budgeting and tip calculation), 
and writing (e.g., editing skills). In addition to their course-
work, students also participate in social activities offered by 
the university (e.g., sporting events, Dance-A-Thon).

Participants in this study included two cohorts (N = 45) 
of first semester postsecondary students with DD enrolled 
in the program described above. Data from Cohort A (n = 
24) were collected in the fall of 2012. Participants were 

41.6% female (n = 10) and 91.6% White (n = 22). The mean 
age of participants was 19.4 years (SD = 1.10). Data from 
Cohort B (n = 21) were collected in the fall of 2013. 
Participants were 47.6% female (n = 10) and 95.2% White 
(n = 20). The mean age of the participants was 19.3 years 
(SD = 1.77). All students had completed high school, earn-
ing a diploma or a certificate.

Instruments

We used CBMs from the aimsweb suite (Pearson Education, 
2013) in this study. To replicate the study done by Hosp 
et al. (2014), Grade 4 materials were used for reading and 
Grade 5 materials were used for math.

OPR.  OPR, also called Oral Reading Fluency (ORF) or 
Reading CBM (R-CBM), involves students reading aloud 
for 1 min from connected text. To calculate a score, the 
number of decoding errors a student makes is subtracted 
from the total number of words read. This metric is often 
referred to as words read correctly (WRC). Research involv-
ing students in Grades 1 to 6 has demonstrated OPR to have 
appropriate technical adequacy as an indicator of student 
reading skill, including comprehension. Validity coeffi-
cients for OPR have typically ranged from .60 to .80 and 
reliability coefficients from .82 to .99 (Reschly et al., 2009). 
Little research is available for older students. For students 
in Grade 10, validity coefficients have been found to range 
from –.02 to .71 with alternate-form and test–retest reliabil-
ity observed at .91 (Espin & Deno, 1993a, 1993b). In a 
recent study involving postsecondary students with DD, 
Hosp et al. (2014) examined the technical characteristics of 
Grade 4 OPR with the Woodcock–Johnson Tests of Achieve-
ment–Third Edition (WJIII; Woodcock, McGrew, & Mather, 
2001). Validity coefficients of .72 with Broad Reading, .63 
with Reading Fluency, and .36 with Passage Comprehen-
sion were reported.

Maze.  On Maze, students silently read a passage of 150 to 
400 words. The first and last sentences remain intact while 
the rest of the passage has approximately every seventh 
word deleted. Where words are deleted, a choice of three 
words is provided. Students have to circle the word that best 
fits the sentence. For aimsweb Maze, a near distractor that 
is semantically correct and a far distractor that does not 
make sense in the passage are included along with the cor-
rect word (Shinn & Shinn, 2002). Performance on Maze is 
commonly measured by subtracting the number of incorrect 
restorations obtained by a student from the number of resto-
rations attempted, thus creating the metric of correct resto-
rations. For students of all age ranges, Maze validity 
coefficients have ranged from .60 to .86 while reliability 
coefficients have ranged from .68 to .90 (Wayman et  al., 
2007). Hosp et al. (2014) found validity coefficients with 
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Maze of .71 with Broad Reading, .66 with Reading Fluency, 
and .57 with Passage Comprehension compared with the 
WJIII.

Math Computation (M-COMP).  CBMs for M-COMP include 
computational skills expected at the grade level they repre-
sent. M-COMP includes two pages of computational prob-
lems arranged in rows, and students are given 4 min to 
complete as many problems as possible. Performance on 
M-COMP is typically measured by the number of correct 
digits (CD) a student calculates. Reliability coefficients 
have ranged from .83 to .93 (Foegen et  al., 2007), but 
research has mainly been limited to students in the elemen-
tary grades. Hosp et al. (2014) found validity coefficients 
for CD to be .67 for Broad Math, .75 for Math Computation, 
.73 for Math Fluency, and .40 for Applied Problems com-
pared with the WJIII for postsecondary students with DD. 
In addition, Hosp et al. examined evidence of validity using 
the number of correct problems (CP) obtained by students. 
Validity coefficients for CP were observed to be .70 for 
Broad Math, .76 for Math Computation, .65 for Math Flu-
ency, and .47 with Applied Problems.

Math Concepts and Applications (M-CAP).  M-CAP measures 
applied mathematics skills (e.g., problem-solving). Students 
are given 30 math application problems and are told to com-
plete as many possible in 8 min. Points (Pts.) are typically 
obtained per problem with more Pts. assigned to problems 
with multiple steps. Areas of mathematics included in 
M-CAP include number sense, operations, patterns and rela-
tions, probability, measurement, statistics, geometry, and 
algebra. For students in Grade 8, validity coefficients have 
been found to range from .61 to .87, while alternate-form 
reliability has ranged from .81 to .88 (Helwig, Anderson, & 
Tindal, 2002; Helwig & Tindal, 2002). While examining CP 
and Pts. with M-CAP, Hosp et al. (2014) found validity coef-
ficients of .81 and .80, respectively, on the WJIII Broad 
Math cluster and .71 and .70, respectively, on Applied Prob-
lems. Correlations for Math Calculation (.77 and .74, respec-
tively) and Math Fluency (.59 and .63, respectively) were 
less similar regarding their correlation.

WJIII.  This study used the WJIII as a criterion measure. The 
WJIII is a standardized, norm-reference battery of achieve-
ment tests for use with individuals aged 2 to 90 years. The 
WJIII has three clusters (Broad Reading, Broad Math, and 
Broad Written Language) which have been observed to 
have strong reliability, generally at .90 or greater (River-
side, 2011). Each cluster is made of specific tests. The 
Broad Reading cluster includes Letter Word, Identification, 
Reading Fluency, and Passage Comprehension. The Broad 
Math cluster includes Math Calculation, Math Fluency, and 
Applied Problems. The Broad Written Language cluster 

includes Spelling and Writing Fluency but was not included 
in this study.

Procedures

All administration procedures were identical to those used 
in the Hosp et  al. (2014) study. All CBM measures were 
administered during participants’ regularly scheduled “spe-
cial topics” course using the standardized aimsweb proce-
dures. Group-administered measures (Maze, M-COMP, and 
M-CAP) were given in a single 40-min class session. All 
OPR passages were administered individually in a second 
40-min class session the same week. Make-up administra-
tions, for those who were late or absent for the first class, 
for group-administered measures and OPR were given indi-
vidually during a “study table” session within 2 weeks of 
other CBM data being collected. Individuals responsible for 
administering the CBM measures included the study authors 
as well as faculty from program the participants were 
enrolled in and graduate students in special education. All 
administrators either had extensive experience in adminis-
tering, scoring, and interpreting CBM measures or were 
provided an approximately 45-min-long training on admin-
istering and scoring CBM. WJIII data were independently 
collected by faculty from the postsecondary program.

Each CBM was scored by one of the study’s authors. 
Overall, 20% of each scorer’s probes were then blindly 
rescored by another author. Interscorer agreement was high 
for all five measures (99.9% OPR, 100.0% Maze, 98.4% 
M-COMP, and 98.3% M-CAP).

All student data were entered into a spreadsheet for anal-
ysis. All participants’ data entries were reviewed to ensure 
accuracy regarding student results being correctly attributed 
to the student who obtained them. All entries were found to 
be entered accurately (i.e., 100%).

Data Analysis

Because the purpose of the study was a direct replication, 
we used the same data analysis procedures used by Hosp 
et al. (2014). Thus, we first calculated descriptive statistics 
for each CBM metric and the WJIII. Next, we calculated 
bivariate correlations between each CBM metric and each 
content-appropriate test from the WJIII (at the cluster and 
the individual level). Correlations were then compared 
using Meng’s z to determine which metrics were statisti-
cally significantly better predictors (Meng, Rosenthal, & 
Rubin, 1992). Meng’s z (Meng et al., 1992) is an accurate, 
simple method for comparing the relation between a depen-
dent variable and multiple independent variables for the 
purpose of examining potential differences in how the inde-
pendent variables predict performance on the dependent 
variable.



Hosp et al.	 101

To compare the samples, chi-square for categorical vari-
ables or t tests for continuous ones were conducted to dem-
onstrate equivalence of the samples across demographic 
characteristics. In addition, a series of independent t tests 
was conducted to examine differences in students’ academic 
performance on CBM measures and the WJIII. To address 
the replication aspect of our study, we compared perfor-
mance from the original, published study (i.e., Hosp et al., 
2014) with Cohort A as well as with Cohort B.

Examination of replication of the findings from Hosp 
et al. (2014) was conducted in two ways. First, the criterion-
related validity evidence (i.e., the bivariate correlations 
between the CBM measures and metrics and the WJIII crite-
rion measures) was compared using Rosenthal and Rosnow’s 
(2007) formulas for tests of independent correlations. 
Second, the patterns of significant Meng’s z were compared 

across all three cohorts (i.e., the original from Hosp et al., 
2014 and the two replication cohorts: A and B) to identify 
replicated significant comparisons.

Results

Descriptive statistics for each CBM metric and the tests of 
from the WJIII can be found in Table 1 for Cohort A and 
Table 2 for Cohort B. Using guidelines provided by 
Tabachnick and Fidell (2013), with 1.0 being considered 
questionable and those greater than 2.0 to be problematic, 
each CBM metric was judged for deviation of skewness and 
kurtosis. Consistent with the findings of Hosp et al. (2014), 
most CBM metrics demonstrated acceptable levels of skew-
ness and kurtosis. Issues with the distribution of our sample 
can be attributed to statistical outliers from each cohort 

Table 1.  Descriptive Statistics for Cohort A (n = 24).

Measure Metric/cluster or test M SD Skewness Kurtosis Range

OPR WRC 132.08 62.29 1.41 4.60 36–341
Maze CR 14.37 9.85 0.71 −0.01 2–36
M-COMP CD 25.50 18.60 0.23 −0.89 0–64

CP 8.50 6.80 0.80 1.38 0–28
M-CAP CP 5.46 4.13 0.71 1.02 0–17

Pts. 6.21 5.41 1.53 3.90 0–24
WJIII Broad Reading 75.33 16.41 −1.29 1.55 30–97

Reading Fluency 77.42 15.52 −0.25 0.12 41–110
Passage Comprehension 77.17 18.22 −0.69 0.28 36–108
Broad Math 62.79 25.93 −0.60 −0.11 8–109
Calculation 68.63 27.83 −0.60 0.18 8–118
Math Fluency 66.67 20.89 −0.12 −0.70 32–109
Applied Problems 71.42 18.41 −0.61 −0.27 32–99

Note. OPR = Oral Passage Reading; WRC = words read correctly; CR = correct restorations; M-COMP = Math Computation; CD = correct digits; CP 
= correct problems; M-CAP = Math Concepts and Applications; Pts. = points; WJIII = Woodcock–Johnson Tests of Achievement–Third Edition.

Table 2.  Descriptive Statistics for Cohort B (n = 21).

Measure Metric/cluster or test M SD Skewness Kurtosis Range

OPR WRC 129.33 46.61 −0.27 −0.88 38–206
Maze CR 16.95 11.44 1.06 0.84 2–46
M-COMP CD 23.57 12.46 1.10 2.28 6–60

CP 7.05 4.90 0.59 0.95 0–20
M-CAP CP 5.19 4.03 0.81 −0.43 0–13

Pts. 5.71 4.77 0.96 −0.20 0–16
WJIII Broad Reading 77.90 17.28 −0.30 1.50 34–116

Reading Fluency 76.95 11.60 −0.50 2.51 45–103
Passage Comprehension 83.76 16.25 −0.03 0.64 46–116
Broad Math 60.29 16.74 −0.52 −0.26 26–85
Calculation 62.62 18.55 −0.47 −0.47 23–88
Math Fluency 63.10 14.40 0.13 −1.00 37–88
Applied Problems 70.43 14.44 0.02 −0.88 44–96

Note. OPR = Oral Passage Reading; WRC = words read correctly; CR = correct restorations; M-COMP = Math Computation; CD = correct digits;  
CP = correct problems; M-CAP = Math Concepts and Applications; Pts. = points; WJIII = Woodcock–Johnson Tests of Achievement–Third Edition.
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(note range within Tables 1 and 2). Despite their effect on 
the distribution of our sample, we included outliers in the 
data for our analysis for two reasons. One, our sample size 
across cohorts is already small. Further reducing the num-
ber of students in each cohort would have further reduced 
the power of our analyses. Two, students with disabilities 
often perform on tests of academic skill significantly out-
side typical performance. Given the need for research with 
this population, it was determined prudent to keep all stu-
dents in the database.

Comparison of Samples

Chi-square tests for gender comparisons between the sam-
ples were nonsignificant between the original and Cohort A, 
χ2(2, 69) = 0.368, p = .544, between the original and Cohort 
B, χ2(2, 65) = 1.063, p = .303, and between Cohorts A and 
B, χ2(2, 45) = 0.161, p = .689. t tests for age comparisons 
between the samples were significant between the original 
and Cohort A, t(63) = 2.005, p = .049, approaching signifi-
cance between the original and Cohort B, t(60) = 1.843, p = 
.070, and nonsignificant between the cohorts, t(43) = 0.231, 
p = .819.

Results from conducting independent t tests related to 
reading can be found in Table 3. In regard to CBM reading 
metrics, there were no statistically significant differences 
between samples. The only comparison of a WJIII test that 
approached significance (.007 using a Bonferroni adjusted 
alpha of .003) was for Passage Comprehension when com-
paring the Hosp et al. (2014) sample with Cohort B, with 
Cohort B performing higher (83.76 to 73.57).

The independent t tests results for mathematics are also 
presented in Table 3. In regard to M-COMP metrics, there 
were no statistically significant differences when adjusting 
for multiple comparisons; however, both CD and CP were 
between .05 and .003 when comparing Hosp et al. (2014) 
with Cohort B, with Cohort B performing higher. No com-
parisons for M-CAP or the WJIII were statistically signifi-
cantly different.

Reading

Correlations between reading-related CBM metrics and the 
WJIII, along with Meng’s z results for examining potential 
differences in prediction for OPR versus Maze, can be 
viewed in Table 4 for both cohorts. A moderate relation for 
both OPR and Maze (r = .67 for both) was found with Broad 
Reading for Cohort A, whereas a strong relation (r = .83 for 
OPR; r = .85 for Maze) was found for Cohort B. Similar to 
the relation observed for Cohort B, Hosp et al. (2014) found 
a strong relation with Broad Reading. However, the relation 
for both measures found in their original study (r = .72 for 
OPR; r = .71 for Maze) appears to be practically more con-
gruent with those of cohort A.

A moderate relation (r = .62) was found for OPR and 
Reading Fluency for Cohort A and a strong relation (r = .73) 
was found for Maze. For Cohort B, a strong relation was 
found for OPR and Maze (r = .77 for both) with Reading 
Fluency. Although the moderate relation found for OPR and 
Reading Fluency (r = .63) by Hosp et al. (2014) is not as 
strong as that observed for Cohort B, it is quite similar to 
our findings here in regard to for Cohort A. Furthermore, 

Table 3.  Independent t Tests between CBM Measures and WJIII From Hosp, Hensley, Huddle, and Ford (2014) and Cohorts A and B.

Measure Metric/cluster or test

t(p)

Hosp 2014/Cohort A 
(df = 63)

Hosp 2014/Cohort B 
(df = 60)

Cohorts A and B 
(df = 43)

OPR WRC 0.431 (.668) 0.716 (.477) 0.166 (.869)
Maze CR 0.158 (.875) 0.933 (.355) 0.813 (.421)
M-COMP CD 1.886 (.064) 2.318 (.024) 0.403 (.689)

CP 1.253 (.215) 2.111 (.039) 0.810 (.423)
M-CAP CP 0.417 (.678) 0.643 (.523) 0.221 (.826)

Pts. 0.510 (.612) 0.847 (.401) 0.327 (.746)
WJIII Broad Reading 0.029 (.977) 0.680 (.499) 0.511 (.612)

Reading Fluency 0.360 (.720) 0.248 (.805) 0.114 (.910)
Passage Comprehension 0.959 (.341) 2.793 (.007) 1.273 (.210)
Broad Math 0.050 (.960) 0.571 (.570) 0.378 (.707)
Calculation 0.389 (.698) 1.697 (.095) 0.839 (.406)
Math Fluency 0.643 (.523) 1.403 (.166) 0.658 (.514)
Applied Problems 0.646 (.521) 0.439 (.662) 0.199 (.844)

Note. Values in italics are p < .05. CBM = curriculum-based measurement; WJIII = Woodcock–Johnson Tests of Achievement–Third Edition; OPR = Oral 
Passage Reading; WRC = words read correctly; CR = correct restorations; M-COMP = Math Computation; CD = correct digits; CP = correct 
problems; M-CAP = Math Concepts and Applications; Pts. = points.
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the strong relations observed for Maze and Reading Fluency 
for Cohorts A and B suggest a stronger relation than that 
observed by Hosp et al. (r = .66).

A moderate relation was found for OPR for Cohort A (r 
= .52) and Cohort B (r = .66) for Passage Comprehension. 
A moderate relation was found for Maze for Cohort A (r = 
.54) for Passage Comprehension as well, whereas the rela-
tion for Cohort B approached being strong (r = .69). 
Findings from our current study suggest a stronger relation 
for OPR and Passage Comprehension compared with the 
weak relation (r = .36) found by Hosp et al. (2014). In addi-
tion, despite somewhat of a stronger relation between Maze 
and Passage Comprehension being observed for Cohort B, 
results of the current study appear congruent with the mod-
erate relation (r = .57) found by Hosp et al.

Table 5 includes comparisons of the criterion-related 
validity coefficients in the Hosp et  al. (2014) study and 
those found for Cohorts A and B. This yielded three sets of 
comparisons from our two replication samples: original to 
Cohort A, original to Cohort B, and Cohort A to Cohort B. 
Examination of the z scores and associated p values reveals 
that they are low with none approaching statistical signifi-
cance (the smallest p value for OPR and Maze being .156). 
This indicates nonsignificant differences between the cor-
relations found for the three samples.

For the Meng’s z comparisons between OPR and Maze, 
Hosp et al. (2014) found no significant differences in pre-
diction of the WJIII between the two CBM measures. The z 
results in Table 4 (as indicated by the superscripts a through 
f) also show no significant differences in prediction for 
OPR compared with Maze for Broad Reading, Reading 
Fluency, or Passage Comprehension on the WJIII for 
Cohorts A and B.

Mathematics

Correlations between mathematics-related CBM metrics 
and the WJIII can be found in Table 4 for Cohorts A and B. 
A strong relation was found for Broad Math and the 
M-COMP metrics for Cohort A (r = .82 for CD and CP) and 
Cohort B (r = .75 for CD; r = .83 for CP). These results are 
similar to the results observed by Hosp et  al. (2014) for 
M-COMP CD and M-COMP CP (r = .67 and .70, respec-
tively). The M-CAP metrics were found to also have a 
strong relation with Broad Math for Cohort A (r = .82 for 
CP; r = .80 for Pts.). This finding is congruent with the orig-
inal Hosp et  al. study (r = .81 for CP; r = .80 for Pts.). 
However, a moderate relation was found for the M-CAP 
metrics and Broad Math for Cohort B (r = .67 for CP; r = 
.64 for Pts.).

Table 4.  Correlations (and p Values) Between CBM Measures and WJIII From Hosp, Hensley, Huddle, and Ford (2014) and Cohorts 
A and B.

CBM WJIII Hosp et al. (2014) Cohort A Cohort B

OPR Broad Reading 0.720 0.673 (<.001)a 0.827 (<.001)b

Reading Fluency 0.632 0.619 (.001)c 0.771 (<.001)d

Passage Comprehension 0.361 0.519 (.009)e 0.655 (.001)f

Maze Broad Reading 0.714 0.666 (<.001) 0.851 (<.001)
Reading Fluency 0.656 0.729 (<.001) 0.773 (<.001)
Passage Comprehension 0.572 0.539 (.007) 0.689 (.001)

M-COMP CD Broad Math 0.673 0.824 (<.001) 0.747 (<.001)
Math Computation 0.752 0.815 (<.001) 0.722 (<.001)
Math Fluency 0.726 0.753 (<.001) 0.718 (<.001)
Applied Problems 0.397 0.780 (<.001) 0.533 (.013)

M-COMP CP Broad Math 0.696 0.816 (<.001) 0.826 (<.001)
Math Computation 0.764 0.791 (<.001) 0.813 (<.001)
Math Fluency 0.648 0.781 (<.001) 0.740 (<.001)
Applied Problems 0.467 0.776 (<.001) 0.609 (.003)

M-CAP CP Broad Math 0.809 0.834 (<.001) 0.669 (.001)
Math Computation 0.769 0.817 (<.001) 0.651 (.001)
Math Fluency 0.592 0.704 (<.001) 0.549 (.010)
Applied Problems 0.713 0.808 (<.001) 0.560 (.008)

M-CAP Pts. Broad Math 0.800 0.816 (<.001) 0.642 (.002)
Math Computation 0.737 0.798 (<.001) 0.631 (.002)
Math Fluency 0.630 0.713 (<.001) 0.542 (.011)
Applied Problems 0.699 0.784 (<.001) 0.540 (.011)

Note. CBM = curriculum-based measurement; WJIII = Woodcock–Johnson Tests of Achievement–Third Edition; OPR = Oral Passage Reading; M-COMP = 
Math Computation; CD = correct digits; CP = correct problems; M-CAP = Math Concepts and Applications; Pts. = points.
az = 0.076, p = ns. bz = −0.338, p = ns. cz = −1.211, p = ns. dz = −0.022, p = ns. ez = −0.187, p = ns. fz = −0.310, p = ns.
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A strong relation was found for Calculation and the 
M-COMP metrics for Cohort A (r = .82 for CD; r = .79 for 
CP) and Cohort B (r = .72 for CD; r = .81 for CP). Again, 
similar results were observed by Hosp et  al. (2014) for 
M-COMP CD and M-COMP CP (r = .75 and .76, respec-
tively). The M-CAP metrics were also found to have a 
strong relation with Calculation for Cohort A (r = .82 for 
CP; r = .80 for Pts.). Hosp et al. also observed a strong rela-
tion (r = .77 for CP; r = .74 for Pts.), but a moderate relation 
found for the M-CAP metrics and Calculation for Cohort B 
(r = .65 for CP; r = .63 for Pts.).

A strong relation was found for Fluency and the 
M-COMP metrics for Cohort A (r = .75 for CD; r = .78 for 
CP) and Cohort B (r = .72 for CD; r = .74 for CP). Once 
more, similar results were observed by Hosp et al. (2014) in 
their study (r = .73 for CD; r = .65 for CP). A strong relation 
was also observed for Cohort A for M-CAP metrics and 
Fluency (r = .70 for CP; r = .71 for Pts.). However, the mod-
erate relation found for Cohort B (r = .55 for CP; r = .54 for 
Pts.) is more congruent with those found by Hosp et al. in 
their study (r = .59 for CP; r = .63 for Pts.).

A strong relation was found for Applied Problems and 
the M-COMP metrics for Cohort A (r = .78 for CD and CP), 

a noticeable difference from the Hosp et  al. (2014) study 
which found a weak relation (r = .40 for CD; r = .47 for 
CP). In addition, a moderate relation was found for 
M-COMP metrics and Applied Problems for Cohort B (r = 
.53 for CD; r = .61 for CP). A strong relation was also 
observed for Cohort A for M-CAP metrics and Applied 
Problems (r = .81 for CP; r = .78 for Pts.). Hosp et al. also 
found a strong relation between the M-CAP metrics and 
Applied Problems (r = .71 for CP; r = .70 for Pts.); how-
ever, a moderate relation was found for Cohort B (r = .56 
for CP; r = .54 for Pts.).

Table 5 includes comparisons of the criterion-related 
validity coefficients in the Hosp et  al. (2014) study with 
those found for Cohorts A and B. This yielded three sets of 
comparisons from our two replication samples: original to 
Cohort A, original to Cohort B, and Cohort A to Cohort B. 
Examination of the z scores and associated p values reveals 
that they are low with only one reaching statistical signifi-
cance level of p < .05 and none reaching statistical signifi-
cance when adjusted for multiple comparisons (and a 
Bonferroni adjusted value of .003). This indicates nonsig-
nificant differences between the correlations found for the 
three samples with only M-COMP CD to Applied Problems 

Table 5.  Correlation z Test Comparisons Between Hosp, Hensley, Huddle, and Ford (2014) and Cohorts A and B.

CBM WJIII

z(p)

Hosp 2014/Cohort A Hosp 2014/Cohort B Cohorts A and B

OPR Broad Reading 0.34 (.737) 0.95 (.344) 1.13 (.259)
Reading Fluency 0.08 (.937) 0.97 (.331) 0.93 (.351)
Passage Comprehension 0.72 (.469) 1.42 (.156) 0.65 (.515)

Maze Broad Reading 0.34 (.736) 1.27 (.203) 1.42 (.156)
Reading Fluency 0.52 (.605) 0.85 (.398) 0.31 (.753)
Passage Comprehension 0.18 (.861) 0.68 (.494) 0.76 (.449)

M-COMP CD Broad Math 1.30 (.194) 0.52 (.600) 0.63 (.527)
Math Computation 0.60 (.546) 0.23 (.818) 0.72 (.474)
Math Fluency 0.22 (.826) 0.06 (.953) 0.24 (.812)
Applied Problems 2.30 (.022) 0.61 (.543) 1.40 (.160)

M-COMP CP Broad Math 1.05 (.294) 1.10 (.270) 0.10 (.924)
Math Computation 0.25 (.802) 0.45 (.649) 0.19 (.848)
Math Fluency 1.02 (.310) 0.62 (.532) 0.30 (.762)
Applied Problems 1.95 (.052) 0.70 (.482) 1.02 (.307)

M-CAP CP Broad Math 0.28 (.777) 1.10 (.271) 1.22 (.222)
Math Computation 0.48 (.633) 0.84 (.400) 1.15 (.249)
Math Fluency 0.72 (.475) 0.22 (.824) 0.80 (.421)
Applied Problems 0.84 (.402) 0.91 (.363) 1.52 (.128)

M-CAP Pts. Broad Math 0.17 (.865) 1.18 (.239) 1.19 (.233)
Math Computation 0.55 (.583) 0.70 (.483) 1.09 (.276)
Math Fluency 0.56 (.577) 0.47 (.639) 0.89 (.373)
Applied Problems 0.70 (.484) 0.91 (.361) 1.41 (.160)

Note. Values in italics are p < .05. CBM = curriculum-based measurement; WJIII = Woodcock–Johnson Tests of Achievement–Third Edition; OPR = Oral 
Passage Reading; M-COMP = Math Computation; CD = correct digits; CP = correct problems; M-CAP = Math Concepts and Applications; Pts. = 
points.
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correlations (p = .022) and M-COMP CP to Applied 
Problems correlations (p = .052) compared between Hosp 
et al. (2014) and Cohort A approaching the traditional sig-
nificance criterion.

For the Meng’s z comparisons for Cohort A, no differ-
ence in prediction for mathematics-related CBM metrics to 
performance on the WJIII was observed (see Table 6). 
Differences in prediction were observed for Cohort B (see 
Table 7), in favor of M-COMP CP compared with M-COMP 
CD, for Broad Math (z = −2.339, p < .05) and Math 
Calculation (z = −2.594, p < .01). As such, none of the find-
ings from Hosp et al. (2014) regarding differences in pre-
diction for mathematics-related CBM metrics to 
performance on the WJIII were replicated in either cohort 
as Hosp et al. found differences for Applied Problems when 
comparing M-COMP CD with M-CAP CP, M-COMP CP to 
M-CAP CP, and M-COMP CD to M-CAP Pts.

Discussion

The purpose of this study was to conduct a direct replication 
of Hosp et al. (2014) regarding the technical adequacy of 
CBM and postsecondary students with DD using two 
cohorts of similar students. Such a study is designed to 

demonstrate the importance of replication not only in inter-
vention research but in assessment research and serve as a 
model of how it might be conducted. This purpose is consis-
tent with improving research and the validity of results in 
all disciplines, including special education (Cook, 2014). 
Our results are mixed, consistent with research suggesting 
that study findings often fail to be replicated (Nosek, Spies, 
& Motyl, 2012; Pashler & Harris, 2012). However, direct 
replications, such as those reported here, are 4 times more 
likely to replicate findings than replications that contain 
“infidelities” which likely introduce additional sources of 
random error (Gilbert, King, Pettigrew, & Wilson, 2016). 
Perhaps this is as it must be as scholars, and the research 
community, seek to generate defensible knowledge.

Riley-Tillman and Burns (2009) discussed the impor-
tance of generating defensible knowledge in the context of 
experimentation and decision making in applied settings 
(i.e., are the interventions we are implementing in schools 
effective?), but we suggest such a process is equally 
important in issues related to measurement. In particular, 
it is important for researchers to generate defensible 
knowledge regarding which tools are appropriate for mak-
ing instructional decisions about various student popula-
tions. Although a plethora of research exists demonstrating 

Table 6.  Correlations Between Mathematics CBM Metrics and WJIII Criterion Measures, Meng’s z, Cohort A (n = 24).

CBM metric

WJIII

Broad Math Math Calculation Math Fluency Applied Problems

M-COMP CD to M-COMP CP 0.226 0.650 −0.701 0.102
M-COMP CD to M-CAP CP −0.147 −0.028 0.551 −0.367
M-COMP CP to M-CAP CP −0.228 −0.303 0.755 −0.358
M-COMP CD to M-CAP Pts. 0.103 0.209 0.404 −0.046
M-COMP CP to M-CAP Pts. 0 −0.079 0.670 −0.086
M-CAP CP to M-CAP Pts. 0.470 0.474 −0.185 0.582

Note. CBM = curriculum-based measurement; WJIII = Woodcock–Johnson Tests of Achievement–Third Edition; M-COMP = Math Computation; CD = 
correct digits; CP = correct problems; M-CAP = Math Concepts and Applications; Pts. = Points.
*p < .1. **p < .05. ***p < .01.

Table 7.  Correlations Between Mathematics CBM Metrics and WJIII Criterion Measures, Meng’s z, Cohort B (n = 21).

CBM metric

WJIII

Broad math Math calculation Math fluency Applied problems

M-COMP CD to M-COMP CP −2.339** −2.594*** −0.581 −1.667*
M-COMP CD to M-CAP CP 0.704 0.617 1.369 −0.197
M-COMP CP to M-CAP CP 1.521 1.513 1.522 0.358
M-COMP CD to M-CAP Pts. 0.988 0.830 1.515 −0.054
M-COMP CP to M-CAP Pts. 1.805* 1.735* 1.636 0.520
M-CAP CP to M-CAP Pts. 1.025 0.747 0.239 0.686

Note. CBM = curriculum-based measurement; WJIII = Woodcock–Johnson Tests of Achievement–Third Edition; M-COMP = Math Computation; CD = 
correct digits; CP = correct problems; M-CAP = Math Concepts and Applications; Pts. = Points.
*p < .1. **p < .05. ***p < .01.
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the appropriateness of using CBM data for making instruc-
tional decisions about students in K-12 settings, such evi-
dence is building in regard to postsecondary students with 
DD. The initial results of Hosp et al. (2014), though prom-
ising, must be further examined to generate defensible 
knowledge that such tools can be used with our population 
of interest.

The technical adequacy data obtained from the original 
Hosp et al. (2014) study, along with our two replications, 
support the claim that CBM can be used to make screening 
decisions about postsecondary students with intellectual 
disabilities and DD. For both replication cohorts, the crite-
rion-related validity coefficients between the CBM mea-
sures and WJIII tests were moderate to strong for both 
reading and math. Overall, observed relations between 
CBM metrics and the WJIII are in the moderate to strong 
range (r = .52–.83) for OPR as well as for Maze (r = .54–
.85). In addition, the overall observed relations between the 
M-COMP and M-CAP metrics and the WJIII (r = .53–.83 
and r = .54–.83, respectively) were also in the moderate to 
strong range for our two replications. This replicates the 
findings from Hosp et al. and is further evidenced by the 
nonsignificant differences between the original correlations 
and those found for Cohorts A and B. It also provides a con-
ceptual replication for the literature on criterion-related 
validity for CBM measures conducted with students in dif-
ferent grade levels and students who do not have intellec-
tual disabilities or DD by finding similar relations with a 
different population.

Also, replicated from the original study was a lack of 
differences in criterion-related validity coefficients between 
OPR and Maze. This extends the findings from Hosp et al. 
(2014) by supporting the assertion that either reading mea-
sure can serve as an appropriate predictor of overall reading 
performance for postsecondary students with DD.

Where the findings were not replicated was with the 
Math CBM measures. Hosp et al. (2014) found differences 
in criterion-related validity between Math CBM measures 
and metrics when used to predict the Applied Problems test 
of the WJIII—which should be more closely aligned with 
M-CAP rather than M-COMP because both M-CAP and 
Applied Problems include skills beyond computation. In 
both replication cohorts of the present study, no differences 
were found in contrast to Hosp et  al. Instead, significant 
differences were found between using CD and CP for 
M-COMP when used to predict Broad Math and Math 
Calculation for Cohort B. There were no differences for 
Cohort A. This indicates differences in magnitude of cor-
relations among the original sample and both replication 
cohorts.

Looking for an explanation for this lack of replication 
within student performance or characteristics is difficult. 
Math performance for each group is not substantially differ-
ent although a few differences between samples approached 

significance. Because the exact same procedures and mea-
sures were used for all three groups, it could be an indica-
tion that the Math CBM measures are not as robust as the 
reading ones. Recent changes in mathematics standards and 
instruction have deemphasized the use of computational 
algorithms and automaticity with fact recall (National 
Mathematics Advisory Panel, 2008). It could be that this 
has introduced a change in the underlying construct, and 
how it is being measured may not reflect it as accurately as 
it once did. It could also introduce increased variation in 
performance that is sample dependent to reflect the instruc-
tion those individuals had previously received in math as 
some states and districts adopt reforms sooner than others 
(Steiner-Khamsi, 2006).

Limitations

Although promising, our study’s findings are not without 
limitations, and the results should be interpreted with cau-
tion. One limitation of our study is that despite participants 
representing several states and regions in the United States, 
the sample is neither nationally representative nor randomly 
selected. As such, inference of our results to all postsecond-
ary students with DD may not be appropriate.

A second limitation, also related to the participants, is 
our small sample size in the two cohorts of students used to 
replicate the findings of Hosp et al. (2014). By separating 
students into their respective cohorts, we lost a degree of 
statistical power for the analyses we conducted. A larger 
sample size would certainly allow for greater ability to 
determine differences in correlations between CBMs and 
the WJIII. It is also possible that observed differences 
between the Hosp et al. study and our replications are due to 
the combined nature of the original study sample (i.e., first- 
and second-year students in the postsecondary program) 
versus the nature of our samples (i.e., both being first-year 
students only).

Another limitation is that, just as with previous research 
in this area, we only addressed evidence for criterion-related 
validity. Evidence for validity is multifaceted (see Shadish, 
Cook, & Campbell, 2002) and each category should be con-
sidered. The Joint Committee on Standards in Educational 
and Psychological Testing (2014) recognizes the need to 
examine multiple categories for evidence of validity as 
vital, stating all are required to determine the technical ade-
quacy of a tool being used for assessment.

Implications and Future Research

Given the twice replicated finding of no difference in pre-
diction for OPR and Maze to the WJIII, one could posit that 
there is a valid argument for using either to make screening 
decisions for postsecondary students with DD. Such a con-
sistent finding also suggests that there is a valid argument 
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that a better tool is needed to measure the reading skills of 
postsecondary students with DD. Such a task will likely be 
a challenge given the observed strong correlation between 
the traditional reading-related CBM metrics examined and 
the WJIII. However, challenges in the literature as to the 
benefits of Maze exist (see January & Ardoin, 2012; 
Kendeou, Papadopoulos, & Spanoudis, 2012; Parker, 
Hasbrouck, & Tindal, 1992). Furthermore, the practice of 
reading aloud is an unnatural one for adult learners making 
OPR perhaps an unauthentic task for postsecondary stu-
dents with DD. Other tools, such as the Test of Silent Word 
Reading Fluency–Second Edition (TOSWRF-2; Mather, 
Hammill, Allen, & Roberts, 2014) or the Test of Silent 
Reading Efficiency and Comprehension (TOSREC; Wagner, 
Torgesen, Rashotte, & Pearson, 2010) might prove to be 
viable alternatives. In addition, future research in this area 
may wish to examine methods for measuring silent reading 
skills using passages of connected text, neither the 
TOSWRF-2 (Mather, Hammill, Allen, & Roberts, 2014) 
nor the TOSREC (Wagner et al., 2010) use such an approach.

In regard to mathematics, although the overall coeffi-
cients were not statistically different, the patterns compar-
ing different Math CBM measures with metrics within each 
sample were different. This variation in the significant dif-
ferences between measures (i.e., M-COMP and M-CAP) 
and metrics (i.e., CD, CP, Pts.) presents a less clear picture 
of the utility of these measures with this population. 
However, results from our two replications provide evi-
dence that there was no difference in the magnitude of pre-
dictions between the two replication samples, rather 
differences in the magnitude of predictions (as noted above) 
were observed comparing the original cohort with these two 
samples. Such a finding, again, points to the need for repli-
cation research in the field of special education. It also pos-
sibly suggests a need for future research to examine 
appropriate mathematics-related CBM tools for postsec-
ondary students with DD.

The application of more rigorous research designs has 
been made for the study of students with disabilities in the 
postsecondary environment (Faggella-Luby, Lombardi, 
Lalor, & Dukes, 2014). Through replication of Hosp et al. 
(2014), a template for how such study may be done for 
examining the relation of CBM and postsecondary students 
with DD is provided. At this time, we think it prudent to 
focus research on this population as such students are often 
in need of instruction targeting basic academic skills, and 
CBM is a tool with the potential to be used for making deci-
sions about students’ response to instruction. Thus, postsec-
ondary programs serving students with DD, which provide 
academic skill instruction, could improve student outcomes 
via appropriate use of CBM tools to guide instruction. 
Furthermore, we are aware of one study using CBM (i.e., 
Reading Rate) and postsecondary students (Lewandowski, 
Codding, Kleinmann, & Tucker, 2003). However, while 

Lewandowski et  al. (2003) examined reading rate with a 
large population of postsecondary students (N = 800), stu-
dents who self-disclosed a learning disability or difficulties 
with attention were specifically excluded from participa-
tion. Thus, it remains less clear that how CBM tools might 
be applied to the larger community of postsecondary stu-
dents with disabilities attending traditional 2- and 4-year 
schools.

Conclusion

Replication is fundamental to the development of defensible 
knowledge in an evidence-based field such as education. 
Recent calls for replication in education have focused on 
intervention research because of its primacy as the heart of 
what we do (i.e., teach); however, assessment is also an 
important component of data-based decision making. We 
argue that assessment research is in just as much need of 
replications to develop a consistent evidence-based and ulti-
mate standard of care. This study, through two direct replica-
tions of a study on criterion-related validity, offers a model 
for replication assessment research and highlights the need 
through both replicated and nonreplicated findings.
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