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R E S E A R C H R E P O R T

Applying the Hájek Approach in Formula-Based Variance
Estimation

Jiahe Qian

Educational Testing Service, Princeton, NJ

The variance formula derived for a two-stage sampling design without replacement employs the joint inclusion probabilities in the
first-stage selection of clusters. One of the difficulties encountered in data analysis is the lack of information about such joint inclusion
probabilities. One way to solve this issue is by applying Hájek’s approximation of the joint probabilities in variance estimation. To assess
the Hájek approach, several estimators of Hájek’s c and d are proposed. The application is illustrated with simulation and real data. A
Monte Carlo simulation is employed to compare the results of joint inclusion probabilities yielded from the probability-proportional-
to-size sampling methods with the results from Hájek’s approximation. Empirically estimated variances from the jackknife procedure
are also compared with the formula-based variances with incorporated Hájek’s approximation.

Keywords Two-stage PPS sampling without replacement; Horvitz–Thompson estimator; joint inclusion probability; simulation;
Brewer’s method of cluster sampling; Durbin’s method of cluster sampling

doi:10.1002/ets2.12154

In assessment surveys, unequal probability sampling without replacement (Cochran, 1977; Kish, 1965) is used to draw
samples. One such type of sampling approach is two-stage probability-proportional-to-size (PPS) sampling,1 with a PPS
selection of schools and a simple random sampling (SRS) of students. For example, two-stage PPS sampling has been
applied in the National Assessment of Educational Progress (NAEP; Allen, Donoghue, & Schoeps, 2001; Rust, 1985) and
in the Programme for International Student Assessment (PISA; Nohara, 2001; Turner & Adams, 2007).

For a two-stage PPS sampling without replacement, the Horvitz–Thompson (H–T; Horvitz & Thompson, 1952) esti-
mator is often used to estimate the population total, and its variance formula (Cochran, 1977, p. 260; Wolter, 2007) can also
be derived. For a nonlinear function of estimates, such as the ratio estimator of two means, the delta method (Cochran,
1977, p. 154; C. R. Rao, 1973, pp. 385–389), based on a Taylor series approximation, can be used to derive the formulae
used in variance estimation. For stratified complex sampling, Woodruff (1971) applied the delta method to approximate
the variance of a complicated estimate.

One condition for applying the variance formula of the H–T estimators involves having information about the joint
probabilities of all the possible pairs of sample units that are included during the first stage of a two-stage PPS sampling
process. However, joint inclusion probabilities are usually not available for survey data; therefore it is hard to apply a
formula to estimate variances for data drawn by PPS sampling without replacement.

To address this issue, Hájek (1964) explored the properties of joint inclusion probabilities and derived a formula based
on rejective sampling, a sampling procedure in which a Poisson sample is rejected unless it contains exactly n sample
units as required by the sample design (Fuller, 2009; Hájek, 1981, p. 66). Rejective sampling is also called conditional
Poisson sampling. Accordingly, some researchers (Lohr, 1999; Qian, 2015; Särndal & Lundström, 2005) have recommended
using Hájek’s approximation of the joint inclusion probability in formula-based variance estimation with data drawn
by PPS sampling without replacement and derived corresponding formulae. However, few studies have evaluated such
applications based on real and/or simulation data; thus issues still exist in applying Hájek’s approximation to formula-
based variance estimation.

Moreover, Berger (2003, 2004) proposed several adjusted Hájek-based variance estimators and applied the Hájek
approach to weighted least squares regression. Based on Monte Carlo studies, Fuller (2009) discussed some design
properties of a rejective sampling procedure. Särndal, Swenson, and Wretman (1992) used the Hájek approximation in
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model-assisted survey sampling. Rizzo and Rust (2011) developed an approximated estimation of the joint inclusion
probabilities in variance estimation and applied it to analyzing NAEP samples (Kali, Burke, Hicks, Rizzo, & Rust, 2011;
Qian, 2015).

The goal of this study is to assess the appropriateness of applying Hájek’s approximation to variance estimation with
complex data, both simulation and real, drawn by PPS sampling without replacement. The study is focused on two tasks:
first, to conduct simulations to check the accuracy of the approximation of the joint inclusion probabilities estimated by
Hájek’s approximation, and second, based on real survey data, to compare the variances estimated by the formula with
Hájek’s approximation with those estimated by a grouped jackknife approach. The real data sets used are the NAEP state
assessment samples drawn by two-stage systematic PPS sampling.

In the next section, the methodologies applied are reviewed, including the two-stage PPS sampling without replace-
ment, the H–T estimator, the Hájek approximation of joint probability, and the sampling approaches employed in the
simulation. In the “Results” section, the simulation results of the joint probabilities are used to examine the goodness of
Hájek’s approximation. The jackknifed variance estimates are compared with the variances estimated from the formula-
based method using Hájek approximation. The final section offers a summary and conclusions.

Methodology

Probability Sampling Without Replacement

In sampling, and for assessment surveys in particular, sample designers prefer using a two-stage design with PPS selection
of schools and SRS selection of students, for example, as with the NAEP state assessments.

When drawing a probability sample without replacement, each selection will modify the chances of other cases to be
selected; that is, the probability of making a given selection is no longer independent from the others. A properly designed,
unequal probability sampling without replacement, of sample size n from a population of size N, will guarantee that each
unit in the population has the designated inclusion probability to be drawn in an n -step procedure of selection. Let 𝜋i
be the inclusion probability of sample unit i (=1, 2, … , N) and let 𝜋ij be the joint inclusion probability of sample units i
and j (i and j = 1, 2, … , N), that is, the chance that both units i and j are included in the sample through the drawing of
a sample. A properly implemented unequal probability sampling without replacement satisfies the following properties:

N∑
i=1

𝜋i = n,

N∑
j≠i

𝜋ij = (n − 1)𝜋i, and

N∑
i=1

∑
j<i

𝜋ij =
1
2

n (n − 1)

(Cochran, 1977, p. 259).

Horvitz–Thompson Estimators for Survey Samples

Horvitz–Thompson Estimators

For a two-stage PPS sampling design, let yik be the value of a variable of interest for student k in school i. Assume that the
population consists of N schools and, for the first stage of sampling, that the sample size of schools is n. Let Mi be the total
number of students in school i; let mi be the sample size of students drawn from school i. Let Ỹi =

∑Mi
j=1 yij be the school

total in school i. The statistic of interest is population total, Ỹ =
∑N

i=1 Ỹi, a sum of all school totals.
Let 𝜋i be the inclusion probability of school i. The school weight for school i (=1, 2, … , n) equals the inverse of 𝜋i; that

is, wi = 𝜋−1
i (Allen et al., 2001; Rust & Johnson, 1992). Let 𝜋k|i be the conditional inclusion probability for student k in

school i. The conditional case weight for student k within school i is wk|i = 𝜋−1
k|i . The case weights for student k in school

i equal wik = 𝜋−1
i 𝜋−1

k|i (i= 1, 2, … , n and k= 1, 2, … , mi); after being created, the case weights are often also subject to
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data adjustments such as poststratification and raking (Allen et al., 2001; Rust, Bethel, Burke, & Hansen, 1990). The total
for school i, Ỹi, can be estimated by

ỹi =
mi∑

k=1
wk|iyik.

Note that the symbol ỹi is not for the sample total
∑mi

k=1 yik. The H–T estimators (Cochran, 1977) for the total is de
fined as

ỹHT =
n∑

i=1
wiỹi, (1)

which is an unbiased estimator of the population total Ỹ .

Variance of a Horvitz–Thompson Estimator of the Total

Let 𝜋ij be the joint inclusion probabilities of schools i and j. The variance of ỸHT is

V
(

ỹHT
)
=

N∑
i=1

N∑
j>i

(
𝜋i𝜋j − 𝜋ij

)(
Ỹi

𝜋i
−

Ỹj

𝜋j

)2

+
N∑

i=1

M2
i

(
1 − f2i

)
mi𝜋i

S2
2i (2)

(Cochran, 1977, p. 301; Lohr, 1999, p. 245), where the squared standard deviation (SD2) S2
2i =

1
Mi−1

∑Mi
k=1

(
yik − Yi.

)2

with Yi. = M−1
i

∑Mi
k=1 yik and f 2i =mi/Mi. The expression is in the Sen–Yates–Grundy (SYG) form of the variance of ỸHT

(Sen, 1953; Yates & Grundy, 1953). The estimate of V(ỸHT) is

v
(

ỹHT
)
=

n∑
i=1

n∑
j>i

(
𝜋i𝜋j − 𝜋ij

)
𝜋ij

(
ỹi

𝜋i
−

ỹj

𝜋j

)2

+
n∑

i=1

M2
i

(
1 − f2i

)
mi𝜋i

s2
2i (3)

(Lohr, 1999, p. 245). In Equation 3, s2
2i is the estimator of S2

2i; it can be

s2
2i =

mi(
mi − 1

) mi∑
k=1

wik

mi∑
k=1

wik
(

yik − yi.
)2 ,

where weighted average yi. =
∑mi

k=1 wikyik∕
∑mi

k=1 wik (Feng, Ni, & Zou, 1998, p. 262). Because of the variability in its values,
the term 𝜋i𝜋j −𝜋ij in the variance estimates of the H–T estimator can be negative. Moreover, the computation of the
formula v(ỹHT) in Equation 3 requires knowledge of the joint inclusion probabilities 𝜋ij, that is, an n× n symmetric matrix
of the 𝜋ij s. However, these probabilities are often unavailable to data users. This study is intended to solve the issue by
applying Hájek’s approximation to formula-based variance estimation and then evaluating the approximation via the
simulation.

Variance of a Horvitz–Thompson Estimator of the Mean

Let 𝒩 =
∑N

i=1 Mi be the population size. Thus the population mean is defined as

Y = Ỹ
𝒩

The H–T estimator of the mean,

yHT =
ỹHT

w̃
=

n∑
i=1

wiỹi

n∑
i=1

w̃i

,
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is a ratio estimator of two total estimators, where the H–T estimator of the population size w̃ =
∑n

i=1 w̃i and
w̃i =

∑mi
k=1 wik. Note that the inclusion probability of student k in school i is wik = (𝜋i𝜋k|i)− 1. Although yHT is biased

(Cochran, 1977, p. 155; Hájek, 1960), the bias vanishes as the sample sizes increase; this bias has order O(n− 1) and goes
to 0 as the sample size n increases.

Because the estimator yHT is a nonlinear function, its variance formula can be derived by the delta method (Cochran,
1977; C. R. Rao, 1973, pp. 385–89), an approach based on Taylor approximation. For the H–T estimator of the population
size, E

(
w̃
)
= 𝒩 . When the sample sizes in the two-stage sample are large, the discrepancy between w̃ and 𝒩 tends to

be small, that is, w̃ ≈ 𝒩 ; the term yHT − Y approximately equals

yHT − Y ≈ 1
E
(

w̃
) n∑

i=1

(
wiỹi − Ywi

)
= 1

E
(

w̃
) n∑

i=1
wi

(
ỹi − Y

)
(Woodruff, 1971). Let zi = ỹi − Y and let z̃HT =

∑n
i=1 wizi. So the variance of yHT can be approximated by

V
(

yHT
)
≈ 1

E
(

w̃
)2 V

( n∑
i=1

wizi

)
=

V
(

z̃HT
)

E
(

w̃
)2 , (4)

where the form of V
(

z̃HT
)

is the same as in Equation 2. The derived formula V
(

yHT
)

in Equation 4 is equivalent to

V
(

yHT
)
≈ Y

2
(

V
(

ỹHT
)

Ỹ2
− 2

Cov
(

ỹHT, w̃
)

Ỹ𝒩
+

V
(

w̃
)

𝒩 2

)
(5)

(Cochran, 1977, p. 155), which has order O(n− 1).
The variance V

(
yHT

)
in Equation 4, in the format of a ratio, can be estimated by a ratio estimator of v

(
z̃HT

)
to w̃2

(Cochran, 1977, p. 153):

v
(

yHT
)
= 1

w̃2 v
(

z̃HT
)

. (6)

The term v
(

z̃HT
)

in Equation 6 can be estimated by Equation 3, with Y being replaced by yHT. Let yHT,i = yHT∕mi and
let z̃i = ỹi − yHT =

∑mi
k=1

(
wk|iyik − yHT,i

)
. Then v

(
z̃HT

)
can be estimated:

v
(

z̃HT
)
=

n∑
i=1

n∑
j>i

(
𝜋i𝜋j − 𝜋ij

)
𝜋ij

(
z̃i

𝜋i
−

z̃j

𝜋j

)2

+
n∑

i=1

M2
i

(
1 − f2i

)
mi𝜋i

s2
z, 2i,

where s2
z, 2i is defined as

s2
z, 2i =

1
mi − 1

mi∑
k=1

(
wk|iyik − yHT,i

)2 .

Note that the estimator s2
z, 2i is not unique. Similarly, the variance V

(
yHT

)
in Equation 5 can also be estimated:

v
(

yHT
)
= y2

HT

(
v
(

ỹHT
)

ỹ2
HT

− 2
cov

(
ỹHT, w̃

)
ỹHTw̃

+
v
(

w̃
)

w̃2

)
.

Let s2
w, 2i =

1
mi−1

∑mi
k=1

(
wik − wi

)2 with wi =
w̃i
mi

= 1
mi

∑mi
k=1 wik. The variance term v

(
w̃
)

can also be estimated by
Equation 3:

v
(

w̃
)
=

n∑
i=1

n∑
j>i

(
𝜋i𝜋j − 𝜋ij

)
𝜋ij

(
w̃i

𝜋i
−

w̃j

𝜋j

)2

+
n∑

i=1

M2
i

(
1 − f2i

)
mi𝜋i

s2
w, 2i

(Kish, 1965, p. 285).
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The Hájek Joint Inclusion Probability Approximation

Let ci = 𝜋i
(

1 − 𝜋i
)

and c =
∑N

i=1 ci. Based on rejective sampling, Hájek (1981, p. 75) provided an asymptotically valid
approximation of 𝜋ij:

𝜋H,ij ≈ 𝜋i𝜋j

⎛⎜⎜⎜⎝1 −

(
1 − 𝜋i

) (
1 − 𝜋j

)
c

⎞⎟⎟⎟⎠ . (7)

Hájek also showed the following large-sample property:

c
(
𝜋i𝜋j − 𝜋ij

)
𝜋i
(

1 − 𝜋i
)
𝜋j

(
1 − 𝜋j

) → 1

when n→∞, (N − n)→∞, and c→∞ (Hájek, 1964, p. 1496). Under this Hájek setup, the term 𝜋i𝜋j − 𝜋H,ij approximates
𝜋i𝜋j −𝜋ij.

Estimators of Hájek’s c

The application of c requires information on all the inclusion probabilities 𝜋1, 𝜋2, … , and 𝜋N ; however, most of the
assessment data sets only contain 𝜋1, 𝜋2, … , and 𝜋n. Thus the parameter c cannot be computed directly and has to be
estimated. One method of estimation uses the H–T estimator:

ĉ1 =
n∑

i=1

ci

𝜋i
=

n∑
i=1

(
1 − 𝜋i

)
= n −

n∑
i=1

𝜋i. (8)

For unequal probability sampling without replacement, the estimator ĉ1 is an unbiased estimator of c, and the variance of
ĉ1,

V
(̂

c1
)
=

N∑
i=1

N∑
j>i

(
𝜋i𝜋j − 𝜋ij

)(
ci

𝜋i
−

cj

𝜋j

)2

(Cochran, 1977, p. 260), can be estimated by

v
(̂

c1
)
=

n∑
i=1

n∑
j>i

(
𝜋i𝜋j − 𝜋ij

)
𝜋ij

(
ci

𝜋i
−

cj

𝜋j

)2

=
n∑

i=1

n∑
j>i

(
1 − 𝜋i

) (
1 − 𝜋j

)
ĉ1 −

(
1 − 𝜋i

) (
1 − 𝜋j

) (
𝜋i − 𝜋j

)2

(Cochran, 1977, p. 261). Based on ĉ1, 𝜋ij (i and j = 1, 2, … , n) can be estimated by

𝜋ĉ1,ij = 𝜋i𝜋j

⎡⎢⎢⎢⎣1 −

(
1 − 𝜋i

) (
1 − 𝜋j

)
ĉ1

⎤⎥⎥⎥⎦ . (9)

Hájek’s c, that is,
∑N

i=1 ci, can also be estimated by

ĉ2 = N
n

n∑
i=1

ci; (10)

thus

𝜋ĉ2,ij = 𝜋i𝜋j

⎡⎢⎢⎢⎣1 −

(
1 − 𝜋i

) (
1 − 𝜋j

)
ĉ2

⎤⎥⎥⎥⎦ . (11)
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Estimators of Hájek’s d

Define Hájek’s d as

dHájek, ij =
𝜋i𝜋j − 𝜋ij

𝜋ij

(i and j = 1, 2, … , n). Then, based on 𝜋ĉ1,ij and 𝜋ĉ2,ij in Equation 9 and Equation 11, Hájek’s d can be estimated:

d̂ĉ1, ij =
𝜋i𝜋j − 𝜋ĉ1,ij

𝜋ĉ1,ij
=

(
1 − 𝜋i

) (
1 − 𝜋j

)
ĉ1 −

(
1 − 𝜋i

) (
1 − 𝜋j

) ,

and

d̂ĉ2, ij =
𝜋i𝜋j − 𝜋ĉ2,ij

𝜋ĉ2,ij
=

(
1 − 𝜋i

) (
1 − 𝜋j

)
ĉ2 −

(
1 − 𝜋i

) (
1 − 𝜋j

) .

In addition, instead of estimating 𝜋ij, we can estimate d̂Hájek, ij directly. For the unequal probability sampling without
replacement, one of the large-sample properties of (𝜋i𝜋j −𝜋ij)/𝜋i𝜋j is that

n
(
𝜋i𝜋j − 𝜋ij

)
𝜋i𝜋j

→ 1, (12)

when N →∞ while n is fixed, one set of the Hartley–Rao conditions (Hájek, 1964, p. 1495; Hartley & Rao, 1962). The
property in Equation 12 is false if

∑N
i=1 𝜋i

(
1 − 𝜋i

)
→ ∞; the formulae based on Equation 12 are applicable if N is much

larger than n (Hájek, 1964, p. 1496). The large-sample property in Equation 12 implies(
𝜋i𝜋j − 𝜋ij

)
𝜋ij

→
1

n − 1
.

Therefore the form
d̂HR, ij =

1 − η
n − 1

(13)

(Rizzo & Rust, 2011) can be treated as the lower bound of the estimator of d̂Hájek, ij, where η is a small positive number
and can be a function of 𝜋i, 𝜋j, and 𝜋ij. Although d̂Hájek, ij can also be expressed in the form 1/(γ− 1) with γ having a value
range (n, ∞), it is more straightforward to discuss modified estimators in the form of Equation 13, as follows.

The empirical results in “Results” section show that η can be estimated adequately by the geometric mean and the
arithmetic mean of 𝜋i and 𝜋j:

d̂Geo, ij =
1 −√

𝜋i 𝜋j

n − 1
, (14)

and

d̂Arith, ij =
1 −

(
𝜋i + 𝜋j

)
∕2

n − 1
. (15)

Compared with d̂Arith, ij, the estimator d̂Geo, ij is less conservative. The approximation of d̂HR, ij with η=min(𝜋i, 𝜋j) is

d̂RR, ij =
1 − min

(
𝜋i, 𝜋j

)
n − 1

(16)

(Rizzo & Rust, 2011). Compared with school inclusion probabilities, if the joint inclusion probabilities are very small, the
estimation of d̂RR, ij can be conservative and underestimated.

The empirical results in the “Results” section show that those yielded by the formula-based variance estimation using
Hájek’s ĉ1 and ĉ2 are compatible with those using the approximations d̂Arith, ij, d̂Geo, ij, and d̂RR, ij. Note that, in application,
Equation 13 is applicable only if N is much larger than n, which may not be true for a sample drawn from a small state.
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The Sampling Approaches Used in the Simulation

In the simulation, the Durbin and Brewer–Rao sampling approaches (Cochran, 1977) are used to draw PPS samples of
size 2 (n= 2) without replacement. The joint inclusion probabilities are known for the samples drawn by the Durbin and
Brewer–Rao approaches. Thus the joint inclusion probabilities estimated with Hájek’s approximation can be compared
with the known probabilities.

Brewer–Rao Approach (Sample Size n= 2)

Let Zi =Mi/M , where M =
∑N

i=1 Mi. Assume zi < 0.5, which guarantees that every case has a positive probability to be
selected; define

D =
N∑

i=1

(
Zi
) (

1 − Zi
)

1 − 2Zi
= 1

2

(
1 +

N∑
i=1

Zi

1 − 2Zi

)
.

The Brewer–Rao approach consists of two steps:

1 During the first drawing, case i is selected with the probability Zi(1−Zi)
D(1−2Zi) .

2 During the second drawing, case j (j≠ i) will be selected with the probability
Zj

1−Zi
.

The inclusion probability of unit i is then

𝜋i =
Zi

(
1 − Zi

)
D
(

1 − 2Zi
) +

N∑
j≠i

Zj

(
1 − Zj

)
D
(

1 − 2Zj

) Zi

1 − Zj

=
Zi

(
1 − Zi

)
D
(

1 − 2Zi
) −

ZiZi

D
(

1 − 2Zj

) +
Zi

D

N∑
j=1

Zj

1 − 2Zj

=
Zi

D

(
1 +

N∑
j=1

Zj

1 − 2Zj

)
= 2Zi (17)

.
The joint probability can be expressed as

𝜋ij = P {i drawn 1st} P
{

j drawn 2nd|i drawn
}
+ P

{
j drawn 1st

}
P
{

i 2nd|j drawn
}

=
Zi

(
1 − Zi

)
D
(

1 − 2Zi
) Zj

1 − Zi
+

Zj

(
1 − Zj

)
D
(

1 − 2Zj

) Zi

1 − Zj

=
ZiZj

D

(
1

1 − 2Zi
+ 1

1 − 2Zj

)
. (18)

It is straightforward to verify that
∑N

i=1 𝜋i = 2,
∑N

j≠i 𝜋ij = 𝜋i, and
∑N

i=1
∑

j<i 𝜋ij = 1. For the Brewer–Rao approach, the
term 𝜋i𝜋j −𝜋ij > 0 (J. N. K. Rao, 1965), whereas the same term 𝜋i𝜋j −𝜋ij in the variance estimates of the H–T estimator
can be negative for data drawn by other PPS sampling methods.

Durbin Approach (Sample Size n= 2)

Zi and D are defined in the same way as for Brewer’s approach. The two steps for implementing Durbin’s approach are as
follows:

1 During the first drawing, case i is drawn with the probability Zi.
2 During the second drawing, case j (j≠ i) will be drawn with the probability

ETS Research Report No. RR-17-24. © 2017 Educational Testing Service 7



J. Qian Applying the Hájek Approach in Variance Estimation

Zj

2D

(
1

1 − 2Zi
+ 1

1 − 2Zj

)
.

The inclusion probability of case i is

𝜋i = Zi +
N∑
j≠i

Zj
Zi

2D

(
1

1 − 2Zi
+ 1

1 − 2Zj

)

= Zi +
1 − Zi

2D
Zi

1 − 2Zi
+ Zi −

Zi
(

1 − Zi
)

2D
(

1 − 2Zi
)

= 2Zi. (19)

Clearly the joint inclusion probability of cases i and j is

𝜋ij =
ZiZj

D

(
1

1 − 2Zi
+ 1

1 − 2Zj

)
, (20)

which is the same as in Brewer’s approach. In this regard, Durbin’s approach is equivalent to Brewer’s.

Results

The Results of the Simulation

To evaluate the Hájek approximation of the joint inclusion probabilities, the simulation data are generated by PPS sam-
pling approaches without replacement, that is, the Durbin and Brewer–Rao approaches introduced in the “Methodology”
section of this report. The joint inclusion probabilities of any two units in a sample can be (a) computed by the for-
mulae in Equation 18 or Equation 20, (b) estimated by the proportion of unit pairs in a Monte Carlo process, and
(c) estimated by the formulae with Hájek’s approximation in Equations 7, 9, and 11. Therefore the estimates of the
joint probabilities yielded by the formula with Hájek’s approximation can be directly compared with the joint inclusion
probabilities.

Table 1 presents a summary of the five population frames used in the simulation. Each frame contains 40 aggregates
(N = 40), corresponding to school clusters in a sampling, with different sizes. The sample units, corresponding to students
in a sampling, per aggregate range from 100 to 200, and the standard deviations of aggregate sizes range from 32.1 to 68.44,
as listed in columns 4 and 5 in Table 1, respectively. Column 3 contains the total size of the 40 aggregates from the five
frames, ranging from 4,000 to 8,000. Let M =

∑40
i=1 Mi be the total size of the 40 aggregates in a sampling frame. For each

frame, the proportion of all the aggregate sizes zi =Mi/M (i= 1, 2, … , 40) is known, implying that the aggregate sizes are
normalized to 1, that is,

∑40
i=1 zi = 1. Thus 𝜋i = zi is the inclusion probability of aggregate i in the PPS sampling. In the

simulation, each sampling frame is formed by a set of normalized zi s. For each frame, the parameters ci =𝜋i(1−𝜋i) and
c =

∑40
i=1 ci in the Hájek approximation can be estimated.

For every pair of aggregates in the frame, following the two steps of Durbin or Brewer–Rao in the “Methodology”
section, PPS sampling is employed to draw samples with 16,000 replications. There are two approaches to estimating
𝜋ij, as mentioned earlier: (a) compute using the formulae in Equation 18 and/or Equation 20 with known 𝜋i and 𝜋j in
each replication or (b) count the proportion of cases when both aggregates i and j are included in the sample in 16,000
replications. To summarize the results, let 𝜋M

ij be the average of the 𝜋ij s computed using the first approach based on
Equation 18 in 16,000 replications; let 𝜋Me

ij be the average of the estimated 𝜋ij s estimated using the second approach.
Moreover, let 𝜋H

ij be the averages of the 𝜋ij’s estimated based on Equation 7 with true 𝜋i, 𝜋j, ci, and c obtained from the
frames with 16,000 replications; let 𝜋He

ij be the average of the estimates based on Equation 9 with estimated parameters
from the simulation samples.

Table 2 presents the means and standard deviations of 𝜋M
ij , 𝜋

Me
ij , 𝜋

H
ij , and 𝜋

He
ij (i, j= 1, 2, … , 40) computed from the

simulation samples. The average differences between 𝜋
H
ij and 𝜋

M
ij are all less than .00004, which implies that the estimates

approximated by Equation 7 are very close to those yielded by the theoretical formula in Equation 18 for the PPS sampling
approaches used. When comparing the estimates yielded by the simulation with those computed by theoretical models,
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Table 1 Summary of Five Sampling Frames Employed in the Simulation

Population No. of clusters Size Average cluster size SD

Frame 1 40 4,000 100 32.10
Frame 2 40 5,000 125 47.61
Frame 3 40 6,000 150 59.74
Frame 4 40 7,000 175 68.44
Frame 5 40 8,000 200 63.72

Table 2 Means and Standard Deviations of the Joint Probabilities, Yielded by Formulae From Two Sampling Methods in the Simulation

𝜋
M
ij 𝜋

Me
ij 𝜋

H
ij 𝜋

He
ij

Mean SD Mean SD Mean SD Mean SD

Durbin
Frame 1 0.001284 0.000582 0.001342 0.000659 0.001312 0.000610 0.001317 0.000636
Frame 2 0.001283 0.000699 0.001359 0.000790 0.001317 0.000732 0.001320 0.000769
Frame 3 0.001288 0.000732 0.001361 0.000839 0.001322 0.000770 0.001334 0.000818
Frame 4 0.001285 0.000719 0.001366 0.000808 0.001312 0.000754 0.001322 0.000784
Frame 5 0.001284 0.000578 0.001356 0.000656 0.001319 0.000605 0.001320 0.000641

Brewer
Frame 1 0.001284 0.000582 0.001382 0.000636 0.001312 0.000610 0.001364 0.000693
Frame 2 0.001283 0.000699 0.001411 0.000754 0.001317 0.000732 0.001393 0.000829
Frame 3 0.001288 0.000732 0.001367 0.000843 0.001322 0.000770 0.001368 0.000887
Frame 4 0.001285 0.000719 0.001376 0.000777 0.001312 0.000754 0.001401 0.000850
Frame 5 0.001284 0.000578 0.001335 0.000624 0.001319 0.000605 0.001371 0.000687

Table 3 Relative Absolute Errors of the Means of the Joint Probabilities for Two Sampling Methods in the Simulation, in Percentages

ΔHM
ij ΔHeM

ij ΔMeM
ij ΔHeH

ij

Durbin
Frame 1 2.218 2.583 4.553 0.358
Frame 2 2.616 2.871 5.902 0.249
Frame 3 2.640 3.563 5.724 0.900
Frame 4 2.101 2.924 6.335 0.806
Frame 5 2.701 2.814 5.565 0.110

Brewer
Frame 1 2.218 6.254 7.678 3.949
Frame 2 2.616 8.521 9.969 5.755
Frame 3 2.640 6.201 6.113 3.470
Frame 4 2.101 9.048 7.090 6.804
Frame 5 2.701 6.746 3.971 3.938

that is, 𝜋Me
ij versus 𝜋M

ij and 𝜋
He
ij versus 𝜋H

ij , they are all less than .0001 in average absolute error. The average differences
between 𝜋

He
ij and 𝜋

Me
ij are less than .00005, which implies that the estimates approximated by Equation 9 are very close to

those counted by the proportion of aggregate pairs in the simulation samples. The accuracy of the estimates in Table 2 can
be better measured by their relative absolute errors of the joint probabilities.

Table 3 presents the relative absolute errors of the means and standard deviations of the joint probabilities. In the table,
ΔHM

ij = |||𝜋H
ij − 𝜋

M
ij
||| ∕𝜋M

ij ,ΔHeM
ij = |||𝜋He

ij − 𝜋
M
ij
||| ∕𝜋M

ij ,ΔHeH
ij = |||𝜋He

ij − 𝜋
H
ij
||| ∕𝜋H

ij , andΔMeM
ij = |||𝜋Me

ij − 𝜋
M
ij
||| ∕𝜋M

ij . The first col-
umn of ΔHM

ij are slightly above 2% in average relative absolute errors. The average relative absolute errors of ΔHeH
ij for

Durbin’s approach are much smaller than those for Brewer’s. An additional two types of average relative absolute error,
that is, ΔHeM

ij and ΔMeM
ij , have a range from 2.5% to 7.5%, except for three cases that are between 8% and 9.9%. In general,

the average relative absolute errors for Durbin’s approach are also smaller than those for Brewer’s.
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Table 4 Sizes of the Schools in Sample and Population, Mean Estimates, Estimates of Hájek’s ĉ1 and ĉ2, Standard Errors of the Mean
Scores Yielded by the Formula with Hájek’s ĉ Estimates, and the Jackknifed Standard Errors for Five State Samples

State No. of schools sampled No. of schools in population Mean score ĉ1 ĉ2 SEĉ1
SEĉ2

SEJ

All
1 114 1,637 138.64 75.24 79.57 0.826 0.828 1.141
2 117 1,102 143.53 52.26 96.05 0.724 0.690 1.303
3 120 1,825 155.66 70.65 89.24 0.821 0.738 0.956
4 155 4,269 145.73 85.00 118.92 2.258 2.183 1.027
5 120 2,387 146.88 71.97 88.44 1.581 1.473 0.992

Male
1 114 1,637 141.58 75.56 79.35 1.041 1.030 1.422
2 117 1,102 145.15 53.53 95.42 1.214 1.216 1.849
3 120 1,825 157.84 71.37 88.80 1.213 1.090 1.355
4 155 4,269 147.62 85.42 118.68 3.064 2.917 1.312
5 120 2,387 149.93 72.95 87.83 1.983 1.807 1.076

Female
1 114 1,637 135.59 75.35 79.49 1.035 1.062 1.273
2 117 1,102 141.86 52.52 95.92 0.841 0.804 1.148
3 120 1,825 153.38 71.02 89.02 1.114 1.095 1.114
4 155 4,269 143.82 85.02 118.91 3.000 2.990 1.182
5 120 2,387 143.77 72.08 88.37 2.227 2.167 1.276

Note. Note that unidimensional scaling was applied to item calibration for the 2009 NAEP science assessments.

Several factors can cause the discrepancies in the relative absolute errors. First, the relative absolute error is a ratio
estimator that is subject to large errors; second, the joint inclusion probabilities are the estimates of very small proportions
with an average value of .12 to .14; third, the size of the simulation is limited to N = 40, n= 2, and 16,000 replications.
Because the large-sample properties of the PPS sampling without replacement (Hájek, 1964) are derived based on Poisson
sampling when n→∞ and (N − n)→∞, all the simulation parameters, such as N, n, and replication times, need to be
expanded for better accuracy. In particular, as n increases, the increase of N must occur at a faster rate, and the number
of combinations of possible joint selections will increase exponentially. This is indeed a computationally heavy task, even
with contemporary software such as the SAS packages (SAS Institute Inc., 2011, 2014).

Empirical Variance Estimates Yielded by the Formula Incorporating the Hájek Approximation

The empirical data employed in assessing the formula-based variance estimates using the Hájek approximation are the
2009 NAEP state science assessment samples, which were drawn using a two-stage systematic PPS sample design using
the systematic PPS selection for schools at the first stage and SRS selection for students at the second stage. Although the
inclusion probability of any school is proportional to size for the systematic PPS sampling, it differs somewhat from the
regular PPS sampling because some pairs of schools in the sampling frame can be excluded from the samples. Moreover,
a sorting algorithm for the sample units in a sampling frame can impose some effects on variance estimates (Cochran,
1977, pp. 212–221), although the stratification and sorting algorithms for the sample units in the NAEP sample design
are carefully considered (Allen et al., 2001).

In formula-based variance estimation with empirical data, the estimators of Hájek’s ĉ1 and ĉ2 in Equations 8 and 10
and of d̂Arith, ij, d̂Geo, ij, and d̂RR, ij in Equations 14–16 are employed. Note that the variance estimates of means yielded
by the jackknife replicate resampling (JRR) procedure (Wolter, 2007) are also presented for reference. To implement the
jackknife procedure, the jackknifing strata are created by first aggregating a pair of groups (e.g., primary sampling units or
schools) in one stratum; then, a replicate sample is formed by randomly dropping one school and doubling the weights of
the cases in the remaining school. Moreover, the strata are formed in a way consistent with the sampling mechanism. The
details of the NAEP jackknife procedure can be found in the NAEP 1998 Technical Report (Allen et al., 2001; Qian, 2005).
Note that all the assessment items of the 2009 NAEP science are treated as being of one-dimensional scale in operational
analysis.

Table 4 presents the sizes of the schools in the population and the schools sampled and the mean estimates of the
five states of the NAEP 2009 science assessment. The table contains the variances of the mean scores obtained from the
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Table 5 Correlation Coefficients Between SEĉ1
and Other Standard Errors Estimated Incorporating Hájek’s Approximations Across

States for Total, Male, and Female Groups

SEĉ2
SEd̂Arith, ..

SEd̂Geo, ..
SEd̂RR, ..

All 0.998 0.997 0.990 0.986
Male 0.997 0.995 0.990 0.985
Female 0.999 0.999 0.998 0.998

Table 6 Standard Deviations of the Standard Errors Estimated by the Formulae with ĉ1 and ĉ2

Total Male Female

ĉ1 .64 .84 .93
ĉ2 .64 .79 .93

formula with Hájek’s ĉ1 and ĉ2 for five state samples. The empirical results incorporating Hájek’s ĉ1 are very close to those
with ĉ2.

Table 5 presents the correlation coefficients between SEĉ1
and other standard errors estimated incorporating Hájek’s

approximations across states for total, male, and female groups. For five state samples, the correlation coefficients between
the standard errors estimated with Hájek’s ĉ1 and the standard errors with ĉ2 for total, male, and female groups are .998,
.997, and .999, respectively. Moreover, the standard deviations of the standard errors estimated by the formula with ĉ1 are
also very close to those estimated with ĉ2 for total, male, and female groups. The results of the standard deviations of the
standard errors estimated using Hájek’s ĉ1 and ĉ2 can be found in Table 6.

Table 7 presents the estimates of d̂Arith, ij, d̂Geo, ij, and d̂RR, ij and the variances of mean scores estimated by the variance
estimator in Equation 6 using these d̂ij estimates. As expected, the standard errors estimated incorporating d̂Arith, ij are
the smallest, whereas those incorporating d̂RR, ij are the largest. Using the SEd̂RR, ..

as the basis for comparison, the rel-
ative absolute errors of the SEd̂Geo, ..

for total, male, and female groups are approximately 5.5%, 3.5%, and 3.8% smaller,
respectively, whereas those SEd̂Arith, ..

for total, male, and female groups are approximately 13.3%, 9.0%, and 9.5% smaller,

respectively. The approximation d̂Arith, ij is the least conservative among the three, whereas, by contrast, the approximation
d̂RR, ij can cause overestimation in variance. In application, the approximation d̂Geo, ij is relatively robust, even when there
exist large gaps in the numbers of students in school pairs in a sample.

In general, the three sets of standard error estimates incorporating d̂Arith, ij, d̂Geo, ij, and d̂RR, ij, respectively, are com-
patible with and close to each other. In Table 5, the correlation coefficients across states between SEĉ1

and the stan-
dard errors with other Hájek’s approximations are all larger than .98 for total, male, and female groups. For example,
using SEĉ1

as the basis, the correlations between the standard errors estimated with d̂Arith, ij and those estimated with
Hájek’s ĉ1 for total, male, and female groups are .997, .995, and .999, respectively. Evidently, the empirical estimates
incorporating d̂Arith, ij, d̂Geo, ij, and d̂RR, ij are all compatible with those estimated with Hájek’s ĉ1, in particular, for those
based on d̂Geo, ij.

The correlation coefficients between the standard errors estimated with Hájek’s c (c1 or c2) and the jackknifed standard
errors range from .25 to .45—not as high as those between SEĉ1

and the standard errors with other Hájek’s approx-
imations. It appears that the standard errors estimated incorporating the Hájek approximation are more volatile than
those from the jackknifing approach. Compared with the five standard errors yielded by the jackknifing procedure, either
for total, male, or female groups, formula-based standard errors are smaller in about three out of five cases. A couple
of confounding factors could have caused this trend. The NAEP state samples were selected using a two-stage system-
atic PPS sample design from a sampling frame sorted by demographics, and these samples differ with the data drawn
by PPS sampling without replacement. The use of systematic sampling is likely to reduce sampling variance (Burke &
Rust, 1995). Although the formula-based variance estimation incorporating the Hájek approximation is appropriate to be
applied to the data drawn by PPS sampling, further studies need to be pursued before applying it to the data drawn by
systematic PPS sampling. The results of the JRR variance estimates are not the focus of this study and are presented for
reference only.
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Table 7 Estimates of d̂Arith, ij, d̂Geo,ij, and d̂RR, ij, the Standard Errors of the Mean Scores Yielded by the Formula With the d̂.., ij Estimates,
and Jackknifed Standard Errors for Five State Samples

State No. of schools sampled No. of schools in population d̂Arith,.. d̂Geo, .. d̂RR, .. SEd̂Arith, ..
SEd̂Geo, ..

SEd̂RR, ..
SEJ

All
1 114 1,637 0.894 1.002 1.085 0.894 1.002 1.085 1.141
2 117 1,102 0.819 1.001 1.095 0.819 1.001 1.095 1.303
3 120 1,825 0.798 0.882 0.941 0.798 0.882 0.941 0.956
4 155 4,269 2.192 2.210 2.232 2.192 2.210 2.232 1.027
5 120 2,387 1.503 1.559 1.606 1.503 1.559 1.606 0.992

Male
1 114 1,637 1.091 1.198 1.282 1.091 1.198 1.282 1.422
2 117 1,102 1.314 1.468 1.552 1.314 1.468 1.552 1.849
3 120 1,825 1.146 1.228 1.288 1.146 1.228 1.288 1.355
4 155 4,269 2.926 2.943 2.965 2.926 2.943 2.965 1.312
5 120 2,387 1.834 1.882 1.882 1.834 1.882 1.882 1.076

Female
1 114 1,637 1.114 1.203 1.273 1.114 1.203 1.273 1.273
2 117 1,102 0.913 1.074 1.158 0.913 1.074 1.158 1.148
3 120 1,825 1.141 1.209 1.259 1.141 1.209 1.259 1.114
4 155 4,269 2.996 3.010 3.026 2.996 3.010 3.026 1.182
5 120 2,387 2.190 2.235 2.274 2.190 2.235 2.274 1.276

Summary

The simulation conducted in this study shows that the joint probabilities estimated by the Hájek approximation are very
close to those yielded by the formulae provided by the sampling methods. The relative absolute errors of the joint proba-
bilities between the Hájek approximation and those yielded from the simulation are also quite small.

Several estimators of Hájek’s c and dij have been proposed in this study. In analyzing the real samples drawn by a two-
stage systematic PPS sample design, the five sets of results, yielded based on five distinct Hájek’s approximates (i.e., Hájek’s
ĉ1, ĉ2, d̂Arith, ij, d̂Geo, ij, and d̂RR, ij) are compatible with each other. This implies that the formula-based variance estimation
incorporating the Hájek approximation is stable and appropriate, in particular for the estimation based on Hájek’s ĉ1 and
d̂Geo, ij. The application of the Hájek approximation can certainly be extended to variance estimation in assessment data.

However, there are some discrepancies between the results yielded by the formula-based variance estimation and
those from the grouped jackknifing approach. The NAEP state samples were drawn by systematic PPS sampling without
replacement. This may imply that it is appropriate to apply formula-based variance estimation incorporating the Hájek
approximation to the data drawn by PPS sampling; for systematic PPS sampling, further studies are needed. It was also
found that the formula-based variance estimates are slightly more volatile than those from the jackknifing approach. How-
ever, the empirical analysis in this study has no power to tell which set of results reflect the true variability of the variance
estimates for the NAEP state samples.
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Note
1 PPS sampling without replacement can be implemented through different specific approaches (Brewer & Hanif, 1983). For

example, Durbin and Brewer-Rao PPS sampling approaches (Cochran, 1977, pp. 261–262) can be used to draw a pair of sample
units (i.e., sample size n= 2). Rejective sampling, based on Poisson sampling, can be used to select a PPS sample of size n (Hájek,
1981, pp. 54–60, 66–72). Moreover, NAEP uses systematic PPS sampling to select schools (sample size n) in the first stage of state
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samples (Allen et al., 2001, pp. 61–77). The sample design of the systematic PPS approach, which is different from standard PPS
sampling, does not assign a nonzero chance of including every pair of sample units in the sampling frame.
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