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R E S E A R C H R E P O R T

Developing a Machine-Supported Coding System for
Constructed-Response Items in PISA

Kentaro Yamamoto, Qiwei He, Hyo Jeong Shin, & Matthias von Davier

Educational Testing Service, Princeton, NJ

Approximately a third of the Programme for International Student Assessment (PISA) items in the core domains (math, reading, and
science) are constructed-response items and require human coding (scoring). This process is time-consuming, expensive, and prone
to error as often (a) humans code inconsistently, and (b) coding reliability in international large-scale assessments varies across items
and countries. The shift in PISA 2015 from paper- to computer-based assessment digitized all responses and associated coding, thus
providing opportunities to introduce technology and analytical methods to improve data processing and analyses in future cycles. In
this computer-based setting, this research explains the framework and approach for improving the accuracy and efficiency of the coding
process in constructed-response items for future PISA cycles. In the pilot study associated with this research, we demonstrate how the
proposed machine-supported coding system can be utilized using sample reading items from the PISA 2015 cycle.
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The move toward computer-based assessment (CBA) holds out the promise of great improvements in the quality of data,
leading to greater precision and increased validity (e.g., von Davier, Gonzalez, Kirsch, & Yamamoto, 2012). Specifically, it
has made greater efficiency in scoring possible, has the potential to make assessment more effective by increasing engage-
ment, and facilitates administration of dynamic and interactive problems. Finally, CBA allows capturing more information
about the course of the problem-solving process and reducing the human workload in both administration and the scoring
process.

The Programme for International Student Assessment (PISA) is one of the largest internationally standardized assess-
ments, aiming to evaluate education systems worldwide by testing the skills and knowledge of 15-year-old students. To
date, students representing more than 70 economies have participated in this triennial assessment that focuses on assess-
ing young people’s capacity to demonstrate their preparedness in various domains with a focus on reading, mathematics,
and science. The core (or major) domain rotates by cycle. In the PISA 2015 cycle, the major domain was science and was
administered to all students, while the minor domains reading and mathematics each were administered to about a third
of the students.

For the first time, PISA 2015 delivered the assessments of all subjects via computer. Paper-based assessment instruments
consisting only of trend items (i.e., items from previous assessment cycles) were provided for countries that chose not to
test their students by computer (Organisation for Economic Co-operation and Development [OECD], 2016). The shift
from paper- to computer-based assessment in PISA 2015 led to a fully computer-based data collection and allowed the
associated coding process also to be technology-driven.

In this study, we define coding as a process that initially categorizes written responses into a number of discrete classes,
thus facilitating the scoring in a later step. The ability to collect students’ raw responses and possibly automate the coding
of more complex response types—such as extended, constructed answers—is expected to dramatically enhance PISA’s
overall data quality. In this research report, we outline an approach for improving the accuracy and efficiency of the
coding process for future cycles. In particular, we examine the regularities and commonalities of the observed students’
raw responses and develop a machine-supported coding system that can be implemented in PISA 2018.

The goal is to avoid repeated coding of the exact same response string by classifying constructed responses into equiv-
alent response classes. (As detailed in Pilot Study section of this report, we grouped only by identical responses, but in the
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future we foresee using broader classes of equivalent responses, i.e., responses with small variations in spelling or capital-
ization or different amounts of white space.) For each item, these response classes can be determined by populating them
from previous data collections as well as current response samples. Each response class has a human-scored response
attached to it, meaning that human scoring of previously seen equivalent responses is used to determine whether the
response class represents a correct or incorrect response. For response classes with perfect or almost perfect agreement,
or with expert verified scores, the score associated with the response class can then be applied to future observations of
the same exact response, that is, responses from the same equivalent response class.

This approach parallels automated scoring in the sense that a scoring model is first trained on existing data and then
applied to future data. However, unlike commonly used automated scoring processes that generally involve algorithms
and the selection of certain text features such as sentence or word length, and machine learning (e.g., c-rater® scoring
engine, Leacock & Chodorow, 2003; e-rater® scoring engine, Burstein, 2003), the proposed method in this paper relies on
human scores and exact matching of previously established classes of equivalent responses and newly observed student
responses. This means that no computer-based classifications or threshold approach are needed in our current work to
determine scores; only exactly matching responses receive a score that was previously established based on human coders.
Such an exact matching rule could be easily applied to any language that is used in the international large-scale assessment
such as PISA, while commonly used automated scoring models are typically developed for one specific language.

Coding System in PISA 2015

In PISA, test takers are given a mixture of constructed-response and multiple-choice items organized in groups based on
a common stimulus. The stimuli often take the form of a reading passage, or a passage combined with some figures, with
contents taken from situations deemed culturally appropriate. Approximately a third of the items in the core domains
(i.e., math, reading, and science) in PISA 2015 are constructed response and require human coding.1 The proportion is
highest in reading, where nearly 50% of items are constructed-response and require human coding.

Human coding of constructed responses is time consuming, expensive, and prone to error due to a lack of consis-
tency among human coders, which results in low coding reliability. Table 1 presents the average number of human coders
required for different domains per country/language groups. Because the focus for PISA 2015 was science, more items
were administered in this 1-hour domain and all students had to take it. As such, the number of human coders was higher
in science than for the minor domains.

In PISA 2015, typically, the number of raw responses to be coded in a single country per language was around 180,000.
Assuming that 1,000 responses can be coded by a single human coder per day, it would take 180 days for a single person to
complete the task. The challenge is expected to be greater in PISA 2018 for two reasons: The major domain will be reading,
which is more heavily text-based and utilizes a higher proportion of constructed-response items, and more countries are
expected to participate.

Coder reliability in PISA 2015 was evaluated at the within- and cross-country levels for all items, which was enabled
by a coding design that involved multiple coding, or coding of the same response by different individuals. In general,
each country needed to randomly select 100 student responses per human-coded item for multiple coding. The rest of
the student responses needed to be evenly split among multiple human coders for single coding. Multiple coding of all
student responses in an international large-scale assessment like PISA is labor-intensive and costly. The inconsistency of
coders varied across items and countries. In PISA 2015, in terms of the student responses, 96% of the CBA countries
coded every item with proportion agreement higher than 85% in the mathematics, new science items (new science), and
financial literacy. More than 97% of CBA countries had five or fewer items with proportion agreement lower than 85% in
the reading and trend science (items from previous cycles) domains; for further detail, see the PISA 2015 Technical Report
(OECD, 2017). For the majority of CBA countries (Batch 1 in PISA 2015 data collection), the Cohen’s kappa agreement
was above 90% for all the domains (97% in mathematics, 90% in reading, 90% in new science, 93% in trend science, and
92% in financial literacy).2

Motivation for Developing a Machine-Supported Coding System in PISA

In PISA 2015, approximately 75% of countries chose the CBA mode, which resulted in a large number of digitally recorded
constructed responses. This very large database can be used as input for a system that structures responses into uniquely
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Table 1 Average Number of Human Coders by Domain per Country/Language in PISA 2015

Number of human coders

Domain Minor Standard Large

Mathematics 4 6 6
Reading 6 9 9
Science 8 12 16
Financial literacy 4 4 4

Notes. The number of human coders depended on the domain and sample size of the country/language group, which was defined as
minor, standard, and large sample groups. The sample sizes in the minor, standard, and large sample groups range were under 7,000,
7,000 to 9,000, and more than 9,000, respectively.

observed answers and answers given by multiple respondents. A machine-supported coding process that utilizes this struc-
tured database in the coding process, therefore, facilitates the goal of reducing countries’ coding burden while improving
the quality of coded response data. Reducing human coders’ workload for coding constructed responses is a primary goal
because currently students’ raw responses are generally allocated to human coders without any screening: Every single
response is included in the coding process, regardless of whether the responses are unique (e.g., “white” vs. “red”) or
similar (e.g., “15 hours” vs. “15 hr”) or even none at all or invalid (such as special characters, e.g., “%^&*,”).

We can categorize the raw responses into two types: (a) nonresponse, and (b) identical but having a response. This
process allows us to place responses in identical response classes. Determining identical responses—for example, 500
instances of “City Y”—can be used to combine the respondents sharing these responses into a single response class.
A response class for a particular item is defined as the set of respondents who provided the exact same response (i.e.,
an identical string of characters) to the same item. Combining 500 identical strings into the same response class would
eliminate 499 instances of repetitious coding (or 99.8% for this particular response class). The proportion of workload
reduction would decrease differently for each item, depending on the level of response complexity and the relative size
of the response classes found in the data. For instance, straightforward responses to short constructed-response items
such as “15 kilometers” as the response to a question about finding a distance between two points will more likely result
in larger identical response classes and, hence, lead to a larger workload reduction than moderately complex responses,
such as explanations of how a drug functions. More detailed illustrations will be given in the Pilot Study section of this
paper.

A second motivation for developing a computer-supported coding system comes from the goal to increase coder reli-
ability and accuracy. As noted before, it is not feasible to double code every response. And even if double coding were
possible, while the rate of coding error would be reduced, coding errors could still potentially occur and reduce the relia-
bility of the human-coded responses. Bias could even be introduced if some coders produce results that are systematically
more lenient or severe. Unlike humans, a computer-based coding system does not show effects from fatigue or introduce
random or systematic errors, and accuracy can be guaranteed once the coding algorithm is fully tested and coding stan-
dards are implemented correctly. The variability of accuracy of human coding can manifest over multiple cycles due to
variability in coder training. In each cycle, the timing, experience of participants, and monitoring of training may all vary
to some extent, all of which contributes to a potential reduction in comparability of the coding process.

Lastly, computer-supported coding can reduce cost and increase efficiency. In a machine-supported coding system,
scores can be generated and delivered in real time or asynchronously, typically much faster than with human coding. In
addition, the training of human coders could utilize the data from computer-based coding, thus being made more efficient
by extracting unique responses and, potentially, extracting particular response features by different performance group
(e.g., correct/partial correct/ incorrect) for training purposes.

The remainder of this report is structured as follows: In the next section, we introduce our recommendation for a
machine-supported coding system that potentially can be used in PISA 2018 and similar large-scale assessments, provid-
ing an overview of the system and workflow. The “Pilot Study” section presents results of a pilot study where the proposed
machine-supported coding system was applied. In the final section, we discuss the possibility of expanding the method
to a broader context and describe ideas for additional gains in efficiency. Some challenges related to machine-supported
coding systems are also discussed.
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Developing a Machine-Supported Coding System in PISA

The main idea in developing a machine-supported coding system is to focus only on unique responses for coding. This
is facilitated by defining what we call equivalent response classes (in this study, we incorporate only identical responses in
these classes). The only association of equivalent response classes is via the scored response that was determined based
on a number of human coders seeing and scoring the response in previous data collections. These classes represent the
subset of respondents who produced exactly the same response. Identical responses should receive the same code or
scored response, no matter who has given the response, and no matter who coded the response previously, which is a
basic requirement of test fairness regardless of whether the coding is performed by humans or machines.

Hence, with identical responses appearing in these equivalent response classes, the classes can be understood as the
group of respondents for which the code received for that particular response is interchangeable. Therefore, once the cor-
rect code for a response associated with a response class is known, no further coding effort is required. The same code can
thus be applied whenever the particular response is observed again, reducing repetitive coding work. By defining equiv-
alent response classes that give structure to the whole pool of observed responses, we obtain a clustering of respondents
into groups that should receive the same codes for the same responses. The relative sizes of response classes, as well as the
ratio of the number of unique responses to the total number of responses, provides a simple yet effective measure of the
expected gain that can be expected from presenting only unique responses for coding.

In terms of practical implementation, the computer-assisted coding starts by collecting existing data. For example, in
PISA 2015, raw constructed-response data from the field and main tests can be collected. These raw responses are tagged
with the codes generated by human raters. The respondents are then sorted according to their raw responses in order
to derive equivalent response classes, and the codes received within these response classes are checked for consistency.
As observed in the current study, the majority of human coders tend to provide the same code for the same response as
expected, with very few exceptions.

Once the correct (most prevalent) code is determined for a response class by expert coders, based on a thorough
validity and reliability check, applying this code automatically to new responses is then a straightforward algorithmic
lookup procedure. The process can be applied in future test administrations using the same items. In our pilot study, we
looked at data from PISA 2015, with the results applicable to future administrations such as PISA 2018. When new items
are developed for successive cycles, it might be possible to extract equivalent response classes from the pilot and field trial
data collection and then complete the classification with the main test data by compiling additional equivalent response
classes on the fly.

Figure 1 presents a flowchart that describes the machine-supported coding system for responses to computer admin-
istered constructed-response items. The workflow can be divided into two phases: (a) learning from past responses and
response codes and (b) applying the learned coding based on equivalent response classes in the machine-supported cod-
ing process. In the first phase, historical data—for example the coded raw responses from PISA 2015 (or even data from
earlier cycles)—are analyzed. A simple algorithm sorts the raw responses and provides sets of respondents with identical
responses (the equivalent response classes). The differences between classes in terms of raw responses define the set of
unique responses in the input data. If there is a common response code that applies to all of the respondents sharing the
same response, a coded unique response (CUR) pool can be generated based on the equivalent classes that each have a
single (or a most prevalent) response code. In the application, or the second phase, machine-supported coding is applied
to new uncoded responses: If a new respondent’s answer to a constructed-response item is found in the CUR pool for
that item, the stored response code is directly applied to this new respondent’s answer. Nonresponses can be discarded
or scored based on the code to which all previously observed nonresponses were assigned. Only those responses that
cannot be matched to an identical response in the CUR pool will be assigned to (multiple) human coders. If multiple
coders all agree in terms of the assigned response, it is possible to add this response and the associated response code to
the CUR.

A machine-supported coding system of the proposed type can be used on the fly as well. It has the potential to work
for completely new constructed-response items without any historical data. More specifically, an algorithm that works on
the fly can evaluate whether an observed response is part of the CUR, even if the CUR is initially a nonresponse. Any
response not in the CUR will be a new one and be presented to a human coder. Any new, unique response is then given to
multiple coders (typically more than two) to assess coder agreement in a larger group of human coders before a response
is entered into the CUR.

4 ETS Research Report No. RR-17-47. © 2017 Educational Testing Service
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Figure 1 Machine-supported coding system workflow for constructed-response items.

Existing coding systems can be easily adapted for this purpose. For example, if there are 1,000 raw responses that can
be clustered into 100 equivalent response classes, the CUR that can be derived would include 100 unique responses. In
this case, only 100 responses need to be coded. If there were four coders, they all could be assigned to coding those 100
unique responses (to ensure reliability) rather than being forced to divide their attention on the larger set of 1,000 raw
responses (e.g., two coders independently coding 500 raw responses and two other coders independently coding the other
500). With such a system, human coders’ workload can be substantially reduced. Human coding will take place only when
necessary, leaving repetitive, operational tasks for the computer.

It is imperative to apply this approach only to responses that are identical to those found in the CUR. This ensures,
and indeed enhances, coding fairness, as it provides exactly the same code to all identical responses no matter which
respondent provided the response. Human coding error can be reduced, assuming that the multiple coding of a smaller
number of unique responses is free of response bias and produces independent coding of the same unique response and
that only those responses enter the CUR that are uniformly assigned the same code by all of the coders who saw the
response.

At this stage, the system merely optimizes the procedure of assigning coding tasks with the help of technology, which
is straightforward and easily applicable in operational settings. Although this strategy is rather simple, it is expected to
result in increased efficiency through a reduction of human coders’ workload by an average of 40–50%.

Pilot Study: Machine-Supported Coding System in PISA 2015

A pilot study was conducted with the aims of evaluating the feasibility of our proposed machine-supported coding system
and examining the cost-effectiveness of this new coding approach. More specifically, we focused on examining the regu-
larities and commonalities of the observed raw responses using 13 example items in the reading domain from the PISA
2015 main survey. We reviewed all 44 constructed-response items used in the reading domain in PISA 2015 and selected
the 13 items that varied in the level of challenges that the machine-supported coding may be confronted with (i.e., easy
or hard to score). In this pilot study, we examined the extent to which regularities or commonalities are observed from
the students’ raw responses on constructed-response items in PISA in terms of (a) the pattern and frequency of unique
responses and (b) visual representations.
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Table 2 Sample Size per Item by Country and Coder Reliability Used in the Pilot Study

AUS CHN DEU FRA JPN KOR NLD Avg. coder reliability (SD)

Item1 1,746 1,215 1,167 732 797 687 644 98.08 (2.06)
Item2 1,815 1,260 1,179 773 837 711 670 99.86 (0.26)
Item3 1,838 1,261 1,188 787 847 710 670 99.81 (0.24)
Item4 1,838 1,261 1,188 787 847 710 670 99.66 (0.55)
Item5 1,838 1,261 1,188 787 847 710 670 99.69 (0.31)
Item6 1,838 1,261 1,188 787 847 710 670 99.71 (0.28)
Item7 1,793 1,212 1,174 747 814 677 647 99.50 (0.63)
Item8 1,789 1,212 1,171 747 813 676 647 99.74 (0.27)
Item9 1,754 1,195 1,148 729 761 690 639 99.86 (0.26)
Item10 1,760 1,195 1,148 732 764 690 639 98.90 (0.91)
Item11 1,782 1,232 1,168 762 827 697 667 97.03 (2.20)
Item12 1,724 1,188 1,333 722 788 690 752 99.65 (0.49)
Item13 1,770 1,198 1,151 736 773 691 639 96.94 (2.94)

Note. The shaded items (Item 2, Item 3, and Item 11) are used to illustrate how the machine-supported coding can be expected to
work in the following section. AUS=Australia, CHN=China, DEU=Germany, FRA= France, JPN= Japan, KOR=Korea, NLD= the
Netherlands.

Dataset

We examined 13 items in the reading domain based on data from seven countries—Australia (AUS; English), China
(CHN; Chinese), France (FRA; French), Germany (DEU; German), Japan (JPN; Japanese), Korea (KOR; Korean), and the
Netherlands (NLD; Dutch). This set was selected mainly due to their languages’ diversity with, for instance, alphabetic- and
character-based languages represented. Also, we chose countries that do not fall into the bottom third of performance as
we wanted to avoid the larger proportion of missing data (i.e., nonresponses) that would be expected from low-performing
countries. We aimed to compare the pattern of unique responses across countries in order to examine the consistency of
unique response distributions across countries and to establish the feasibility of a machine-supported coding system for
multiple languages in PISA.

The sample sizes per item by country and average coder reliability used in the pilot study are given in Table 2. Note that
there are slight differences in the sample sizes across items in a given country and that each country has different sample
sizes due to sampling requirements, country’s population size, and assessment design in PISA 2015 (OECD, 2013). The
last column in Table 2 shows the average coder reliability per item in this pilot study, which is fairly high at around
97–98%. Note that the standard deviation of coders’ reliability for some items (e.g., Item 11 and Item 13) appears higher
than others, suggesting language effects may exist, especially when the set of constructed responses is more diverse. We
use three items (Item 2, Item 3, and Item 11, shaded in Table 2) to illustrate how the machine-supported coding can be
expected to work and provide more details on unique response distributions and other descriptive measures for these
three items in the next section.

Methods

Our pilot study was implemented in three steps: unique response extraction, evaluation of agreement of codes for unique
response classes, and comparisons of unique response distributions across countries. In the first step, equivalent response
classes and unique responses were extracted from the raw responses separately for each country based on the rule of
exact matching for each constructed-response item. The exact matching criterion indicates that no change is made to the
raw responses, that is, no implementation of any preprocessing of the raw response. To establish empirical distributions of
unique responses, we calculated the frequency of each unique response in the response pool, the frequency of scores coded
by human raters (e.g., full credit or no credit3), and the frequency of nonresponses. Note that nonresponses can be viewed
as one of the equivalent response classes, with the nonresponse constituting one category of the unique response set.

The evaluation of coder agreement for each of the equivalent response classes was undertaken in the second step.
Using the unique response sets per item by country, we examined the distribution of assigned response codes within the
set of respondents with identical responses, separately for each language. As each coauthor is multilingual with different
language backgrounds, each was able to review two or more datasets used in the study. This is an essential step to examine
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whether the observed responses were correctly identified by the human coders as either correct or incorrect responses.
Very few cases were spotted that indicated miscoding for easy-to-code items, but more miscodes or inconsistent cases
were observed for difficult-to-code items.

This analysis provided information on how to revise the coding rubrics and coder training material based on real
responses from students. More specifically, by calculating the frequencies of unique responses by full and no credit, we
were able to easily identify cases where miscodes were assigned (e.g., full credit was assigned although it should have
received no credit based on the coding guides, or vice versa) or where human coders did not agree well (e.g., the same
unique response received full-credit codes from some coders but no-credit codes from other coders). Because all the
unique responses are based on observed responses generated by respondents taking the test, these cases reflecting incon-
sistency can be used as examples (together with the intended code based on coding guidelines) in coder training materials
to improve the coding guides and coder training.

In the third step of this analysis, we compared the frequencies of raw responses and unique responses and investi-
gated the pattern of unique responses using visual representations with an eye toward whether human workload could
be reduced. If the number of unique response was smaller than the total number of raw responses, this indicated that
the workload of human coders could be reduced and the coding process efficiency increased. However, if the number
of unique responses approximately equaled the number of raw responses, this indicated that the workload of human
coders could not be reduced much. We were able to classify items into groups with different levels of expected gain of
the machine-supported coding based on the extent to which regularities or commonalities in the observed responses
were observed: large-gain machine-coding with high level of regularities, moderate-gain machine-coding with a medium
level of regularities, and small-gain machine-coding with a low level of regularities. In particular, the gain from using
machine-supported coding was expected to vary by item and country.

Results

From the 13 items examined, we present the findings of our examination with a focus on the three items shaded in Table 2
regarding the different levels of regularities across the seven countries. To examine the efficiency of the proposed machine-
supported coding system, frequencies for each unique response and visual representations are given for each of the three
items by country.

High Level of Regularities

Table 3 lists the frequencies of identical response classes for an example item (Item 3) that can be classified as a large-
gain machine-coding item with high level of regularities. The three most frequently observed unique responses and their
frequencies (class size) are shaded in the table. Table 3 provides frequencies separately by score given: full or no credit.
Frequencies of nonresponses are also listed in the rightmost column. For Item 3, there were 1,838 raw responses in the
English (AUS) sample, and only 50 unique responses were found among them. This implies that it is only necessary for
human coders to only code 50 unique responses, or 2.7% (however, potentially they would be scored by multiple coders
to ensure agreement) for the same responses to receive the same credit.

Table 3 Large-Gain Machine-Coding Item With High Level of Regularities (AUS) (Item 3)

Response Frequencies (full credit) Frequencies (no credit) Frequencies (missing)

15 1,467 0 0
15 hours 23 0 0
15 hrs 7 0 0
…
10 0 6 0
5 0 6 0
12 1a 3 0
…
(No response) 0 0 252
Total 1,509 76 253

aItalics here indicates a miscode.
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For this simple constructed-response item, the answer should be “15” or “15 hours,” and responses including numbers
other than 15 should be coded as incorrect. Among all responses, 1,467 students responded correctly with exactly the
same response (“15”), and the second most frequently observed unique response was “15 hours,” which came from 23
students. Among responses that received no credit, the most frequently observed were “10” and “5,” each of which was
observed from six students. Also, we were able to detect a miscode (italicized in the table) from a human coder who gave
the wrong score: one student who answered “12” received full credit even though it should have received no credit. This
example illustrates how our proposed approach can be utilized to improve the accuracy of coding process by automat-
ically assigning no credit to clearly wrong responses. Finally, 252 students’ responses (13.7%) were nonresponses. One
incorrect response received a missing code from a human coder although it should have been assigned no credit. These
nonresponses represent a large number and could have been coded as no credit without human intervention.

Overall, there were 10 unique responses that were most frequently observed, constituting 81.4% of all 1,838 raw
responses. Based on this large proportion of regularities observed in raw responses, we classified this item as large-gain
machine-coding item.

Figure 2 illustrates the visual representation of this item across seven country/language groups using bar plots. Each bar
plot in Figure 2 shows the cumulative distribution of frequencies of unique responses from each country, with the unique
responses sorted by three variables on the x-axis: frequencies of full-credited unique responses on the left, followed by
no-credit, and, lastly, nonresponses. The cumulative total of frequencies of these sorted unique responses are shown on
the y-axis. Looking at the x-axis, for example in the first plot labeled AUS, we see there were 50 unique responses (i.e.,
equivalent response class) in total out of all raw responses.

At the bottom right corner of the figure, we present a table showing the number of total responses (T) (i.e., the number
of respondents) and the number of unique responses (U) found in this certain item. The last row in the table exhibits how
much human coding work can be saved (i.e., how much we can gain) if the machine-supported coding system is applied.
The percentage of reduction is calculated as (1−U/T). Note that the additional workload of using multiple human raters
(for the purpose of examining coders’ reliability) was not taken into account in the calculation. In this example, the
workload reduction rate is very high when the machine-supported coding system is used —a range of 94–98% across
seven countries.

As listed in Table 3, the most frequently observed response is given in 1,467 full-credited responses. That is indicated
on the y-axis of Figure 2 with the first bar reaching 1,467. For this item, there is only a slight increase in the bar heights
for the rest of the unique responses. The cumulative total rises only slightly because there are few additional regularities
for the rest of the unique responses. In particular, regularities among no-credited responses are very small, making it
hard to see the threshold that distinguishes full-credited and no-credited groups. Note that nonresponses constitute one
category of the unique responses, with the rightmost bar indicating the nonresponses as listed in Table 3. It can be seen
that there is a substantial number of nonresponses, which equals 252 for this country, and is visible with the large jump
in cumulative frequencies shown by the rightmost bar. Note that when the sorted unique responses are accumulated, the
bar at the rightmost reaches the total number of raw responses, which is 1,838 in this case.

This figure is most helpful in visualizing the pattern of unique responses across countries. Given that different sample
sizes are collected in different countries, the number of unique responses and the frequency of occurrence of each unique
response will differ systematically by country. As a result, the maximum values on the x-axis and y-axis are not the same
by country,4 though it is clear that the seven countries showed a similar pattern of unique responses (i.e., a high level of
regularities in the full-credited unique responses) for this item.

Medium Level of Regularities

Using a structure similar to Table 3, we list the frequencies in Table 4 of homogeneous responses for an example item
(Item 2) that can be classified as moderate-gain machine-coding item with medium level of regularities. For this item, we
again use Australia as an example. There were 1,815 raw responses in total, with 648 unique responses harvested out of
all raw responses. This implies that it is not necessary for human coders to code 1,815 raw responses because of moderate
overlaps; only 648 unique responses, which is 35.7% of raw responses, need to be coded, with all identical responses
receiving the same credit.

For this constructed-response item, the answer should be “Silk Road WF” regardless of the capitalization of the letters.
Among all responses, 529 students responded correctly with exactly the same response as “Silk Road WF,” and the second
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Figure 2 Large-gain machine-coding item with high level of regularities (frequencies sorted left to right by full credit, no credit, and
nonresponse). The delineation between these three types of responses will be visible only when there is a significant change in frequency.
AUS=Australia, CHN=China, DEU=Germany, FRA= France, JPN= Japan, KOR=Korea, NLD= the Netherlands.

most frequently observed unique response was “silk road WF” from 76. Moreover, we were able to detect one miscode
(italicized in Table 3) from a human coder who gave no credit when the correct answer of “Silk Road WF” was given.
This example again illustrates that our proposed approach can be utilized to improve the accuracy of the coding process
by automatically assigning full credit to clearly correct responses. Among responses that received no credit, the most
frequently observed was “CTT Wrinkle Free,” seen from 123 students. Unlike the item above that showed small regularities
among no-credited unique responses, quite a large number of students provided exactly the same incorrect responses.
Finally, 145 students (8%) gave no response. Again, this amount of nonresponses could have been automatically coded
as no credit. In addition, the most frequently observed 10 unique responses constituted 49.4% of all 1,815 raw responses.
Given that nearly half of responses are covered by these most frequently provided 10 unique responses, we classified this
item as moderate-gain machine-coding item.

Figure 3 illustrates the visual representation of this item across seven country/language groups using bar plots and
is set up the same as Figure 2. In this case, the first plot, labeled AUS, shows there were 648 unique responses in total
out of all raw responses as indicated on the x-axis. As listed in Table 4, the most frequently observed response comes
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Table 4 Moderate-Gain Machine-Coding Item With Medium Level of Regularities (AUS) (Item 2)

Response Frequencies (full credit) Frequencies (no credit) Frequencies (missing)

Silk Road WF 529 1a 0
silk road WF 76 0 0
silk road wf 45 0 0
…
CTT Wrinkle Free 0 123 0
CTT’s Wrinkle Free 0 39 0
CTT’s wrinkle free 0 16 0
…
(No response) 0 0 145
Total 809 861 145

Note. AUS=Australia.
aItalics here indicates a miscode.

Table 5 Small-Gain Machine-Coding Item With Low Level of Regularities (AUS) (Item 11)

Response Frequencies (full credit) Frequencies (no credit) Frequencies (missing)

It states what the paragraph is going to be about. 2 1a 0
it tells you what the paragraph is about 2 0 0
its telling you what the paragraph is about 2 0 0
…
don’t give up 0 2 0
idk 0 2 0
? 0 1 0
…
(No response) 0 0 504
Total 1,080 198 504

Note. AUS=Australia.
aItalics here indicates a miscode.

from 529 full-credited responses, which is indicated on the y-axis with the first bar reaching 529. For this item, there is
only a slight increase in the bar heights for the rest of the full-credited unique responses, indicating minimal increase in
the cumulative amount. However, a clear jump around 141 on the x-axis shows there are regularities among no-credited
responses as well. This reflects that the most frequently seen no-credit unique response came from 123 students as listed
in Table 4. Finally, the jump reflected in the right-hand bar indicates a substantial number of nonresponses, which is 145
students for this country. Note that the bar at the rightmost reaches the total number of raw responses, which is 1,815
in this case. Although the real values on the x-axis and bar heights are not the same across countries, it is clear that the
seven countries showed a consistent pattern of unique responses (i.e., moderate level of regularities in the full-credited
and no-credited unique responses) for this item. The proportion of saved workload is within a range of 39–80% across
the countries if the machine-supported coding system were to be applied.

Low Level of Regularities

Following the structure as seen in Tables 3 and 4, Table 5 lists the frequencies of unique responses for the last example item
(Item 11), which can be classified as small-gain machine-coding item with low level of regularities. For this item, there
were 1,782 raw responses in total from Australia, and 1,274 unique responses were harvested out of all raw responses.
Although the number of unique responses seems quite large compared to the two items above, we can still avoid the
need to manually score 508 raw responses. Note that among the reduced 508 raw responses, 504 responses (99.2%) are
nonresponses as listed in Table 5.

For this constructed-response item, students have to provide the reasonable answer in a sentence, and an insufficient
or vague response should be coded as incorrect. Among all responses, the first three full-credited unique responses came
from only 2 students, respectively. Regularities in raw responses are rarely observed among no-credited responses. The
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Figure 3 Moderate-gain machine-coding item with medium level of regularities (frequencies sorted left to right by full credit, no
credit, and nonresponse). The delineation between these three types of responses will be visible only when there is a significant change
in frequency. Although this is a bar chart, the outlines of the bars are not visible due to the condensed scale of the horizontal axis, mak-
ing the bars closely adjacent. AUS=Australia, CHN=China, DEU=Germany, FRA= France, JPN= Japan, KOR=Korea, NLD= the
Netherlands.

largest frequencies of unique responses, either in full-credited or no-credited response group, were just 2. However, over
a quarter of students, or 504 (28.3% of the total) did not produce a response. Although this item contains only a low level
of regularities, a considerable amount of nonresponses itself could have been automatically coded as no credit without
any effort from human coders. Given the low level of regularities observed from raw responses, we classified this item as
small-gain machine-coding item.

Figure 4 illustrates the visual representation of this item across seven country/language groups using bar plots and is
set up the same as Figures 2 and 3. In this case, the first plot, labeled AUS, shows that there were 1,274 unique responses
in total out of all raw responses as indicated on the x-axis. As listed in Table 5, the most frequently observed response
comes from three full-credited responses, and it is indicated on the y-axis that the first bar reaches 2. In particular, for
this item, there is no distinctive jump in the bar plot. A straight diagonal line shows until it reaches the rightmost bar
representing the nonresponses. Instead, it is seen that there are a large number of nonresponses, which is 504 students
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Figure 4 Small-gain machine-coding item with low level of regularities (frequencies sorted left to right by full credit, no credit,
and nonresponse). The delineation between these three types of responses will be visible only when there is a significant change
in frequency. Although this is a bar chart, the outlines of the bars are not visible due to the condensed scale of the horizontal
axis, making the bars closely adjacent. AUS=Australia, CHN=China, DEU=Germany, FRA= France, JPN= Japan, KOR=Korea,
NLD= the Netherlands.

for this country, and it is indicated with a jump for the rightmost bar. The rightmost bar reaches up to the total number
of raw responses, which is 1,782 in this case, including full-credited responses, no-credited responses, and nonresponses.
Although the real values on the x-axis and bar heights are not the same across countries, it is clear that seven countries
showed a consistent pattern of unique responses (i.e., almost no regularities in the full-credited unique responses and no-
credited unique responses) for this item. The proportion of saved workload would be relatively low—a range of 5–29%
when the machine-supported coding system is applied.

Note that for items with a low level of regularities, the small gains are mainly contributed by nonresponses rather
than identical responses. It implies that how much workload can be reduced in such a small-gain machine-coding item
largely depends on the ratio of nonresponses. For instance, there is a high proportion of nonresponse (over 20%) in AUS,
as shown in the highest bar to the right end in the Australia plot, and a relatively low missing rate (around 5%) in the
Netherlands. That means Australia would have the biggest gain from machine-supported coding system (29%) versus the
Netherlands with the smallest (5%).
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Discussion and Conclusion

In this report, we describe the development of a machine-supported coding approach for constructed-response items in
international large-scale assessments such as PISA. There are two major reasons why there is room for improvement in the
current human coding process: (a) a lack of consistency among human coder scores, possibly due to lack of understanding
of coding rubrics, or coder training, and (b) variation in coding reliability across items and countries. The shift to CBA
made it possible to collect all responses using technology and opens avenues to utilize these machine-recorded responses in
associated coding procedures, thus, offering the possibility to introduce analysis methods to support coding and improve
data processing and analyses in future cycles.

The purpose of our research is to develop a computer-supported coding system to improve the efficiency and accuracy
of the coding process for constructed-response items. One important aspect of this approach is generating a pool of unique
responses with pre-assigned scores (CUR pool), which helps reducing the human-coding task. This is easily achieved
by post-processing the PISA 2015 data in preparation for the 2018 data collection, by extracting unique responses and
processing new responses to enhance the existing CUR pool for each item. Because trend items are typically used over
three cycles (i.e., one time as the major domain and twice as the minor domain) and PISA implements a field trial before
the main survey, the collection of unique responses for the CUR pool is expected to be a powerful tool to considerably
reduce the amount of human coding while increasing coding consistency.

In the pilot study, we examined the machine-supported coding system using 13 example items in the reading domain
across seven countries with different languages used for testing in PISA 2015. Regarding the accuracy of existing coder
data, across seven countries, only a few cases were spotted as miscodes for easy-to-code items (i.e., large-gain items with
high level of regularities), but more miscodes or inconsistent-coding cases were observed for difficult-to-code items (i.e.,
small-gain items with low level of regularities). This pilot study also provided information on how to revise the coding
rubrics and coder training material based on real responses from students. More importantly, by calculating the frequen-
cies of unique responses by full- and no-credit codes, we were able to identify cases where miscodes were assigned or
human coders did not agree well. Because all the unique responses are from real responses that students provided during
the test, these inconsistently coded cases can be used as examples in coder training materials in order to improve the
coding guides and coder training.

In terms of efficiency of the proposed approach, we classified items into three categories: (a) large-gain machine-
supported coding with a high level of regularities, (b) moderate-gain machine-supported coding with a medium level of
regularities, and (c) small-gain machine-supported coding with a low level of regularities. More specifically, the number
of unique responses out of all raw responses became smaller at different magnitudes: As it became more straightforward
to do machine-supported coding, fewer unique responses were harvested. It was clearly shown that when high or
medium levels of regularities exist among raw responses, machine-supported coding significantly reduces human coders’
workload (e.g., more than 90% for the large-gain machine-coding example item). Even when the number of unique
responses was similar to the number of raw responses for small-gain machine-supported coding items, the proportion of
automatically coded nonresponses helped reduce human coders’ workload. This suggests that exclusion of nonresponses
could provide time and cost savings for any item. Finally, it is promising that a consistent pattern for each item was
observed across the seven countries we examined. This implies the feasibility of our proposed framework and approach
in the context of multi-language based international large-scale assessments such as PISA.

While there are apparent benefits from the machine-supported coding system, we also note some limitations. First, a
large proportion of missing responses may artificially inflate the gain; a large equivalent response class based on a missing
response may give the appearance that the method reduces workload significantly. We chose seven countries with at least
average performance in PISA in order to avoid large proportions of nonresponses, but it would be interesting to compare
the reduction of workload across countries of different performance levels.

Second, the current study relies on a limited set of countries, observed responses in one data collection, and sample
statistics only. The proposed method is a basic approach that can be applied to any language, in that equivalent response
classes are based on exact match only. It is a topic for future research to allow for some fuzziness of the response classes
(e.g., Sukkarieh, von Davier, & Yamamoto, 2012) or to include preprocessing and base the definition of response classes
on strings without white space, punctuation, and capitalization, for example (e.g., Manning & Schütze, 1999).

Third, from the present study, it appears that the items with low-level regularities responses would see very limited
reductions of workload from the machine-supported coding system. However, this response group is interesting in its own
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right, not just to improve the efficiency of scoring. For example, it could be studied whether, after controlling for ability,
those regularities are similar across countries as would be expected. Also, it would be interesting to examine whether more
substantial workload reduction could be obtained if more advanced machine learning and natural language processing
techniques were applied.

In future extensions of this study, we plan to try this approach on more languages used in PISA, such as Arabic, Indian,
and Russian, and across all items in all domains, including math, reading, and science. In particular, we will develop
indices that capture the expected gain of machine-supported coding in order to: (a) examine whether the pattern of
observed unique responses appears consistent across countries, and (b) classify items into different levels of regularities
and prioritize the system in operation. In addition, applying simple preprocessing to extract and discard invalid responses
(e.g., only punctuations or white spaces in the raw response) could potentially increase the efficiency of the coding process,
as could additional clustering. For instance, as with the example shown in Table 4, standardizing the data by removing
capitalization would help merge the first three frequently unique responses (“Silk Road WF,” “silk road WF,” and “silk
road wf”) into one (“silk road wf”) into one equivalent response class and further reduce the workload for coders.

In practice, our target is to implement this proposed machine-supported coding system for the field trial of PISA 2018.
The coded responses observed on trend items that have been used and coded in the PISA 2015 main survey will serve
as historical data in the CUR pool after a consistency check of the scores in each country. To ensure the reliability of the
coded responses in the CUR pool, the frequency of occurrence of one constructed response in an equivalent response
class is required to be at least five in the historical dataset. If there is uncertainty on the class label (i.e., disagreement
between human coders), for instance, if the same constructed responses are coded into multiple categories by different
human coders, we will suspend such coded responses from the CUR pool.

Following the workflow that was introduced earlier in the “Developing a Machine-Supported Coding System” in PISA
section, the new responses collected in the PISA 2018 field trial will be input into the system and matched with the
unique responses stored in the CUR pool. Given an exact matching, the corresponding score stored in the CUR pool will
be automatically output; otherwise, the new raw responses will be assigned to (multiple) human coders. The nonresponses
will be excluded before being assigned to the human coders at an initial preparation stage. We expect that the machine-
supported coding system will significantly reduce the workload for human coders; human coders can then be better
assigned to coding tasks that are essential without wasting their time on repetitive work. Further, the potential of more
multiple coding for newly observed responses would allow us to examine coder reliability more thoroughly and eventually
enhance the accuracy of the coding procedure for the constructed-response items and strengthen the validity and the data
quality used in the international large-scale assessments.

In conclusion, our pilot study demonstrates how the proposed machine-supported coding system can be utilized in
coding constructed-response items across multiple languages in large-scale assessments. This newly developed coding
system holds promise in improving accuracy and efficiency of the coding process for constructed-response items for
future cycles and is expected to dramatically reduce the burden for human coders. We believe such a hybrid design in the
coding process that combines the strengths of technology with the expertise of human coders can be potentially applied
in similar settings and be refined for broader usage in further studies.
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Notes
1 There are two kinds of coding methods for constructed-response items in PISA, computer- and human-coded. Items with

numeric responses (i.e., only numbers, commas, periods, dashes, and backslashes can be entered) and responses involving
choices from a drop-down menu or selecting rows of data are coded via computer. All others, typically answered by inputting
text-based entries, are coded by human raters.

2 We used two measures—proportion agreement and Cohen’s kappa agreement—to examine coder reliability. Proportion
agreement is calculated based on the observed count, that is, the total number of responses with agreement between two raters
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divided by the total number of responses. This measure is easier to understand and, thus, it is easier to communicate the results to
participating countries in PISA. Cohen’s kappa is more complex but superior statistically because it takes the chance of random
agreement into consideration. In calculations on an average level across items and countries, these two measures proved to not
differ much.

3 Given the complexity of coding in partial-credited items, we did not include such items in our pilot study.
4 The standardized size of each plot was fixed to illustrate the comparable patterns between the number of unique responses and

accumulative frequencies of sorted unique responses across countries. Values vary along the axes as a result.
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