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A Statistical Procedure for Testing Unusually Frequent
Exactly Matching Responses and Nearly Matching Responses

Shelby J. Haberman' & Yi-Hsuan Lee?

1 Edusoft, Rosh Haayin, Israel
2 Educational Testing Service, Princeton, NJ

In investigations of unusual testing behavior, a common question is whether a specific pattern of responses occurs unusually often within
a group of examinees. In many current tests, modern communication techniques can permit quite large numbers of examinees to share
keys, or common response patterns, to the entire test. To address this issue, statistical methods are provided to identify examinees in
a test with answers that exactly match and to assess whether such exact matches are unusual. In addition, methodology is provided to
identify examinees with response patterns unusually similar to circulated keys. Application is made to a testing program.

Keywords Multidimensional item-response theory; multiple comparisons; test security; test collusion; key sharing
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In investigations of unusual testing behavior, a common question is whether a specific pattern of responses occurs unusu-
ally often within a group of examinees. In the test-security literature, this question has been addressed by statistical
methods designed for three types of irregularities: copying, preknowledge, and group collusion (or test collusion; Lee,
Lewis, & von Davier, 2014). Traditional investigation into this issue has emphasized answer copying between specific
pairs of examinees under investigation (e.g., Angoff, 1974; Holland, 1996; Lewis & Thayer, 1998; van der Linden & Sotari-
dona, 2006; Wollack, 1997). Residual analysis and person-fit statistics have been proposed to examine aberrant response
patterns, or more specially, item preknowledge (e.g., Drasgow, Levine, & Williams, 1985; Karabatsos, 2003; McLeod &
Lewis, 1999; McLeod, Lewis, & Thissen, 2003; Meijer & Sijtsma, 2001; Segall, 2002; Shu, Henson, & Luecht, 2013). Resid-
ual analysis of both response and timing data has also been considered for the same purpose (e.g., van der Linden &
Guo, 2008). More recently, there has been research concerning test collusion, or large-scale sharing of test materials or
answers to one or more subsets of items prior to the examination (Belov, 2013, 2014; Wollack & Maynes, 2016; Zhang,
Searcy, & Horn, 2011). These studies focused on test collusion due to item preknowledge, which typically occurs when
some examinees have access to some items in a test prior to the test administration. Test collusion may involve teachers,
school administrators, examinees who collaborate and communicate during the test, or someone sharing test materials
on the Internet (Belov, 2013).

In many current tests, modern communication techniques can in some cases permit quite large numbers of examinees
to share keys, or common response patterns, to the entire test. This special type of test collusion, termed key sharing in
this report, has received frequent attention in newspapers (Mytelka, 2010; Richardson, 1996; Strauss, 2014). Generally,
key sharing is likely to occur in linear tests and multistage tests but not in computerized adaptive tests. The issue of key
sharing arises in scenarios that differ from the scenarios involving answer copying and item preknowledge. For instance,
as described in Mytelka (2010), Richardson (1996), and Strauss (2014), the keys are usually developed specifically for a
test administration and then transmitted to examinees who acquire them. Examinees using or sharing the keys are not
limited to the same test location and may have no connection except to the same key sources and keys. It is also possible
that the keys are a result of group collusion happening during the test that yields the same response pattern for all items.
As a result, statistical approaches to detecting key sharing should analyze responses to the entire test for all examinees
in an administration at once, rather than by pairs testing at the same location or subgroups that partition the examinees
based on their geographic location (e.g., test center and classroom) or certain relations (e.g., same school). Because the
scenario involving key sharing is so different from the scenarios involving answer copying and item preknowledge, existing
approaches to examining answer copying and item preknowledge may not be appropriate for detecting key sharing. For
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example, although approaches for detecting answer copying (e.g., Angoft, 1974; Holland, 1996; Lewis & Thayer, 1998; van
der Linden & Sotaridona, 2006; Wollack, 1997) have been employed to examine response similarity, they typically rely on
specific pairs of examinees. Because detecting groups of any size in the administration involves all possible pairs, which
generally leads to a large number of pairwise comparisons, these approaches may not be efficient when applied to an entire
administration once the issue of multiple comparisons is taken into account. Methods designed for item preknowledge
usually focus on the contrast between compromised items and those that are not in a test, a feature nonexistent in key
sharing. The methods considered in Wollack and Maynes (2016) and Zhang et al. (2011) are based on pairs of examinees
and therefore may lose power when applied to addressing key sharing. The approaches proposed by Belov (2013, 2014)
begin with groups of examinees in an administration, aiming to detect aberrant examinees in each group that may be
affected by item preknowledge and to detect the corresponding compromised subset of items. As noted earlier, partitioning
examinees into subgroups is not adequate for examining key sharing. Thus alternative statistical methods of identification
of shared keys and of examinees who may be using these keys are required.

This report proposes a two-stage procedure for assessing key sharing. Multidimensional item-response theory (MIRT)
is employed to aid in both key identification and in identification of examinees who may be employing such a key. More
specifically, the proposed procedure begins with identification of examinees in a test with item responses that exactly
match. This case is referred to as exact matching. A MIRT model that yields probabilities of examinees of different ability
levels selecting each of the item choices is employed to assess whether such exact matches on item responses are so unusual
that they should be of interest for analysis of test security or for exclusion from equating and linking. Once circulated keys
are identified, additional analysis at the second stage is conducted to identify examinees with response patterns unusually
similar to the circulated keys. This case is referred to as near matching. The proposed procedure is intended to identify
examinees in an administration who exhibit unusual similarity in responses to the entire test in groups of any size greater
than one. Pairs of examinees exhibiting answer copying can also be identified by the proposed procedure, although it does
not require partition of examinees into pairs or groups in advance. In the following section, the MIRT model employed is
described. In the next section, computations are provided for the expected number of examinees in a sample or subsample
who have identical or nearly identical responses that are not all correct. Next, results are applied to an international test of
English proficiency, and analytical results for the power of the procedure are presented. The final section considers policy
implications for the results and provides general discussion about sensitivity of the procedure to a number of features
studied.

The Multidimensional Item-Response Theory Model

In the analysis of item responses required in this report, it is important to consider not just the item scores for examinee
responses but also the specific responses supplied that are incorrect or receive only partial credit. The tests under con-
sideration measure multiple skills, each item is related to a specific skill, and the issue of key sharing is likely to involve
multiple skills rather than individual skills. For these purposes, the one-dimensional nominal response model (Bock,
1972) is adapted for use with guessing (Penfield & de la Torre, 2008; Thissen & Steinberg, 1984) with the aid of a type of
between-item multidimensional model (Adams, Wilson, & Wang, 1997). Common between-item models can be obtained
by use of suitable restrictions on commonly discussed multidimensional item-response models (Reckase, 2007, 2009).
Computations required for estimation of item parameters, latent-variable distributions, and examinee probabilities are
performed using a stabilized Newton - Raphson algorithm (Haberman, 1988, 2013).

In the model under study, D > 1 skills are tested, and each item in the test is related to a specific skill. The assessment
is taken by I examinees numbered from 1 to I, and ] scored items numbered from 1 to J are given to all these examinees.
This condition normally applies to tests that are not adaptive. The response for examinee i to item j is denoted by X,
and X; is the J-dimensional vector with elements Xj; for 1 <j<J. Let X; =x if all responses of examinee i are correct
(i.e, x7 is the true key of the test), and let element j of x; be x; for 1 <j<J. For each item j is a corresponding skill
d(j) between 1 and D. To ensure stable parameter estimation in the model, assume that for each skill there are at least
three items. There are r; > 1 possible item responses for item j numbered from 0 to r; — 1, and each response x for item
j has a corresponding integer item score Sj(x) between 0 and Sj(ij). For right-scored items, the item score Sj(x) is 1 if
x=x; is the true key of item j and is otherwise 0. If item j is not right-scored, then more than two values of the item
score §;(x) are present. In typical applications, the minimum item score 0 corresponds to a completely wrong response,
and the maximum item score S;(x;r) corresponds to a completely satisfactory response. Other item scores reflect partial
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credit for the answer. In tests in which examinees sometimes fail to answer items, the item response 0 corresponds to an
omission. Not distinguishing various reasons for omitted responses (i.e., omitted or not reached) should not be an issue
in this context because omissions, especially not-reached items, are unlikely to be observed among the examinees sharing
keys and because tests that aid in making high-stakes decisions that do not penalize for guessing typically have relatively
few omitted responses.

The model is a latent-structure model with a multivariate normal latent variable 6; of dimensional D for each examinee
i. The normality assumption is usually robust in real applications (Haberman, 2005; Haberman, von Davier, & Lee, 2008).
The pairs (X, 6;), 1 <i <1, are assumed independent and identically distributed, and the Xj;, 1 <j <J, are conditionally
independent given 0,. The 0; are assumed to have a common positive-definite covariance matrix, and to each item response
xtoitem j corresponds an intercept f;, a slope a,;, and a guessing parameter c; between 0 and 1, the conditional probability
that the item response X;; =x given 6, = @ is

xj°

pj(xl®) = ¢;S; (x) + <1 - CJ‘) rj—jxp <axjwd(j) ’ ﬂxj) > (1)
Zexp (axrja)d(j) + ﬂx/j>

x'=0

where @ is a D-dimensional vector with elements wy;), 1 < d(j) < D. All right-scored items j are assumed to have the same
positive guessing parameter ¢;=c <1, and ¢; =0 for all other items. Introducing a common guessing parameter for the
right-scored items permits a bit better fit for high scores, while ensuring stable parameter estimation. Normally, further
restrictions are imposed to identify model parameters, but these restrictions are not needed for the estimation of the
required probabilities. Nonetheless, in the basic analysis in this report, the simplifying assumption is made that a,; = a/;
if $;(x) = §;(x"), so that the response X;; and the latent vector 6, are conditionally independent given the item score S;(Xj).
IfS;(x) =, then the conditional probability px|s(x[s) that X;; = x given §;(X;;) = s has the elementary maximum-likelihood
estimate

Pixis (xls) = Ny /ij, )

where N 18 the number of examinees i with Xjj=x and Nssj > 0 is the number of examinees i with Sj(Xij) =s.

As noted earlier, the model in Equation 1 F is an extension of a number of existing models to accommodate the need
to be applicable to multiple skills and the need to consider specific responses supplied that are incorrect or receive only
partial credit in addition to item scores. For example, the model reduces to the one-dimensional nominal response model
(Bock, 1972) if ¢=0 for all j and D =1. Because each item measures only one skill, the model is called a between-item
multidimensional model in the literature and reduces to a type of such models in Adams et al. (1997) if ¢=0 for all
items. The unidimensional models proposed in Thissen and Steinberg (1984) and Penfield and de la Torre (2008) adopt
different formulations for guessing for nominal responses. Our model is somewhat similar to the formulation in Penfield
and de la Torre, but it is applicable to D> 1 skills and has a common guessing parameter for different item responses x
to all right-scored items. In addition, the model can be used for items that are right-scored and those that are not with
different treatments for guessing. It is noteworthy that our MIRT model can be reduced to D=1 for analyses involving
only one skill. The standard Rasch model, two-parameter logistic model, and three-parameter logistic model do not serve
the purpose because they only consider item scores (correct or incorrect) and cannot differentiate different incorrect
choices of an item.

Maximum-likelihood estimates are used in the analyses in this report. The maximum-likelihood estimate of p;(x|®)
is denoted by ﬁj (x| ®). If the J-dimensional x with elements x;, 1 <j <], is in the set 2" of possible values of X, then the
conditional probability that X; =x given that 0, = ® is

J
rxlo) =[] (x1@). 3)
=1
The corresponding estimate is
J
pexlo) =[5 (sl @) (4)
=1
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If f(w) denotes the probability density of 8; at @, then the probability p(x) that X; =x is
= [pelof@do. ©
If}‘\ (@) denotes the estimated probability density of 0; at @, the maximum-likelihood estimate of p(x) is

Px) = / Pxlo)f (@de. (6)

The MIRT analysis is conducted with a general program for item-response analysis (Haberman, 2013) that computes
P (Xl-) for each examinee i. These estimated probabilities provide the basis for the procedure discussed in the following
section. The MIRT program is freely available from the authors for noncommercial use.

Probabilities of Matching Responses
Analysis of Exact Matching

In a test with a substantial number of items, relatively few examinees will have the exact same response vector X;, because
the set & of possible values of X is extremely large. This observation can provide a basis for identifying examinees who
may be using a common key. For this purpose, a separate investigation is undertaken for each examinee ina set Cof m <1
examinees requiring attention. If the entire administration is examined at once, then C is the set of all examinees in the
administration and m = I. If only a single test center is of interest, then m may be a far smaller positive integer, and C is
the set of examinees in the test center. For each examinee i in C, the number M; of examinees i’ in C, i’ # i, is computed
for whom X;; = X;, so that each item response of examinee i’ is the same as the corresponding item response of examinee
i. Given the observed examinee response X;, the probability under the model that M; or more examinees i'in C, i #1,
would have X;, = X; is just the binomial probability

m—1
s 3 (") b)) e G 2
where p(X;) is given in Equation 5. It is worth noting that the current application examines the entire administration at
once, so that p(X;) = p(X;|C), where C includes all examinees. In general, Equation 7 is correct if the examinees in C can
be regarded as representative of examinees in the administration. Under the model, for any u in the unit interval, u is no
less than the probability P(B; < u) that B; < u. By the Bonferroni inequality, the probability that B; < u for any examinee i
in C does not exceed mu. The estimated value of B, is

~ o m—1 ~ n ~ m—n—1
B= 3 (") e ®
where p (X;) is given in Equation 6 and estimated based on all examinees in the administration. Thus the Bonferroni
significance level for examinee i for the number of matching responses is the minimum of mB; and 1. Examinees in C
with the same response vector X; have identical mB, values.

Finding the number of examinees with the same response vector is readily accomplished by sorting observations by X;
for examinees i in C. Such sorting is used to complete identification of all distinct response vectors and their frequency
of use and can be easily accomplished in SAS. When a number of examinees share the same response vector and the
corresponding values of mB, are very small for these examinees, this common response vector is strong evidence of a key
being circulated among a group of examinees.

It should be noted that strong evidence that a key is circulated does not by itself imply that every examinee with that
response pattern is using the circulated key. To examine individual connection to that circulated key, additional investi-
gation should be conducted to gather information concerning individual behaviors.

In addition, small values of mB; may be observed in a large group with a not uncommon response pattern X, which is
likely to occur for examinees with almost perfect scores. Because those examinees are more likely to match the response
patterns by chance, a more conservative approach is taken in our analysis by not identifying such response patterns as
circulated keys and not flagging those examinees. For this purpose, a further test is implemented. Let & be a set of
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response patterns Xy identified as circulated keys, where x is of dimension J with elements xj for 1 <j <J. Let ' have k
elements. For each xy in &'y, the probability that an examinee i has a response X; = x is estimated to be p (x ), so that the
estima/t\ed probability that any examinee in C has this response pattern does not exceed mp (x ). If both mp (X;) < 0.01
and mB; < 0.01 with X = x, then examinee 7 is identified as using the circulated key xy. If the number k of circulated keys
is relatively large, say, greater than five, then one might change the requirement that mp (X;) < 0.01 to the requirement
that mkp (X;) < 0.01 to account for the number of circulated keys examined with Bonferroni corrections. In general, in
cases in which p (X;) is greater than B,, inferences about individual examinees with a given response pattern may differ
from inferences about the existence of a circulated key with that response pattern.

Analysis of Near Matching

So far, analysis has considered identifying a circulated key from the data. Once a circulated key is identified from the data
or obtained from material found with an examinee, there is an added issue of examinees who do not always apply the
circulated key correctly. This case is referred to as near matching in this report. Such error may occur if (a) the examinees
apply the circulated key under high pressure in the testing room or (b) they need to memorize the circulated key rather
than bringing a copy of the circulated key. Thus additional analysis is considered to compare a circulated key xy with the
response pattern of every examinee in C. A simple approach is to score the test of each examinee based on the circulated
key xi and based on the true key x; and then compare if the score on the circulated key is significantly better than the
score on the true key. Recall that x;x and x;7, 1 <j <J, are elements of xx and Xy, respectively. Let the alternative item score
Sik (x) for response x to item j be Sj(ij) ifx= Xjko and let Sik (x) be Sj(ij) ifx= x;r. For other values of x, let SjK(x) = Sj(x).
One may then compare the total score

Tix = ZSjK <Xz]> ©)
to the conventional total

T,=Ys <X,J> . (10)

A better score on the circulated key compared to the true key may suggest that the circulated key is being used. Exam-
ining this issue with a significance test relies on a conditional inference. Let J be the set of items j for which S;x(x) and
§;(x) are the same for all responses x. For example, in one circulated key found in one of the test administrations discussed
in the section Two Illustrations of the Analysis, there were nine items where the true key and the circulated key apparently
being used by a group of examinees were different and 67 items where the true and circulated keys were the same. (Eight
of the nine items were right-scored; the other one had possible scores 0, 1, and 2, and the circulated key received partial
credit on that item.) The set J; then consists of these 67 items where the keys coincide. The score T is the sum of the 76
item scores obtained with the circulated key, whereas T, is the sum of item scores using the true key. The difference in this
example between T, and T; is then an integer between — 9 and 9. The estimate P,y is then computed for the conditional
probability P;x under the model that, given Xj;, jin Ji, Tjx — T; would be at least as large as the observed difference. In the
example, if, for examinee i, the difference T;x — T} is 7, then the probability computed is the estimated conditional proba-
bility under the model that T — T; > 7 given the observed responses X; for items j in the set J of 67 items for which the
apparently circulated key and the true key coincide. To complete the analysis, let C’' consist of examinees in C not already
identified as exactly matching an unusually large number of examinees, and let m’ be the number of examinees in C'. As
in the case of exact matches, the Bonferroni inequality is then employed, so that for each examinee in C’, the significance
level used is m’ ﬁiK for examinee i. To take into account that the examinees’ responses would be compared with multiple
circulated keys, one could further adjust the significance level m'P by multiplying by the number of circulated keys
considered in the analysis (i.e., m’ kl/sl-K). Because the circulated keys identified for the test studied in the following section
are often variants of one or two main circulated keys, this further adjustment to the proposed methodology can be quite
conservative.
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Two lllustrations of the Analysis

Two administrations of an international test of English proficiency were examined. In each case, only listening and reading
sections were used, so that there were D =2 skills. For both administrations, C was the entire set of examinees in the
administration. Lists were made of examinees with mB; < 0.01 and mp (X;) < 0.01. These lists were then used to identify
apparent circulated keys. For purposes of illustration, the matching responses for three or more examinees were used as
a circulated key to further identify nearly identical matches.

There were 34 listening items and 42 reading items in both administrations. In the first case, counting missing responses,
there were 5-15 possible responses to a given listening item. All of the items were right-scored. In addition, for 39 reading
items, there were five possible responses, and right-scoring was used. For three reading items, there were either 36, 39, or
42 possible responses, and possible item scores were 0, 1, and 2. In this administration, approximately 19,000 examinees
were considered. Only nine examinees were identified. Using the Bonferroni significance levels, a pair of examinees with
matching responses had a significance level of about 8 x 10714, For this pair, mp (X;) was only 41073, so that very
strong evidence existed that the match was not coincidental. A second group of seven examinees with the same responses
had a significance level of about 3 %1078, For these examinees, m/ﬁ (Xi) was about .03, so that evidence about individual
examinees in the group was somewhat weaker than evidence for the existence of a circulated key. Thus the list for this case
only consisted of the pair of examinees. Had the matching responses for the seven examinees been used as a circulated
key, no further examinees would have been identified by comparison of the circulated and true keys with a Bonferroni
significance level less than .01. As will be discussed in the concluding section, the presented procedures are very sensitive
to the quality of the circulated key. In this case, the circulated key associated with only two examinees had a far lower
significance level than the circulated key associated with seven examinees. The principal difference was that the circulated
key for the two examinees corresponded to a T of 63, whereas the circulated key for the seven examinees corresponded
to a T of 77, a value not far from the maximum possible value of T; of 79.

In the second case, approximately 10,000 examinees were studied. For 33 listening items, counting missing responses,
there were either 5, 8, or 13 possible responses to a given item, and these items were right-scored. There was one listening
item with 149 possible responses, and possible item scores were 0, 1, and 2. In addition, 39 of the 42 reading items had five
possible responses, and right-scoring was used. For three reading items, there were either 35, 39, or 42 possible responses,
and possible item scores were 0, 1, and 2. In this administration, four examinees were identified. Using the Bonferroni
significance levels, one pair of examinees with matching responses had a significance level of approximately 2 x 1077.
For this pair, mp (X;) was only 2x 107!}, so that very strong evidence existed that the match was not coincidental. The
second pair of examinees with the same responses had a significance level of approximately 2 X 1072!. For these examinees,
mp (X;) was about 2 X 1072, so that individual connections to the circulated key were clear. The matching responses for
these two pairs were not used further to flag examinees with unusually strong performance on a circulated key. Thus the
list for the second administration contained these four examinees.

Power Calculation

The most elementary approach to considering the power of the procedure is to consider the probability of detection of
a random group of examinees who copy from each other without error (i.e., exact matching). Suppose the group has
G > 2 members, and suppose that the group common responses have the same distribution as for the general population.
It is assumed that G is small relative to the total sample size and that all other responses of examinees are obtained by
independent work, so that any distortion in parameter estimation caused by the group is negligible. With the significance
level .01 used in the example, the probability of detection of this group is then well approximated by the joint probability
that

m—1

m 2,

n=G-1

<mn_ 1) [P (X)]" [1-p(X)]" " <.01 (11)

and

mp (X;) < .01 (12)
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Estimation of this joint probability is straightforward. If g is a real function on [0, 1], then E(g(p(X;))) has the estimate
E(g)=m"Y e (X)) (13)

ieC
where p (Xi) is computed for each examinee i in the administrations. In this example, the function g(p(X;)) is 1 if
Equations 11 and 12 both hold, and g(X;) is 0 otherwise. In other words, the estimated probability of detection E(g)
is the fraction of examinees in C who satisfy conditions in Equations 11 and 12 when G=2, 3, ..., m — 1. For the first
illustrative example, the estimated probability of detection is .972 for G=2, .991 for G =3, and .994 for any G > 4. The
constant value for larger G is due to the condition in Equation 12. Similar results are observed in the second illustrative
example. Estimated probabilities are .951 for G =2, .982 for G=3, and .987 for G > 4.

The Bonferroni procedure used to detect exact matches is very unlikely to detect any case when the model holds for
all observations (i.e., every examinee works independently). In this case, the probability of detecting a random group of
2 examinees does not exceed the expectation of g(p(X;)), where g(p(X;)) is 0 unless Equations 11 and 12 both hold for
G =2, and g(p(X,)) is otherwise equal to m(m — 1)p(X,)/2. In this case, E(g) is only .00002 in the first illustrative example
and .00003 in the second illustrative example. The power of the procedure for detecting a random group of examinees
who copy from each other with errors (i.e., near matching) can be similarly evaluated and is not further discussed.

Conclusions

The methodology employed is able to identify examinees who exhibit unusual similarity in responses by a two-stage
procedure that involves exact matches followed by a study of unusual similarity to groups of examinees with exact matches.
The methodology is quite conservative because of the conservativeness of the Bonferroni adjustment, so that one should
distinguish between its use for test security for identification of specific examinees, its use in test security to identify test
centers or other units of investigation with unusually frequent patterns of identical and near-identical responses, and
its use for test analysis and linking. In many applications involving test security, it is necessary to state that behavior
exhibited by a group of examinees is so unusual that it cannot reasonably be expected to have occurred by chance. In
these applications, the Bonferroni inequality is vital. Application of these results by a testing organization may vary. Legal
considerations are obviously important, and factors such as protection of the public and the rights of examinees should be
considered as appropriate. It is desirable, when possible, to gather additional information concerning examinee behavior
related to the test to decide on appropriate action.

In the case of test analysis or in the case of a general investigation about the frequency of use of circulated keys, a much
less stringent criterion is likely appropriate, especially in terms of better performance on circulated keys than on true
keys. For equating, the cost of the resulting reduction in sample size is readily balanced by the desire to have examinees
who appear to be taking a test in good faith. To assess the size of the problem with circulated keys, it is not necessary to
conclusively demonstrate apparent use of circulated keys by any specific examinee.

The procedures discussed are very sensitive to the quality of the circulated key and the size m of the group in question.
It is typically the case that the probability p(xy ) associated with a circulated key xy is smaller if the set of items not in J is
relatively large. Indeed, for each illustrative administration considered, the R? statistic for regression of logp(X;) on Ty is
approximately .9. To illustrate this issue, recall that in the first administration discussed in the section Two Illustrations of
the Analysis, the circulated key associated with only two examinees had a far lower significance level than the circulated
key associated with seven examinees. This result was due to clear differences in key quality; that is, T = 63 for the two
examinees, whereas T =77 for the seven examinees, given that T; = 79. It is noteworthy that a case with three examinees
with the exact same responses in the first administration and a common T of 76 resulted in a significance level of .013,
which was above the threshold used. On the other hand, had the set C just been the set of 224 examinees in the country
in which the three examinees were tested, then the significance level would have changed to approximately 2 x 10~8. For
each of these three examinees, mp (X;) would have been only approximately .00001.

It is reasonable to consider the sensitivity of results to models used and to subsets of examinees considered. In one
examination, the constant guessing parameter ¢ was set to 0 for all items rather than just for items with more than two
scores. Changes in status (i.e., flagged or not) involved examinees with estimated Bonferroni significance levels for exact
or near matching relatively close to .01. In addition, estimation of the probabilities p(X;) is performed here with both
examinees who appear to use circulated keys and examinees who do not. It is reasonable to expect that this procedure
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reduces the number of examinees identified. To assess the impact, one might eliminate the examinees identified by the
matching or near-matching criterion during estimation and then apply the results to the entire sample of examinees.
Generally, the results are expected to differ more substantially with more examinees identified in the initial run.
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