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R E S E A R C H R E P O R T

An Empirical Investigation of the Potential Impact of Item
Misfit on Test Scores

Sooyeon Kim & Frederic Robin

Educational Testing Service, Princeton, NJ

In this study, we examined the potential impact of item misfit on the reported scores of an admission test from the subpopulation
invariance perspective. The target population of the test consisted of 3 major subgroups with different geographic regions. We used
the logistic regression function to estimate item parameters of the operational items based on the empirical data accumulated over
3 years. A new set of item parameter estimates derived using the data from each subgroup separately was compared to the original
(i.e., operational) item parameter estimates to assess the degree of item misfit due to subgroup memberships. Using the new set of item
parameter estimates for each subgroup, we also updated the conversion tables, which were derived from the original item parameter
estimates, and compared them to their original conversions to determine whether score invariance was achieved at the scaled score level.
Score invariance was not absolutely achieved. Even so, the magnitude of reported score differences (systematic error or bias) caused
by subgroup dependence was still smaller than the standard error of measurement (random error) of the test. This study suggests a
practical remedy for enhancing the level of score invariance of the test.

Keywords Score invariance; multistage test; item DIF; item calibration and linking
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When test forms are assembled using well-established content and statistical specifications, the relative difficulties of
different versions of a test will likely change as a function of score level in the same manner across subpopulations; thus,
the different versions are related to each other in the same way across the subpopulations. If the relative difficulties of
different forms interact with group membership, or if an interaction emerges among score level, difficulty, and group,
score invariance is not achieved across the subpopulations. Under this circumstance, test takers having the same score on
one scale may not have the same level of the proficiency being measured by the test because the score may depend on their
group membership. This situation results in an advantage (or disadvantage) for one or more subpopulations, and hence,
a lack of invariance in scores is a concern for fairness and equity in assessment (Dorans, 2004).

Subpopulation invariance (interchangeably with score invariance) is a concern for fairness and equity at the reported
(equated or scaled) test score level. In practice, subpopulation invariance may not hold due to various reasons. A lack of
equating invariance is often associated with a differential difficulty within the data that can be manifested in several ways,
such as differential mean difficulties of items or differential rank ordering of anchor items in difficulty (Cook & Petersen,
1987; Dorans, 2004; Dorans & Holland, 2000; Holland & Dorans, 2006; von Davier & Wilson, 2008). Changes in item
parameters can be an indirect source of subgroup dependence. Item parameter changes could occur due to changes in
curriculum or frequent exposure of items because the items become easier or more difficult for the entire population.
Such changes can threaten the validity of test scores by introducing trait-irrelevant differences on proficiency estimates.
For example, an overexposed item becomes easier and less discriminating, causing errors in proficiency estimation using
estimates of the original item parameters. Such change is further complicated in a situation in which the degree of change
in item parameters varies depending upon the subgroup membership. Differences in parameter estimates across different
subgroups are referred to as differential item functioning (DIF; Dorans & Holland, 1993).

DIF concerns fairness with respect to statistical bias at the item level (Camilli & Shepard, 1994), and it can be a typical
source of item misfit.1 DIF refers to the instance in which test takers of the same ability level have different estimated
probabilities of success on a test item depending upon their group membership (Camilli & Shepard, 1994; Penfield &
Camilli, 2007). A lack of invariance at the item level likely results in a lack of invariance at the reported test score level due
to subgroup dependence. Dorans (2004) discussed how particular types of multidimensionality can affect both equating
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invariance and DIF. von Davier and Wilson (2007) acknowledged that the presence of DIF in anchor items violates the
unidimensionality assumption of IRT, which could pose issues for equating latent scores. Using simulated data, Huggins
(2012) investigated the relationship between equating invariance and DIF in a systematic manner and showed that DIF
manifested in the anchor items of an assessment can have an effect on population invariance of equating.

Often a lack of item invariance due to subgroup dependence is the main culprit in the lack of score invariance at the
reported score level. As the literature indicates, a lack of invariance at the item level could become critical in situations
in which a number of poorly fitting (misfit) items are used as an anchor set in score linking. The manifestation of item
misfit in the anchor items may result in inaccurate and unfair scores for some subgroups of test takers. This issue will be
compounded in situations in which not all subgroups are included in the linking sample. In reality, however, the particular
group used to link two tests always affects the linking function, so that score invariance is never absolutely achieved across
subpopulations. Instead, the question becomes whether score invariance holds closely enough that the equating function
is not differentially affected across subpopulations (Dorans & Holland, 2000).

Purpose

The purpose of this study was to evaluate the potential impact of item misfit on test scores with respect to a lack of subpop-
ulation invariance on equating. Some level of item misfit is unavoidable, particularly when testing across subpopulations
with very diverse educational experiences and primary languages. For this investigation, we chose a large-scale interna-
tional examination on which test takers were very heterogeneous in terms of their self-reported best language, region,
social and cultural backgrounds, and so on. Three subgroups were classified as a function of region in which test takers
took the test and their self-reported best language. At the item level, we analyzed the empirical data obtained from the
operational setting (often called post-admin data) to find out the extent to which item parameter estimates in an item
bank (i.e., original estimates calibrated a priori) differ from the new set of estimates derived using the response data from
each of the three subgroups. At the score level, we then updated the original (i.e., operational) conversions separately
for each subgroup using the new set of item parameter estimates derived using the post-admin data. We investigated
the subpopulation invariance of score linking by comparing the original conversions with the new ones. Although a few
researchers have examined the relationship between equating invariance and DIF (Huggins, 2012; von Davier & Wil-
son, 2007), the nature of the effect of general misfit items on population invariance in equating has yet to be empirically
examined, particularly under the adaptive testing framework. Findings of such a study have practical implications.

The Current Practice

The target test used in this study followed a two-stage multistage testing (MST) procedure, in which one adaptation to
the test takers’ ability levels took place (see Figure 1). As shown in Figure 1, a two-stage MST form includes four modules
across two stages. At Stage 1 (often called routing), there is only one module (20 items); all test takers taking that form are
tested with same set of items. At Stage 2, there are three modules (20 items in each): a low-difficulty module, a medium-
difficulty module, and a high-difficulty module. Each module at Stage 2 concentrates on a particular level of difficulty
to differentiate test takers’ abilities within a certain range of proficiency after routing. The items a test taker receives at
Stage 2 are determined by the test taker’s performance on Stage 1. The term path can be used to mean a combination of
modules that could possibly be presented to a test taker. As illustrated in Figure 1, there are three paths in the two-stage
MST form, and each path consists of the first-stage module and one of the second-stage modules. For test security, the
program administers more than 100 MST forms constructed through the automated multistage test assembly processes
in accordance with the content and statistical specifications during a particular testing period.

Each MST form also includes one pretest module. The items in the pretest module are not scored at that administration,
but they are used to assemble future operational MST forms once they are linked to the common scale. In the operational
setting, about 300 operational items administered in the routing module (Stage 1) are used as equaters to transform the
pretest items’ parameter estimates onto the common scale through the test characteristic curve method (TCC; Stocking
& Lord, 1983). The common items (equaters) are drawn from the item bank rather than a particular single old form. The
current practice, common-item linking to a calibrated item bank, is a flexible design because it allows the common-item
set to be chosen from many previous MST forms rather than from a single form. After the transformation is completed,
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Figure 1 Schematic of a two-stage multistage test.

the pretest items have transformed item parameter estimates on the θ-scale that was previously established. These new
items can be added to the IRT calibrated item bank, and the bank can be continuously expanded.

The test takers of the test are classified into three subgroups. Because those subgroups are heterogeneous in their per-
formance level, the overall performance on each administration is heavily influenced by the proportion of each subgroup.
To make the condition for item calibration and linking stable across administrations, a major subgroup has been used for
item calibration and linking of new items in the operational setting. The item parameter estimates derived using the data
from the major subgroup have been used to assemble the MST forms and to create the conversions from which the test
takers’ reported scores are derived. Under this circumstance, it is rather questionable whether the invariance property can
hold for other subgroups excluded from the calibration and linking process. The present study was designed to assess this
invariance using the real data of an admission test.

Method

Multistage Testing Forms

We chose 4,000+ MST forms administered in 2013. Therefore, 4,000+ MST forms were available for each of the three
paths: low, middle, and high. Established before the administration of the new MST forms, all operational items have
item difficulty and item discrimination values estimated using the two-parameter logistic model in the pretest item cal-
ibration and linking process. As soon as the new form operational items have been assembled into a form, their item
parameter estimates can be used to compute a raw-to-scale score conversion table for the new form via IRT true score
equating. Because raw-to-scale score conversions based on preequated item parameter estimates are available before the
new forms are administered, each package per administration includes 100+ MST forms together with their conversion
tables. Because all the test takers’ proficiency estimates (i.e., θ̂) and scaled scores are already on the common scale, they
are comparable across not only different forms but also different paths.

MST forms can be scored in several ways. The current practice of the test is an inverse of TCC using number-correct
scoring (i.e., summed scoring). According to Yen and Fitzpatrick (2006, p. 137), when tests include “30 or more items,
the inverse of the TCC provides a very accurate MLE of ability for the 3PL model.” Recently Kim, Moses, and Yoo
(2015a, 2015b) and Kim and Moses (2016) compared the performance of seven IRT proficiency estimation methods
under the two-stage MST design using simulated datasets. They showed that Bayesian estimators performed better than
non-Bayesian ones, mainly at the two extreme score regions of the theta scale. Although the difference between item-
pattern scoring and number-correct scoring was almost negligible in the portion of the score range where most test
takers’ scores were located, number-correct scoring produced more accurate ability estimates than item-pattern scor-
ing for high-performing test takers. Even so, because the estimation results derived from different proficiency estimators
were comparable across the theta region where most test takers would be located, the authors recommended the use of a
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Figure 2 Relative frequency distribution of scaled scores in the three subgroups.

simpler method (e.g., non-Bayesian number-correct scoring) as a practical choice, particularly in the operational setting
of the two-stage MST.

Data Analyses

The data used in this study were the test takers’ actual responses to the operational items and their proficiency estimates
accumulated over three testing years (2011–2014). The test takers were classified into one of the three subgroups based
upon their stated best language, nationality, and testing region. The largest group (called Subgroup A hereafter), compris-
ing approximately 60% of the test-taker pool, was used exclusively as the calibration and linking sample. The remaining
test takers excluded from the linking sample were from two subgroups: Subgroup B (30%) and Subgroup C (10%). Figure 2
presents the relative frequency distributions of the scaled scores in the subgroups, given as percentages of the total group.
Subgroup A is more proficient than the other two subgroups.

Logistic regression (PROC GENMOD with logit link function in SAS) was conducted for each item to obtain its new
set of item parameter estimates (item difficulty and item discrimination) derived as a function of the test takers’ responses
to the item and their proficiency estimates that were derived from the original conversion.2 In the logistic regression
model, the dependent variable was the actual response on a particular item, scored as 0 (incorrect) or 1 (correct), and the
independent variable was the proficiency estimates on the theta scale. A logit model that assumes binomial distribution
of the probability of the event (0 or 1) was employed to estimate the intercept (β) and slope (α) parameters.

logit {Pr (Y = 1|x)} = log
{

Pr (Y = 1|x)
1 − Pr (Y = 1|x)

}
= β + αx, (1)

where Y is a response on a particular item (e.g., Y = 1 if the answer is correct), and x is an explanatory variable, which
was the proficiency estimate in the theta scale (θ) in this study. The slope (α) and intercept (β) parameters derived from
the logistic regression model can be transformed to the IRT a (item discrimination) and b (item difficulty) parameters, as
shown in Equation (2). See Hambleton, Swaminathan, and Rogers (1991, pp. 20–21).

a = α
D
, and b =

−β
Da

, where D = 1.702. (2)

To ensure the stability of item parameter estimates, only items administered to at least 300 test takers per group were
included for the analyses. Accordingly, all (strictly speaking, high-volume) items have two sets of estimates; one set com-
prised the original estimates derived from the operational setting (called “original” hereafter), and the other set comprised
new estimates derived using the test takers’ post-admin data (called “new” hereafter). For each item, logistic regression
was repeated four times to obtain new item parameter estimates for the total group and each of three subgroups separately.
For most operational items, four sets of new item estimates were available: (a) total, (b) Subgroup A, (c) Subgroup B, and
(d) Subgroup C.
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In the actual operational setting, the conversions for all paths of the MST forms were created using the 2PL IRT model-
based item parameters that were estimated using the data from Subgroup A through the IRT true score equating procedure.
Because those estimates were used operationally to report the score to the test takers, we called them “original” item param-
eter estimates. The same format of conversions was obtained for all the MST forms by replacing the original estimates with
the new ones associated with the total and each subgroup. The new estimates are the ones derived from the logistic regres-
sion model applied to the empirical data. The new conversions were then compared to the original (operational) ones
to determine whether the resulting conversions from each subgroup would yield scores comparable to the original con-
versions. If the population invariance property holds, then the resulting conversions from all three subgroups should be
similar to the original conversions, leading to trivial differences in reported scores.3

Several thousand items were used to assemble the 4,000+ MST forms administered in 2013. Item parameter estimates
of those items were updated using the post-admin data from the total group, Subgroup A, or Subgroup B, and thus about
4,000+ conversions per path were compared for each of those groups. However, this was not the case for Subgroup C. The
new set of estimates was not available for all items due to a lack of data. Consequently, MST forms in which most items
(35+ out of 40) were updated using the new estimates were selected for the comparison between the original and new
conversions. The numbers of available MST forms after screening were 376, 1,064, and 1,030, from the high, middle, and
low paths, respectively.

At the item level, we also compared the new and original item parameter estimates for each subgroup separately using
two deviance measures commonly used to screen out misfit items from the equater set in the operational setting.4 One is
the unweighted maximum difference (UwMaxDiff), and the other is the weighted root mean square error (WRMSE). As
the name indicates, UwMaxDiff is the maximum value among the differences between the new item characteristic curve
(ICC) and original ICC. The WRMSE value indicates the root mean square of the sum of the differences between the two
ICCs. The abilities used for the weighted comparison of the ICCs are from a normal distribution. Both measures were
designed to detect any noticeable difference between two ICCs in terms of magnitude and pattern. The current practice
designates any item whose UwMaxDiff is greater than 0.125 or WRMSE is greater than 0.1 as a misfit item. We used the
same criterion, which is rather strict, in this study.

Results

Item-Level Analysis

Several thousand items were administered during the 3 years, and new parameter estimates for those items were obtained
for each group separately using the logistic function. Table 1 presents the descriptive statistics of both the new estimates
derived from the post-admin data and the original estimates. In Figure 3, the four plots in the first column, with the x-
axis indicating original estimates and the y-axis indicating new estimates, present the relationships between the two sets
of item discrimination estimates for total and Subgroups A, B, and C, respectively. The four plots in the second column
present the same type of information for item difficulty.

The relationship between the original and new parameter estimates was generally stronger in item difficulty than in item
discrimination across all groups. Because the operational samples used to produce the original item parameter estimates
were essentially the same as Subgroup A, the means and SDs of estimates in Subgroup A were very similar to the original
values of the discrimination (a) and difficulty (b) estimates, leading to very high correlations. As displayed in Figure 3,
most items were evenly spread out along the diagonal line. The correlations (see Table 1) between the original and new
estimates were close to unity, particularly for the difficulty parameter. Conversely, the relationship between the original and
new estimates was very weak in Subgroup C, indicating substantial misfit at the item level, as can be seen by the estimates
being broadly spread out along the diagonal line. There was more spread for the discrimination estimates, as would be
expected, because those parameters are generally less precisely estimated than the difficulties. The discrimination estimates
(a) of many items substantially increased compared to their original values, particularly in Subgroup C. In Subgroup B,
the relationship between the two sets of estimates was not as strong as in Subgroup A but not as weak as in Subgroup C.
Its overall relationship was rather moderate, as the graphical plots indicate.

Table 2 presents the summary statistics of the differences between the new and original estimates for the total and
each subgroup. As presented in the upper part of Table 2, the means and SDs of the two difference values were generally
small for total and Subgroup A. Both Subgroups B and C yielded large SDs, however, indicating more variation across
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Table 1 Descriptive Statistics of Item Parameter Estimates for Total and Subgroups

Item parameter Original Total Subgroup A Subgroup B Subgroup C

a Mean 0.76 (0.78) 0.75 0.77 0.72 0.85
(Discrimination) SD 0.27 (0.27) 0.27 0.27 0.27 0.43
b Mean −0.34 (−0.31) −0.29 −0.32 −0.26 −0.20
(Difficulty) SD 0.94 (0.92) 0.90 0.96 0.92 1.01
Correlation with original a estimate — 0.85 0.93 0.75 0.37
Correlation with original b estimate — 0.97 0.99 0.87 0.70

Notes. Due to limited sample size, about 20% of items did not have a new set of estimates in Subgroup C. For the comparison with
Subgroup C, the means and SDs of the original estimates were recalculated after excluding those 20% items; those values are presented
in the parentheses under the original column.

Table 2 Summary of Deviance Measures

Deviance Group Mean SD Min Max

Difference a Total −0.01 0.15 −0.76 0.62
Subgroup A 0.01 0.10 −0.44 0.55
Subgroup B −0.04 0.19 −1.07 0.78
Subgroup C 0.07 0.42 −1.27 2.92

Difference b Total 0.04 0.24 −1.28 2.99
Subgroup A 0.01 0.14 −1.12 1.17
Subgroup B 0.07 0.47 −2.84 7.15
Subgroup C 0.11 0.76 −2.96 2.91

UwMaxDiff Total 0.07 0.05 0.00 0.50
Subgroup A 0.04 0.03 0.00 0.38
Subgroup B 0.12 0.07 0.00 0.55
Subgroup C 0.21 0.12 0.00 0.79

WRMSE Total 0.04 0.03 0.00 0.21
Subgroup A 0.02 0.02 0.00 0.13
Subgroup B 0.08 0.05 0.00 0.37
Subgroup C 0.14 0.09 0.00 0.57

the several thousand items. Again, this trend was much more salient in Subgroup C. In Figure 3, the four plots in the
last column present the relationship between the discrimination difference and the difficulty difference. In those plots,
the x-axis indicates the differences between new and original for the a estimates, and the y-axis indicates the differences
between new and original for the b estimates. In general, the differences between two sets of estimates were scattered
around the center area where the lines are crossed (i.e., x= y= 0). The differences in Subgroup A concentrated toward the
center much more strongly than did those in Subgroups B and C. In Subgroup C, the differences dispersed widely over
the area. This nondirectional trend is promising, because negative differences occurring in one set of items might cancel
out positive differences occurring in another set of items.

The summary statistics of two deviance measures (UwMaxDiff and WRMSE) are presented in the lower part of Table 2.
For both measures, the means of Subgroup C were much larger than the cutoff criteria of item misfit (e.g., UwMaxD-
iff> 0.125; WRMSE> 0.1), but the means of Subgroup B were slightly smaller than the cutoff criteria. As expected, the
means of Subgroup A were very close to zero. Under the current practice, items whose UwMaxDiff is greater than 0.125
or whose WRMSE is greater than 0.1 are designated as misfit items. According to the current practice, the proportion of
misfit items was about 10% in the total group, 2% in Subgroup A, 40% in Subgroup B, and 72% in Subgroup C. Because
the current cutoff criteria are rather strict, many items were designated as misfit items in Subgroup C.5 Despite the strict
criteria, the proportion of misfit items was very small in Subgroup A, as expected.

Score-Level Analysis

Figure 4 depicts the averaged conditional scaled score differences between the new conversions and original conversions
over the 4,000+ MST forms separately for each path and for each group, along with the 90% band denoted by dashed
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Figure 3 Item parameter estimates of a and b and difference plots for each of the total and the three subgroups.

lines. The 90% band indicates that 90% of difference values over the 4,000+ forms were located within this range.6 The
solid lines at±1.00 were simply added to enhance the readability of the plots. By design, the possible range of scaled scores
for each path varies due to the difference in form difficulty. For that reason, the x-axis indicating scaled scores was not
identical across the three paths.

As expected, the averaged difference derived using Subgroup A was close to zero for most score points of all paths,
indicating negligible systematic bias. As the narrow 90% band indicates, the variability of the difference across the several
thousand MST forms was very small, indicating consistent small differences among the numerous forms. The same trend
did not emerge for Subgroups B and C. Their 90% bands were much wider, indicating substantial variability among the
MST forms. This trend was much more prominent for the high path. Some forms led to a difference as large as two score
points, mainly at the extremes of the score scale. Across the entire score region, however, the maximum scaled score
differences were generally smaller than the standard error of measurement of the test (e.g., 2.5). The systematic bias was
a concern, particularly for the high path of Subgroups B and C. The averaged difference lines departed from the zero
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line, yielding negative differences at the lower end and positive differences at the upper end. The direction indicates that
the new conversions cause the forms to appear easier at the lower end and more difficult at the upper end, as compared
with the original conversions. The results from the total group were generally comparable to the results from Subgroup A,
because Subgroup A comprised 60% of the total group. The difference pattern associated with the high path was somewhat
different from the one associated with Subgroup A; however, the deviation from the zero line occurring in both Subgroups
B and C was quite large.

Conclusions

Testing programs should be aware of possible statistical biases that may render test scores an unreliable measure for high-
stakes decision making. According to the Standards for Educational and Psychological Testing (American Educational
Research Association, American Psychological Association, & National Council on Measurement in Education, 2014),
bias in measurement refers to the instance in which characteristics of a test result in different meanings of the scores earned
by different subpopulations of test takers. A lack of subpopulation invariance (equating invariance) implies inconsistency
in the relationship between the raw score scale and equated score scale as a function of group memberships (Dorans &
Holland, 2000). If a lack of invariance occurring at the item level results in a lack of invariance at the reported score level,
it is important to understand how a lack of item-level invariance arises and affects score equity across subpopulations.

In this study, comparisons of new and original parameter estimates in the score conversions revealed nontrivial differ-
ences in the reported scores, indicating a lack of subpopulation invariance (more likely score invariance, in this study). In
most score equity assessment analyses, evidence of population dependence suggests the need to reevaluate test assembly
specifications or linking methods. Here, the indicated problem is neither with the test specifications nor with the linking
method. From the subpopulation invariance perspective, we focused solely on the problem related to a group of test takers
exclusively used for item calibration and linking to the item bank score scale.

The current practice uses Subgroup A only as the sample for item calibration and linking. The significant difference
between the conversions detected using the data from Subgroups B and C indicates that failure to include those subgroups
in the operational calibration might bias the resulting linking. This tendency would increase if the proportions of those
subgroups become larger over time. In reality, however, the use of Subgroup A only as a linking sample is defensible due
to not only practical but also psychometric benefits. Use of stable linking samples over time is necessary to produce stable
item parameter estimates and hence to maintain the quality and integrity of the item bank. The three subgroups of the test
are heterogeneous in many aspects (e.g., proficiency, language), and the proportions in Subgroups B and C compared to
Subgroup A are not constant across the administrations. According to a test form assembly plan of the test, item calibration
and linking of new items has to be conducted separately for each administration. Under this circumstance, using all test
takers for linking may add unwanted bias to the item bank due to the instability of linking samples. In addition, not
all subgroups are equally vulnerable to test security violations, which can be a threat to the validity of test scores. In
the past, test security concerns such as cheating were constantly raised with Subgroup C. Inclusion of other subgroups,
particularly Subgroup C, in the linking sample may exacerbate the situation by adding different sources of bias to test
scores. The continuation of the current practice (using Subgroup A only) will be a safe choice for this test to maintain the
stability of the reporting scale over time.

Even so, it is worth noting that there are limitations in generalizing the findings of the current study and the choice of
linking sample to other testing programs. The subpopulation invariance properties depend on the definition of subgroups
and the characteristics of the proficiency being measured. Invariance of a certain subpopulation on a certain test cannot
be generalized to other subpopulations or other tests. In addition, a choice of linking sample could be different depending
on the score region that is of most interest (the entire score scale, or a cut score region).

We suggest a different remedy for enhancing the level of subpopulation invariance of the test. Often a lack of item invari-
ance is a main culprit in the lack of linking invariance at the reported score level. It is useful to conduct statistical checks to
discover which operational items function differently across subgroups after adjusting for subgroup members’ differences
in ability. As shown at the item level, many operational items in the bank yielded nontrivial differences compared to the
item parameter estimates derived using Subgroup C. The apparent difficulty of some items decreased or increased depen-
dent upon subgroup membership. The same trend was noted with the discrimination parameters. It is unrealistic to expect
that the difficulty of all forms of a test can be eventually balanced by using negatively biased items to cancel the effects
of positively biased items in each form. Excluding problematic misfit items from the item bank would be an alternative
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method to reduce statistical bias in the resulting linking function. If a large proportion of items function differently across
the subgroups, however, the removal of those items from the item bank can be another threat to the validity of the test due
to the reduction in the content coverage. Furthermore, this remedy will lead to a practical challenge, such that item writers
must employ greater specificity in item development, resulting in an overall cost increase. From the practical perspective,
excluding misfit items from the equater set for linking will be a better choice than excluding them permanently from the
item bank. In this situation, misfit items would be eligible for scoring, as would other operational items, but they would
not be eligible for use as equaters, thus ensuring the fairness of linking new items to the item bank. Additional empirical
investigation to detect interaction effects between item type and misfit would be worthwhile to enhance the validity of
test score uses.

Using real data on an admission test, we examined score invariance at the item level as well as at the reported score level
in order to assess the quality of score linking. This topic provides another avenue for future investigation to determine
adequate criteria to flag misfit items in practice. The score comparability will be a concern in a situation in which many
items with large misfit exist in the item bank, whereas the automatic test form assembly will be challenged in a situation in
which the item resources are limited due to the rejection of many items, even with moderate misfit. In order to maintain the
quality and integrity of the item bank, an appropriate compromise needs to be made between retaining misfitting items and
rejecting misfitting items, depending upon various factors. The decision on what criteria are appropriate to flag misfitting
items and to remove them permanently from the bank depends on several factors, such as test specifications (content
and statistical), test score use (e.g., admission or certification), test design (i.e., linear, MST, or Computerized Adaptive
Test [CAT]), or item bank size. Literature on this matter is lacking. To offer some practical guidelines to practitioners,
simulation studies would be recommended to examine the extent to which misfit items manifest their effects through the
automatic test form assembly process. Not only the degree of misfit but also the proportion of misfit items in the bank can
be manipulated as study conditions.

Notes

1 We used item misfit as a broader concept than DIF throughout the paper.
2 The “person by item” data matrix accumulated over three testing years was not only extremely large but also very sparse due to

the MST adaptive nature as well as its complicated form assembly design (e.g., 100+ forms per administration). Under this
circumstance, use of any conventional IRT software was not feasible. Thus, we employed the logistic regression model to the
empirical data in order to derive IRT a and b parameter estimates. Note that the new item parameter estimates derived from the
logistic regression model would be an approximation of the IRT–logistic model-based item parameter estimates.

3 It is worth noting that the comparisons conducted in this study were rather different from the conventional comparisons for
assessing the subpopulation invariance property. Because Subgroup A has been used only for the operational item calibration and
linking, the score conversions created using the item parameter estimates derived from the total group were not available in the
actual operational setting. Following the conventional subpopulation invariance approach, however, we compared each subgroup
conversion derived using the new estimates associated with each subgroup to the total group conversion derived using the new
estimates of the total group. We can provide the result upon request.

4 Some relevant information related to those indices can be found in the GENASYS Statistical Manual (IRT: TRANCOMP
COMPARE). We can provide it upon request.

5 We compared the item parameter estimates derived from the logistic regression model to those derived from IRT calibration.
Some difference between them may be due to the use of a different estimation model.

6 The 90% band ranged from the fifth percentile of the difference score to the 95th percentile of the difference score over the
4,000+ MST forms.
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