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In causal matching designs, some control subjects are often left unmatched, and

some covariates are often left unmodeled. This article introduces “rebar,” a

method using high-dimensional modeling to incorporate these commonly dis-

carded data without sacrificing the integrity of the matching design. After

constructing a match, a researcher uses the unmatched control subjects—the

remnant—to fit a machine learning model predicting control potential outcomes

as a function of the full covariate matrix. The resulting predictions in the

matched set are used to adjust the causal estimate to reduce confounding bias.

We present theoretical results to justify the method’s bias-reducing properties

as well as a simulation study that demonstrates them. Additionally, we illustrate

the method in an evaluation of a school-level comprehensive educational reform

program in Arizona.
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1. Introduction: Two Types of Neglected Data

Matching-based observational studies in education sciences often neglect data

from the “remnant” of a match: untreated and unmatched subjects. That is,

researchers will select a set of matched controls that most closely resemble the

treated subjects and discard data from the remnant, the unmatched controls.

Similarly, due to sample size and other modeling limitations, researchers will

typically condition their experimental and observational studies on a small set of

pretreatment covariates that are deemed most relevant to the study—the variables

thought most likely to pose a confounding threat. In many cases, reams of less

relevant data are available, perhaps from state longitudinal data systems or from

other sources. These less relevant covariates are often discarded.

Conducting a causal analysis using only the matched sample and using only

relevant covariates makes good statistical sense. The data from subjects that are
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not part of a match are likely to be distributed differently than data from the

match. The process of matching encourages researchers to focus their anal-

ysis on the region of common support; the remnant is typically outside this

region by construction. Including irrelevant variables into an analysis can

swamp the sample, introduce overfitting or extreme imprecision, and make

impossible common statistical techniques such as ordinary least squares

(OLS) and logistic regression.

But these excluded data—the remnant and ostensibly irrelevant covariates—

may also contain valuable information. Perhaps the distribution of the outcome

conditional on covariates could be estimated with more precision by vastly

increasing the sample size using discarded subjects. Perhaps discarded covariates

are not so irrelevant and capture important baseline differences between treated

and untreated subjects.

This article is an attempt to thread this needle with a new method that we call

“remnant-based residualization” or “rebar.” The idea of rebar is to, on the one

hand, extract as much useful information as possible from the remnant and all

available covariates and, on the other hand, to preserve the most attractive prop-

erties of a good matching design. To implement rebar, we fit a machine learning

prediction model to the unmatched controls—the remnant—predicting their out-

comes in the control condition as a function of the entire set of covariates. Using

this fitted model, we then generate predicted outcomes for the matched sample.

Finally, instead of calculating the effect of the treatment on participants’ out-

comes themselves, we estimate the intervention’s effect on the difference

between participants’ predicted outcomes under the control condition and their

actual outcomes, that is, their prediction residuals—this is “residualization.” The

predictive model need not be correct in any sense or consistent or unbiased for

any particular parameter. It must only yield predictions that are closer, on aver-

age, to control potential outcomes than their mean.

Rebar builds thematically on prior work combining matching with outcome

modeling, such as Rubin (1973) and Ho, Imai, King, and Stuart (2007a), among

others, alongside “doubly robust” estimation (e.g., Kang & Schafer, 2007). Its

most direct antecedents are Rosenbaum (2002a) and Abadie and Imbens (2012),

which suggest forms of residualization for matching estimators, and Middleton

and Aronow (2015), which does the same for weighting estimators. Our contri-

bution to that literature is twofold: First, rebar is remnant-based. We argue here

that residualization is well suited to recovering otherwise lost information from

the remnant. Second, we demonstrate by simulation and example how rebar can

exploit machine learning methods and high-dimensional covariates without com-

promising the classical statistical properties of the match.

Rebar can supplement a wide range of matching analyses and may be used

alongside other outcome models and covariate adjustments.

The following section will review causal matching studies, and Section 3 will

formally introduce rebar. There, we will discuss a possible threat to the validity
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of a matching design that rebar can introduce: If the distribution of outcomes,

conditional on covariates, differs widely enough between the remnant and the

matched set, rebar might increase, rather than decrease bias. We will intro-

duce a diagnostic called “proximal validation” that should detect such patho-

logical cases and suggest ways to tweak the algorithm if a researcher was to

confront one.

Rebar can potentially reduce both the bias and the variance of causal esti-

mates, by modeling otherwise unmodeled variation. That said, this article will

focus its attention on rebar’s bias reducing properties. We will argue with ana-

lytical results (Section 4), a simulation study (Section 5), and an empirical

example (Section 6) that rebar is an effective method for reducing confounding

bias from measured, but unmodeled, confounders in a high-dimensional data set,

without compromising the key advantages of matching.

2. Matching in Observational Studies: Review

In an observational study, let i ¼ 1; :::; n index n subjects, and let Zi denote

subject i’s binary treatment assignment, and Yi subject i’s observed outcome of

interest. Assuming noninterference (Cox, 1958) and following Neyman (1990)

and Rubin (1974), let yTi and yCi denote subject i’s (perhaps counterfactual)

responses were subject i treated and untreated, respectively. Then,

Yi ¼ yTiZi þ yCið1� ZiÞ. Further, let xi be a vector of covariates measured prior

to treatment. The potential outcomes yC and yT define treatment effects ti ¼
yTi � yCi and a causal estimand

tETT ¼ EZ ½tTZ=nT � ¼ tTEZ
nT

; ð1Þ

the expected average effect of the treatment on the treated. The expectation in

Equation 1 is taken conditional on the posited sampling scheme.

In a matching-based observational study, a researcher will create a new cate-

gorical variable, M, considering subjects i and j to be matched to one another if

Mi ¼ Mj. (Subjects i with the property that Mi 6¼ Mj for all i 6¼ j are unmatched.)

Researchers will choose M in such a way that matched subjects have similar

covariate distributions x. Perhaps the most popular approach to matching is to use

propensity scores (Rosenbaum & Rubin, 1983), PrðZ ¼ 1jxÞ, the probability of

being assigned to treatment conditional on covariates x. In a propensity-score

matching design, treated and untreated subjects are grouped into matches M with

approximately equal estimated propensity scores. Other inexact matching tech-

niques measure subjects’ similarity in x using, for example, Mahalanobis dis-

tances (Rubin, 1980) or covariate balance tests (Diamond & Sekhon, 2013).

Matched sets may contain any (positive) number of treated or untreated subjects

(Rosenbaum, 1991).
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Ideally, within any matched set, no subject’s a priori probability of making its

way into the treatment group was larger or smaller than any other’s:

PrðZi ¼ 1jMÞ ¼ PrðZj ¼ 1jMÞ whenever Mi ¼ Mj; ð2Þ

this is perfect matching. Under perfect matching in the sense of Equation 2,

matched comparisons are statistically equivalent to contrasts of treatment and

control conditions in block- or paired-randomized designs (e.g., Braitman &

Rosenbaum, 2002; Hansen, 2011; Rubin, 2008).

A simple matching-based estimator compares average treated and untreated

outcomes within each match. The average difference between treated and

untreated subjects in matched set m is:

tðYm;ZmÞ ¼
YT

mZm

nTm

� YT
mð1� ZmÞ

nCm

;

where Ym and Zm are the vectors of Y and Z, and nTm and nCm are the

numbers of treated and untreated among subjects fi : Mi ¼ mg. Then, a

matching estimator is

t̂M ðYÞ ¼
X

m

wmtmðY ; ZÞ; ð3Þ

where weight wm ¼ nTm=nT . Estimator t̂M ðYÞ is unbiased for tETT under perfect

matching (Equation 2), or, more generally, if the difference in assignment prob-

abilities is uncorrelated with control potential outcomes (Lemma 1 in the Appen-

dix). In practice, neither of these will be exactly true, but researchers can hope for

approximate unbiasedness and explore their design’s sensitivity to unmeasured

(or unmodeled) bias (e.g., Gastwirth, Krieger, & Rosenbaum, 1998; Hosman,

Hansen, & Holland, 2010).

Frequently, subjects who are not sufficiently similar in x to other units are left

unmatched. We will refer to the set of unmatched untreated subjects as the

remnant from a match. Typically, the remnant is discarded. While discarding

data might seem unwise, there is good reason to discard the remnant. Since no

suitable comparisons may be found between subjects in the remnant and treated

subjects, any causal comparisons using the remnant necessarily involve modeling

yC as a function of X. Moreover, the remnant typically occupies a mostly separate

region of the distribution of X than the matched sample—hence its inability to be

matched. Therefore, comparing outcomes from treated subjects with those from

the remnant involves extrapolation, which can be highly sensitive to model

specification. On the other hand, the remnant may contain information that is

useful for modeling yC .

An extensive, occasionally contentious literature discusses variable selection

for propensity score models. This literature begins with Rubin and Thomas, who

advised erring on the side of inclusiveness, striving to exclude only those co-

variates that a consensus of researchers believe to be unrelated to each outcome
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variable (1996, §2.3); Rosenbaum’s (2002b, p. 76) view is similar. Later contri-

butions argued that including variables only weakly related to outcomes may

increase the mean-squared error (MSE) of effect estimation (Austin, 2011;

Brookhart et al., 2006). These additional losses can in principle take the form

of bias, not only variance, even if the MSE-increasing variable was determined in

advance of treatment assignment (Greenland, 2003; Pearl, 2009; Sjölander,

2009). Most recently, Steiner, Cook, Li, and Clark (2015) argued via case study

for including all available covariates, unless “strong substantive theory” (p. 573)

suggests the presence of bias-amplifying covariates covariates (they write that

bias amplification “seems less likely as the size of the covariate set increases”);

ideally, researchers should include covariates from multiple domains, with each

domain including as many covariates as possible. Pimentel, Small, and Rosen-

baum (2016) suggested conducting two analyses, each matching on a different

set of covariates. Methods attempting to limit the MSE penalty by limiting

propensity modeling variables to those that correlate with observed outcomes

have been met with criticism of a different nature: In Rubin’s view, in order to

maximize objectivity, during matching researchers should keep outcome mea-

surements in a virtual locked box, only to emerge once the matching structure

and other study design elements have been determined (Rubin, 2008).

Rebar, the method of this article, is compatible with either attitude to selection

of propensity score variables; our illustration (§6) emphasizes this compatibility

by adhering to the more restrictive of the two schools. Without reference to

outcome associations, we select for inclusion in the propensity model those

variables we felt that a consensus of scholars would be most likely to deem

potential confounders. In this example as in many others, the number of potential

confounders that could be addressed in this way was limited: When p � nT or

p � nC , then the treatment and control samples can ordinarily be separated by a

hyperplane, in the space spanned by X, with the result that common binary

regression methods fail to fit (Agresti, 2013; Zorn, 2005); in the example of

§6, nT ¼ 7. This heightens the need for additional measures for confounder

control, such as rebar.

3. Rebar: Using an Outcome Model to Reduce Bias in a Matching Design

The procedure we recommend is the following:

1. Using the full data set, construct a match M, perhaps based on a subset of

available covariates, thereby dividing the sample into a matched sample and a

remnant.

2. Using units in the remnant, construct an algorithm ŷCð�Þ to predict yC as a function

of the full matrix X.

3. Assess the performance of ŷCð�Þ (see Section 3.1).

4. For all subjects i in the matched sample, use ŷCð�Þ to predict yCi as ŷCi ¼ ŷCðxiÞ.
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5. Construct prediction errors e � Y � ŷCðXÞ for all subjects in the matched sample.

6. Estimate treatment effects in the matched sample, substituting e for Y in the

outcome analysis.

As in Rosenbaum (2002a), the model ŷCð�Þ relating X and yC is an algorithmic

model, rather than a statistical model. That is, it does not estimate parameters of a

probability distribution, but rather generates deterministic predictions of yC when

given a vector x. Since this procedure relies on the residuals of a model fit to Y ,

we will refer to it as residualization.

The predictions ŷCðxÞ bear some similarity to prognostic scores (Hansen,

2008). Prognostic scores, which are analogous to propensity scores, are statistics

that are sufficient for the relationship between yC and x. They are commonly

understood as predictions of yC as a function of x (e.g., Pane, Griffin, McCaffrey,

& Karam, 2013). In fact, much of the intuition behind prognostic scores supports

our use of ŷCðxÞ here, though the prognostic score theory will not play a direct

role in our argument.

Now, as above, define residuals,

e ¼ Y � ŷCðxÞ:

Then, we may define “potential residuals”: eC ¼ yC � ŷCðxÞ and eT ¼ yT � ŷCðxÞ.
Analogously to Y , the observed residuals are e ¼ ZeT þ ð1� ZÞeC . Crucially,

eTi � eCi ¼ ti; ð4Þ

where ti as above is subject i’s treatment effect, yTi � yCi. To see this, note that

yC ¼ ŷCðXÞ þ eC and yT ¼ ŷCðXÞ þ eT ¼ ŷCðXÞ þ eC þ t. The prediction ŷCðxÞ
is based only on pretreatment variables x and not on treatment status Z from

subjects in the matched sample. That being the case, it cannot be affected by

treatment status—we would counterfactually estimate the same ŷCðxÞ for alter-

native realizations of Z in the matched set. Therefore, we can write

eTi � eCi ¼ yTi � ŷCi � ðyTi � ŷCiÞ ¼ yTi � yCi ¼ ti: The treatment effect is man-

ifest entirely in the residuals eC and eT , and not at all in ŷCðxÞ.
The prediction errors e, then, may replace Y in an outcome analysis. In

particular, replace matched-set-specific treatment-control differences in Y ,

tmðY ; ZÞ with differences in e: tmðe; ZÞ. That is, let

tmðe; ZÞ ¼ �em;Z¼1 � �em;Z¼0 ¼ 1

nTm

X
i:Mi¼m

eiZi � 1

nCm

X
i:Mi¼m

eið1� ZiÞ;

then define

t̂rebar ¼
X

m

wmtmðe; ZÞ: ð5Þ

Residualization, then, means revising a matching estimator by replacing out-

comes y with observed value/ŷCð�Þ differences; it aims to rid the dependent

variable of variation that is not informative about treatment effects. Rosenbaum
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(2002a) precedes conventional hypothesis tests with a residualization step, using

observations within the matched sample to fit the prediction model. If one instead

trains one’s prediction algorithm ŷCð�Þ using the remnant of the matching pro-

cedure, the method becomes compatible with common estimation (as well as

hypothesis testing) techniques and may offer larger numbers of observations for

training ŷCð�Þ. Such remnant-based residualization, briefly rebar, is the topic of

this article.

3.1. Cross-Validation and Proximal Validation: Assessing ŷC(�)
Using the remnant to model outcomes as a function of covariates affords the

researcher a great deal of flexibility. Researchers may use data from the rem-

nant—both covariates and outcomes—to attempt a variety of prediction tech-

niques and choose the one which performs best. This is particularly important

when the dimension of X is large, so formulating statistical models based on

theory or first principles is hard or impossible; a variety of methods must be

attempted. A useful tool in this regard is k-fold cross-validation (Efron & Gong, 1983),

which can estimate the predictive accuracy of a model using data from the training

sample. Cross-validation results may be examined for bias, variance, or other

measures of predictive performance, but Proposition 3 (below) suggests a focus on

prediction MSE. In the rebar case, cross-validation using data from the remnant

can estimate MSEremnant ¼ Ei2remnantðŷCi � yCiÞ2 or R2
remnant ¼ 1�MSEremnant=

VarremnantðyCÞ.1 These results can be used both to pick a modeling technique and

to pick tuning parameters. After modeling choices have been made, researchers

arrive at an estimated prediction function ŷCð�Þ : Rp ! R that generates predic-

tions ŷCðXÞ as a function of covariates X.

Cross-validation estimates an algorithm’s predictive performance when

applied to new cases drawn from the same population as the training set.

Of course, this is manifestly not the case for rebar. Subjects in the matched

sample are likely to be different from those in the remnant; a model fit and

cross-validated in the remnant may not perform as well in the matched

sample as that validation would suggest. Write SM to denote the matched

sample, that is, fi : 9j 6¼ is:t:Mi ¼ Mjg. One expects MSEremnant to be less than

MSEM ¼ f
P

i2SM
ðŷCi � yCiÞ2g=jSM j, and R2

remnant to be less than R2
M . This is

unfortunate but far from fatal—the more information a prediction algorithm can

learn about the matched sample from the remnant, the better rebar can reinforce

a causal design. Perfection is not necessary.

One does not expect MSEM to exceed f
P

i2SM
ðyCi � yC SM

Þ2g=jSM j, although

this can occur. In such cases, rebar could do more harm than good. Even with

perfect matching in the sense of Equation 2, it could diminish efficiency, and if

Equation 2 is only approximately true, rebar could increase bias as well.
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Fortunately, simple diagnostic tools can identify such pathological cases.

Further, in many of those cases, there are simple modifications to rebar that will

improve its performance. To illustrate a diagnostic that we call proximal valida-

tion, consider full matching within calipers of width c0 in terms of a continuous

variable or index, such as the propensity score. All control subjects within c0 of a

treated subject are matched, with remaining controls constituting the remnant.

How well does an algorithm ŷCð�Þ fit in the remnant perform in the matched

sample? To gauge ŷCð�Þ’s performance, a researcher will subdivide the remnant

into two groups by using caliper c1 > c0 to construct a new, larger matched set.

The cases in the remnant that are matched under with the more permissive caliper

c1 are “proximal” cases—whether they are matched depends on the choice of

caliper. The cases that remain unmatched even under c1 are “distal” cases,

unmatchable under either scheme. Proximal validation refits ŷCð�Þ using only

data from subjects in the distal remnant, then examines its performance on the

proximal portion of the remnant. If ŷCð�Þ performs poorly when extrapolated

from the remnant to the matched set, it likely also performs poorly when extra-

polated from distal cases to proximal cases within the remnant. In other words,

proximal validation is a way to gauge the performance of ŷCð�Þ when its results

are extrapolated in a way analogous to a matching design.

As compared to estimating MSEM with rebar’s MSE on the control group,

proximal validation permits the analyst to keep matched subjects’ outcomes in

Rubin’s (2008) virtual locked box, even as the rebar model is being validated and

improved. Proximal validation is not limited to propensity-score full-matching

designs with calipers; it may be used with any matching design that involves a

quantitative restriction on allowable matches. The procedure, in general, will be

to slightly relax that restriction, choose a second, more expansive match, and use

the results to divide the remnant into proximal and distal portions.

If ŷCð�Þ’s performance in proximal validation is discernibly worse than its

cross-validation performance, the rebar routine should be modified. Suppose

the mechanism selecting untreated units between the remnant and the matched

sample is matching based on an estimated propensity score. In this case,

the estimated propensity score itself can be incorporated into the prediction

model ŷCð�Þ—for instance, by including interaction terms between the columns

of X and p̂.

Another useful diagnostic test is to check covariate balance on the predictions

ŷCðXÞ. Since ŷCðXÞ is a covariate, a successful matching design will ensure that

its distributions are similar among treated and matched untreated subjects. Even

though ŷCðXÞ is a constructed variable, because the model behind it is fit without

reference to the matched sample, balance on it can be tested in the same ways

balance on manifest variables can be tested. If a balance test rejects the hypoth-

esis of ŷCðXÞ balance, researchers may revise either the prediction algorithm

ŷCð�Þ, the matching scheme, or both.
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4. Rebar’s Effects on Bias

To see the potential of rebar to reduce the bias of a matching estimator, note

that the rebar estimator t̂rebar can be expressed as the difference in two estimated

treatment effects:

t̂rebar ¼ t̂M ðYÞ � t̂M ðŷCÞ; ð6Þ

the matching estimator of the effect of the treatment on Y , minus an estimate of

the effect of the treatment on ŷCðXÞ. To see this, note that

tmðe; ZÞ ¼ 1

nTm

X
i:Mi¼m

eiZi � 1

nCm

X
i:Mi¼m

eið1� ZiÞ

¼ 1

nTm

X
i:Mi¼m

YiZi � 1

nCm

X
i:Mi¼m

Yið1� ZiÞ
 !

� 1

nTm

X
i:Mi¼m

ŷCiZi � 1

nCm

X
i:Mi¼m

ŷCið1� ZiÞ
 !

� DYm � DŷCm :

The expression in Equation 6 follows by taking weighted averages of DYm and

DŷCm. Of course, the treatment cannot have an effect on ŷCðXÞ, which is a

function of pretreatment covariates and a separate sample; any observed “effect”

of the treatment on ŷCðXÞ must be the result of covariate imbalance.

Two properties of the rebar estimate follow immediately. First,

Proposition 1:

biasðt̂rebarÞ ¼ biasðt̂M ðYÞÞ � t̂M ðŷCÞ:

Viewing t̂M ðŷCÞ as an estimate of t̂rebar’s bias, the effect of residualization is

to subtract from the matching estimator an estimate of its bias. (As with other

bias correction methods, it backfires when the bias is poorly estimated, an even-

tuality proximal validation aims to detect.)

Next,

Proposition 2: Under perfect matching (2), t̂rebar is unbiased for tETT.

This follows since, when treatment is essentially randomized within matches,

Et̂MðYÞ ¼ tETT and Et̂MðŷCÞ ¼ 0. So in a successful matching design, rebar

does not introduce bias. Propositions 1 and 2 hold for any effect estimator t̂ð�Þ
that is linear in outcomes Y , that is, for which Equation 6 holds.

4.1. An Upper Bound on the Bias of the Rebar Estimator

The closer, on average, predictions ŷðxÞ are to control potential outcomes in

the matched set, the smaller the bias of t̂rebar must be.
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Proposition 3: In a matching design, the squared bias of t̂rebar can be bounded as

biasðt̂rebarÞ2 � MSEM � Cðn; nT ; nCÞ;

where MSEM ¼
P

i2matchedðŷCi � yCiÞ2=nM , nM is the number of subjects in the

matched set, and

Cðn; nT ; nCÞ ¼ n

n2
T

X
m

ðnCm þ nTmÞmax 1;
nTm

nCm

� �2

:

Equivalently,

biasðt̂rebarÞ
SDðyCÞ

� �2

� ð1� R2
M Þ � Cðn; nT ; nCÞ;

where SDðyCÞ is the sample standard deviation of yC in the matched set

and R2
M is the prediction R2 in the matched set, 1�

P
i2matchedðyCi � ŷCiÞ2=P

i2matchedðyCi � �yCmatchedÞ2. (The proof can be found in the Appendix.)

Remark 1: In a pair-matching design Cðn; nT ; nCÞ ¼ 4.

Therefore, the bias of t̂rebar can be bounded as a function of the average

squared error of the prediction algorithm in the matched set. Were it possible

to perfectly predict all subjects’ yC values, their treatment effects could be

estimated unbiasedly (exactly, in fact). More broadly, Proposition 3 suggests

that prediction algorithms need not be based on a correct model to yield estimates

with low bias. They must merely be accurate, on average. This, in turn, suggests

that machine learning algorithms, whose central purpose tends to be prediction,

can serve well as residualization mechanisms.

In practice, the bounds in Proposition 3 are unobservable, since they involve

control potential outcomes in the matched set, which are only observable for the

matched controls. Further, since the prediction algorithm ŷCð�Þ is fit in the rem-

nant, the bounds are not directly estimable without strong assumptions. But based

on cross-validation estimates of MSEremnant and R2
remnant, and an assessment of

ŷCð�Þ’s sensitivity to extrapolation from proximal validation, researchers can

formulate reasonable guesses as to the values of MSEM and R2
M .

Proposition 3 assumed nothing about subjects’ respective probabilities of

treatment assignment within matches. In particular, it allowed for a situation in

which some subjects may be assigned to treatment with probability 1—this is a

rather extreme violation of the stratified randomization assumption (Equation 2).

Under weak assumptions about the distribution of treatment assignments, the

bound in Proposition 3 may be considerably tightened. For instance, Rosenbaum

(2002b) suggests a general model for sensitivity analysis for observational stud-

ies: the assumption that for some G � 1, if Mi ¼ Mj—that is, i and j are in the

same matched set—and Pi ¼ PrðZi ¼ 1Þ and Pj ¼ PrðZj ¼ 1Þ, then

Rebar: Reinforcing a Matching Estimator
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1

G
� Pið1� PjÞ

Pjð1� PiÞ
� G: ð7Þ

That is, for matched subjects i and j, the ratio of the odds that i is selected for

treatment to the odds that j is selected is bounded by 1=G and G. Proposition 4

uses the framework in Equation 7 to tighten the bound in Proposition 3 in the

simple case of a matched-pair design; an analogous result may hold for more

complex designs, but we leave such an extension for future work.

Proposition 4: In a pair-matching design, if Equation 7 holds for some G � 1, then

biasðt̂rebarÞ2 � MSEM � 4
G1=2 � 1

G1=2 þ 1

� �
:

Equivalently,

biasðt̂rebarÞ
SDðyCÞ

� �2

� ð1� R2
M Þ � 4

G1=2 � 1

G1=2 þ 1

� �
:

(The proof may be found in the Appendix.)

Remark 2: For G ¼ 6, which Rosenbaum (2002b, p. 114) characterized as “a high

degree of insensitivity to hidden bias,” 4 G1=2�1

G1=2þ1

� �
	 1:7: That is, a very weak

assumption about the balance of treatment assignment probabilities in a matched

pair design constricts the bound in Proposition 3 by more than half. If G ¼ 3, the

multiplier on ð1� R2
M Þ is approximately one. On the other hand, as G!1, the

multiplier approaches 4, as in Remark 1.

Propositions 3 and 4 show that by using data from the remnant and covariate

matrix X to predict potential outcomes yC, researchers can substantially bound

the bias of their treatment effect estimates. The closer the estimates are to the true

values, on average, the lower the bound on the bias—the algorithm ŷCð�Þ need not

be correct in any sense, only predictive.

5. A Simulation Study

This section presents a simulation study with two principal goals: to demon-

strate rebar’s potential to improve upon matching estimators under a variety of

circumstances, and rebar’s ability to interact with, and improve upon, a variety of

matching designs and estimators. A second, smaller study examines rebar’s

performance under pathological circumstances.

5.1. Data-Generating Models

The study imagined a researcher estimating the effect of a treatment Z on an

outcome Y , using a sample of n ¼ 400 subjects, in the presence of p ¼ 600
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covariates. While all of the covariates are potential confounders, the simulated

researcher knows that five of the covariates—the first five columns of covariate

matrix X—predict both yC and Z; prior background knowledge provides little

guidance regarding the remaining 595.

The outcomes yC were generated as a linear function of a multivariate normal

vector Xi:

yCi ¼ 1Txi;1:5 þ bTxi;6:600 þ Ei; ð8Þ

where the coefficients b were drawn from an exponential distribution with a rate

of l ¼ 5 and E is drawn from a standard normal distribution. A “treated” group

was selected according to probabilities

PrðZi ¼ 1jxiÞ ¼ logit�1ða
 þ 1Txi;1:5 þ kbTxi;6:600Þ: ð9Þ

That is, the log odds of treatment assignment were linear in covariates. We chose

the parameter a
 in such a way that, on average, nT ¼ 50 were treated. As in

Equation 8, the coefficients for the first five columns of X in Equation 9 were all

set equal to 1. The coefficients of the other 595 columns in Equation 9 were the

same as in Equation 8, multiplied by a factor k which varied between simulation

runs.

The factor k controlled the amount of confounding after matching. When

k ¼ 0, only the first five columns of X predict Z, so estimates from a match

based on those covariates should be approximately unconfounded. When k > 0,

every column of X predicts both Z and yC , and therefore confounds matching

estimators that use only the first five columns of X. As k increases, so does the

magnitude of the bias due to confounding after the match; the three values we

assigned, k ¼0, .1, .5, roughly correspond to zero, low, and high unmatched

confounding.

A second parameter, r, controlled the covariance structure of X, effectively

controlling the ease of predicting yC as a function of X. In this simulation, r ¼0,

.004, and .05. The rows of X were generated from a p ¼ 600-dimensional multi-

variate normal distribution, with a random covariance matrix whose eigenvalues

we specified (it was generated with R code of Varadhan [2008]). We set these

eigenvalues evk , k ¼ 1; :::;600, to decay exponentially: evk ¼ expf�rkg. When

r ¼ 0, all eigenvalues were unity, and the columns of X are uncorrelated. As r
increases, the columns of X became increasingly correlated: There is low-

dimensional structure in X. Prediction algorithms typically perform better when

high-dimensional X can be summarized with a low-dimensional structure. Dur-

ing the simulation, we recorded the estimated prediction R2 from the cross-

validation, and models fit to X with higher r fit substantially better.

Covariates X and coefficients b varied between scenarios (one random matrix

x for each value of r and one random vector � for each value of k) but were held

fixed across simulation runs within scenarios. Outcomes Y and treatment

Rebar: Reinforcing a Matching Estimator
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assignments Z were generated anew in each simulation run. Each run, all 10

effect estimates were computed using the same data.

5.2. Treatment-Effect Estimators

In each round of the simulation, we constructed four matches. Each of these

matches, in turn, gave rise to two or three treatment-effect estimates; all in all, we

compared 10 different estimators. These are summarized in Table 1.

Optimal pair matching with propensity scores from logistic regression. We esti-

mated propensity scores using logistic regression, with Z regressed on the match-

ing covariates, the first five columns of X. Using these propensity scores, we

constructed an optimal pair match without replacement—each treated subject

was matched to a unique control subject in such a way that the total distance in

propensity scores between matched subjects was minimized. (We used the

optmatch package in R [Hansen & Klopfer, 2006] and chose pair matching

strictly for ease of interpretation; the application of §6 uses optmatch to pair each

treatment group member to 1–4 controls.) We first estimated treatment effects

via Equation 3, the average difference in Y between treated subjects and their

matched controls, without adjustment from an outcome model.

Next, we computed rebar-adjusted estimates. With the remnant from the pair

match as a training set, we used a combination of lasso (Tibshirani, 1996) and

random forests (Breiman, 2001) to construct ŷCð�Þ, a predictor of control potential

outcomes yC as a function of the entire covariate matrix X. We implemented these in

R with the glmnet and randomForest packages (Friedman, Hastie, &

Tibshirani, 2010; Liaw & Wiener, 2002) and tuned and combined them with

SuperLearner package (Polley & van der Laan, 2014) to minimize MSE. As

TABLE 1.

Summary of the Matching and Estimation Methods in the Simulation Study

Matching Method

Propensity

Score Model

Matching

Variables Adjustment Method(s)

Optimal pair match Logit X1:5 Rebar

Nearest neighbor Logit X1:5 Bias adjusted

Bias adjusted þ rebar

Coarsened exact match N/A X1:5 Within-sample OLS

Within-sample OLS þ rebar

Optimal pair match SuperLearner X Rebar

Note. X is a matrix of simulated covariates; subscripts denote selected columns. OLS¼ ordinary least

squares.
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outlined in Section 3, we used the fitted ŷCð�Þ to construct predictions ŷC and pre-

diction errors e in the matched set and estimated the treatment effect as in Equation 5.

Nearest-neighbor match with propensity scores from logistic regression. Using

the same propensity scores as in the optimal pair match, we constructed a

“nearest-neighbor” match, as proposed by Abadie and Imbens (2006), and imple-

mented by the Matching package in R (Sekhon, 2011). We used the “ATT”

estimator of Abadie and Imbens (2006) to estimate the average of the differences

between each treated subject’s outcome and the average outcome of its matched

controls. Next, we computed the “bias-adjusted” estimator suggested in Abadie

and Imbens (2012), using an OLS outcome model fit to the matched sample.2

Since OLS cannot be fit when the number of covariates exceeds the sample

size, we used only the matching covariates for the bias adjustment. Finally, we

combined within-sample bias adjustment with rebar. As in optimal pair match-

ing, we fit the lasso/random forest/SuperLearner algorithm to data from the

remnant from the nearest-neighbor match, predicting yC as a function of the

entire matrix X, and computed ŷC and e in the matched set. To estimate effects

with both within-sample and rebar adjustment, we substituted e for Y in the

bias-adjusted estimator.

Coarsened exact matching. We constructed a coarsened exact match, as

described in Iacus, King, and Porro (2011) and implemented in R with the cem

package (Iacus, King, & Porro, 2015). We coarsened each of the first five

columns of X with five bins, matched exactly on the coarsened covariates, and

estimated treatment effects via Equation 3. Next, we constructed a within-

sample-adjusted estimator along the lines of Ho, Imai, King, and Stuart

(2007b): Using only data from the matched sample, we regressed Y on Z and

the first five columns of X and recorded the coefficient on Z. Finally, we com-

bined the within-sample adjustment with rebar. As in the optimal pair and nearest

neighbor analyses, we used data from the remnant to fit a lasso/random forest/

SuperLearner algorithm predicting yC as a function of the entire X and generated

predictions ŷC and errors e in the matched set. To estimate effects, we regressed e

on Z and the first five columns of X and recorded the coefficient for Z.

Optimal pair matching with propensity scores from SuperLearner. The first three

matching designs, optimal pair matching, nearest-neighbor matching, and coar-

sened exact matching, used only the first five columns of X—the known

confounders. However, when presented with a set of p ¼ 600 covariates, many

real-world researchers would not stop at the first five. Instead, they would try to

incorporate additional covariates into their matches. The resulting iterative process

of matching and balance checking is difficult or impossible to simulate; however,

there are a number of automatic machine learning algorithms for estimating prob-

abilities in high-dimensional spaces (e.g., Lee, Lessler, & Stuart, 2010; McCaffrey

Rebar: Reinforcing a Matching Estimator
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et al., 2013). In this vein, in parallel to the rebar prediction model ŷCð�Þ, we

estimated high-dimensional propensity scores with random forest classification

and lasso logistic regression, tuned and combined via the SuperLearner. We used

these high-dimensional propensity scores to construct a second optimal pair match.

As in the conventional pair match, we estimated effects using Equation 3 and,

fitting algorithm ŷCð�Þ to the remnant, we computed a rebar estimate.

5.3. Simulation Results

Figure 1 shows the results of the simulation, after 1,000 simulation runs. Each

row of Figure 1 corresponds to a value of k; in the first row, k ¼ 0, corresponding
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FIGURE 1. Boxplots of treatment effect estimates from 1,000 simulation runs under the

data-generating models in Section 5.1. The true treatment effect of zero is indicated by a

horizontal dotted line. The estimated treatment effects were divided by the standard devia-

tion of yC. The matching and outcome adjustment methods are described in Section 5.2 and

Table 1. The nine simulation scenarios, described in Section 5.1, are arranged in a matrix,

with rows for k ¼ 0, .1, and .5, and columns for r ¼ 0, .004, and .05. The R2
remnant values

listed are averages of prediction R2 for ŷC(�) estimated using cross-validation within the

remnant.
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to approximately no confounding from the covariates not used in the match, in

the second row k ¼ .1, corresponding to moderate confounding from the left-

out covariates, and in the third row k ¼ .5, corresponding to a high degree of

confounding. Each column of Figure 1 corresponds to a different value of r: 0,

.004, and .05. These correspond to data sets increasingly amenable to prediction

algorithms; the top of the figure lists the average cross-validation R2
remnant of

ŷCð�Þ fit in the remnant from the pair match in the k ¼ 0 case (R2 values for

other models and other values for k were similar). Each panel of Figure 1

displays boxplots of the 10 treatment effect estimates, divided by the standard

deviation of yC .

A number of patterns are apparent. When k ¼ 0, the covariates not used in

the match do not pose a confounding threat, and all the estimators are

unbiased. Both within-sample bias reduction and rebar reduce the variance

of the effect estimates, subtly for the first two columns and dramatically in

the third. As k, or confounding from the nonmatching covariates, increases,

all effect estimates become increasingly biased. However, rebar substantially

reduces the bias. Rebar is similarly effective when used on its own and when

used in conjunction with within-sample outcome model adjustments—that is,

rebar has quite a bit to add even after other adjustments. Unsurprisingly,

rebar’s performance, both in terms of bias and variance reduction, improves

with higher R2
remnant—the closer, on average, the predictions ŷCðXÞ are to yC

in the remnant (and, presumably, in the matched set, too), the more good

rebar can do.

The high-dimensional propensity score match demonstrates that rebar can

improve upon designs that incorporate all of X.

This simulation study showed rebar’s potential: Rebar can substantially

reduce both the bias and the variance of a matching estimator, especially in

the presence of high-dimensional confounding and with an accurate predic-

tion algorithm.

5.4. Rebar’s Performance Under Nonlinearity

We conducted a parallel simulation study to investigate rebar’s performance

when the distribution of yC , conditional on X , differs greatly between the rem-

nant and the matched set. Since it is the match that determines which subjects are

in the matched set and which are in the remnant, and the data generation occurs

prior to the match, we could not set the distribution of yC in the remnant exactly.

Instead, we let the data-generating model for yC vary with PrðZ ¼ 1Þ, subjects’

probabilities of being treated. To do so, we modified both the outcome model

(Equation 8) and the treatment model (Equation 9). To select treated subjects, we

chose those 2nT with the highest linear predictors, as defined in Equation 9 and

assigned half to treatment. That left an “untreatable” group of subjects with

PrðZ ¼ 1Þ ¼ 0. For the untreatable subjects, yC was generated as in Equation 8.
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For the 2nT subjects with PrðZ ¼ 1Þ ¼ 0:5, the outcomes were generated as

xb
 � xb
 þ E, where b
 is the concatenation of a vector of five 1s with b and

xb
 is the sample average of all subjects’ xb
. Finally, we transformed yC to�yC ,

so that the omitted variable bias would be positive, as in Section 5.3. In this study,

the relationship between x and yC for subjects who could be treated was precisely

the opposite of the relationship for subjects who could not. The worry here is that

ŷCð�Þ will be severely misleading, if it is fit in the remnant and extrapolated to the

matched set.

The simulation results suggest that this is, indeed, a concern—in some cases.

Figure 2 shows the results of rebar adjustment to optimal pair matching using two

different rebar algorithms ŷCð�Þ: lasso, which depends on a linear model, and

random forest, which does not. Rebar adjustment with lasso worsened the bias

and variance of the matching estimator, slightly for lower R2
remnant values and

considerably for higher R2
remnant. On the other hand, rebar using random forests,

which achieved much lower R2
remnant values across the board, did little to no

damage to the matching estimator. Apparently, the matching routines were

unable, in general, to perfectly identify the treatable control subjects with

PrðZ ¼ 1Þ ¼ 0:5, so both the remnant and the matched set contained subjects

with outcomes drawn from both outcome models. While the structure of the
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FIGURE 2. Boxplots of standardized treatment effect estimates from 500 simulation runs

under the data-generating models in Section 5.4. The true treatment effect, indicated by a

horizontal dotted line, is zero. The methods are optimal pair matching (propensity-score

matching) and rebar-adjusted optimal pair matching, with yC predicted using lasso or

random forests. The four simulation scenarios are arranged in a matrix, with rows for k ¼
0 and .5 and columns for r ¼ 0 and .05. covariates. The R2

remnant values listed are averages

of prediction R2 for ŷC(�) estimated using cross-validation within the remnant for lasso

and random forest.
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linear model allowed lasso to maintain a close fit to the data—with unfortunate

consequences for rebar—random forest’s sensitivity to nonlinearity led to worse

model fit in the remnant, and better performance in rebar. That said, it is unclear

whether or to what extent these phenomena would extend to other data sets or

data-generating processes.

In summary, under data-generating models combining nonlinear responses

with limited propensity score overlap, rebar’s performance depended on the

prediction algorithm. In this particular case, rebar adjustment via lasso increased

the MSE of the matching estimator, while rebar adjustment via random forest

caused little to no harm; general recommendations for the choice of ŷCð:Þ will

require further research. Regardless, the increase in MSE in the worst case was

smaller than the improvement rebar offers under less pathological scenarios.

6. Example Data Analysis: Evaluating Board Exam Systems (BES)

BES comprise a class of similar comprehensive educational reforms. BES are

packages that a school can adopt: sets of rigorous curricula for all academic

courses, corresponding sets of end-of-course exams, professional development

and instructional guidance for teachers, and systems of assistance for struggling

students. Though uncommon in the United States, BES are common around the

world, and several research studies have suggested that they improve student

achievement (Bishop, 1997, 2000; Collier & Millimet, 2009).

Seven Arizona High Schools began implementing BES programs in the 2012–

2013 school year: either the ACT Quality Core program or the Cambridge

program. A pilot study sought to evaluate the results after 1 year, in part by

estimating the effects of the BES programs on 10th-graders’ end-of-year stan-

dardized test scores—specifically, the Arizona Instrument to Measure Standards

or AIMS. Here, we present a simplified version of the study’s estimate of the

effect of BES on school-average 10th-grade AIMS Reading scores. The analysis

we present here is intended to illustrate the rebar method, not to evaluate the

effectiveness of BES programs in Arizona.

For Arizona high schools in our sample, we had 4 years of pretreatment data.

That is, data from four cohorts of students who preceded the adoption of BES—

students set to graduate in 2011 through 2014. For each cohort, we have the total

enrollment, the percents of students who are male, White, Black, Hispanic, other

race, or ethnicity, receiving free or reduced-price lunches (FRL), special educa-

tion (SPED), and English language learners, in addition to average 8th-grade and

10th-grade AIMS scores on writing, reading, math, and science. We also have the

percentage of students in each cohort with missing AIMS English and Math

scores. From these data, we computed composite scores by averaging the four

components, and school “trends” for 10th-grade math and reading scores: OLS

slope estimates from the school-level regressions of school mean AIMS scores

on a linear time variable. From the U.S. Center for Education Statistics Common
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Core of Data (2013), we have a categorization of each school into one of 10

categories of urbanicity, ranging from urban to remote rural. All in all, there are

90 covariates, for a total of 509 high schools.

6.1. A Propensity Score Match

To estimate effects, then, we began with a propensity score match. Since there

are only nT ¼ 7 intervention schools, logistic regression with all 90 predictors

was not feasible. Instead, our propensity score model incorporated only a small

subset of the covariates, those that we believed would be most recognizable as

potential confounders to the end audience of the research. Specifically, we

regressed schools’ BES status on the percent FRL, White, SPED, Hispanic, and

average and percent missing 8th- and 10th-grade AIMS scores for students in the

cohort immediately prior to BES implementation (those set to graduate in 2014)

along with estimated school trends in English and Math AIMS scores. Since this

still gave more predictors than there were observations in the treatment group, we

expected that classical logistic regression would fail to fit, so we instead used the

Bayesian variant implemented in the arm library for R (Gelman, Jakulin, Pittau,

& Su, 2008; Gelman & Su, 2015).

We constructed optimal propensity-score matches, using the R optmatch
package (Hansen& Klopfer, 2006) to minimize paired differences in the

estimated log odds of assignment to treatment. Given the relatively large

pool of available comparison schools, we disallowed the sharing of controls,

as in nearest-neighbor matching or full matching, while permitting multiple

matches per treatment schools. Rather than leaving the maximum number of

matched comparisons per treatment unspecified, we restricted it to 4, a

restriction that reduces the overall information content of the matched sam-

ple (Cinar & Zubizarreta, 2016) only modestly relative to matching without

an upper limit on the number of matched controls per treatment. (Each

matched set m makes a contribution to effective sample size comparable to

hðnTm; nCmÞ matched pairs, where hðnTm; nCmÞ ¼ 1
2
ðn�1

Tm þ n�1
CmÞ

� ��1
is the har-

monic mean of nTm and nCm [Cinar & Zubizarreta, 2016; Hansen, 2011]. For

nTm ¼ 1 and nCm � 1, this contribution varies between 1 and 2, with

hð1; 4Þ ¼ 1:6.) If this left plausible matches for some treatment-group

schools on the table, these eligible but unused comparisons would enhance

the value of proximal validation, improving its ability to detect shortcomings

of the extrapolation that underlies rebar.

Table 2 displays covariate balance for the variables in the propensity score

model—standardized differences in covariate means and Z-scores—before and

after matching. Covariate balance was assessed with the xBalance routine

in the RItools package from R (Bowers, Fredrickson, & Hansen, 2010).

The xBalance routine also returns the results of omnibus balance tests, for

the full sample and the matched sample. They returned p values of .04 and .71,
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respectively. Evidently, the propensity score match controlled some covariate

imbalance that was in the full sample.

6.2. Rebar to Adjust the Match

6.2.1. Estimating ŷCð�Þ. After setting aside the treated schools and their untreated

matches, there were 483 schools in the remnant. We considered four different

predictive modeling strategies to construct ŷCð�Þ: the lasso, random forests, ridge

regression (Hoerl & Kennard, 1970; Venables & Ripley, 2002), and linear regres-

sion with weak priors for regularization (Gelman & Su, 2015), along with grand-

mean prediction, all combined via the SuperLearner. The SuperLearner uses

cross-validation to estimate the predictive accuracy (measured in prediction

MSE) of each of the modeling algorithms in a library. Then, it constructs an

“ensemble learner,” predicting new values as a weighted average of the predic-

tions from each of the algorithms, with the weights determined by the cross-

validation results. These results are displayed in (Gelman and Su, 2015), along

with grand-mean prediction, all combined via the SuperLearner. The SuperLear-

ner uses cross-validation to estimate the prediction (Table 3). Apparently, the

TABLE 2.

Standardized Differences Testing Balance on Covariates From the Propensity Score

Model and Predictions ŷCðXÞ in the Entire Sample of Schools and for the Matched

Sample, Conducted with the xBalance Procedure

Standard Difference

Unmatched Matched

% FRL 1.06** .08

% White �0.97* .02

% Sp. Ed. �0.01 �.19

% Hispanic 1.34*** .03

Urban 0.24 .13

Average AIMS writing (8th) 0.31 �.10

Average AIMS reading (8th) 0.42 �.18

Average AIMS Math (8th) 0.79* .06

Average AIMS reading (10th) �0.55 .14

Average AIMS Math (10th) �0.27 .05

Average AIMS writing (10th) �0.46 �.01

Trend: AIMS English (10th) �0.37 .11

Trend: AIMS Math (10th) �0.42 .10

%AIMS English missing �0.27 �.17

%AIMS Math missing �0.20 �.22

ŷCðxÞ �0.05 .16

Note. FRLs ¼ free or reduced-price lunches; AIMS ¼ Arizona Instrument to Measure Standards.
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random forest dominates the other algorithms, with a prediction R2 of .66, to the

extent that its ensemble weight is 1.

6.2.2. Proximal validation. To gauge how model trained on the remnant might

perform on the matched sample, we conducted proximal validation, described in

Section 3.1. First, we constructed a second match, mbig, identical to the first, but

allowing each treated subject to match at most 10 control subjects. This resulted

in
P

i1½jfj:mbig

j
¼m

big

i
gj¼1� ¼ 452 unmatchable distal schools as a training set,

and
P

ið1½jfj:mbig

j
¼m

big

i
gj¼1� � 1½jfj:mj¼m

big

i
gj¼1�Þ ¼ 27 proximal schools as a testing

set. We then trained the SuperLearner on the distal schools and computed its

prediction accuracy against the proximal schools. The results are displayed in

Figure 3. Somewhat surprisingly, the prediction models performed better when

trained on the distal schools and tested on the proximal schools than when both

the training and testing sets were the entire remnant, as in cross-validation. This

may be a result of sampling error or the fact that the distal set contains a number

of outlier schools whose AIMS reading scores are particularly hard to predict.

These schools will increase the estimated MSE reported by any validation

method that includes them in its testing set. If there are no outlier schools in the

proximal set, proximal validation will not suffer from this difficulty.

As an additional check of the identification assumption (Equation 2) for match

m, we tested balance on ŷCðXÞ, in the same way as for other covariates: we tested

if EŷT
CZ=nT ¼ EŷT

Cð1� ZÞ=nC . The resulting p value from the xBalance
routine was .46; the balance test on ŷCðXÞ does not falsify Equation 2.

6.2.3. Estimating treatment effects. Finally, we calculated both tM , the matching

estimator using Y , and t̂rebar, the rebar matching estimator, along with HC3

standard errors, shown in Table 4. To estimate p values, we conducted permuta-

tion tests, permuting treatment indicators within matched sets and recomputing

the estimates. Ninety-five percent confidence intervals were estimated by invert-

ing the permutation test, as in Rosenbaum (2002a). Neither the conventional

TABLE 3.

Cross-Validation RMSE, R2, and Ensemble Learner Weight From the SuperLearner. The

Seven Models Displayed Are the Lasso, Random Forest, a Linear Model With Weak Priors

on the Coefficients (“BayesLM”), Ridge Regression, and a Grand Mean Model

Measure LASSO Random_Forest BayesLM Ridge Mean

RMSE 19.18 15.73 44.92 19.57 26.89

R2 0.49 0.66 �1.79 0.47 �0.00

Coefficient 0.00 1.00 0.00 0.00 0.00

Note. RMSE ¼ root mean squared error.
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method nor rebar detected a statistically significant effect. However, the rebar

estimate resulted in a confidence interval with less than half the width of the

conventional interval.

An anonymous reviewer suggested a post hoc assessment of ŷCð�Þ’s fit: esti-

mating R2
M by comparing yC from within the match to corresponding predictions

ŷC . The result was R̂
2

M ¼ .72.

7. Conclusion

In structural engineering, rebar abbreviates “reinforcement bar,” a metal beam

that is embedded in concrete. Concrete is resistant to compression, whereas rebar
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FIGURE 3. SuperLearner prediction accuracy: predictions (ŷC(X)) as a function of real

test scores. (A) The results of the SuperLearner fit to, and tested against, the entire

remnant. (B) The proximal validation results: the performance of the SuperLearner fit

in the distal portion of the remnant and tested against the proximal portion. The figures

also contain the y ¼ x line for comparison.

TABLE 4.

The Average Treatment Effect on the Treated tETT , Along With Regression Standard

Errors and Permutational p Values and 95% CIs, Estimated With Conventional

Propensity-Score Matching, as Described in Section 6.1, and With Rebar

Method Estimate SE p Value 95% CI

PSM 5.91 4.98 0.48 (�10.4, 22.53)

Rebar 1.82 3.65 0.57 (�5.41, 12.17)

Note. CI ¼ confidence interval; PSM ¼ propensity-score matching.
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is resistant to tension; the combination of the two materials, rebar and concrete, is

robust to a variety of threats. Similarly, the rebar method of this article comple-

ments the use of matching for confounder control. Whereas matching typically

focuses primarily on possible confounders’ associations with the treatment vari-

able and typically leaves some subjects unmatched, rebar addresses bias by using

the the remnant from matching, the unmatched controls, to model possible con-

founders’ associations with outcomes. The predictions that result, ŷCðxÞ, extract

information about subjects’ control potential outcomes from the covariates X.

The process of residualizing, that is, subtracting predictions ŷCðxÞ from outcomes

Y , can neutralize confounding from variables that the match failed to balance.

Residualizing using the remnant confers these benefits without compromising

the statistical rationale for matching. Indeed, matching supplemented with rebar

inherits a number of central attractions of the matching estimator. For instance,

researchers with any level of statistical training can assess the success of the

matching procedure by examining matched units’ comparability on substantively

meaningful baseline variables. Although it typically makes use of data from out-

side the range of common support—the set of subjects i for which

0 < PrðZi ¼ 1jxiÞ < 1—its final estimate t̂rebar compares only matched subjects,

observing any common support restrictions that the matching procedure observed.

The procedure is compatible with postponing analysis involving outcomes until the

process of matching is complete, as recommended by Rubin (2008). If matching

succeeds in recreating a latent experiment, where subjects matched to each other

were assigned to treatment randomly, then t̂rebar, like t̂M , is unbiased.

Generating predictions ŷCðxÞ involves extrapolating from the remnant to the

matched sample; in some circumstances, the method could worsen the quality of

matched inferences. This risk is mitigated with the use of cross-validation, to

limit overfitting of the prediction model, followed by proximate validation,

which additionally detects biases specific to extrapolation from lower into higher

propensity score regions of x space. Both forms of validation are assisted by the

presence of a sizable matching remnant, including at least controls that would

have been suitable matches for some treatment group members. While compa-

tible with any method of matching that leaves a positive fraction of the control

reservoir unmatched, rebar is particularly attractive in observational studies with

many more untreated than treated subjects.

We have focused on the capacity of rebar to reduce bias, but the method may

have other benefits as well. For instance, the confidence interval from a rebar

analysis of the BES data had less than half the width of the confidence interval

from the corresponding matching analysis. Indeed, confidence interval widths

and standard errors generally vary inversely with the variance of the outcome.

Unless the rebar extrapolation is sufficiently unstable as to worsen MSE—within

the matched sample, the mean-square difference between rebar’s out-of-sample

prediction and Y exceeds the variance of Y —confidence intervals based on e are
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bound to be tighter than those based on Y alone. In addition, studies with more

stable outcomes tend to have lower design sensitivity (Rosenbaum, 2010; Zubi-

zarreta, Cerdá, & Rosenbaum, 2013). Barring instability, the rebar analysis will

be less sensitive to confounding from unmeasured or unmodeled variables. The

relative stability of e and Y is reflected in the prediction R2 of the rebar ŷCð�Þ
when applied to the matched set, for which cross-validation and proximal valida-

tion can suggest a plausible range.

8. Appendix Proofs of Propositions 3 and 4

8.1. The Bias of tM .

Lemma 1: In a matching design where the target of estimation is tETT, the bias of

matching estimator (Equation 3) is:

E½t̂M ðYÞ� � tETT ¼
X

m

wmyT
Cm

pm

nTm

� 1� pm

nCm

� �
;

where yCm is the vector of yC values for all subjects for whom Mi ¼ m:

fyCigMi¼m, and pm is a vector of probabilities of treatment assignment for

subjects in m, given nTm and nCm: Pi ¼ PrðZi ¼ 1jnTm; nCmÞ.

Proof: All of the following expectations are taken conditional on nC1 ; :::; nCM and

nT 1 ; :::; nTM .

Et̂M ¼ E
X

m

wmtmðY ; ZÞ;¼
X

m

wmEtmðY ; ZÞ:

Next, for a particular match m,

EtmðY ; ZÞ ¼ E
�

1

nT

YT
mZm � 1

nCm

YT
mð1� ZmÞ

	
;

¼ E
�

1

nT

yT
CmZm � 1

nCm

yT
Cmð1� ZmÞ

	
þ E tT

mZm

nTm

;

¼ yT
CmE

�
1

nTm

Zm � 1

nCm

ð1� ZmÞ
	
þ tT

mEZm

nTm

;

¼ yT
Cm

�
pm

nTm

� 1� pm

nCm

�
þ tT

mEZm

nTm

:

Then, note that
P

mwm
tT

mEZm

nTm
¼ tETT .
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8.2. Proof of Proposition 3.

Proof: As in Lemma 1, the squared bias of t̂rebar is

bias2ðt̂rebarÞ ¼
X

m

wmðyCm � byCmÞ
T pm

nTm

� 1� pm

nCm

� �" #2

:

Let yC and byC be length-n vectors, concatenations of yCm and byCm. For i ¼
1; � � � ; n let Qi ¼ wMi

Pi

nTMi

� 1�Pi

nCMi

� �
and let Q be a concatenation of fQig, a

length-n vector. Since 0 � Pi � 1, jQij � max 1
nTMi

; 1
nCMi

� �
wMi

. Then,

bias2ðt̂rebarÞ ¼ ½ðyC � byCÞTQ�2

� n
jjyC � byCjj2

n
jjQjj2by Cauchy� Schwartz

� n
jjyC � byCjj2

n

X
i

max

�
1

nTMi

;
1

nCMi

�2

w2
Mi

¼ jjyC � byCjj2

n

n

n2
T

X
m

ðnCm þ nTmÞmax

�
1;

nTm

nCm

�2

:

c

8.3. Proof of Proposition 4.

Proof: The proof follows the form of the proof of Proposition 3, but exploits the fact

that Qi � ðG1=2 � 1Þ=ðG1=2 þ 1Þ=nT . This follows from two facts: First, in a

matched pair design, if i is matched to j and i 6¼ j, Pi ¼ 1� Pj, so Equation 7 can

be rewritten as 1=G � P2
i =ð1� PiÞ2 � G. Second, in a matched pair design, the

term Pi=nTmi
� Pj=nCmj

can be written as 2Pi � 1. The result follows. c
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Notes

1. In defining MSEremnant and R2
remnant thusly, we briefly depart from our con-

vention of conditioning on potential outcomes and instead treat them as ran-

dom, drawn from the same superpopulation as the remnant. MSEremnant and

R2
remnant do not play a role in the theoretical development of rebar but are

useful heuristics in practice.

2. Abadie and Imbens (2012) in fact suggest a more complicated regression

routine that includes nonlinear terms and interactions as the sample size grows

but, in practice, implement the routine with ordinary least squares (OLS); the

Matching package similarly uses OLS.
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