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Frequentist and Bayesian Methods 
to Model Progress Monitoring Data
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Abstract
Curriculum-Based Measurement of Oral Reading (CBM-R) is often used to monitor student 
progress and guide educational decisions. Ordinary least squares regression (OLSR) is the most 
widely used method to estimate the slope, or rate of improvement (ROI), even though published 
research demonstrates OLSR’s lack of validity and reliability, and imprecision of ROI estimates, 
especially after brief duration of monitoring (6-10 weeks). This study illustrates and examines 
the use of Bayesian methods to estimate ROI. Conditions included four progress monitoring 
durations (6, 8, 10, and 30 weeks), two schedules of data collection (weekly, biweekly), and 
two ROI growth distributions that broadly corresponded with ROIs for general and special 
education populations. A Bayesian approach with alternate prior distributions for the ROIs is 
presented and explored. Results demonstrate that Bayesian estimates of ROI were more precise 
than OLSR with comparable reliabilities, and Bayesian estimates were consistently within the 
plausible range of ROIs in contrast to OLSR, which often provided unrealistic estimates. Results 
also showcase the influence the priors had estimated ROIs and the potential dangers of prior 
distribution misspecification.
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Idiographic evaluation of a student’s response to intervention (RtI) is a contemporary approach 
to guide instructional and diagnostic decisions. RtI informs the diagnosis of learning disabili-
ties and decisions regarding access to prevention, remediation, and special education services 
(Individuals With Disabilities Education Improvement Act, 2004). This definition of RtI is 
specific to the collection and use of data before, during, and after an instructional program is 
implemented to evaluate its effect and the student response. This approach to educational deci-
sions was conceptualized and popularized by the work of Deno (Deno, 1986, 2003; L. S. Fuchs 
& Deno, 1991) and others (D. Fuchs, Fuchs, McMaster, & Al Otaiba, 2003; Gresham, 2001). 
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It emerged, in part, in response to the lack of theoretical and empirical support for diagnosti-
cally prescriptive instruction (Deno, 1990, 1995). Along with the concept of RtI, Deno (Deno, 
1986, 1995, 2003; Deno, Marston, & Tindal, 1985) proposed and promoted the development 
of curriculum-based measurement (CBM) to facilitate the collection and use of time-series 
data for RtI.

CBM was developed to index the level and rate of academic performance in the basic skill 
areas of reading, mathematics, written expression, and spelling (Deno, 1985). A standardized 
set of procedures were developed to administer and score CBM. From the inception of CBM 
in the early 1980s until about 2000, the assessment materials were directly sampled from the 
curriculum materials used in the classroom (L. S. Fuchs & Deno, 1991). It was later estab-
lished that the inconsistencies of curriculum samples contributed excessive variability to stu-
dent scores across time, administrations, and alternate forms (Hintze & Christ, 2004; Hintze, 
Christ, & Keller, 2002). New methods have emerged to select (Christ & Ardoin, 2009; Poncy, 
Skinner, & Axtell, 2005) and arrange the stimuli (Christ & Vining, 2006) that comprise the 
20-to-30 alternate forms, which need to be of substantially similar qualities to ensure consis-
tent measurement across occasions.

The results of a comprehensive literature review indicate that the most commonly published 
recommendation was to collect one CBM score per week for 6 to 10 weeks (Ardoin, Christ, 
Morena, Cormier, & Klingbeil, 2013). Those data are then compared with a goal line, which 
defines the expected rate of improvement (ROI; Ardoin et al., 2013). That goal line was used in 
conjunction with either a data-point or trend-line procedure.

The data-point procedure indicates that the program effects are sufficient if the most recent 
data points are distributed either above-and-below the goal line or all above the goal line. The 
program effects are insufficient if the data points are all below the goal line. Historically, there 
was very little evidence for the technical adequacy of the data-point rule (Ardoin et al., 2013). A 
subsequent study indicated that the probability of a correct decision using the data-point rule 
approximated chance, and there was a bias in the decisions derived over the first many weeks of 
monitoring (Van Norman & Christ, 2016). The bias increased the chances that an ineffective 
instructional program with low ROI would continue erroneously.

The trend-line procedure indicates the program effects are sufficient if the estimated ROI 
approximates or exceeds the ROI of the goal line. If not then it indicates that the effects are insuf-
ficient. Although there was very little evidence for the technical adequacy of the trend-line rule 
(Ardoin et  al., 2013), it was established that trend estimates were more accurate if statistical 
methods were used to estimate the ROI as compared with visual analytic analysis or statistical 
methods (Good & Shinn, 1990; Shinn, Good, & Stein, 1989). Those findings helped shift the 
emphasis from visual analysis to statistical analysis, specifically employing ordinary least 
squares regression (OLSR). Later, published findings cast doubt on the precision of the estimated 
ROIs (Christ, 2006; Hintze & Christ, 2004). Published findings indicate that the residual—or 
variability of student performance around the trend line—was often too large in magnitude to 
yield precise estimates of the ROI. From this point forward, the focus is on CBM of Oral Reading 
(CBM-R), which is the most widely used and researched among the CBM procedures (Wayman, 
Wallace, Wiley, Ticha, & Espin, 2007).

CBM-R

CBM-R is an individually administered assessment. The examiner reads standardized directions 
to instruct a student to read aloud from the top of the page. The directions indicate that the stu-
dents should try to read each word and if they come to a word they do not know then it will be 
told to them (after 3 s). The examiner times the 1-min reading and marks any incorrectly read 
words, and then calculates the words read correct per minute (WRCM). There is good evidence 
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for the reliability of scores and modest evidence for construct and criterion validity (Wayman 
et al., 2007). There is also modest evidence that student achievement improves under some con-
ditions when teachers collect and use the data to inform instruction (Stecker & Fuchs, 2000; 
Stecker, Fuchs, & Fuchs, 2005). Notwithstanding, there are challenges for the use of CBM-R to 
evaluate and inform instructional programs for individual students. One substantial challenge is 
that it remains very difficult to discern the true trend of student achievement—because there is 
substantial variability in student scores across time.

Researchers observed that the variation of CBM-R scores around the OLSR line was 11, 12, 
and 15 WRCM (Dynamic Indicators of Basic Early Literacy Skills (DIBELS); University of 
Oregon Center on Teaching and Learning, 2017) when they used each of three different probe 
sets (Ardoin & Christ, 2009) . That observation was generally consistent with previously pub-
lished findings (Good & Shinn, 1990; Hintze & Christ, 2004), which indicate that the variation 
of student performances is likely to fluctuate within the range of 5 to 20 WRCM (Christ, 2006). 
Researchers consistently concluded that the variability in student performance across time was 
problematic in that it hindered the estimation, interpretation, and use of CBM-R to evaluate RtI.

Published studies indicate that CBM-R scores are highly sensitive to the qualities of the probes 
(Ardoin & Christ, 2009; Hintze & Christ, 2004), conditions during the administration (Derr & 
Shapiro, 1989), and disposition of the student. At the time of this study, the evidence for the 
interpretation and use of CBM-R indicated that 2 or more months of weekly data were necessary 
to estimate the ROI with OLSR. Although OLSR was the preferred and recommended procedure 
to evaluate RtI, the precision of those estimates were often insufficient and required extended 
duration of data collection (e.g., Christ, 2006).

Simulation Studies

A series of published studies reported the methods and findings from simulation studies that 
explored various methods to estimate ROI from CBM progress monitoring data. The first in 
the series of studies examined the reliability and validity of trend estimates derived from 
weekly monitoring (Christ, Zopluoglu, Long, & Monaghen, 2012). The initial results indi-
cated that 14 weeks CBM-R data wer needed to derive valid and reliable estimates of growth 
usign OLSR. A similar study indicated that pre–post CBM-R scores might yield trend esti-
mates of only slightly less qualities, such that pre-post data collection rather than weekly data 
collection might be recommended in some scenerios (Christ, Monaghen, Zopluoglu, & Van 
Norman, 2013).

Finally, a comprehensive paper simulated data across numerous possible conditions to derive 
estimates of growth with OLSR for broad range of possible data collection conditions (Christ, 
Zopluoglu, Monaghen, & Van Norman, 2013). The durations of collection spanned 2 to 20 
weeks. The schedule spanned the collection of 1 to 6 CBM-R scores each week, such that some 
schedules established 3 scores in a single day and others established 1 score per day on each day 
of the week. Finally, the conditions of data quality for the residuals was 5, 10, 15, and 20 WRCM. 
Those simulated results were analyzed to estimate the reliability, validity, standard error (preci-
sion), and diagnostic accuracy of ROIs estimated with OLSR. Results indicate that durations of 
10-to-14 or more weeks of data were required in all scenerios. That included a 6-week duration 
of daily data collection for which there was insufficient technical adequacy for ROIs estimated 
with OLSR. The results indicated that the OLSR estiamtes of ROI were substantially influenced 
by the duration of data collection and the quality of the data (i.e., residual). The results associated 
with the 6-week duration of daily data collection were replicated in field-based study. OLSR-
based estimates of ROI are very likely insufficient even with a good quality set of data that was 
collected every day for 6 weeks field-based study (Thornblad & Christ, 2014). Across studies, 
results consistently indicate that OLSR estiamtes of ROIs require higher quality data and a longer 
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duration of data collection. Those are often unrealistic conditions within practice, which requires 
short durations of data collection to make quick decisions. Moreover, it is rare that CBM-R or 
other similar measurement procedures result in very high quality data with small residuals. Thus, 
research and development is necessary to isolate alternate methods to yeild reliable and valid 
estimates of ROI with moderate quality data collected over brief durations.

Purpose

The purpose of this research was to introduce the concept of Bayesian methods and compare 
them with OLSR as a competing method to model CBM-R time-series data for individual stu-
dents. Specifically, it was to illustrate and evaluate the use of Bayesian method across a variety 
of common conditions for progress monitoring, which spanned various durations (6, 8, and 10 
weeks), schedules (weekly and biweekly), and growth rates (low and high/typical growth ROIs). 
A series of Bayesian models were evaluated with a range of priors to evaluate their influence on 
estimates of ROI.

Method

Data Generating Mechanism

Data for the simulation were generated from a normal linear model. A normal linear model 
was selected as OLSR is the standard method for estimating ROIs, which is consistent with 
the historical (Good & Shinn, 1990) and contemporary practice (Christ, 2006; Christ & 
Ardoin, 2009; Christ et al., 2012; Christ, Zopluoglu, et al., 2013; Hintze & Christ, 2004) . 
Given that WRCM is inherently a nonnegative integer, a Poisson or negative binomial model 
could have been used as the data generating mechanism and subsequently a loglinear regres-
sion model could have been fit to the data. Because we were interested in comparing the 
performance of OLSR with Bayesian methods and not loglinear regression, we decided to use 
normal-based methods for both data generation and model fitting to give OLSR the best cir-
cumstances for performance.

Specifically, we generated data from the following model:

	 Y Nijkl ijk l~ , ,µ σ 2( ) 	 (1)

where Yijkl is the number of WRCM for the jth observation ( j =1 30, , ) for student i ( , , , )i =1 2 000  
with the kth (k = 1 or 2) level of student growth (high or low) and the lth (l = 1 or 2) condition of 
data quality (good or poor). In other words, Yijkl represented the observed WRCM for student i at 
time j who had either high (k = 1) or low (k = 2) growth and whose data were of good (l = 1) or 
poor quality (l = 2). The levels of student growth and data quality are described below.

The true WRCM, µijk, for student i at time j with growth k was a linear function of

	 µ β βijk ik jx= +0 1 , 	 (2)

where xj represented the week of monitoring, which ran from 1 to 30 weeks. The observed 
WRCM for this student was

	 Yijkl ijk ijkl= +µ ε , 	 (3)

where ε σijkl lN~ ( , )0 2 . This means that the observed scores were conditionally independent, both 
within and across students, given the parameters in Equation 2.
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Parameter Values for the Data Generating Mechanism

In Equation 2, β0, the intercept, that is, a student’s true score at the start of progress monitoring, 
was fixed to 40 WRCM. This value was selected based on the estimated WRCM at the start of 
progress monitoring for students in Grades 2 and 3 presented in Christ, Zopluoglu, et al. (2013).

Conditions of differential student growth and quality of the data were considered in this simu-
lation. The student growth (ROI), β1ik, was determined based on whether a student had high (i.e., 
general population) or low (i.e., special education population) growth. The distribution for high 
growth was β1 1

21 4 0 4i N∼ ( . , . ),  and the distribution for low growth was β1 1
28 0 4i N∼ (. , . ).  Each 

student had a true ROI that was a realization from one of these two distributions depending on 
whether they were from the general or special education population (Deno, Fuchs, Marston, & 
Shin, 2001; L. S. Fuchs, Fuchs, Hamlett, Walz, & Germann, 1993).

The quality of the data set was determined by the magnitude of the residual standard devia-
tion. The quality of the residual standard deviation corresponded to either good, ε ijk N1

20 10~ ( , ),  
or poor, ε ijk N2

20 15~ ( , ). These values correspond to the values reported in several empirical 
studies (Ardoin & Christ, 2009; Christ, 2006; Christ & Ardoin, 2009; Francis et al., 2008; Good 
& Shinn, 1990; Hintze & Christ, 2004; Jenkins, Zumeta, Dupree & Johnson, 2005; Jenkins, Graff 
& Miglioretti, 2009; Shinn et al., 1989) and were the basis for a large simulation study on CBM-R 
(Christ, Zopluoglu, et al., 2013).

Independent Variables

In addition to student growth and data quality, the duration and the schedule of progressing moni-
toring and the statistical framework were examined as independent variables.

Duration and schedule.  The duration and scheduling of progress monitoring were varied in this 
study. The duration of progress monitoring was set to 6, 8, 10, or 30 weeks. The scheduling of 
progress monitoring was either weekly or biweekly. Therefore, there were a total of eight data 
collection conditions (four durations times two schedules) used for progress monitoring. These 
conditions are shown in Table 1.

As indicated in the “Data Generating Mechanism” section, 30 observations were generated for 
each student. Depending on the condition of duration and schedule, only a subset of observations 
from these original 30 observations were used. For example, the use of all 30 observations for a 
student would correspond to a weekly schedule with a duration of 30 weeks (Condition 8 in Table 1). 
If the duration was 6 weeks, then only the first six observations of the complete 30 observations 
could be used (i.e., the first 6 weeks of the 30 weeks; Conditions 1 and 5 in Table 1). If the monitoring 
was weekly, then all six observations, observations from Weeks 1, 2, . . . , 5, 6, were used (Condition 

Table 1.  Conditions of Data Collection.

Condition Schedule
Duration 
(weeks)

Number of 
observations Observation weeks

1 Biweekly 6 3 1, 3, 5
2 Biweekly 8 4 1, 3, 5, 7
3 Biweekly 10 5 1, 3, 5, 7, 9
4 Biweekly 30 15 1, 3, 5, . . . , 25, 27, 29
5 Weekly 6 6 1, 2, 3, 4, 5, 6
6 Weekly 8 8 1, 2, 3, . . . , 6, 7, 8
7 Weekly 10 10 1, 2, 3, …, 8, 9, 10
8 Weekly 30 30 1, 2, 3, . . . , 28, 29, 30
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5 in Table 1), and if the monitoring was biweekly, then observations from Weeks 1, 3, and 5 were 
used (Condition 1 in Table 1). This process of subsetting was repeated for the other combinations of 
duration and schedule.

Statistical Framework

The frequentist and Bayesian approaches were compared in this simulation study.

Frequentist approach.  By a frequentist approach, we are referring to the traditional framework 
used to fit statistical models and conduct hypothesis testing. It is termed frequentist because 
probability is defined as the frequency of observing an event if a study or experiment was repeated 
over an essentially infinite number of occasions. This frequency of an event interpretation of 
probability yields the cumbersome definitions of p values, and confidence intervals that are 
learned, and struggled with, in introductory statistics courses. Parameters, for example, the ROI, 
from a frequentist perspective are considered fixed, and all inferences about these parameters are 
made on their sampling distributions. In a frequentist framework, only the observed data are 
included in the statistical models. This is in contrast to the Bayesian approach (presented next).

The frequentist model considered in this study was OLSR. Specifically, we fit the following 
simple linear regression model to the data:

	 Y xijkl ik j ijkl= + +β β ε0 1 . 	 (4)

Because we generated data from the normal linear model with conditionally independent 
observed scores, the OLSR model in Equation 4 is the same model as the data generating model 
presented in Equation 3.

Bayesian approach.  In a Bayesian approach, statistical conclusions about our unknown parame-
ters, θ, are made in terms of a subjective, personal belief, view of probability conditional on the 
observed data (Gelman, Carlin, Stern, & Rubin, 2004). These subjective beliefs are formally 
incorporated into statistical distributions about our unknown parameters or effects (known as 
prior distributions).

A prior distribution represents our best guess at what the distribution of a parameter or effect 
would be prior to collecting any data for our study. They are usually developed based on pub-
lished literature or expert opinion, although in a hierarchical linear model they may be partially 
developed based on the observed data (known as an empirical prior). If there is a plethora of 
information about the plausible values of a parameter, we may use a more informative prior with 
a small variance giving a lot of weight to where we believe the parameter might be, whereas if 
we are unsure what a parameter could be, we might specify a wide range of possible values for 
that parameter with relatively equal, low probabilities across the entire range. The former is typi-
cally referred to as an informative prior, while the latter would be categorized as a noninforma-
tive prior. We discourage this distinction as all prior distributions are informative to varying 
degrees. The major benefit of less informative priors is that they may converge with the frequen-
tist models and allow a researcher to minimize the influence of a prior distribution, but they do 
not always converge and what is noninformative on one metric may not be noninformative when 
transformed (Carlin & Louis, 2009).

In a Bayesian framework, the prior distribution is then multiplied by a likelihood function. A 
likelihood function corresponds to the probability of the data given all the plausible values for 
our parameters. The likelihood function represents a traditional statistical model. For example, in 
this article, our likelihood function corresponds to the OLSR model presented in Equation 4. In 
Equation 4, there are three different parameters that must be estimated, and therefore, we need to 
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specify prior distributions for each of these. Prior distributions must be specified for the inter-
cept, β0, the slope (i.e., ROI), β1, and the residual variance, σ2 (though for mathematical and 
computational convenience, Bayesians typically invert this variance and model the precision, τ).

The resulting distribution from the product of the prior distribution, p( ),θ  and the likelihood 
function, p Yijkl( |θ ), is known as the posterior distribution, p Yijkl( ),θ |  and it is this distribution, 
the posterior distribution, that all Bayesian inferences are made from. Formally, we arrive at the 
posterior distribution through Bayes’ theorem. Bayes’ theorem specifies the relationship between 
two conditional probabilities and allows us to invert the conditional probabilities. Equation 5 
shows Bayes’ theorem.

	 p Y
p p Y

p Y
ijkl

ijkl

ijkl

θ
θ θ

|
( |( ) = ( )

( )
)
. 	 (5)

This states that our posterior distribution, which contains the probabilities of our parameters 
conditional on the data, is equal to the prior distribution of our parameters multiplied by the prob-
ability of the data given our parameters (i.e., the likelihood function), divided by the distribution 
of our data. The denominator is an integrating constant that allows our posterior distribution to 
be a true probability distribution (i.e., all probabilities sum or integrate to 1). Because the denom-
inator does not have any parameters, and it is a constant, it is usually omitted and Bayes’ theorem 
is reexpressed as

	 p Y p p Yijkl ijklθ θ θ| |( ) ∝ ( ) ( ). 	 (6)

Through Equations 5 and 6, we are able to derive the probabilities that are of substantive interest 
to researchers, that is, the probability of our parameters given the data. The posterior distribu-
tion is estimated using Markov chain Monte Carlo (MCMC; Carlin & Louis, 2009; Gelman 
et al., 2004). Prior to the development and use of MCMC, Bayesian priors were specified in 
order that they could be solved numerically limiting the range of potential forms of prior distri-
butions. The prior distributions were selected to be conjugate to the posterior distribution, where 
conjugate means that the posterior distribution is of the same form as the prior distribution (e.g., 
if a normal distribution was specified for a prior, then the posterior distribution would be nor-
mal). However, MCMC frees us from needing to use conjugate priors and allows us to specify 
prior distributions that may be either parametric (e.g., normal, uniform, or gamma distributions) 
or nonparametric in nature, which may more realistically represent our view of the parameters. 
MCMC works by iteratively estimating values for each of our parameters based on the prior 
distributions and likelihood function, and saves each of these estimates which become the pos-
terior distribution.

Once we have estimated the posterior distribution via MCMC, probabilistic statements about 
the parameters follow without the need for a null hypothesis statistical testing framework. For 
example, it is possible to directly calculate the probability of an ROI being greater than 1.1 or 1.4, 
rather than calculating the probability of observing an ROI or greater given that the null hypoth-
esis is true (i.e., the frequentist p value). We can also calculate the probability of the ROI being 
between 1.1 and 1.4. The Bayesian equivalent to a 95% confidence interval, known as a 95% 
credible interval, can be directly interpreted as there being a 95% probability that the parameter 
or effect is between the lower and upper limits of the interval.

Readers who are interested in a more complete introduction to Bayesian statistics and MCMC 
are directed to the texts of Gelman et al. (2004), Carlin and Louis (2009), and Kruschke (2015), 
where the former two texts require knowledge of statistical theory and calculus and the latter 
does not. In addition, Zyphur and Oswald (2015) have written a highly readable introduction to 
Bayesian statistics that is especially relevant for the testing community.
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For our simulation, prior distributions must be specified for β0, β1, and σ2 as indicated above. 
For β0 and σ2, we specified priors with large variances over a wide range of plausible values. 
Specifically, the prior distributions for β0 and for σ2 were uniform distributions from 0 to 100 or 
more compactly, β0 0 100~ ( , )U  and σ 2 0 100~ ( , ).U  The mean and variance of these prior dis-
tributions were 50 and 833.33, respectively. Because these were uniform distributions, they gave 
equal weight to every value between 0 and 100. Because β1, the ROI term, which, represents 
expected weekly growth in WRCM, is the focal point in CBM-R intervention, we investigated 
six different normal prior distributions. The prior distributions are presented in Table 2. These 
priors differ in their assumed expected growth and variance around this value. All six of these 
priors on β1 would be considered highly informative, and the priors with the lowest variance were 
the most informative.

Dependent Variables

Three dependent variables were selected for this simulation study. They were reliability, mean 
signed difference (MSD), and root mean square error (RMSE). The squared correlation of the 
true ROI, β1i, and the estimated ROI, β1i, is an index of reliability (i.e., the proportion of the vari-
ability in the true ROIs that is explained by the estimated ROIs). MSD is a measure of bias, the 
difference between the expected value of the ROI and the true ROI, and represents systematic 
deviations from the true ROI. MSD was defined as

	 MSD β
β β





1

1

1 1
i

i

n
i i

n
( ) = −

=
∑ . 	 (7)

Finally, RMSE is a measure of variability between the observed and the true ROI, and was 
defined as

	 RMSE β β β1 1 1

2

i i iE( ) = −( ) . 	 (8)

Results

The results are presented first descriptively and then by each individual outcome measure—reli-
ability, MSD, and RMSE. Within a given section, the Bayesian priors are compared with one 
another and with OLSR. Given the large number of conditions and large number of replicates of 
each condition, graphical data analysis was the principal form of analysis.

Table 2.  Prior Distributions for β1.

Prior M Variance Precision

High growth, low variance 1.4 0.04 25
High growth, intermediate variance 1.4 0.16 6.25
High growth, high variance 1.4 0.64 1.5625
Low growth, low variance 1.1 0.04 25
Low growth, intermediate variance 1.1 0.16 6.25
Low growth, high variance 1.1 0.64 1.5625

Note. Precision is the inverse of variance, and precision was the parameter used for the prior distributions.
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Descriptive Summary

Figures 1 through 5 are scatterplots that depict the relationships between true ROIs and posterior 
means of estimated ROIs (i.e., β1  plotted against β1 ) for priors of β1  with low and high variance 
(the intermediate variance figures are available upon request). Figure 1 corresponds to the high 
prior mean for β1  (µ = 1.4) with the low variance prior (σ 2 22= . ); Figure 2 corresponds to the low 
prior mean for β1  (µ = 1.1) with the low variance prior (σ 2 22= . ); Figure 3 corresponds to the high 
prior mean for β1  (µ = 1.4) with the high variance prior (σ 2 28= . ); and Figure 4 corresponds to the 
low prior mean for β1  (µ = 1.1) with the high variance prior (σ 2 28= . ). Figure 5 is a scatterplot of 
the true ROI against estimated ROI for OLSR. Figure 6 presents a violin plot of the deviations of 
the true ROI from the estimated ROI (for OLSR) or the mean of the posterior distribution of the 
ROI (for the Bayesian models).

Reliability (and Validity)

A scatterplot of reliability against the duration of progress monitoring is presented in Figure 7. 
Recall that reliability was defined as the squared correlation of the true ROI and the estimated 
ROI (OLSR) or the posterior mean (Bayesian); therefore, visual analysis of Figures 1 to 5 also 
depicts results related to the reliability and validity of estimated ROIs.

Figure 1.  Scatterplot of true slope against the mean of the posterior distribution of the slope for the 
high growth slope (µ =1.4), low variance prior (σ 2 22= . ).
Note. Each subplot is faceted by duration of progress monitoring (from top to bottom: 6, 8, 10, and 30 weeks of 
duration). The dotted vertical lines correspond to the minimum (left) and maximum (right) true score (right).
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Figure 2.  Scatterplot of true slope against the mean of the posterior distribution of the slope for the 
high growth slope (µ = 1.1), low variance prior (σ 2 22= . ).
Note. Each subplot is faceted by duration of progress monitoring (from top to bottom: 6, 8, 10, and 30 weeks of 
duration). The dotted vertical lines correspond to the minimum (left) and maximum (right) true score (right).

MSD

Figure 8 shows a scatterplot of the MSD against the duration of progress monitoring by various 
conditions of the simulation study. Unsurprisingly, MSD was highly affected by the type of esti-
mator and the duration of the progress monitoring. For all conditions, the MSD for OLSR fluctu-
ated around zero, and as duration increased, OLSR approached zero.

RMSE

Figure 9 shows the RMSE against the duration of progress monitoring by various conditions of 
the simulation study. RMSE is a measure of the variability around the true ROI.

Regression

To examine the extent that the conditions of the simulation study differed in their variability 
around the true ROIs, we regressed the absolute value of the difference between the true ROI 
and the estimated ROI (for OLSR) or the posterior mean (for the Bayesian models) on the esti-
mator type, level of student growth, and quality of the data for each combination of schedule 
and duration separately. We ran these analyses separately as it was clear from Figure 6 that 
homogeneity of variance would be violated because of the unequal number of observations (i.e., 
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the variance would decrease as the number or measurements increased). However, even after 
running models based on the number of observations separately, we failed to have homogeneity 
of variance and used a log transformation to correct for this. This transformation corrected the 
nonconstant variance but resulted in negatively skewed residuals. However, given the agree-
ment between Figure 6 and the results from the models, presented in Figure 9, the findings are 
likely robust to this observation.

All main effects of the estimator, level of student growth, or quality of the data, regardless of 
the level of duration or schedule considered, were statistically significant. Because of the large 
power from the large number of replicates of each condition, we instead examined and presented 
partial eta squared. Figure 10 presents a scatterplot of the partial eta squared for each model (a 
total of eight models were run, corresponding to a unique combination of duration and schedule). 
A column of points in Figure 10 corresponds to the partial eta squared for the estimator, student 
growth, and quality of data for a model based on a certain condition of duration and data collec-
tion schedule.

Discussion

The purpose of this research was to introduce the concept of Bayesian methods and compare 
them with OLSR to model CBM reading data for individual students. The use of Bayesian meth-
ods generally improved the estimates of ROIs (comparable MSDs and smaller RMSEs) and 
through shrinkage exerted by the prior distribution, resulted in ROIs that were plausible where 

Figure 3.  Scatterplot of true slope against the mean of the posterior distribution of the slope for the 
high growth slope (µ =1.4), low variance prior (σ 2 28= . ).
Note. Each subplot is faceted by duration of progress monitoring (from top to bottom: 6, 8, 10, and 30 weeks of 
duration). The dotted vertical lines correspond to the minimum (left) and maximum (right) true score (right).
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OLSR gave extreme estimates. These and other results from this study provide initial support for 
these applications of Bayesian methods.

Although the results are promising, they also illustrate that misspecified priors bias the esti-
mated ROIs. The observed bias in estimated ROIs increased as the difference between the true 
parameter and Bayesian priors were increasingly more discrepant. That finding was expected. 
Nevertheless, those results are notable because they illustate that Bayesian methods do not rep-
resent a simple or generic solution. The specification of the Bayesian models and priors will 
substantially influence the results, which could confer benefit or harm if misused. Further explo-
ration and experimentations are necessary to provide detailed specifications of the methods. The 
results of this study provide clear evidence that the priors used within the defined Bayesian 
model substantially influenced the reliability, validity, bias, and precision of ROI estimates. 
These results and implications briefly discussed below.

Precision of ROI Estimates

Precision improved as the duration of progress monitoring increased regardless of the 
method or model used to estimate ROIs (Figure 8); however, the Bayesian methods were 
more precise for all conditions with shorter durations of progress monitoring (6, 8, and 10 
weeks). Precision converged for the two methods only for the extended duration (30 weeks). 
This is further illustrated in Figure 5, which depicts the distribution of deviations between 

Figure 4.  Scatterplot of true slope against the mean of the posterior distribution of the slope for the 
high growth slope (µ =1.1), low variance prior (σ 2 28= . ).
Note. Each subplot is faceted by duration of progress monitoring (from top to bottom: 6, 8, 10, and 30 weeks of 
duration). The dotted vertical lines correspond to the minimum (left) and maximum (right) true score (right).
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the estimated and true ROIs. This and other findings are further illustrated in Figures 1 to 4 
and discussed below.

Relative effects.  The choice to use either OLSR or Bayesian methods was by far the most influen-
tial factor on the precision of estimated ROIs (Figure 9). The effect was substantial during brief 
durations (6, 8, and 10 weeks) and more robust when data were collected less often (biweekly vs. 
weekly). These effects were substantially larger than those associated with the magnitude of 
student growth or the quality of data until Week 30, when all effects were similar.

Bayesian estimates.  First, as the duration of the progress monitoring increases, the association 
between the true and the posterior mean of the ROI increases and becomes a strong, positive, 
linear relationship (Figures 1-4). That was consistent for both Bayesian and OLSR methods. 
Second, regardless of the prior distribution, the posterior means of the ROI posterior distributions 
were almost always within the limits of true growth (i.e., between the dashed horizontal lines); 
therefore, the prior distribution resulted in plausible ROI estimates (Figures 1-3). That was not 
the case for OLSR, which yielded a distribution with many implausible estimates (Figure 4).

Third, as the duration of the progress monitoring increases, the influence of the Bayesian prior 
diminishes (i.e., the shrinkage toward the prior mean decreases). This is most evident in Figure 
1, which depicts the results for the more informative Bayesian prior (i.e., prior distribution with 
less variance). The estimated ROIs were distributed in a tight band in conditions with brief prog-
ress monitoring durations. The distributions resembled that of a vertical pipe with data clustered 

Figure 5.  Scatterplot of true slope against the estimated mean from ordinary least squares regression.
Note. Each subplot corresponds to a level of schedule, student growth, and data quality, and each subplot is faceted by 
duration of progress monitoring (from top to bottom: 6, 8, 10, and 30 weeks of duration).
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tightly around the mean of the prior distribution. That band widened as the durations increased. 
The band also widened when the prior was less informative priors (compare Figures 1, 2, and 3).

Predictably, the priors influenced Bayesian estimates. Visual analysis of Figures 1 and 3 illus-
trates that result. The distributions of estimated ROIs were dramatically restricted with the more 
informative prior, especially for very brief durations of progress monitoring (Figure 1). In con-
trast, the distributions with the least informative prior covered near the full range of the true 
distribution—even for very brief durations (Figure 3).

OLSR estimates.  The range of OLSR estimates included very unrealistic estimates of ROI when 
there were brief progress monitoring durations. That result was consistent across all conditions 
of growth, data quality, and schedule. Within some conditions, the approximate range of esti-
mated ROIs spanned −20 to +20. That range far exceeds the range of true ROIs, which replicates 
previous findings (Christ, 2006; Christ, Zopluoglu, et al., 2013; Christ et al., 2012).

Reliability (and Validity)

The results depicted in Figures 1 to 4 also relate to the reliability and validity of the ROI esti-
mates. An index of validity is the relationship/correlation between the true and observed score, 
and reliability is the square of this correlation. The coefficients for reliability also depicted in 
Figure 6, which demonstrates that reliability was generally similar for both Bayesian and OLSR 
methods across all conditions (Figure 6); however, less informative priors generally had the 

Figure 6.  Violin plots of the deviation of the true slope from the estimate slope (for OLSR) or the 
mean of the posterior distribution of the slope (for the Bayesian models).
Note. OLSR = ordinary least squares regression.
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lower reliabilities and OLSR usually had the highest reliabilities. Higher quality data, weekly 
schedules, and longer durations improved reliability; however, it was only at 30 weeks of dura-
tion that strong, positive, and linear relationships between true and estimated ROIs emerged 
(Figures 1-4).

Bias of ROI Estimates

OLSR provided unbiased estimates of ROI. The Bayesian method often provided estimates with 
either positive or negative bias, which depended on the convergence between the priors used to 
estimate ROIs and true distribution of ROIs. Bias was most evident and robust when there were 
larger discrepancies between the true mean and the specified prior; especially when the prior was 
more informative (i.e., less variance). Regardless, that bias generally decreased as the duration 
increased.

The pattern of bias is illustrated in Figure 7. The first and third columns in the first plot depict 
bias for conditions with high true ROI (1.4 WRCM per week). In that condition, high mean prior 
distribution (1.4 WRCM per week) matched the mean of the true ROI, which is why there was 
essentially no bias regardless of duration, schedule, or quality. In contrast, the low mean prior 
distribution (1.1 WRCM per week) resulted in biased estimates (approximate range = −0.2 to 
−0.3 WRCM per week).

Figure 7.  Scatterplot of reliability against duration of progress monitoring by estimator, schedule, 
student growth, and quality of data.
Note. The top row corresponds to collecting data weekly and the second row corresponds to collecting data 
biweekly. The first two columns correspond to high-quality CBM-R data and the last two columns correspond to 
poor-quality CBM-R data. Finally, the first and third columns correspond to the true high CBM-R growth, and the 
second and fourth columns correspond to true low CBM-R growth. A small horizontal jitter was used. OLSR = 
ordinary least squares regression; CBM-R = Curriculum-Based Measurement of Oral Reading.
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Conclusion

The results of this study illustrate that Bayesian methods can be used to estimate ROIs; 
however, there are important considerations. The most important consideration might relate 
to the specification of the prior and the model. Only one Bayesian model was examined 
here, but a range of priors were specified to illustrate their influence. Although other 
Bayesian models should be explored, the results this study clearly illustrate that the speci-
fication of priors is an important consideration. The values selected here were generally 
consistent with previously published research (Christ, 2006; Christ, Zopluoglu, et al., 2013; 
Christ et al., 2012; Deno et al., 2001). Although other priors might be examined in future 
research, it is very clear that misspecified prior means will bias estimates and more infor-
mative priors (i.e., less variance) will amplify that effect. Well-specified means and mod-
estly informative priors provided the most improvement in the estimation of ROIs, which 
were more precise and unbiased.

Although OLSR was consistently unbiased and had similar reliability to Bayesian estimates, 
the precision of those estimates was very poor after brief period of progress monitoring (6-8 
weeks). The range of true values approximated 0 to 3 WRCM per week. The range of estimated 
values with OLSR was −20 to 20 WRCM per week in some conditions. OLSR is simply insuf-
ficient. This study provides preliminary methods and evidence to support the ongoing research 
and development to improve the estimation of ROIs using alternate methods.

Figure 8.  Scatterplot of MSD against duration of progress monitoring by estimator, schedule, student 
growth, and quality of data.
Note. The top row corresponds to collecting data weekly and the second row corresponds to collecting data 
biweekly. The first two columns correspond to high-quality CBM-R data and the last two columns correspond to 
poor-quality CBM-R data. Finally, the first and third columns correspond to the true high CBM-R growth, and the 
second and fourth columns correspond to true low CBM-R growth. A small horizontal jitter was used. OLSR = 
ordinary least squares regression; MSD = mean signed difference; CBM-R = Curriculum-Based Measurement of Oral 
Reading.
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Figure 9.  Scatterplot of RMSE against duration of progress monitoring by estimator, schedule, student 
growth, and quality of data.
Note. The top row corresponds to collecting data weekly and the second row corresponds to collecting data biweekly. 
The first two columns correspond to high-quality CBM-R data and the last two columns correspond to poor-quality 
CBM-R data. Finally, the first and third columns correspond to the true high CBM-R growth, and the second and fourth 
columns correspond to true low CBM-R growth. A small horizontal jitter was used. RMSE = root mean square error; 
OLSR = ordinary least squares regression; CBM-R = Curriculum-Based Measurement of Oral Reading.

Figure 10.  Scatterplot of partial eta squared against duration of progress monitoring by estimator, 
schedule, student growth, and quality of data, and faceted by data collection schedule.
Note. Each column of points corresponds to a model with a unique number of assessments administered (i.e., a 
combination of schedule and duration of progress monitoring). From left to right (in both subplots), the points 
correspond to partial eta squared from a model with 6, 8, 10, and 30 weeks of duration. The panels depicts biweekly 
(left) and weekly (right) data collection schedules.
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