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Article

Results of the National Assessment of Educa-
tional Progress (National Center for Education 
Statistics, 2015) suggest that the mathematics 
performance of eighth-grade students with dis-
abilities (SWD) has not improved. The per-
centages of SWD who scored below the basic 
level were 68%, 65%, 64%, and 64% in the 
test administration years 2015, 2013, 2011, 
and 2009, respectively. In those same years, 
the percentages of students without disabilities 
(SWOD) scoring below basic were 29%, 26%, 
27%, and 27% (National Center for Education 
Statistics, 2016). Students who perform at the 
basic level are able to compute whole and 
rational numbers; solve simple problems with 
the help of charts, diagrams, and graphs; and 
understand informal algebraic concepts. Stu-
dents who score below basic have a limited 
conceptual understanding of rational numbers 
and weak fractions computation skills.

These low performances have prompted 
investigators to study the key prerequisite skills 
and understandings that students need to 

acquire for computing fractions (e.g., Mazzocco, 
Myers, Lewis, Hanich, & Murphy, 2013; 
Siegler & Pyke, 2013; Ye et al., 2016). These 
include the ability to compare and represent 
relative magnitudes of whole numbers and 
fractions, multiply and divide whole numbers, 
and engage in proportional reasoning. Other 
factors that affect some students but which are 
not directly related to disability include atten-
tion deficits and working memory (L. S. Fuchs 
et al., 2014; Hansen et al., 2015). Addressing 
these issues in elementary and middle school is 
particularly important because longitudinal 
studies have shown that students’ competen-
cies with fractions at early grades predict their 
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Abstract
In this article, we describe results of a reanalysis of two randomized studies that tested the 
effects of enhanced anchored instruction (EAI) on the fractions computation performance of 
students in special education resource rooms and inclusive mathematics classrooms. Latent 
class analysis and latent transition analysis classified students according to error subtypes and 
tracked their performance patterns. Results indicated that EAI was more effective than business 
as usual in reducing combining errors (e.g., adding denominators) and denominator errors (e.g., 
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disabilities in both settings. SWD in inclusive classrooms scored higher on the pretest than 
SWD in resource rooms, but EAI reduced the disparity on the posttest. An important additional 
finding revealed that the SWD who received more support from special education teachers in 
inclusive classrooms scored higher and made fewer errors than the SWD who were provided 
only limited support.
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performance years later, controlling for whole 
number skill, intelligence, and working mem-
ory (Bailey, Hoard, Nugent, & Geary, 2012; 
Siegler et al., 2012).

Especially confusing for many students, not 
just those with disabilities (Behr, Lesh, Post, & 
Silver, 1983; Kieren, 1980), are the subcon-
structs associated with fractions (i.e., part-
whole/partitioning, ratio, operator, quotient, 
measure, equivalence). The long history of try-
ing to find the most effective ways of helping 
students to understand these subconstructs has 
led researchers to look closely at the errors that 
students make as they attempt to compute frac-
tions (e.g., Radatz, 1979). More recently, inves-
tigators (e.g., Charalambous & Pitta-Pantazi, 
2007; Clarke & Roche, 2009; Pitkethly & Hunt-
ing, 1996) have used error analysis to identify 
students’ misunderstandings to help teachers 
anticipate when they are apt to occur and how to 
correct them.

Despite the well-documented need, rela-
tively few studies have empirically tested 
interventions designed to improve the frac-
tions computation skills of SWD (Geary, 
2006; Siegler, Thompson, & Schneider, 2011). 
For example, Misquitta (2011) located only 
10 studies published between 1998 and 2008 
that compared instructional methods designed 
for the purpose of improving the fractions 
computation skills of SWD, and Shin and 
Bryant (2015) found only 17 studies between 
1975 and 2014.

Brief History of Enhanced 
Anchored Instruction

Over the past 20 years, our research teams 
have tested versions of an instructional pack-
age called enhanced anchored instruction 
(EAI), which we designed for improving the 
problem-solving performance of SWD (e.g., 
Bottge, Heinrichs, Chan, & Serlin, 2001; 
Bottge, Rueda, LaRoque, Serlin, & Kwon, 
2007). Our work has been driven by what we 
consider to be the negative properties of word 
problems (e.g., artificial contexts, accessibil-
ity issues) and the new potential for technol-
ogy to deliver more realistic and motivating 
problems. Researchers (e.g., Bruner, 1960; 
Schoenfeld, 1989) have suggested that the 

quality of a problem should be judged by its 
ability to generate interest, strengthen proce-
dural skills, and deepen conceptual under-
standing of learners. These qualities align 
closely with the philosophy of the Common 
Core State Standards in Mathematics 
(National Governors Association Center for 
Best Practices and Council of Chief State 
School Officers, 2010), which state that all 
students should have the opportunity to learn. 
To help ensure success in students’ lives out-
side school, they should be afforded the 
accommodations necessary to participate 
fully in the learning activities in school.

All students should be afforded the 
accommodations necessary to fully 
participate in the learning activities 
in school, thereby helping to ensure 

success in their lives outside 
school.

Early versions of EAI included problem-
solving lessons in the form of video-based 
problems (called anchors) and related hands-
on projects (e.g., building and riding hover-
crafts). Although satisfied with the results of 
the problem-solving components of EAI, we 
found that too many SWD made only minimal 
improvement in computing with fractions. In 
building our first iterations of EAI, we hypoth-
esized that embedding fractions instruction 
within the engaging problem-solving lessons 
would result in SWD becoming more moti-
vated and receptive to learning rational number 
concepts. However, we quickly realized that 
despite students’ motivation to learn how to 
compute fractions, our lessons fell well short of 
helping them understand and compute frac-
tions. To address the complexities of rational 
number concepts and procedures, we devel-
oped a new fractions module called Fractions 
at Work (FAW) for teachers to use with SWD 
prior to teaching the problem-solving modules. 
The lessons contained much more explicit 
instruction and practice with fractions than 
what our previous lessons had provided. Our 
findings indicated that the FAW module led to 
better results in fractions computation and 
enabled students to more accurately compute 



Bottge et al.	 199

the answers to the anchored problems (Bottge, 
Rueda, Grant, Stephens, & LaRoque, 2010).

The key model, as illustrated by a key and lock, 
has guided our theory–research–instructional 
development cycle (Bottge, 2001). In previous 
studies (e.g., Bottge et al., 2014), elements of the 
key model (e.g., engage students with meaning-
ful problems, explicitly teach foundation 
skills) emerged as important factors in 
improving the math skills of SWD. The 
model emphasizes the equity principle of 
“mathematics for all” advocated by the 
National Council of Teachers of Mathematics 
(2017) and thus applies to students with and 
without disabilities. The model is based on 
theories of cognition that consider learner 
variables (e.g., motivation, foundation skills), 
contextual variables (e.g., school, commu-
nity), and task variables (e.g., higher- and 
lower-order thinking) essential to an adequate 
description of teaching and learning math.

Recently, we conducted two large random-
ized experiments to test the revised EAI les-
sons. Study 1 took place in resource rooms. 
Results indicated that students in the EAI 
classrooms outscored students in the business-
as-usual (BAU) classrooms on all 10 subscales 
of a researcher-developed Fractions Computa-
tion Test (FCT) and on the six subscales of a 
standardized test that involved adding and 
subtracting fractions (Bottge, et al., 2014). We 
found that students in both instructional condi-
tions often made the same mistakes of combin-
ing denominators. Some students knew that 
they needed to find common denominators to 
compute the fractions, but they were unable to 
figure out what they were.

The next year, we conducted Study 2 in 
inclusive mathematics classrooms (Bottge 
et  al., 2015). Similar to Study 1, posttests 
showed that students in the EAI condition 
outscored their peers in the BAU classrooms. 
Of particular interest were the co-teaching 
roles that the mathematics teacher and the 
special education teacher assumed in each 
classroom. Co-teaching is typically defined 
as two teachers sharing the instructional 
responsibilities for all students in the inclu-
sive classroom (Hourcade & Bauwens, 2001). 
Also known as collaborative or cooperative 
teaching, Cook and Friend (1995) defined  

co-teaching as “two or more professionals 
delivering substantive instruction to a diverse, 
or blended, group of students in a single 
physical space” (p. 1). Co-teaching practices 
have several versions, such as one teach/one 
assist, station teaching, parallel teaching, 
alternative teaching, and team teaching 
(Vaughn, Shay Schumm, & Arguelles, 1997). 
The most common approach is one teach/one 
assist, where the content-area teacher does 
most of the formal teaching and the special 
education teacher provides students assis-
tance as needed (Solis, Vaughn, Swanson, & 
McCulley, 2012). Our 191 whole-class period 
observations revealed that the one-teach/one-
assist model was employed most often (44%), 
followed by team teaching (17%). The other 
co-teaching arrangements were seldom, if 
ever, observed.

We also distinguished high- from low- 
support classrooms and tested possible differ-
ences in performance between the groups. In 
high-support classrooms, the special educa-
tion teacher took a good share of the responsi-
bility for teaching the lessons with the 
mathematics teacher. In low-support class-
rooms, the special education teacher taught 
very little, if any part, of the mathematics les-
sons. Prior to scoring the mathematics 
achievement measures, the five classroom 
observers reached consensus over which 
classrooms were high support or low support. 
Our findings showed that SWD in the high-
support classrooms outscored the SWD in the 
low-support classrooms. SWD and SWOD 
made errors, and their error patterns were sim-
ilar to what we found in Study 1.

Research Questions

In this article, we describe the errors that 
SWD and SWOD made in computing frac-
tions in Study 1 and Study 2 and provide a 
detailed description of their overall perfor-
mance in each instructional setting. Specifi-
cally, we conducted this secondary analysis to 
answer three main questions:

Research Question 1: What latent groups 
of fractions computation errors could be 
identified for SWD and SWOD, and what 
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were their pretest-to-posttest transition  
patterns?
Research Question 2: How did the frac-
tions computation scores and error patterns 
of SWD who were taught with EAI in spe-
cial education resource rooms compare 
with those of SWD who were taught with 
EAI in inclusive mathematics classrooms?
Research Question 3: How did the achieve-
ment and error patterns of SWD who were 
taught with EAI in high-support inclusive 
classrooms compare with those of SWD 
who were taught with EAI in low-support 
inclusive classrooms? How did these per-
formances compare with those of SWOD 
in inclusive classrooms?

Method

Participants

Data for the follow-up analysis were drawn 
from two studies that we conducted in urban 
and rural middle schools in the Southeast. 
Human subjects permissions were obtained in 
the original studies. Both studies employed 
pretest-posttest cluster randomized designs. 
The main purpose of each study was to test the 
effects of EAI on students’ ability to compute 
with fractions and problem-solve. Each 
school’s Admissions and Release Committee 
had decided either (a) that the students’ skills 
were too low for them to succeed in the gen-
eral education mathematics classrooms and 
therefore required small group instruction in 
the resource room or (b) that the SWD would 
benefit from learning alongside their peers 
without disabilities.

In Study 1, 49 special education teachers 
delivered mathematics instruction to their 
SWD. All students received their total math 
instruction in the resource room, as docu-
mented on their individualized education pro-
grams. We randomly assigned 15 schools to 
the EAI condition (23 teachers, 33 resource 
rooms) and 16 schools to the BAU condition 
(26 teachers, 31 resource rooms). Four to six 
students attended the resource rooms, and 
class size did not differ between the EAI and 

BAU conditions. Special education teachers 
taught the mathematics lessons to students in 
self-contained special education resource 
rooms.

The following year, we conducted Study 2 
in 25 inclusive mathematics classrooms in 24 
middle schools. We selected schools to par-
ticipate in the study based on interest of the 
personnel (principals, special education teach-
ers, and mathematics teachers) and the assur-
ance that they had in place at least one 
inclusive mathematics classroom. From the 
pool of 24 schools, we randomly assigned 12 
schools to each instructional condition. One 
mathematics class participated in each school 
with the exception of one school that had two. 
Pairs of mathematics and special education 
teachers taught students in the EAI or BAU 
condition. The average class size ranged from 
17 to 21 students and did not differ by type of 
instruction. In the EAI and BAU conditions, 
56 (26%) and 67 (29%) of the students had a 
disability, respectively, and four to six SWD 
were included in each mathematics class.

Teacher and student demographics for 
Study 1 and Study 2 are presented in the 
online supplemental materials. Most teach-
ers were Caucasian, female, and experi-
enced, and had earned master degrees. 
Teachers in both studies were comparable 
across instructional conditions in gender, 
ethnicity, education level, and teaching 
experience. Most students in Study 1 were 
receiving special education services for a 
disability in one of three categories: specific 
learning disability, mild mental disability, or 
other health impairment. Most of the stu-
dents in Study 2 were receiving special edu-
cation services for other health impairment 
or specific learning disability. Detailed 
descriptions of each disability are available 
from the National Dissemination Center for 
Children With Disabilities (2010). Students 
in both studies were comparable across 
instructional conditions in gender, ethnicity, 
subsidized lunch status, and disability area. 
Instructional sessions in each study were 55 
to 60 min, although one school scheduled 
the school day in 90-min blocks.

http://journals.sagepub.com/doi/suppl/10.1177/0014402917736854
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Instructional Conditions

Teachers assigned to EAI in each study 
attended a 2-day summer workshop to learn 
how to teach with EAI. In Study 1, only spe-
cial education teachers assigned to EAI 
attended the training, whereas participants of 
Study 2 consisted of pairs of mathematics 
teachers and special education teachers 
assigned to the EAI condition. A mathematics 
teacher who had taught the EAI lessons for 
several years conducted the workshop activi-
ties, which were the same in both years.

EAI summary.  Five EAI units targeted several 
of the middle school Common Core State 
Standards in Mathematics (i.e. Ratios and Pro-
portional Relationships, Number System–
Fractions, Statistics and Probability, and 
Geometry–Graphing) and included a mix of 
computer-based interactive activities, video-
based anchored problems, and hands-on 
applied projects. The researchers provided 
teachers with all instructional materials. The 
first unit, FAW, is a computer-based applica-
tion designed to build conceptual understand-
ing of and procedural skills with fractions. 
Concrete materials, such as fraction strips and 
number lines, were used frequently alongside 
the lessons to help students understand the 
important but difficult concept of equivalence. 
For example, students used their fraction strips 
to solve problems such as “If you have 1/2 of a 
stick of gum and your friend has 1/4 of a stick, 
who has more?” and “How much more does 
she have?” The first chapters of FAW were 
devoted to basic concepts, such as the purpose 
and function of fractions, the idea of equiva-
lence, and the role of numerators and denomi-
nators. An interactive tape measure displayed 
in the software showed that the value of frac-
tions depends on the number of parts into 
which an inch is divided (i.e., denominator) 
and the number of these parts available (i.e., 
numerator). In successive chapters, students 
were shown how to add simple fractions with 
like and unlike denominators, how to add and 
subtract mixed numbers, and how to rename 
and simplify fractions. The software also 

provided formative checks of students’ skills 
with 10 practice problems matched to the 
instructional content. This unit took classes an 
average of 15 instructional days to complete.

Following the explicit instruction on frac-
tions with FAW, teachers taught two problem-
solving anchors that required students to work 
with fractions to solve the problems. The first 
anchor, called Fraction of the Cost, consisted of 
an 8-min problem-solving video portraying 
three friends who want to build their own skate-
board ramp. The task for the students was to help 
the characters in the video figure out how they 
could build the ramp under budget. To solve the 
problem, students had to apply what they had 
learned in FAW to add and subtract fractions. 
Teachers taught Fraction of the Cost for an aver-
age of 11 instructional days.

The next unit was a hands-on problem called 
the Hovercraft Challenge. Students had to apply 
the concepts and skills that they learned in the 
first two units to build a hovercraft. Students 
drew schematic plans for the “rollover cages” of 
their hovercraft and then built their scale models 
out of plastic straws. On subsequent days, they 
built full-size cages out of PVC pipe. The payoff 
for students was “race day,” when they rode 
their hovercrafts. Like the Fraction of the Cost 
unit, the project required students to figure out 
how to use materials in the most economical 
way. This unit is complex and took classes 22 
instructional days to complete.

BAU summary.  Classroom observations and 
close inspection of the mathematics objec-
tives and curriculum indicated a close parallel 
to the EAI condition. The school district cur-
riculum was aligned with the Kentucky Core 
Academic Standards and Combined Curricu-
lum Document from the Kentucky Depart-
ment of Education. Teachers and students 
used technologies such as computers, interac-
tive whiteboards, and manipulatives to teach 
several lessons.

Typically, teachers began lessons with Cal-
endar Math (Gillespie & Kanter, 2000). In 
most classrooms, instruction focused on strat-
egy instruction for solving fractions computa-
tion problems. Teachers showed how to solve 
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mathematics problems, and students were 
encouraged to follow the step-by-step proce-
dures. For example, each student was assigned 
a certain number of fractions (1/2, 2/5, 3/10, 
etc.) and then asked to arrange them from 
smallest to largest. To complete this activity, 
students needed to review the previous lesson, 
work with partners, or use additional support 
(e.g., calculators).

In another lesson, teachers brought grocery 
flyers from local grocery stores (e.g., Kroger) 
and encouraged students to identify which 
store offered a better deal for grocery items. 
For example, Walmart had three dozen eggs 
for $4.50 versus Kroger, which sold two 
dozen eggs for $2.50. Students calculated 
“unit rate” to answer which store offered a 
better deal (e.g., $4.50/3 = $1.50 at Walmart 
vs. $2.50/2 = $1.25 at Kroger). Teachers gave 
formative assessments to check students’ 
mastery of computation procedures and 
understanding of the mathematics concepts. 
Hands-on activities, web-based instruction, 
and drill-and-practice were also used through-
out the study period. Another project-based 
example involved calculating unit rate (e.g., 
ratio and proportional relationships) from sev-
eral grocery ads.

Fidelity of Implementation

Project personnel serving as primary observ-
ers conducted a total of 290 whole-class 
observations in Study 1 (173 EAI, 117 BAU) 
and 285 whole-class observations in Study 2 
(191 EAI, 94 BAU). Interobserver agreement 
was 94% in Study 1 (43 secondary observers) 
and 90% in Study 2 (41 secondary observers). 
In both studies, the observations showed that 
teachers taught EAI with a high level of treat-
ment fidelity (94%).

Mathematics Measures

The mathematics assessments were the same 
in Study 1 and Study 2. Two researcher-
developed tests and two standardized 
achievement subtests were administered over 
3 consecutive days immediately prior to and 
following the instructional period. A second 

rater independently scored 20% of the pretests 
and posttests. For the purpose of this second-
ary analysis, we focused our attention on the 
FCT. The FCT is 20-item (14 addition, six 
subtraction), 42-point researcher-developed 
test that measures students’ ability to add and 
subtract simple fractions and mixed numbers 
with like and unlike denominators. The test 
also includes items that require students to 
add three fractions. Students were told to 
simplify their answers and to show all their 
work. Calculator use was not allowed. On 18 
items, students earned 1 point for showing 
correct work and 1 point for the correct 
answer. On two items with mixed numbers 
that required renaming prior to subtracting, 
students were awarded an additional point. 
Internal consistency estimates were .96, 95% 
CI [.95, .97], at pretest and posttest for SWD 
and .97, 95% CI [.96, .97], at pretest and .96, 
95% CI [.95, .97], at posttest for SWOD. 
Interrater agreement was 99% on the pretest 
and 97% on the posttest. In this study, items 
were dichotomized into binary responses of 0 
for incorrect responses and 1 for correct 
responses. Partial credit on an item was 
scored as a correct response.

Latent Class Analysis and Latent 
Transition Analysis

Latent class analysis (LCA; Lazarsfeld & 
Henry, 1968) is a statistical method for clas-
sifying individuals into latent subtypes 
(referred to here as latent groups). The method 
detects latent groups of individuals who are 
homogeneous on some latent (i.e., unob-
served) characteristics. The latent groups in 
this study were formed per their responses to 
the questions on the FCT. This use of the LCA 
provided a way of capturing latent (i.e., unob-
served) heterogeneity in the sample. Latent 
transition analysis (Collins & Lanza, 2010) is 
an extension of LCA, which accounts for 
changes in latent groups over time.

LCA and latent transition analysis were 
used in this study to investigate qualitative 
and quantitative changes in students’ errors on 
fractions computation items from the pretest 
to the posttest. Students were classified into 
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latent groups depending on the types of errors 
they made.

The numbers of latent groups in the pretest 
and posttest data were detected via the bayes-
ian information criterion index (BIC; 
Schwartz, 1978), the bootstrapped likelihood 
ratio test (BLRT; McLachlan & Peel, 2000), 
the proportions of the students in individual 
latent groups (mixing proportions), and the 
interpretability of the results. We used BIC 
and BLRT because they help identify the cor-
rect number of latent classes in mixture mod-
els (Nylund, Asparouhov, & Muthén, 2007). 
The model that yields the smallest BIC value 
among the LCA models suggests the best- 
fitting model. For BLRT, a statistically sig-
nificant p value indicates that the k group 
model provides a better fit than the k – 1 group 
model (i.e., the LCA model with one less 
group). Nonsignificant p values indicate fail-
ure to reject the null hypothesis and that the k 
group model is better than k – 1 group model. 
In that case, the k – 1 group model is consid-
ered to function neither worse nor better than 
the k group model.

Changes in students’ membership in a 
latent group from pretest to posttest were then 
examined to determine the effects of the EAI 
intervention. Mplus (Version 7) was used in 
calculating model fit indices for selecting a 
best model. After the better-fitting model was 
determined, all subsequent analyses were 
implemented via SAS PROC LCA/latent tran-
sition analysis (Lanza et al., 2015).

Results

Types of Errors

Based on a first review of students’ item 
responses, we found two specific mistakes 
that accounted for most errors. Students who 
made the combining error consistently applied 
the same operation of adding or subtracting 
numerators and denominators:

1 3 1 3 2 6 7 8 1 4 6 4/ / / / / /        + = =−

Students who made the denominator error 
attempted to find a common denominator but 

made the mistake of either not selecting a 
denominator from one of the fractions that 
would make the two fractions equivalent or 
not finding a unique number to serve as the 
common denominator:

1 2 3 16 4 161/ / /    + =

Because the other types of errors were far less 
common, we combined them into a single 
miscellaneous category for purposes of this 
analysis. An example of miscellaneous errors 
was an Add All procedure, where the student 
computed the sum of all the numbers in both 
fractions.

Latent Groups and Transition 
Patterns

The first research question asks for the char-
acteristics of the latent groups and transition 
patterns of all students participating in both 
studies. Table 1 shows the number and types 
of errors that students made on individual 
FCT items. Overall, students tended to make 
fewer errors on the posttest than the pretest, 
which suggests that students in both instruc-
tional settings (resource room and inclusive 
classroom) profited from EAI and BAU.

Latent groups.  To determine the number of 
latent groups in the data, we fit nine LCA 
models with one to nine latent groups to the 
pretest and posttest data. Based on BIC, 
BLRT, and the mixing proportions, a four-
group model was the best fit. The dominant 
error type that students made in each latent 
group was used to characterize each latent 
group. Students in Latent Group 1, Latent 
Group 2, and Latent Group 3 had a high prob-
ability of making a combining error, denomi-
nator error, or other miscellaneous error, 
respectively. Students in Latent Group 4 had a 
high probability of making no errors.

Table 2 displays the numbers of students in 
each latent group and their pretest and posttest 
means and standard deviations on the FCT. 
On the pretest, the combining error group was 
the largest latent group (42%), but on the  
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posttest, the no-error group was the largest 
(39%). Students’ mean scores increased from 
pretest to posttest. Means for the no-error 
group were highest for both the pretest and the 
posttest, and means for the denominator error 
group were the lowest. Transitions from the 
combining error group to the no-error group 
reflected positive instructional effects.

Transition patterns.  Table 3 displays students’ 
transition patterns from the pretest to the post-
test by instructional condition. The pretest 
results show that few students in either the 
EAI (n = 65) or BAU (n = 68) condition were 
in the no-error group. However, on the post-
test, a majority of the students in the EAI con-
dition (i.e., 205/360 = 57%) moved from one 

Table 1.  Frequencies of Errors on Individual Items on the Pretest and Posttest (n = 756).

Pretest Posttest

Itema Descriptionb Combining Denom Misc No error Combining Denom Misc No error

1 Simple Like 207 3 118 428 97 0 64 595
2 Simple Like 201 4 112 439 91 2 63 600
3 Simple Unlike 342 89 191 134 192 78 158 328
4 Simple Unlike 321 82 216 137 187 78 174 317
5 Simple Unlike 337 77 235 107 194 78 209 275
6 Simple Unlike 327 91 216 122 196 97 171 292
7 Mixed Unlike 305 89 245 117 186 85 206 279
8 Mixed Unlike 308 70 271 107 186 84 225 261
9 Mixed Unlike 286 99 260 111 174 94 231 257

10 Mixed Unlike 298 75 280 103 186 78 239 253
11 Simple Unlike 312 72 240 132 192 70 206 288
12 Simple Unlike 294 104 239 119 188 90 213 265
13 Mixed Unlike 282 99 272 103 170 94 261 231
14 Mixed Unlike 291 101 272 92 185 100 260 211
15 Simple Like 166 5 165 420 71 3 117 565
16 Simple Unlike 312 91 237 116 181 102 205 268
17 Mixed Like 169 8 281 298 80 4 229 443
18 Mixed Unlike 13 1 676 66 11 1 604 140
19 Mixed Unlike 258 76 325 97 152 89 296 219
20 Mixed Unlike 261 51 404 40 142 43 486   85

Note. Denom = denominator error; misc = miscellaneous error.
aItems 1–14, addition; Items 15–20, subtraction. bSimple or mixed number fractions, like or unlike denominators.

Table 2.  Frequencies and Mean of Fractions Computation Test for Each Latent Group on the Pretest 
and Posttest (n = 756).

Pretest Posttest

Latent group n M SD n M SD

Combining 316 1.65 1.65 187 2.30 2.00
Denom 111 3.77 1.04 102 4.62 2.33
Misc 196 1.76 2.38 173 3.36 3.12
No error 133 16.93 3.09 294 17.77 2.35
Total 756 4.68 6.09 756 8.87 7.55

Note. Denom = denominator error; misc = miscellaneous error.
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of the latent error groups to the no-error group 
or remained in the no-error group. By con-
trast, only 89 of the 396 BAU students (i.e., 
22%) transitioned to or remained in the no-
error latent group on the posttest.

Of the students in the lowest-ability latent 
group (i.e., combining error group), 48% in 
the EAI classrooms (i.e., 74/153) transitioned 
to the no-error group, as opposed to 10% of 
the students in BAU classrooms (i.e., 17/163). 
Results from a multinomial logistic regression 
analysis for predicting latent group member-
ship on the posttest found this difference to be 
significant. The odds were 22 to 1 that SWD 
in the EAI condition would transition from the 
combining-error latent group to the no-error 
latent group on the posttest.

Table 4 shows transition patterns for SWD 
in EAI and BAU conditions. For SWD stu-
dents, the EAI effect was clearly evident. On 
the pretest, SWD in both EAI and BAU class-
rooms tended to make combining errors (i.e., 
99/202 = 49% in EAI, 110/231 = 48% in BAU). 
On the posttest, 45% of SWDs in EAI class-
rooms transitioned to or remained in the no-
error latent group (i.e., 90/202), as compared 
with only 10% of SWD in BAU classrooms 

(i.e., 22/231). Overall, SWD in the EAI classes 
committed fewer errors and improved their 
skills in computing with fractions when com-
pared with SWD in BAU classrooms.

Fractions Computation in Two 
Settings

The second research question asked how the 
fractions computation scores and error pat-
terns of SWD who were taught with EAI in 
special education resource rooms compared 
with those of SWD who were taught with EAI 
in inclusive mathematics classrooms. Table 5 
and Figure 1 present comparisons of FCT 
mean scores and error patterns for SWD in 
each EAI classroom setting. Pretest scores 
showed that SWD in the inclusive classrooms 
scored higher on the pretest than SWD in the 
resource room settings (t = 4.15, df = 753, p = 
.001, ES = 0.30). On the posttest, SWD in the 
inclusive classrooms also scored higher than 
SWD in the resource rooms, but the effect size 
was about half of what it was on the pretest  
(t = 2.25, df = 753, p = .025, ES = 0.16). 
Results also indicated that only one student in 
EAI resource classrooms was in the no-error 

Table 3.  Transition Frequencies From Pretest to Posttest Under Each Instructional Condition (n = 756).

Posttest

Pretest Combining Denom Misc No Error Subtotal

EAI
Combining 28 31 20 74 153
Denom 1 14 8 34 57
Misc 9 8 34 34 85
No error 0 1 1 63 65
Subtotal 38 54 63 205 360
  BAU
Combining 103 15 28 17 163
Denom 9 22 17 6 54
Misc 32 10 57 12 111
No error 5 1 8 54 68
Subtotal 149 48 110 89 396

Note. Table 3 displays the numbers of students in each latent group on the pretest and the posttest in the EAI and 
BAU instruction conditions. For example, in the first row of the EAI panel, 28 students were in the combining group 
on the pretest and stayed there for the posttest, whereas 74 students started there but then moved to the no-error 
group. Denom = denominator error; misc = miscellaneous error; EAI = enhanced anchored instruction; BAU = 
business as usual.
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latent group on the pretest, but this number 
increased to 59 students on the posttest.

High and Low Support in Inclusive 
Classrooms

Table 6 and Figure 2 present comparisons of 
FCT mean scores of SWD in high-support EAI 

mathematics classrooms, SWD in low-support 
EAI inclusive mathematics classrooms, and 
SWOD in all the inclusive mathematics class-
rooms. To answer Research Question 3, we 
first compared the performance of SWD in 
high-support inclusive classrooms with the 
performance of SWD in low-support inclusive 
classrooms. On the pretest, SWD in high- and 

Table 4.  Transition Frequencies From Pretest to Posttest for SWD in EAI and BAU (n = 433).

Posttest

Pretest Combining Denom Misc No error Subtotal

EAI
Combining 20 20 16 43 99
Denom 1 5 6 14 26
Misc 9 6 29 22 66
No error 0 0 0 11 11
Subtotal 30 31 51 90 202
  BAU
Combining 81 8 17 4 110
Denom 6 11 10 1 28
Misc 26 6 40 3 75
No error 2 1 1 14 18
Subtotal 115 26 68 22 231

Note. Table 4 displays the numbers of SWD in each latent group on the pretest and the posttest in the EAI and BAU 
instruction conditions. For example, in the first row of the EAI panel, 20 students were in the combining group on 
the pretest and stayed there for the posttest, whereas 43 students started there but then moved to the no-error 
group. SWD = students with disabilities; EAI = enhanced anchored instruction; BAU = business as usual; denom = 
denominator error; misc = miscellaneous error.

Table 5.  Mean Scores for Enhanced Anchored Instruction Students With Disabilities on the Fractions 
Computation Test: Resource Versus Inclusive Classrooms (n = 202).

Class

  Pretest Posttest

Latent group n M SD n M SD

Resource room
Combining 75 1.21 1.58 20 1.90 2.13
Denom 16 3.38 1.02 21 5.52 3.08
Misc 54 0.43 1.11 46 3.83 3.33
No error 1 10.00 — 59 16.47 2.78
Subtotal 146 1.22 1.76 146 8.92 6.95
  Inclusive classroom
Combining 24 1.92 1.50 10 2.90 1.60
Denom 10 4.40 1.17 10 4.60 1.07
Misc 12 2.42 1.98 5 7.00 7.00
No error 10 16.30 2.87 31 17.35 2.52
Subtotal 56 5.04 5.67 56 11.57 7.13

Note. Denom = denominator error; misc = miscellaneous error.
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low-support EAI inclusive classrooms did  
not significantly differ on their FCT scores 
(t = 0.82, df = 752, p = .41). However, on the 

posttest, the mean score of SWD in high-sup-
port EAI inclusive classrooms was signifi-
cantly higher than that of SWD in low-support 

Figure 1.  Mean scores of students with disabilities receiving enhanced anchored instruction in resource 
and inclusive settings.

Table 6.  Students’ Mean Score on Fractions Computation Tests in EAI Inclusive Classroom (n = 214).

Learning disability: Support level

  Pretest Posttest

Latent group n M SD n M SD

Students without disabilities
Combining 54 2.80 1.39 8 2.88 1.46
Denom 31 3.65 1.05 23 4.65 2.37
Misc 19 3.16 2.03 12 4.25 3.19
No error 54 17.26 2.94 115 18.67 1.43
Total 158 7.95 7.05 158 14.73 6.70
  Students with disabilities: High
Combining 11 2.00 1.18 2 4.50 0.71
Denom 5 4.40 1.52 3 4.67 1.15
Misc 5 1.60 1.14 1 2.00 —
No error 7 15.29 2.81 22 17.32 2.53
Total 28 5.68 5.97 28 14.50 5.96
  Students with disabilities: Low
Combining 13 1.85 1.77 8 2.50 1.51
Denom 5 4.40 0.89 7 4.57 1.13
Misc 7 3.00 2.31 4 8.25 7.41
No error 3 18.67 1.15 9 17.44 2.65
Total 28 4.39 5.39 28 8.64 7.10

Note. EAI = enhanced anchored instruction; denom = denominator error; misc = miscellaneous error.
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EAI inclusive classrooms (t = 3.23, df = 752, p 
= .001). Figure 2 shows that on the posttest, 
mean fraction computation scores for SWD 
improved in the high-support classrooms to 
the point of being comparable with the perfor-
mance of SWOD. In fact, the difference 
between the posttest means of SWD in the 
high-support group classrooms and SWOD 
was only 0.23 and not significant (t = 0.17, 
df = 752, p = .87).

Discussion

The purpose of this study was to report the 
results of a fine-grained analysis of error pat-
terns and performance outcomes from two ran-
domized studies funded by the Institute of 
Education Sciences. Teachers in both studies 
taught the same units of the EAI mathematics 
intervention, targeted the same Common Core 
objectives, and employed the same randomized 
pretest-posttest design. The major difference 
between them was the instructional setting: 
Study 1 (Bottge et al., 2014) was conducted in 
resource rooms, whereas Study 2 took place in 
inclusive mathematics classrooms (Bottge et al., 
2015). Overall results showed that EAI was 
effective in improving the fractions computation 
performance of SWD by reducing two common 
errors: adding or subtracting denominators and 
computing fractions with unlike denominators.

Descriptive statistics show that the pretest 
scores of SWD in Study 1 are significantly 
lower than those of SWD who were taught in 
inclusive settings. This was expected because 
SWD who receive their mathematics instruc-
tion in pullout settings typically require more 
assistance than do SWD who attend regular 
education classes. Posttest scores also favored 
SWD in the inclusive classrooms versus 
SWD taught with EAI in the resource rooms. 
However, the posttest difference was much 
less than the pretest difference, which can be 
explained by the fact that EAI eliminated 
more errors of SWD in the resource rooms 
than in the inclusive settings.

Close inspection of the results also detected 
differences in the performance of SWD depend-
ing on the way that special education teachers 
and content area teachers structured their co-
teaching arrangement. Results show that the 
SWD who received more individualized instruc-
tional support from special education teachers in 
the inclusive classrooms improved their skills 
much more than SWD who received little sup-
port. In fact, the posttest scores showed no sig-
nificant difference between the high-support 
SWD and the SWOD overall. By contrast, the 
SWD in mathematics classes where the special 
education teacher provided little, if any, supple-
mental instruction made minimal, if any, perfor-
mance gains.

Figure 2.  Mean scores of students without disabilities (SWOD) and students with disabilities (SWD) 
receiving enhanced anchored instruction (EAI) in high- or low-support inclusive (INC) mathematics 
classrooms. SWD = students with disabilities.
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This latter finding is especially important 
considering special education legislation (i.e., 
Individuals with Disabilities Education Act, 
2006) that mandates schools to include SWD in 
general education classes when appropriate. 
Movements such as the Regular Education Ini-
tiative suggested that pullout settings should in 
most instances be eliminated. Advocates of 
inclusive practices have cited a range of educa-
tional benefits for SWD, such as more time on 
task, better grades, and higher scores on stan-
dardized tests (Rea, McLaughlin, & Walther-
Thomas, 2002; Salend, 2011) However, recent 
studies (Kurz et al., 2014) and position papers 
(e.g., D. Fuchs & Fuchs, 2015) have called into 
question the benefits of inclusionary practices, 
asserting that many SWD who are included in 
general education classes actually spend less 
time on standards-related lessons, engage in 
more noninstructional time, and are exposed to 
less content than the rest of the class. Our find-
ings support the more recent stance that SWD 
who are taught in small groups with a special-
ized curriculum that targets their learning defi-
cits can make larger academic gains than SWD 
who are taught with the general school curricu-
lum in the inclusive mathematics settings.

Positive academic outcomes are 
possible for SWD in both settings 

depending on the amount and 
quality of the special education 

teachers’ instructional involvement.

Our studies suggest that positive academic 
outcomes are possible for SWD in both settings 
depending on the amount and quality of the spe-
cial education teachers’ instructional involve-
ment. In Study 2, the reason for teachers not 
taking on more instructional responsibility in 
inclusive classrooms cannot be attributed to not 
knowing the content of the lesson plans or the 
teaching procedures, because the special educa-
tion teacher and cooperating mathematics 
teacher attended the EAI training together. All 
teachers were provided with detailed day-by-
day lesson plans. Although just a guess based 
on 285 whole-class period observations (191 
and 94 in EAI and BAU, respectively)  

conducted by project personnel and poststudy  
discussions with teachers, our conclusion was 
that the teaching relationships had been formed 
long before our involvement in their class-
rooms, and would be difficult to change.

Limitations

We are encouraged by these results, but, 
unfortunately, they also demonstrate the large 
number of students who needed more time 
during the intervention phase of these studies 
to develop a sound conceptual understanding 
of and computation skills with fractions. The 
first lessons of the fractions unit were designed 
to help students understand the purpose of 
fractions and the functions of the numerator 
and denominator. The next activities helped 
students to recognize when a common denom-
inator was needed and how to find one. Teach-
ers in both EAI classroom settings devoted 
much of their instruction to explaining why 
adding or subtracting denominators is not 
appropriate. We are quite sure that the next 
version of our fractions lessons will engage 
the students in more systematic reviews of the 
FAW instructional modules based on their 
performance on daily computation checks. 
We will also provide students with additional 
examples of concrete manipulatives (e.g., 
fractions strips) to help more SWD and 
SWOD attain greater mastery of fractions.

Implications for Practice

Our findings align closely with the Opportu-
nity to Learn factors, which include allo-
cated instructional time, content of the 
intended curriculum, and quality of instruc-
tion. EAI as a specialized curriculum can 
reduce students’ errors in computing frac-
tions in resource room and inclusive class-
rooms. However, as is usually the case, the 
quality of instruction made an important  
difference in the performance of SWD, 
especially in the inclusive settings. In the 
mathematics classes where the special edu-
cation participated with the mathematics 
teacher in teaching the concepts, the posttest 
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scores of SWD approximated those of 
SWOD. In other words, EAI was effective in 
raising the achievement level of the SWD in 
inclusive classrooms but only when the spe-
cial education teachers contributed mean-
ingful instructional support.

References

Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, 
D. C. (2012). Competence with fractions 
predicts gains in mathematics achievement. 
Journal of Experimental Child Psychology, 
113, 447–455. doi:10.1016/j.jecp.2012.06.004

Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. 
(1983). Rational number concepts. In R. Lesh, 
& M. Landau (Eds.), Acquisition of mathe-
matical concepts and processes (pp. 91–126). 
New York, NY: Academic Press.

Bottge, B. A. (2001). Reconceptualizing math 
problem solving for low-achieving students. 
Remedial and Special Education, 22, 102–
112. doi:10.1177/074193250102200204

Bottge, B. A., Heinrichs, M., Chan, S., & Serlin, R. 
(2001). Anchoring adolescents’ understanding 
of math concepts in rich problem-solving envi-
ronments. Remedial and Special Education, 22, 
299–314. doi:10.1177/074193250102200505

Bottge, B. A., Ma, X., Gassaway, L., Toland, M., 
Butler, M., & Cho, S. J. (2014). Effects of 
blended instructional models on math perfor-
mance. Exceptional Children, 80, 423–437. 
doi:10.1177/0014402914527240

Bottge, B. A., Rueda, E., Grant, T. S., Stephens, 
A. C., & LaRoque, P. T. (2010). Anchoring 
problem-solving and computation instruc-
tion in context-rich learning environ-
ments. Exceptional Children, 76, 417–437. 
doi:10.1177/001440291007600403

Bottge, B. A., Rueda, E., LaRoque, P. T., Serlin, 
R. C., & Kwon, J. (2007). Integrating reform-
oriented math instruction in special education 
settings. Learning Disabilities Research & 
Practice, 22, 96–109. doi:10.1111/j.1540-
5826.2007.00234.x

Bottge, B. A., Toland, M. D., Gassaway, L., 
Butler, M., Choo, S., Griffen, A. K., & Ma, 
X. (2015). Impact of enhanced anchored 
instruction in inclusive math classrooms. 
Exceptional Children, 81, 158–175. 
doi:10.1177/0014402914551742

Bruner, J. S. (1960). The process of education. 
New York, NY: Random House.

Charalambous, C. Y., & Pitta-Pantazi, D. (2007). 
Drawing on a theoretical model to study students’ 
understanding of fractions. Educational Studies 
in Mathematics, 64, 293–316. doi:10.1007/
s10649-006-9036-2

Clarke, D. M., & Roche, A. (2009). Students’ 
fraction comparison strategies as a window 
into robust understanding and possible point-
ers for instruction. Educational Studies in 
Mathematics, 72, 127–138. doi:10.1007/s10649 
-009-9198-9

Collins, L. M., & Lanza, S. T. (2010). Latent class 
and latent transition analysis: With applica-
tions in the social, behavioral, and health sci-
ences. Hoboken, NJ: Wiley.

Cook, M., & Friend, M. (1995). Co-teaching: 
Guidelines for effective practice. Focus on 
Exceptional Children, 28(2), 1–12.

Fuchs, D., & Fuchs, L. S. (2015). Rethinking ser-
vice delivery for students with significant 
learning problems: Developing and imple-
menting intensive instruction. Remedial and 
Special Education, 36, 105–111. doi:10.1177/ 
0741932514558337

Fuchs, L. S., Schumacher, R. F., Sterba, S. K., 
Long, J., Namkung, J., Malone, A., . . . 
Changas, P. (2014). Does working memory 
moderate the effects of fraction intervention? 
An aptitude-treatment interaction. Journal 
of Educational Psychology, 106, 499–514. 
doi:10.1037/a0034341

Geary, D. C. (2006). Development of mathemati-
cal understanding. In D. Kuhl, & R. S. Siegler 
(Vol. Eds.), Cognition, perception, and lan-
guage (Vol .2, pp. 777–810). New York, NY: 
Wiley.

Gillespie, J., & Kanter, P. F. (2000). Every day 
counts calendar math. Wilmington, MA: 
Great Source Education.

Hansen, N., Jordan, N. C., Fernandez, E., Siegler, 
R. S., Fuchs, L., Gersten, R., & Micklos, D. 
(2015). General and math-specific predic-
tors of sixth-graders’ knowledge of frac-
tions. Cognitive Development, 35, 34–49. 
doi:10.1016/j.cogdev.2015.02.001

Hourcade, J. J., & Bauwens, J. (2001). Cooperative 
teaching: The renewal of teachers. Clearing 
House, 74, 242–247. doi:10.1080/000986 
50109599200

Individuals with Disabilities Education Act, 20 
U.S.C. § § 1400 et seq. (2006 & Supp. V. 
2011).

Kieren, T. E. (1980). Knowing rational numbers: 
Ideas and symbols. In M. Lindquist (Ed.), 



Bottge et al.	 211

Selected issues in mathematics education (pp. 
68–81). Berkeley, CA: McCutchan.

Kurz, A., Elliott, S. N., Lemons, C. J., Zigmond, 
N., Kloo, A., & Kettler, R. J. (2014). Assessing 
opportunity-to-learn for students with disabili-
ties in general and special education classes. 
Assessment for Effective Intervention, 40, 24–
39. doi:10.1177/1534508414522685

Lanza, S. T., Dziak, J. J., Huang, L., Wagner, A. 
T., & Collins, L. M. (2015). Proc LCA & Proc 
LTA users’ guide (Version 1.3.2). University 
Park, PA: Methodology Center. Retrieved 
from http://methodology.psu.edu

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent 
structure analysis. Boston, MA: Houghton 
Mifflin.

Mazzocco, M. M. M., Myers, G. F., Lewis, 
K. E., Hanich, L. B., & Murphy, M. M. 
(2013). Limited knowledge of fraction rep-
resentations differentiates middle school 
students with mathematics learning disabil-
ity (dyscalculia) versus low mathematics 
achievement. Journal of Experimental Child 
Psychology, 115, 371–387. doi:10.1016/j.
jecp.2013.01.005

McLachlan, G., & Peel, D. (2000). Finite mixture 
models. New York, NY: Wiley.

Misquitta, R. (2011). A review of the literature: 
Fraction instruction for struggling learners in 
mathematics. Learning Disabilities Research 
& Practice, 26, 109–119. doi:10.1111/j.1540-
5826.2011.00330.x

National Center for Education Statistics.  
(2015). National Assessment of Educational  
Progress (NAEP): 2015 mathematics assess-
ment. Washington, DC: Institute of Education 
Sciences.

National Center for Education Statistics. (2016). 
National Assessment of Educational Progress 
(NAEP): 1990, 1992, 1996, 2000, 2003, 2005, 
2007, 2009, 2011, 2013, and 2015 mathematics 
assessments. Retrieved from http://nces.ed.gov/
nationsreportcard/naepdata/

National Council of Teachers of Mathematics. (2017). 
Access and equity in mathematics education. 
Retrieved from http://www.nctm.org/Standards-
and-Positions/Position-Statements/Access-and-
Equity-in-Mathematics-Education/

National Dissemination Center for Children With 
Disabilities. (2010). Disabilities. Retrieved 
from http://nichcy.org/disability/categories#id

National Governors Association for Best Practices and 
Council of Chief State School Officers. (2010). 
Common core state standards in mathematics. 

Washington, DC: Author. Retrieved from http://
www.corestandards.org/Math

Nylund, K. L., Asparouhov, T., & Muthén, B. (2007). 
Deciding on the number of classes in latent 
class analysis and growth mixture modeling: 
A Monte Carlo simulation study. Structural 
Equation Modeling: A Multidisciplinary 
Journal, 14, 535–569. doi:10.1080/1070551 
0701575396

Pitkethly, A., & Hunting, R. (1996). A review of 
recent research in the area of initial fraction 
concepts. Educational Studies in Mathematics, 
30, 5–38. doi:10.1007/BF00163751

Radatz, H. (1979). Error analysis in math-
ematics education. Journal for Research 
in Mathematics Education, 10, 163–172. 
doi:10.2307/748804

Rea, P., McLaughlin, V., & Walther-Thomas, C. 
(2002). Outcomes for students with learn-
ing disabilities in inclusive and pullout pro-
grams. Exceptional Children, 68, 203–222. 
doi:10.1177/001440290206800204

Salend, S. J. (2011). Creating inclusive class-
rooms: Effective and reflective practices. 
Boston, MA: Pearson.

Schoenfeld, A. H. (1989). Teaching mathemati-
cal thinking and problem solving. In L. B. 
Resnick, & L. E. Klopfer (Eds.), Toward 
the thinking curriculum: Current cogni-
tive research (pp. 83–103). Alexandria, VA: 
Association for Supervision and Curriculum 
Development.

Schwartz, G. (1978). Estimating the dimension 
of a model. Annals of Statistics, 6, 461–464. 
doi:10.1214/aos/1176344136

Shin, M., & Bryant, D. P. (2015). A synthesis of 
mathematical and cognitive performances of 
students with mathematics learning disabili-
ties. Journal of Learning Disabilities, 48, 96–
112. doi:10.1177/0022219413508324

Siegler, R. S., & Pyke, A. A. (2013). Developmental 
and individual differences in understanding 
fractions. Developmental Psychology, 49, 
1994–2004. doi:10.1037/a0031200

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., 
Duckworth, K., Claessens, A., Engel, M., . . . Chen, 
M. (2012). Early predictors of high school math-
ematics achievement. Psychological Science, 23, 
691–697. doi:10.1177/0956797612440101

Siegler, R. S., Thompson, C. A., & Schneider, M. 
(2011). An integrated theory of whole num-
ber and fractions development. Cognitive 
Psychology, 62, 273–296. doi:10.1016/j.cog-
psych.2011.03.001

http://methodology.psu.edu
http://nces.ed.gov/nationsreportcard/naepdata/
http://nces.ed.gov/nationsreportcard/naepdata/
http://www.nctm.org/Standards-and-Positions/Position-Statements/Access-and-Equity-in-Mathematics-Education/
http://www.nctm.org/Standards-and-Positions/Position-Statements/Access-and-Equity-in-Mathematics-Education/
http://www.nctm.org/Standards-and-Positions/Position-Statements/Access-and-Equity-in-Mathematics-Education/
http://nichcy.org/disability/categories#id
http://www.corestandards.org/Math
http://www.corestandards.org/Math


212	 Exceptional Children 84(2)

Solis, M., Vaughn, S., Swanson, E., & McCulley, 
L. (2012). Collaborative models of instruc-
tion: The empirical foundations of inclusion 
and co-teaching. Psychology in the Schools, 
49, 498–510. doi:10.1002/pits.21606

Vaughn, S., Shay Schumm, J., & Arguelles, M. 
E. (1997). The ABCDEs of co-teaching. 
TEACHING Exceptional Children, 30(2), 4–
10. doi:10.1177/004005999703000201

Ye, A., Resnick, I., Hansen, N., Rodrigues, J., 
Rinne, L., & Jordan, N. C. (2016). Pathways to 
fraction learning: Numerical abilities mediate 
the relation between early cognitive compe-
tencies and later fraction knowledge. Journal 
of Experimental Child Psychology, 152, 242–
263. doi:10.1016/j.jecp.2016.08.001

Supplemental Material

The supplemental material is available in the online 
version of this article.

Authors’ Note

This study reports the results of a fine-grained analy-
sis of error patterns and performance outcomes from 
two randomized studies funded by the Institute of 
Education Sciences (Grant No. PR R324A090179). 
Opinions expressed herein are those of the authors 
and do not necessarily reflect the position of IES; no 
such endorsement should be inferred.

Manuscript received April 2017; accepted Septem-
ber 2017.


