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ABSTRACT:	 The	 statistics	 used	 in	 education	 research	 are	 based	 on	 central	 trends	 such	 as	 the	
mean	or	 standard	deviation,	 discarding	outliers.	 This	 paper	 adopts	 another	 viewpoint	 that	 has	
emerged	 in	 statistics,	 called	 extreme	 value	 theory	 (EVT).	 EVT	 claims	 that	 the	 bulk	 of	 normal	
distribution	 is	 comprised	 mainly	 of	 uninteresting	 variations	 while	 the	 most	 extreme	 values	
convey	 more	 information.	 We	 apply	 EVT	 to	 eye-tracking	 data	 collected	 during	 online	
collaborative	 problem	 solving	 with	 the	 aim	 of	 predicting	 the	 quality	 of	 collaboration.	 We	
compare	 our	 previous	 approach,	 based	 on	 central	 trends,	 with	 an	 EVT	 approach	 focused	 on	
extreme	 episodes	 of	 collaboration.	 The	 latter	 provided	 a	 better	 prediction	 of	 the	 quality	 of	
collaboration.	

KEYWORDS:	 Eye-tracking,	 dual	 eye-tracking,	 extreme	 value	 theory,	 computer	 supported	
collaborative	learning,	learning	analytics,	collaboration	quality	

1 INTRODUCTION 

This	 contribution	 borrows	 a	 framework	 from	 the	 field	 of	 statistics	 called	 extreme	 value	 theory	 (EVT),	
which	 has	 been	 developed	 for	 analyzing	 time	 series	 in	 domains	 such	 as	 finance	 and	 environmental	
sciences.	 We	 explore	 the	 relevance	 of	 EVT	 for	 learning	 analytics,	 namely	 for	 analyzing	 collaborative	
interactions	in	an	educational	setting.	For	these	kinds	of	analyses,	statistical	methods	traditionally	focus	
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on	 the	 central	 tendencies	 (mean,	median,	 and	 standard	 deviation).	 Generally,	we	 discarded	what	we	
considered	 to	 be	 outliers,	 which	 we	 suspected	 might	 be	 due	 to	 measurement	 errors,	 cheating,	 or	
miscellaneous	 events	 foreign	 to	 the	 cognitive	 mechanisms	 under	 scrutiny.	 Instead,	 EVT	 invites	 us	 to	
focus	on	the	interaction	episodes,	which	deviate	from	those	central	tendencies.	The	shift	between	these	
two	approaches,	from	central	to	extremes,	is	accompanied	by	another	shift:	the	extreme	data	points	do	
not	correspond	to	an	individual	subject	or	a	pair	but	to	some	specific	time	episodes	within	a	long	series	
of	time	events	produced	by	each	individual	or	pair.	The	goal	of	this	paper	is	to	determine	if	EVT	could	
provide	 us	 with	 better	 discrimination	 among	 different	 levels	 of	 collaboration	 quality	 compared	 to	
traditional	methods.	We	therefore	apply	both	methods	to	the	times	series	produced	by	eye	trackers	and	
compare	the	results.	Since	we	study	collaboration,	we	synchronized	the	eye-tracking	data	produced	by	
each	peer	(what	we	call	“dual	eye-tracking”).	EVT	has	been	traditionally	used	to	quantify	rare	events	like	
century	 floods,	 avalanches,	 market	 crashes,	 or	 more	 recently	 terrorism	 attacks.	 Outside	 of	 the	 risk	
management	context,	it	has	not	been	much	developed	because	of	the	lack	of	rare	data.	In	this	paper,	we	
propose	 the	 use	 and	 development	 of	 extreme	 value	 learning	 tools	 to	 explore	 “rare	 data”	 from	
educational	“big	data”	experiments	such	as	eye-tracking	experiments.	

The	 paper	 is	 organized	 as	 follows:	 Section	 2	 describes	 the	 nature	 of	 dual	 eye-tracking	 data	 (DUET),	
followed	in	Section	3	by	an	introduction	to	EVT.	Section	4	introduces	the	concept	that	bridges	DUET	and	
EVT	in	two	ways.	In	the	univariate	way,	each	pair	of	time	episodes	from	learners	A	and	B	is	substituted	
by	a	measure	of	their	differences,	which	produces	a	time	series	of	single	values.	In	the	bivariate	mode,	
we	take	into	consideration	the	dynamic	coupling	of	the	two	time	series.	The	rest	of	the	paper	compares	
the	results	produced	by	EVT	to	those	resulting	from	traditional	approaches.	

2 EYE-TRACKING 

Eye-tracking	provides	researchers	with	unprecedented	access	to	information	about	users’	attention.	The	
eye-tracking	data	 is	 rich	 in	 terms	of	 temporal	 resolution.	With	 the	advent	of	eye-tracking	 technology,	
the	 eye-tracking	 apparatus	 has	 become	 compact	 and	 easy	 to	 use	 without	 sacrificing	 much	 of	 its	
ecological	validity	during	the	controlled	experiments.	Previous	research	had	shown	that	eye-tracking	can	
be	 useful	 for	 unveiling	 the	 cognitive	 processes	 that	 underlie	 verbal	 interaction	 and	 problem-solving	
strategies.	We	introduce	here	some	key	concepts	necessary	to	understand	the	study	presented	later.	

2.1 Fixations and Saccades 

In	 a	 nutshell,	 gaze	 does	 not	 glide	 over	 visual	material	 in	 a	 smooth	 continuous	way	 but	 rather	 jumps	
around	the	stimulus:	small	stops	around	200	milliseconds,	called	“fixations,”	are	followed	by	long	jumps,	
called	 “saccades.”	 It	 is	 hypothesized	 that	 information	 is	 collected	 only	 during	 fixations.	 However,	 the	
data	 analysis	 is	more	 complex.	What	 if	 the	 eyes	 stop	 after	 180	 or	 170	milliseconds?	 Can	 this	 still	 be	
considered	 as	 a	 fixation?	 Eye-tracking	methods	 require	 different	 thresholds	 to	 be	defined	 in	 order	 to	
process	data.	Are	 these	 thresholds	 the	 same	 for	 all	 subjects	 and	 for	 all	 tasks?	 If	we	 consider	 a	 single	
subject	on	a	single	task,	is	the	threshold	stable	over	time?	Is	it	the	same	in	the	middle	of	the	screen	or	
on	 the	 periphery?	 Eye-tracking	 relies	 on	 the	 craft	 of	 “thresholding.”	 Nüssli	 (2011)	 developed	
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optimization	 algorithms	 that	 systematically	 explore	 threshold	 parameters	 in	 order	 to	 maximize	 the	
quality	of	produced	data.	Several	studies	have	shown	that	the	level	of	expertise	of	an	individual	(Ripoll,	
Kerlirzin,	 Stein,	 &	 Reine,	 1995;	 Abernethy	 &	 Russell,	 1987;	 Charness,	 Reingold,	 Pomplun,	 &	 Stampe,	
2001;	Reingold,	Charness,	Pomplun,	&	Stampe,	2001)	could	be	determined	from	eye-tracking	data	since	
the	way	one	looks	at	an	X-RAY	(Grant	&	Spivey,	2003;	Thomas	&	Lleras,	2007)	or	a	piece	of	programming	
code	(Sharma,	Jermann,	Nüssli,	&	Dillenbourg,	2012)	reveals	the	way	one	understands	these	things.	We	
will	not	develop	these	findings	in	this	paper	as	we	focus	on	collaborative	situations.	For	instance,	within	
a	 collaborative	 Tetris	 game,	 Jermann,	 Nüssli,	 and	 Li	 (2010)	 predicted	 the	 level	 of	 expertise	 in	 a	 pair	
(expert–expert,	 novice–novice,	 or	 expert–novice	 pair)	with	 an	 accuracy	 of	 75%.	 The	 core	 relationship	
between	gaze	and	collaboration	results	from	the	gaze-dialogue	coupling.	

2.2 Gaze-dialogue Coupling 

Two	 eye-trackers	 can	 be	 synchronized	 for	 studying	 the	 gaze	 of	 two	 persons	 interacting	 to	 solve	 a	
problem	and	for	understanding	how	gaze	and	speech	are	coupled.	Meyer,	Sleiderink,	and	Levelt	(1998)	
showed	 that	 the	 duration	 between	 looking	 at	 an	 object	 and	 naming	 it	 is	 between	 430	 and	 510	
milliseconds	 (eye–voice	 span).	 Griffin	 and	 Bock	 (2000)	 found	 an	 eye–voice	 span	 of	 about	 900	
milliseconds.	Zelinsky	and	Murphy	(2000)	discovered	a	correlation	between	the	time	spent	gazing	at	an	
object	and	the	spoken	duration	the	name	of	the	object	was	given	aloud.	Richardson,	Dale,	and	Kirkham	
(2007)	proposed	the	eye–eye	span	as	the	difference	between	the	time	when	the	speaker	starts	looking	
at	 the	 referred	 object	 and	 the	 time	 when	 listeners	 look	 at	 it.	 This	 time	 lag	 was	 termed	 the	 “cross-
recurrence”	 between	 the	 participants.	 The	 average	 cross-recurrence	was	 found	 to	 be	 between	 1,200	
and	1,400	milliseconds.	Jermann	and	Nüssli	(2012)	applied	cross-recurrence	to	a	pair	programming	task,	
enabling	the	remote	collaborators	to	see	their	actions	on	the	screen.	The	authors	found	that	the	cross-
recurrence	 levels	were	higher	when	selection	was	mutually	visible	on	the	screen,	which	related	to	the	
cross-recurrence	of	team	coordination.	

2.3 Quality of Interaction and Cross-recurrence 
Several	 authors	 have	 found	 a	 relationship	 between	 the	 cross-recurrence	 of	 gazes	 and	 the	 quality	 of	
collaboration.	Cherubini	and	Dillenbourg	 (2007)	 found	a	 correlation	between	gaze-recurrence	and	 the	
performance	of	teams	in	a	map	annotation	task.	In	a	peer	programming	task,	Jermann	and	Nüssli	(2012)	
found	 higher	 gaze	 recurrence	 for	 pairs	 that	 collaborate	 well,	 as	 estimated	 by	 the	Meier,	 Spada,	 and	
Rummel	(2007)	qualitative	coding	scheme.	In	a	concept-map	task	(Sharma,	Caballero,	Verma,	Jermann,	
&	Dillenbourg,	2015;	Sharma,	Jermann,	Nüssli,	&	Dillenbourg,	2013)	related	cross-recurrence	to	higher	
learning	 gains.	 In	 a	 collaborative	 learning	 task	 using	 tangible	 objects,	 Schneider	 and	 Blikstein	 (2015)	
found	 that	 cross-recurrence	 is	 correlated	 with	 the	 learning	 gains.	 In	 a	 nutshell,	 gaze	 is	 coupled	with	
cognition,	and	since	gaze	is	coupled	with	dialogue,	DUET	methods	constitute	a	powerful	tool	with	which	
to	 quantitatively	 investigate	 the	 quality	 of	 collaboration.	 The	 observed	 correlations	 do	 not	 imply	
causality,	but	some	studies	show	that	displaying	the	gaze	of	one	peer	to	the	other,	as	a	deictic	gesture,	
increases	 team	performance	 (Duchowski	 et	 al.,	 2004;	 Sharma,	D’Angelo,	Gergle,	&	Dillenbourg,	 2016;	
Stein	&	Brennan,	2004;	Van	Gog,	Jarodzka,	Scheiter,	Gerjets,	&	Paas,	2009;	Van	Gog,	Kester,	Nievelstein,	
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Giesbers,	 &	 Paas,	 2009;	 Van	 Gog	 &	 Scheiter,	 2010).	 More	 importantly,	 these	 reported	 studies	 have	
mostly	been	conducted	using	ANOVAs,	correlation	 tests,	F-	and	t-tests	and	regressions,	which	assume	
that	 the	data	 follow	a	normal	distribution.	We	will	 show	that	 the	distribution	tail	of	eye-tracking	data	
(low	 frequency	 events)	 is	 quite	 different	 from	 the	 tail	 of	 normal	 distribution.	 Specifically,	 EVT	
hypothesizes	 that	 the	 events	 that	 occur	 in	 the	 tail	 of	 a	 distribution	 are	 more	 distinguishable	 than	
average	behaviour.	The	next	section,	therefore,	introduces	the	basics	of	EVT.	

3 AN INTRODUCTION TO EXTREME VALUE THEORY 

Extreme	events	are	defined	as	those	having	low	frequency	and	high	severity	(or	impact).	EVT	is	a	branch	
of	statistics	that	deals	with	modelling	the	occurrence	and	magnitude	of	such	events.	For	instance,	flood-
walls	are	not	built	for	average	events	but	rather	for	rare	and	catastrophic	occurrences.	EVT	for	financial	
or	 insurance	risk	management	 looks	at	extreme	events	and	concentrates	on	the	risk	of	situations	that	
might	 never	 have	 happened	 before	 (McNeil,	 Frey,	&	 Embrechts,	 2015).	 Such	 events	 (market	 crashes,	
insurance	losses,	etc.)	are	rare	but	very	severe	for	companies,	hence	the	need	to	model	the	deviations	
from	 the	central	 tendencies	 in	a	different	manner.	Actually,	 the	distribution	of	 financial	 time	 series	 is	
known	 to	 be	 heavy-tailed.	 Therefore,	 EVT	 methods	 aim	 to	 model	 the	 tail	 with	 concepts	 described	
hereafter.	 For	 a	 comprehensive	 introduction,	 see	 Coles	 (2001),	 or	 see	 Chavez-Demoulin	 and	 Davison	
(2012)	for	a	review	of	EVT	for	analyzing	time	series.	

EVT	is	based	on	asymptotic	results.	Therefore,	the	data	used	to	model	events	is	a	very	small	subset	of	
the	whole	dataset	(usually	above	the	90th	or	95th	quantile).	The	main	advantages	of	using	EVT1	are	as	
follows:	First,	 it	 is	based	on	the	mathematical	foundations	that	for	any	common	distribution	F,	we	can	
characterize	the	tail	of	F	and	can	therefore	understand	the	generating	process	of	extreme	events	from	
any	underlying	distribution	F.	F	can	be	any	standard	continuous	distribution	(normal,	student,	uniform,	
exponential,	 gamma,	 etc.);	 hence,	 EVT	 imposes	 no	 strong	 assumption	 upon	 the	 data	 generating	
processes,	unlike	ANOVAs.	Second,	when	analyzing	the	dependence	structure	between	two	sequences	
of	 extreme	 events,	 the	 bivariate	 EVT	 context	 does	 not	 impose	 a	 linear	 shape	 of	 dependence	 as	
correlation	 requires	 (Sharma,	 Chavez-Demoulin,	 &	 Dillenbourg,	 2016).	 Third,	 even	 if	 the	 theory	 is	
established	for	independent	and	identically	distributed	variables,	it	can	be	straightforwardly	extended	to	
the	 stationary	 context	—	 the	 context	we	meet	 in	eye-tracking	and	 collaborative	 learning	—	or	 to	 the	
non-stationary	context.	Why	is	dual	eye-tracking	a	stationary	context?	The	gaze	time-series	are	invariant	
of	 temporal-shifts,	 i.e.,	 if	we	shift	 the	 time	by	a	 factor,	 the	variability	 in	 the	gaze	patterns	 remain	 the	
same.	Moreover,	 the	 gaze	 data	 at	 time	 t	 are	 not	 completely	 independent	 of	 where	 the	 person	 was	
looking	at	time	t	−	1,	i.e.,	there	exists	an	auto-correlation	in	the	gaze	data.	Furthermore,	we	describe	the	
advantages	of	EVT	over	general	methods	used	in	behavioural	research:	

• Advantage	of	 EVT	over	parametric	models	 that	 assume	normality	of	 the	data:	As	previously	
mentioned,	EVT	does	not	assume	any	underlying	distribution	 that	generates	 the	data.	That	 is,	

                                            
1 Source:	http://www.bioss.ac.uk/people/adam/teaching/OR	EVT/2007/node12.html 
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EVT	 can	 be	 applied	 to	 data	 from	 any	 standard	 continuous	 distribution	 (normal,	 student,	
uniform,	exponential,	gamma,	etc.).	

• Advantage	 of	 EVT	 over	 parametric	 models	 applied	 on	 the	 normalized	 data:	 EVT	 offers	 a	
complementary	viewpoint	 to	 look	at	 the	data,	more	particularly	 to	 look	at	 the	tail	of	 the	data	
distribution.	 This	 is	 justified	 because,	 often	 in	 the	 learning	 analytics	 context,	 the	 tail	 of	 the	
distribution	is	more	informative	than	the	body	of	distribution.	This	is	illustrated	by	the	real	data	
of	Figure	5.	In	that	context,	even	if	the	normality	of	the	transformed	data	hold,	the	parametric	
models	applied	on	the	data	would	not	bring	much	information	because	there	is	no	dependence	
structure	to	explore	the	average	values	(the	points	seem	to	be	randomly	spread	 in	the	middle	
quadrant	of	the	plot	containing	the	average	values).	More	generally,	when	a	group	of	students	is	
interacting	 to	 accomplish	 a	 task,	 the	 upper	 tail	 of	 the	 joint	 distribution	 of	 temporal	
concentration	 (or	 lower	 tail	 of	 the	 joint	 distribution	 of	 their	 spatial	 entropy,	 like	 in	 Figure	 5)	
actually	represents	the	episodes	during	which	the	subjects	are	together	focused	in	a	high	level	
of	collaborative	quality.	The	average	joint	values	are	less	informative,	probably	containing	other	
effects	than	collaboration.	In	such	cases,	the	competitive	performance	of	EVT	approaches	over	
parametric	models,	 applied	on	 the	normalized	data,	 emerges	 from	 the	 fact	 that	 EVT	provides	
the	correct	tools	to	look	at	the	extreme	sequences	of	the	data.	

• Advantage	of	EVT	over	non-parametric	models:	Both	rely	only	on	the	assumption	that	the	data	
are	continuous.	Many	of	the	non-parametric	methods	used	in	learning	analytics	are	hypothesis	
testing	and	provide	one	value	(the	p-value),	which	summarizes	the	data.	Non-parametric	forms	
can	handle	only	low	dimensional	problems,	which	goes	against	the	flow	of	big	data.	In	general,	
in	the	(non-stationary)	time	series	context,	there	is	much	more	to	gain	from	dynamic	parametric	
models	 than	 from	 hypothesis	 testing.	 Because	 EVT	 is	 available	 for	 any	 common	 continuous	
distribution,	 it	 offers	 the	 advantages	 of	 parametric	models	 like	 relying	 on	 likelihood,	 allowing	
formal	 inference,	 likelihood	 ratio-based	 hypothesis	 tests,	 and	 also	 takes	 into	 account	 non-
stationary	 nature	 in	 the	 case	 of	 time	 series	 and	 covariate	 dependence.	 Note	 that	 non-
parametric	methods	in	the	EVT	context	are	also	possible.	

3.1 Univariate Case 

Classical	EVT	considers	two	different	approaches.	The	first	approach	provides	the	asymptotic	behaviour	
of	the	maximum:	

																																																									(1)	
 
where	X1,	X2,…,	Xn	 is	 an	 independent	and	 identically	distributed	 random	sequence	with	distribution	F.	
Suppose	that	we	can	find	sequences	of	real	numbers	{an	>	0}	and	{bn} 𝑎" > 0 	such	that	the	sequence	of	

normalized	(or	stabilized)	maximum	M*
n	=	(Mn	–	bn)/an	𝑀"

∗ = ()*+)
,)

converges	in	distribution.		

A	 remarkable	 result	 states	 that	 the	 only	 possible	 distribution	 for	 the	 maximum	 is	 the	 generalized	
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extreme	value	(GEV)	distribution:	

																																																	(2)	
where	−∞	<	μ	<	∞	is	the	location	parameter,	σ	>	0	is	the	scale	parameter,	and	−∞	<	ξ	<	∞	is	the	shape	
parameter.	This	result	 is	equivalent	to	the	well-known	central	 limit	theorem	(which	provides	a	 limiting	
distribution	for	the	mean	of	any	underlying	distribution)	but	for	the	maximum.	Concretely,	in	modelling	
extremes	of	a	series	of	observed	data	x1,	x2,	xq,	we	divide	the	data	into	m	blocks	of	n.	This	gives	us	an	
observed	 series	 of	 block	 maxima	mn,1,	 mn,2,	 ...,	 mn,m	 on	 which	 we	 fit	 a	 GEV,	 by	 maximum	 likelihood	
estimation,	and	get	estimated	location	(μ ̂),	shape	(σ ̂),	and	scale	(ξ ̂)	parameters.	The	top	panels	in	Figure	
1	 show	 an	 example	 of	 the	 selection	 of	 extreme	 events	 using	 the	 blockwise-maxima	method	 for	 GEV	
model	fitting.	The	second	classical	EVT	approach	(mathematically	related	to	the	first	one)	characterizes	
the	tail	of	any	continuous	common	distribution	F	and	 is	 referred	to	as	the	peaks-over-threshold	 (POT)	
approach.	More	precisely,	 it	considers	a	model	for	the	exceedances	above	some	high	threshold	u	that	
defines	the	tail	of	the	distribution	F.	Under	the	POT	approach	it	can	be	shown	that:	

• the	number	of	 exceedances	above	 the	 threshold	u	 arises	 according	 to	 a	Poisson	process	with	
parameter	λ,	and	independently,	

• the	exceedance	size	W	=	X	−	u	follows	a	generalized	Pareto	distribution	(GPD):	

																																																									(3)	

defined	on	{w	:	w	>	0	and	 1 + 𝜉𝑤/˜𝜎 	>	0},	where:	
	

																																																																				(4)	

Essentially,	parameters	of	the	GPD	(threshold	excesses)	can	be	determined	by	GEV	(block	maxima).	The	
parameter	ξ,	which	controls	the	shape	of	the	tail	of	the	distribution	F,	is	the	same	for	both	GPD	and	GEV.	
In	 applications,	 the	 POT	 approach	 is	more	 flexible	 than	 the	 block	maxima	 approach	 and	 often	 allows	
more	data	(more	than	just	one	per	block)	and	therefore	leads	to	less	uncertainty.	As	we	can	see	in	the	
top-left	panel	of	Figure	1	(below),	the	number	of	points	considered	for	modelling	are	the	same	as	the	
number	of	blocks.	On	the	other	hand,	the	number	of	points	in	the	bottom-left	panel	of	Figure	1	is	larger	
than	 when	 the	 POT	 method	 is	 used.	 Once	 we	 have	 determined	 the	 appropriate	 threshold,	 the	
parameter	λ	of	the	Poisson	process	and	the	GPD	parameters	˜σ	and	ξ	can	be	estimated	by	maximizing	
the	 likelihood	 function.	 The	 bottom	 panels	 in	 Figure	 1	 show	 an	 example	 of	 the	 selection	 of	 extreme	
events	using	the	POT	method	for	the	GPD	model	fitting.	
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Figure	1:	Top	left:	a	random	variable	simulation	and	the	blockwise-maxima.	Top	right:	the	density	plot	
for	one	of	the	blocks;	the	red	points	show	the	maximum	value	of	each	block.	Bottom	left:	the	same	
random	variable	as	in	the	top-left	panel,	the	red	horizontal	line	shows	the	threshold	for	the	POT	
method,	the	red	points	are	the	points-over-threshold.	Bottom	right:	the	density	plot	for	the	whole	

distribution;	the	red	vertical	line	shows	the	threshold	for	the	POT	method	and	denotes	the	beginning	
of	the	tail	for	the	distribution;	the	red	coloured	area	shows	the	tail,	which	corresponds	to	the	red	

points	in	the	bottom-left	panel.	

The	main	practical	use	of	such	fitted	models	(GEV	block	maxima	or	POT)	is	the	adequate	calculation	of	
the	 extreme	quantile	 of	F,	 that	 is,	 the	quantile	 at	 a	 very	 high	 level.	Using	 either	 the	GEV	or	 POT,	we	
calculate	a	value,	which	has	a	very	low	probability	of	being	exceeded	in	a	given	time	period.	This	value	is	
called	 the	 “return	 value,”	 a	 name	 inspired	 by	 environmental	 data	 in	which	 the	 corresponding	 return	
period	 question	 is	 in	 how	many	months	 or	 years	 can	 it	 be	 expected	 that	 a	 value	 of	 the	 time	 series	
exceeds	the	same	value	again.	The	return	value	is	set	at	a	very	high	quantile,	usually	95%,	which	means	
that	 there	 is	 only	 a	 5%	 chance	 that	 a	 value	will	 exceed	 the	 computed	 return	 value.	 In	 Section	 4,	we	
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expose	 the	 calculation	 of	 the	 return	 level,	 and	 in	 Section	 6	 we	 see	 that	 the	 return	 level	 is	 actually	
effective	for	determining	collaborative	quality.	

3.2 Bivariate Case 

Another	way	of	modelling	collaboration	with	EVT	is	to	use	the	gaze	patterns	from	the	two	participants	in	
a	pair	and	analyze	them	as	a	bivariate	time	series.	Given	a	bivariate	random	sample	(X1,	Y1),	…	(Xn,	Yn),	
EVT	addresses	the	limiting	behaviour	of	the	component-wise	maxima	(M1,n,	M2,n),	that	is,	the	respective	
maximum	of	the	sequences	{Xi}	and	{Yi},	i	=	1,	…	,	n	as	in	(1).	

The	asymptotic	theory	of	bivariate	extremes	deals	with	finding	a	non-degenerate	bivariate	distribution	
function	(that	can	take	more	than	two	values)	G	such	that,	as	n	→	∞	

				(5)	

with	sequences	al,n	>	0	and	bl,n	∈	R,	l	=	1,	2.	If	the	limit	(5)	exists2	and	G	is	a	non-degenerate	distribution	
function,	then	G	has	the	form:	

																													(6)	

The	function	A(ω)	defined	as	0	≤	ω	≤	1	is	the	so-called	Pickands	dependence	function.	The	independence	
case	corresponding	to	G(z1,	z2)	=	exp{−(1/z1	+	1/z2)},	the	Pickands	function	A(ω),	measures	the	departure	
from	independence.	Complete	dependence	between	the	two	series	is	reflected	by	A(1/2)	=	0.5;	while	at	
complete	independence,	A(1/2)	=	1.	

While	analyzing	the	eye-tracking	time	series	of	two	peers,	the	main	practical	use	of	the	bivariate	EVT	is	
to	 measure	 extreme	 dependence,	 which	 is	 the	 probability	 of	 finding	 an	 extreme	 event	 in	 one	 time	
series,	given	that	we	observe	an	extreme	event	in	the	second	time	series.	The	two	extreme	events	must	
occur	at	the	same	time,	as	the	two	dimensions	 in	this	bivariate	space	are	the	two	gaze	time	series	for	
the	 two	peers.	This	probability	 is	quantified	as	 the	 tail-dependence	between	 the	 two	 time	series.	The	
classical	 methods	 value	 typically	 used	 to	 measure	 the	 dependence	 between	 the	 two	 series	 is	 the	
correlation	coefficient.	The	correlation	coefficient	is	computed	at	the	central	tendencies,	while	the	tail-
dependence	 is,	as	 in	the	case	of	return	values,	computed	at	a	very	high	quantile.	 In	Section	4,	we	use	
three	 different	 extremal	 dependence	 measures	 as	 complementary	 and	 interpretable	 ways	 for	
determining	collaborative	quality.	

4 CONCEPTS 

To	apply	EVT	 to	our	 research	question,	predicting	collaboration	quality	 from	DUET	traces,	we	need	to	
define	a	few	variables.	

                                            
2	 To	 simplify	 the	 representation	 and	without	 loss	 of	 generality,	we	 transform	 the	 data	 (Xi	 ,	 Yi)	 to	 (Z1i	 ,	 Z2i),	 i	 =	 1,	…,	 n	with	
standard	Fréchet	margins	so	that	Pr(Zil	≤	z)	=	exp{−1/z}	for	all	z	>	0	and	l	=	1,	2.	
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4.1 Gaze Visual Agitation (VA) 
VA	 is	defined	as	 the	coefficient	of	variance	 (CoV)	of	 the	 fixation	duration.	 	Visual	agitation	 for	a	given	
time	window	t	is	computed	as	follows:	

																																									(7)	

In	 accordance	 with	 Richardson,	 Dale,	 and	 Tomlinson	 (2009),	 we	 chose	 a	 time	 window	 size	 of	 two	
seconds.	 The	 main	 reason	 for	 analyzing	 the	 variance	 of	 the	 fixation	 duration	 and	 not	 the	 fixation	
duration	 itself	 is	 the	 fact	 that	 the	 fixation	duration	 is	 task-dependent.	 For	 instance,	 in	 a	 visual	 search	
task,	the	fixation	durations	will	 inherently	be	small,	as	the	eyes	would	be	constantly	moving	to	search	
the	target	object,	whereas	in	a	task	that	requires	deeper	information	processing,	the	fixation	durations	
are	higher.	The	task	used	in	our	experiment,	drawing	a	concept-map	task,	lies	in	between:	short	fixation	
durations	when	peers	search	for	a	concept	on	the	map	versus	longer	fixations	when	they	discuss	the	link	
between	 the	 two	 concepts.	 In	 order	 to	 keep	 various	 task	 episodes	 comparable,	 we	 use	 the	 scaled	
variance	of	the	fixation	duration.	A	low	value	of	VA	would	mean	relaxed	gaze	patterns	while	a	high	value	
could	result	from	stress	or	fatigue.	

4.2 Gaze Spatial Entropy (SE) 
SE	measures	the	spatial	distribution	of	the	gaze	of	each	peer.	To	compute	SE,	we	first	define	a	100-pixel-
by-100-pixel	grid	over	the	screen	and	we	compute	for	each	peer	the	proportion	of	gaze	fixations	located	
in	 each	 grid	 cell	 (Figure	 2).	 This	 results	 in	 a	 proportionality	 matrix	 and	 the	 SE	 is	 computed	 as	 the	
Shannon	entropy	of	this	2-dimensional	vector.	The	spatial	entropy	is	also	task-independent,	as	it	can	be	
computed	for	any	task,	but	the	interpretation	of	the	entropy	values	might	be	dependent	on	the	visual	
stimuli.	A	low	value	of	SE	would	mean	that	the	subject	is	concentrating	on	a	few	elements	on	the	screen,	
while	a	high	SE	value	would	depict	a	wider	focus	size.	

	

Figure	2:	The	process	of	computing	entropy.	The	image	on	the	left	shows	the	exemplar	concept-map	
and	gaze	patterns	(grey	circles	and	arrows).	The	image	on	the	right	shows	the	placement	of	the	grid.	
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4.3 Return Levels: Univariate Extremes 

The	return	level	is	the	quantile	at	a	high	level	(above	90%	for	example)	of	the	data	distribution.	Why	do	
we	not	simply	calculate	this	quantile	from	the	distribution	of	our	entire	dataset?	We	could	do	this,	but	
small	 discrepancies	 in	 the	 estimation	 of	 the	 body	 distribution	 would	 lead	 to	 large	 errors	 in	 the	
estimation	 of	 the	 quantiles	 in	 the	 tail.	 The	 POT	model	 presented	 in	 Section	 3	 is	 the	mathematically	
correct	way	to	estimate	such	high	quantiles	and	in	practice	leads	to	more	accurate	estimation.	The	EVT	
estimation	also	brings	information	about	how	heavy	is	the	tail	of	the	distribution	F;	that	is,	how	large	are	
the	extremes	that	distribution	F	can	generate?	This	 information	 is	provided	by	 the	value	of	 the	shape	
parameter	 ξ	 in	 (2)	 or	 (3):	 as	 ξ	 becomes	 larger,	 the	 tail	 of	F	 becomes	heavier.	We	do	not	 explore	 this	
feature	 further	 in	 this	 paper	 because	 as	 with	 any	 other	 modelling	 approach,	 just	 from	 the	 set	 of	
estimated	 parameters	 of	 location	 µ,	 scale	 σ	 or	 ˜𝜎,,	 and	 shape	 ξ,	 it	 is	 cumbersome	 to	 explain	 and	
compare	the	different	models.	Hence,	we	use	the	return	level,	calculated	using	the	model	parameters,	
which	has	a	valuable	interpretation.		

As	 mentioned	 in	 Section	 3,	 the	 return	 value	 (say,	 calculated	 at	 the	 95%	 quantile),	 symbolizes	 the	
measure	of	 the	 (unseen)	extreme	event	with	a	5%	probability	 that	 the	actual	 (unseen)	event	exceeds	
this	value.	In	what	follows,	we	derive	the	return	level	calculation	from	the	POT	model	above	a	threshold	
u.	 We	 recall	 that	 the	 underlying	 variable	 is	 denoted	 X	 and	 that	 the	 exceedances	 occurrence	 arrives	
according	 to	 a	 Poisson	 process	with	 parameter	 λ,	 and	 the	 exceedance	 size	W	=	 X	 −	 u	 follows	 a	 GPD	
denoted	as	H	in	(3)	with	parameters	( ,	ξ).	For	x	>	u,	we	have:	

	
It	follows	that	

																			 										(8)	

Hence,	the	return	level	xp	or	extreme	quantile	at	the	percentile	p	(large)	is	the	solution	of	

																																						(9)	

so	that,	

																															(10)	
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In	a	non-mathematical	way,	 the	 return	 level	xp	 is	 the	value	at	which	 the	probability	of	exceeding	 this	
value	 is	 equal	 to	 1	 −	 p.	 We	 obtain	 the	 estimated	 return	 level	 (10)	 by	 fitting	 the	 POT	 model	 to	 the	
exceedance	 data,	 estimating	 the	 probability	 of	 exceeding	 the	 threshold,	 Pr(X	 >	 u),	 using	 the	 Poisson	
model	and	replacing	the	parameters	 	and	ξ	with	their	maximum	likelihood	estimates.	

Is	EVT	overkill,	or	is	it	really	necessary	to	analyze	the	two	variables	that	we	have	defined,	visual	agitation	
and	spatial	entropy?	Figure	3	uses	Q–Q	plots	for	comparing	the	distribution	of	these	two	variables	with	
a	normal	distribution.	Both	plots	show	a	heavy	tail	for	low	frequency	values	of	spatial	entropy	(left	plot)	
and	 visual	 agitation	 (right	 plot),	 respectively.	 This	 justifies	 the	 use	 of	 sophisticated	 EVT	 methods	 to	
process	 these	 tails.	We	 will	 therefore	 compare	 the	 return	 levels	 calculated	 for	 the	 two	 participants.	
Similar	return	 levels	would	depict	a	higher	amount	of	temporal	concordance.	 In	Section	6,	we	will	see	
that	comparing	return	levels	indeed	provides	an	accurate	(and	interpretable)	way	of	discriminating	high	
and	low	collaboration	quality.	

	

Figure	3:	Q–Q	plots	of	Spatial	Entropy	(left)	and	Visual	Agitation	(right)	defined	in	Section	4.	

4.4 Three Measures of Extremal Dependence: Bivariate Extremes 

Estimating	 dependence	 between	 the	 two	 partners	 in	 a	 pair’s	 extremal	 behaviour	 provides	 some	
complementary	information	about	the	peers’	concordance.	We	first	introduce	the	extremal	coefficient	

θ	=	2Α(1/2)		 																												 	 	 (11)	

where	A	 is	 the	Pickands	 function	mentioned	 in	Section	3.	Thus,	θ	∈	 [1,	2],	 and	 it	 can	be	conveniently	
interpreted	as	the	effective	number	of	independent	series;	the	case	θ	=	2	means	that	the	two	series	are	
independent	 and	we	 therefore	 get	 complete	 independence.	 The	 case	 θ	 =	 1	means	 that	 the	 effective	
number	of	independent	series	is	1,	and	therefore	we	get	complete	dependence.	

The	 two	 other	 extremal	 dependence	 measures	 we	 consider	 come	 from	 conventional	 multivariate	
extreme	value	theory,	characterizing	two	classes	of	extreme	value	dependence:	asymptotic	dependence	
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and	 asymptotic	 independence,	 which	 characterizes	 the	 behaviour	 of	 variables	 as	 they	 become	more	
extreme.	In	this	context,	we	consider	the	coefficient	of	extremal	dependence	

			 																(12)	

The	limit	value	χ	∈	[0,	1]	is	strictly	positive	when	a	large	value	of	Z2	leads	to	a	non-zero	probability	of	as	
large	as	value	Z1.	 In	other	words,	χ	 is	 the	tendency	for	one	variable	to	be	 large	given	that	the	other	 is	
large.	This	means	that	the	only	possibility	for	asymptotic	independence	is	when	χ	=	0.	When	χ	>	0,	the	
variables	are	asymptotically	dependent.	In	that	context,	we	define,	as	a	second	extremal	coefficient,	the	
conditional	probability	

	 	 																	(13)	

From	 this	 we	 see	 that	 χ̅	 =	 1	 means	 perfect	 dependence	 between	 the	 two	 series	 while	 χ̅	 =	 0	 implies	
independence.	The	 coefficient	χ	̅ is	 therefore	a	measure	of	dependence	 for	 the	 class	of	 asymptotically	
independent	models.	In	our	context,	χ	tells	us	the	level	of	asymptotic	dependence,	and	χ	̅tells	us	about	
the	strength	of	the	asymptotic	dependence.	In	practice,	as	(12)	and	(13)	are	limits,	we	set	a	value	of	z	
typically	at	a	very	high	quantile	for	(12)	and	very	low	one	for	(13),	referred	to	as	z	×	100	percentile	for	
(12)	and	taking	the	(1	−	z)	×	100	percentile	for	(13),	as	shown	in	the	results	in	Section	6.	

	

Figure	4:	Example	illustrating	the	determination	of	the	coefficient	of	extremal	dependence	χ	and	the	
strength	of	dependence	χ̅	for	the	visual	agitation	of	a	pair.	The	dashed	lines	represent	the	95%	

confidence	intervals	for	χ	and	χ̅.	The	tail-dependence	and	its	strength	is	determined	by	the	values	at	
the	higher	quantiles	(typically	between	95%	and	99%).	The	red	lines	correspond	to	95%.	

Figure	4	shows	an	example	 illustrating	 the	determination	of	 the	coefficient	of	extremal	dependence	χ	
and	the	strength	of	dependence	χ	̅ for	the	spatial	entropy	of	a	pair.	Why	do	we	calculate	χ	and	χ	̅ for	all	
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the	 quantiles?	 This	 is	 just	 an	 empirical	 method,	 and	 we	 are	 only	 interested	 in	 the	 highest	 quantile	
values.	

Again,	 is	bivariate	EVT	overkill,	or	 is	 it	 really	necessary	 to	analyze	 the	variables	 that	we	have	defined,	
visual	agitation	and	spatial	entropy?	Figure	5	shows	that	the	dependence	structure	between	the	spatial	
entropy	of	the	two	peers	is	far	from	linear	(for	both	low	and	high	collaborative	quality	pairs).	In	such	a	
case,	a	Pearson	correlation	would	lead	to	erroneous	conclusions.	This	leads	to	the	development	of	more	
sophisticated	 methods	 to	 adequately	 model	 dependence	 structure;	 see,	 for	 instance,	 Sharma	 et	 al.	
(2017).	

	

Figure	5:	Scatterplots	of	spatial	entropy	between	the	peers	with	low	(left	panel)	and	high	(right	panel)	
quality	of	collaboration.	

5 EXPERIMENT 

The	EVT	framework	presented	above	provides	a	new	method	for	analyzing	the	dual	eye-tracking	data.	
The	research	question	we	specifically	address	 is	the	following:	Do	extreme	values	from	gaze	episodes	
predict	the	quality	of	collaboratively	produced	concept	maps	better	than	central	trends?	

To	 answer	 this	 question,	 we	 conducted	 an	 experiment	 with	 66	 master’s	 students	 from	 École	
Polytechnique	 Fédérale	 de	 Lausanne	 who	 participated	 in	 the	 present	 study.	 There	 were	 20	 females	
among	 the	 participants.	 The	 participants	 were	 each	 compensated	 with	 30	 Swiss	 francs	 for	 their	
participation	in	the	study.	The	flow	of	the	experiment	is	shown	in	Figure	6.	

Upon	their	arrival	in	the	laboratory,	the	participants	signed	a	consent	form.	Then	they	took	an	individual	
pre-test	on	the	basics	of	neuronal	transmission.	Then	the	participants	 individually	watched	two	videos	
about	“resting	membrane	potential.”	Next,	they	created	a	collaborative	concept-map	using	IHMC	CMap	
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tools.3	 Finally,	 they	 took	an	 individual	post-test.	The	 two	videos	were	 taken	 from	“Khan	Academy.”4,5	
The	total	length	of	the	videos	was	17	minutes.	It	is	worth	mentioning	that	the	teacher	was	not	physically	
present	during	the	videos.	The	participants	came	to	the	laboratory	in	pairs.	While	watching	the	videos,	
the	 participants	 had	 full	 control	 over	 the	 video	 player	without	 any	 time	 constraint.	 The	 collaborative	
concept-map	 phase	 was	 10–12	 minutes	 long.	 During	 that	 time	 participants	 could	 talk	 to	 each	 other	
while	their	screens	were	synchronized,	 i.e.,	peers	were	able	to	see	each	other’s	actions.	Both	the	pre-
test	and	the	post-test	contained	true–false	questions.	
	

	

Figure	6:	Schematic	representation	of	the	different	phases	of	the	experiment.	

5.1 Quality of Collaboration 

The	 final	 concept-map	 was	 compared	 with	 the	 concept-map	 created	 by	 the	 two	 experts.	 The	 pair	
received	 a	 score	 using	 the	 following	 rules:	 1)	 one	 mark	 for	 each	 correct	 connection	 between	 two	
concepts,	2)	one	mark	for	each	correct	label	of	the	edge	between	two	concepts,	3)	half	a	mark	for	each	
partially	correct	 label	of	 the	edge	between	 two	concepts.	The	pairs	were	 then	divided	 into	 two	 levels	
based	 on	 the	 concept-map	 score	 using	 a	 median	 split.	 Why	 do	 we	 consider	 this	 as	 a	 measure	 of	
collaboration	quality?	The	reason	rests	in	the	work	of	Jermann,	Mullins,	Nüssli,	and	Dillenbourg	(2011),	
Jermann	 and	 Nüssli	 (2012),	 and	 Kahrimanis,	 Chounta,	 and	 Avouris	 (2010),	 who	 showed	 that	 the	
actions/task-based	outcome	 is	often	 correlated	with	 the	 collaboration	quality.	Hence,	our	assumption	
about	having	the	collaborative	product	quality	as	a	proxy	of	collaboration	quality	is	grounded	in	previous	
findings.	As	Wise	and	Shaffer	(2015)	suggest,	“...theory	plays	an	ever-more	critical	role	 in	analysis,”	so	
using	these	supports	from	the	literature,	we	can	proceed	with	the	aforementioned	assumption.	

                                            
3	CMap	tools	
4	Resting	Membrane	Potential-Part	1	
5	Resting	Membrane	Potential-Part	2	



	
(2017).	An	application	of	extreme	value	theory	to	learning	analytics:	Predicting	collaboration	outcome	from	eye-tracking	data.	Journal	of	
Learning	Analytics,	4(3),	140–164.	http://dx.doi.org/10.18608/jla.2017.43.8	

	
ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	

154	

6 RESULTS 

6.1 Univariate Extremes 

Recall	the	question	we	address	in	this	paper:	Does	EVT	reveal	differences	that	central	trends	failed	to	
reveal?	

Figure	7	 shows	 the	pipeline	 for	 data	processing.	 Let	 us	 begin	with	 the	 central	 trends	 approach.	 If	we	
compare	 the	 difference	 in	 the	 average	 levels	 of	 entropy	 of	 the	 peers,	 we	 observe	 no	 significant	
differences	 between	 high-	 and	 low-quality	 pairs.	 An	 ANOVA	 shows	 no	 significant	 difference	 in	 the	
average	entropy	difference	for	the	peers	with	high	and	 low	collaboration	quality	 (F[1,21.48]	=	0.01,	p-
value	=	.93,	Figure	8d).	The	same	lack	of	difference	is	found	with	the	visual	agitation	(F[1,22]	=	1.73,	p-
value	=	.20,	Figure	8c).	

	
 

Figure	7:	The	pipeline	for	univariate	data-processing.	

Now,	we	compare	the	previous	results	with	those	provided	by	EVT.	We	estimated	the	return	level	(10)	
at	percentile	p.	To	keep	enough	data,	we	set	p	=	90	 for	visual	agitation	and	p	=	95	 for	spatial	entropy.	
The	reason	for	setting	p	=	90	for	visual	agitation	is	to	have	enough	data	points	to	fit	a	GEV	or	POT.	The	
difference	 between	 peers	 in	 terms	 of	 return	 levels	 tells	 us	 about	 their	 synchronicity.	 The	 difference	
between	 peers	 in	 return	 levels	 for	 visual	 agitation	 is	 lower	 for	 high-quality	 pairs	 than	 for	 low-quality	
pairs	(F[1,14.08]	=	4.92,	p-value	=	.04,	one-way	ANOVA	without	assuming	equal	variances).	Similarly,	the	
difference	 between	 peers	 in	 return	 levels	 for	 spatial	 entropy	 is	 also	 lower	 for	 high-quality	 pairs	
(F[1,15.15]	=	8.39,	p-value	=	.01,	one-way	ANOVA	without	assuming	equal	variances).	Figures	8a	and	8b	
show	the	means	and	confidence	intervals	for	the	difference	in	the	return	levels	for	visual	agitation	and	
spatial	 entropy	 respectively.	 In	 other	words,	 both	 for	 agitation	 and	entropy,	 the	 extremes	occur	with	
higher	synchronicity	for	the	high-quality	pairs	than	for	the	low-quality	pairs.	
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(a)	Means	and	confidence	intervals	(blue	bars)	
for	the	difference	in	the	estimated	return	levels	
(10)	at	90	percentile	for	visual	agitation,	for	

high-	and	low-quality	pairs. 

(b)	Means	and	confidence	intervals	(blue	bars)	
for	the	difference	in	the	estimated	return	levels	
(10)	at	90	percentile	for	spatial	entropy,	for	

high-	and	low-quality	pairs. 

 
 

(c)	Means	and	confidence	intervals	(blue	bars)	
for	the	difference	in	the	mean	values	for	visual	

agitation,	for	high-	and	low-quality	pairs. 

(d)	Means	and	confidence	intervals	(blue	bars)	
for	the	difference	in	the	mean	values	for	spatial	

entropy,	for	high-	and	low-quality	pairs. 
Figure	8:	Results:	Univariate	extremes	
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6.2 Bivariate Extremes 

We	again	compare	the	two	methods:	Does	EVT	reveal	differences	(of	dependencies	among	peers)	that	
central	trends	did	not?	

Let	us	 start	with	 standard	 correlations.	 If	we	 compute	 the	 correlation	between	 the	 spatial	 entropy	of	
two	peers,	we	 can	 see	 in	both	 Figures	 10c	 and	10d,	 that	we	 cannot	 learn	 anything	 from	 the	 average	
values	 (the	 body	 of	 the	 distribution),	 and	 the	 Pearson	 correlation/linear	model	 does	 not	make	 sense	
here.	This	might	lead	to	false	interpretations	of	the	underlying	collaborative	processes.	

Let	 us	 now	 compare	 the	 EVT	 approach	 to	 the	 bivariate	 time	 series.	 To	 estimate	 their	 extremal	
dependence,	we	start	by	estimating	the	extremal	coefficient	θ	as	in	(11)	between	the	variables	for	the	
two	peers.	We	observe	that	high-quality	pairs	have	a	higher	dependence	for	visual	agitation	than	low-
quality	pairs	(F[1,22]	=	6.07,	p-value	=	0.02,	Figure	9a).	Similarly,	high-quality	pairs	have	a	higher	level	of	
dependence	 in	 visual	 entropy	 than	 low-quality	 pairs,	with	 the	 difference	 being	 even	more	 significant	
(F[1,22]	=	7.65,	p-value	=	0.01,	Figure	9b).	The	scales	on	the	y-axes	for	Figures	9a	and	9b	are	inverted.	As	
we	 mentioned	 in	 Section	 4.4,	 complete	 dependence	 is	 reflected	 by	 θ	 =	 1,	 whereas	 complete	
independence	is	reflected	by	θ	=	2.	

Next,	we	estimate	the	level	χ	defined	in	(12)	and	strength	χ	̅defined	in	(13)	of	the	extremal	dependence.	
We	observe	a	higher	extremal	dependence	(calculated	at	the	95%	quantile)	between	the	visual	agitation	
of	peers	for	pairs	with	high	collaboration	quality	(F[1,22]	=	9.19,	p-value	=	0.006,	Figure	11a).	Moreover,	
we	observe	an	even	more	significant	difference	in	the	strength	of	the	extremal	dependence	(calculated	
at	 the	 95%	quantile)	 in	 favour	 of	 the	 pairs	with	 high	 collaboration	 quality	 (F[1,22]	 =	 11.71,	 p-value	 =	
0.002,	Figure	11c).	

Regarding	 spatial	 entropy,	 we	 observe	 effects	 similar	 to	 visual	 agitation.	 There	 is	 a	 higher	 extremal	
dependence	 (calculated	 at	 the	 95%	 quantile)	 between	 the	 spatial	 entropy	 of	 peers	 with	 high	
collaboration	quality	(F[1,22]	=	6.31,	p-value	=	0.01,	Figure	11b).	Similar	to	the	case	of	visual	agitation,	
we	observe	an	even	more	significant	difference	in	the	strength	of	extremal	dependence	(calculated	at	
the	95%	quantile)	for	the	pairs	with	high	collaboration	quality	(F[1,22]	=	14.28,	p-value	=	0.001,	Figure	
11d).	

There	 is	 a	 higher	 (χ)	 and	 stronger	 (χ)̅	 (calculated	 at	 the	 95%	quantile)	 extremal	 dependence	 for	 both	
visual	 agitation	 (Figure	 10a)	 and	 spatial	 entropy	 (Figure	 10b)	 for	 the	 high-quality	 pairs	 than	 the	 low-
quality	pairs.	We	observe	a	clear	separation,	 in	the	2-dimensional	space	of	χ	and	χ,̅	between	the	high-	
and	 low-quality	 pairs	 (with	 three	 and	 one	 exception	 for	 visual	 agitation	 and	 spatial	 entropy,	
respectively).	 As	 we	 observe	 in	 the	 case	 of	 temporal	 univariate	 return	 levels,	 the	 difference	 is	more	
evident	in	the	case	of	spatial	entropy	than	in	the	case	of	visual	agitation.	
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(a)	Means	and	confidence	intervals	(blue	bars)	for	
the	estimated	extremal	coefficient	θ	for	VA	of	the	

participants,	for	high-	and	low-quality	pairs.	

(b)	Means	and	confidence	intervals	(blue	bars)	for	
the	estimated	extremal	coefficient	θ	for	SE	of	the	

participants,	for	high-	and	low-quality	pairs.	

Figure	9:	Bivariate	extremes:	Dependence	measures.	

	
(a)	Coefficient	χ	and	strength	χ	̅of	extremal	

dependence	for	VA	for	high	(red	points)	and	low	
(blue	points)	collaboration	quality	pairs.	

	
(b)	Coefficient	χ	and	strength	χ	̅of	extremal	

dependence	for	SE	for	high	(red	points)	and	low	
(blue	points)	collaboration	quality	pairs.	
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Figure	10:	Results:	Bivariate	extremes,	extremal	coefficient,	and	tail	dependence.	

	
(a)	Means	and	confidence	intervals	(blue	bars)	for	
the	estimated	 level	of	extremal	dependence	χ	 in	
the	 visual	 agitation	 of	 the	 participants,	 for	 high-	
and	low-quality	pairs.	

	
(b)	 Means	 and	 confidence	 intervals	 (blue	 bars)	
for	the	estimated	 level	of	extremal	dependence	
χ	for	spatial	entropy	of	the	participants,	for	high-	
and	low-quality	pairs.	

	
(c)	SE	values	for	peers	in	a	high-quality	pair.	The	
correlation	does	not	reflect	the	true	relationship,	
as	there	is	no	linear	relation	between	the	SE	values	

for	peers.	

 
(d)	SE	values	for	peers	in	a	low-quality	pair.	The	
correlation	does	not	reflect	the	true	relationship,	
as	there	is	no	linear	relation	between	the	SE	values	

for	peers.	

Figure	11.	Results:	Bivariate	extremes,	levels,	and	strength	of	tail	dependence	
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(c)	Means	and	confidence	intervals	(blue	bars)	for	
the	estimated	strength	of	extremal	dependence	χ	̅
in	the	visual	agitation	of	the	participants,	for	high-	
and	low-quality	pairs.	

	
(d)	 Means	 and	 confidence	 intervals	 (blue	 bars)	
for	 the	 estimated	 strength	 of	 extremal	
dependence	 χ	̅ in	 the	 visual	 agitation	 of	 the	
participants,	for	high-	and	low-quality	pairs.	

Figure	11.	Results:	Bivariate	extremes,	levels,	and	strength	of	tail	dependence.	

7 DISCUSSION 

Does	EVT	provide	interesting	findings	compared	to	statistical	methods	based	on	central	trends?	

Let	 us	 first	 address	 this	 question	 in	 the	 univariate	 context.	 The	 comparison	 of	mean	 values	 of	 visual	
agitation	or	spatial	entropy	did	not	reveal	any	difference	between	high-quality	and	low-quality	pairs.	On	
the	contrary,	EVT	revealed	that	high-quality	pairs	have	a	significantly	smaller	difference	of	return	levels	
for	 both	 variables.	 This	 shows	 that	 during	 extreme	 episodes	 of	 collaboration	 there	 exists	 a	 higher	
amount	of	“togetherness”	among	the	participants	in	high-quality	pairs.	

The	bivariate	context	is	even	more	interesting.	The	three	tail	dependence	coefficients	we	used	measure	
dependence	 between	 the	 extremes	 of	 visual	 agitation	 and	 spatial	 entropy	 in	 a	 time	 series.	 More	
specifically,	 from	 the	extremal	 coefficient	θ	we	 learn	 the	effective	number	of	 independent	 series:	 for	
high-quality	pairs,	θ ̂	≈	1,	meaning	that	the	time	series	of	one	peer,	for	both	variables,	suffices	to	explain	
(or	describe)	the	extremes	of	the	other	peer.	This	highlights	an	extreme	“togetherness”	in	collaboration	
between	the	two	participants	of	the	pair.	

The	 dependence	measures	 χ	 and	 χ	̅ play	 a	 role	 similar	 to	 the	 Pearson	 correlation,	 but	 they	 avoid	 the	
drawbacks	 of	 standard	 correlation	 (not	 robust	 to	 outliers,	 restricted	 to	 linear	 dependence	 structure,	
spoiled	by	other	effects	affecting	 the	body	of	 the	distribution).	 The	extremal	dependence	measures	χ	
and	χ	̅ focus	on	 the	extreme	values	of	 the	 two	variables.	 Similarly	 to	 the	 interpretation	of	 correlation,	
large	values	of	χ ̂	and	χ̅̂	indicate	a	strong	dependence	between	their	episodes	of	high	VA	and	SE.	The	fact	
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that	 the	 bivariate	 tail-dependence	 is	 higher	 and	 stronger	 for	 the	 high-quality	 pairs	 confirms	 the	
univariate	findings.	

Using	the	bivariate	space	formed	by	the	same	gaze	measure	for	both	participants	 in	the	pair	(both	for	
VA	 and	 SE),	 we	 eliminate	 the	 need	 for	 grouping	 (averaging	 or	 grouping	 the	 individual	measures	 in	 a	
regression	model)	the	peer	measures	into	pair	variables.	

7.1 Why Does EVT Work? 

One	 reason	 EVT	works	 is	 that,	 unlike	 standard	methods	 that	 suffer	 from	 the	 difference	 between	 the	
assumed	 underlying	 distribution	 and	 the	 actual	 distribution,	 EVT	 properly	 models	 the	 tail	 (of	 any	
common	distribution)	using	 the	correct	model	 (POT	or	GEV	block	maxima).	 Second,	when	we	use	 the	
extreme	 episodes,	 we	 focus	 only	 on	 the	 moments	 that	 might	 reflect	 the	 episodes	 during	 which	 the	
collaborators	are	most	likely	to	be	“together.”	Then,	by	focusing	on	extreme	collaboration	episodes,	we	
remove	 the	 noise	 that	 could	 have	 prevented	 classical	methods	 from	 differentiating	 the	 collaboration	
quality	 levels.	This	 fact	 is	also	evident	 in	Figures	10c	and	10d.	Correlation	does	not	 reflect	 the	correct	
relation	between	the	SE	for	the	two	participants.	

However,	why	could	we	not	take	the	top	5%	quantile	and	perform	an	ANOVA	on	those	values?	A	very	
simple	 answer	 is	 that	 the	 main	 assumption	 for	 ANOVA	 is	 that	 the	 values	 should	 follow	 a	 normal	
distribution,	and	it	is	mathematically	proven	that	the	tail	of	any	distribution,	which	is	normal	in	the	case	
of	ANOVA,	does	not	follow	the	distribution.	Instead,	it	follows	the	GPD.	Hence,	it	would	be	statistically	
wrong	to	perform	an	ANOVA	on	such	variables.	Could	we	simply	normalize	the	data	and	then	perform	
the	ANOVA?	This	could	lead	to	a	problem	as	we	completely	ignore	many	other	properties	of	data	(e.g.,	
skew	and	kurtosis)	while	normalizing	the	data.	Thus,	key	aspects	of	the	data	generation	process	might	
be	hidden	or	 removed.	EVT	provides	a	method	 that	assumes	no	underlying	distribution	 regarding	 the	
data	 generating	 process,	 unlike	 other	 classical	methods.	 This	 removes	 the	 need	 to	 force	 the	 data	 to	
follow	any	given	statistical	distribution.	

7.2 When to use EVT? 

EVT	 offers	 the	 correct	 way	 (in	 the	 sense	 that	 it	 is	 based	 on	 mathematical	 foundations)	 to	 analyze	
abnormal	data	(in	the	sense	of	data	far	from	the	average	values).	The	EVT	theory	for	the	largest	values	
or	 peaks-over-threshold	 or	 bivariate	 case	 exposed	 in	 the	 paper	 is	 available	 for	 any	 underlying	
continuous	 distribution.	 It	 should	 be	 used	 when	 analyzing	 the	 tail	 distribution	 (for	 any	 kind	 of	
continuous	distribution)	as	a	complementary	exploration	of	the	data,	or	when	traditional	methods	fail	or	
are	 uninformative,	 either	 because	 the	 assumptions	 required	 by	 these	 methods	 (like	 the	 linear	
model/Pearson	 correlation)	 based	 on	 linear	 dependence	 between	 the	 two	 variables	 are	 violated	 or	
nearly	 violated	 or	 because	 the	 average	 values	 on	 which	 all	 these	 (parametric	 or	 non-parametric)	
methods	are	based	do	not	contain	the	relevant	information	of	interest,	being	therefore	less	predictive.	
For	 example,	when	 a	 student	 is	writing	 in	 a	 graphical	 table,	 the	 extreme	 values	 of	 her	 time	 series	 of	
writing	 speed/pressure	 are	 her	 abnormal	 sequences	 (in	 the	 sense	 of	 departure	 from	 her	 standard	
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measures)	and	relate	to	her	episodes	of	stress.	Another	example,	when	a	teacher	looks	at	the	exams	to	
infer	the	heterogeneity	of	the	class,	she	cannot	just	be	satisfied	by	a	robust	measure	of	the	variability	of	
marks.	She	has	 to	carefully	 consider	 the	worst	and	 the	best	marks	 (the	extremes)	as	 the	 limits	of	 the	
class	 heterogeneity	 frame.	 Neglecting	 the	worst	 and	 the	 best	 would	 not	 only	mean	 neglecting	 some	
students	(who	probably	have	an	important	impact	on	the	class)	but	also	neglecting	relevant	information.	
Furthermore,	 while	 analyzing	 trace	 data	 (for	 example,	 click-streams),	 although	 the	 theory	 is	 not	
established	for	the	discrete	case,	it	is	typically	used	to	count	variables,	like	Poisson	variables,	because	of	
their	approximation	by	continuous	distribution.	

8 CONCLUSION 

It	is	easy	to	understand	that	a	statistical	model	that	predicts	a	rise	in	water	level	of	5	metres	has	more	
social	 relevance	 than	a	model	 that	predicts	a	 rise	of	5	centimetres.	 In	education,	 this	approach	 is	 less	
intuitive.	 Typically,	 a	 teacher	 would	 care	 for	 the	 average	 level	 of	 his	 class	 and	 try	 to	 cope	 with	 its	
heterogeneity.	 It	 is	 hence	 very	 counter-intuitive	 that	 EVT	 reaches	 a	 higher	 discriminative	 power	 than	
methods	based	on	central	trends.	 In	sciences,	what	is	counter-intuitive	is	always	interesting.	However,	
we	 should	 not	 forget	 that	 the	 extreme	 values	 are	 not	 outliers	 but	 extreme	 time	 episodes	 during	
collaboration,	which	is	less	counter-intuitive.	If	a	teacher	monitors	a	classroom	with	several	teams,	(s)he	
would	probably	be	also	attracted	by	“extreme”	episodes;	for	instance,	when	peers	do	not	speak	at	all	or	
when	they	shout	at	each	other.	In	our	experiment,	the	raw	data	is	not	dialogue	but	gaze	patterns,	and	at	
this	point	nothing	proves	that	similar	results	would	be	obtained	with	other	behavioural	 traces.	We	do	
not	claim	that	EVT	should	replace	other	statistical	methods	used	in	learning	analytics,	but	rather	that	it	
expands	the	range	of	tools	available	to	learning	scientists.	By	using	it	across	multiple	learning	contexts,	
we	will	learn	when	and	why	it	brings	more	discriminative	power	than	methods	based	on	central	trends.	

REFERENCES 

Abernethy,	B.,	&	Russell,	D.	G.	(1987).	The	relationship	between	expertise	and	visual	search	strategy	in	a	
racquet	 sport.	 Human	 Movement	 Science,	 6(4),	 283–319.	 http://dx.doi.org/10.1016/0167-
9457(87)90001-7	

Charness,	N.,	 Reingold,	 E.	M.,	 Pomplun,	M.,	&	 Stampe,	D.	M.	 (2001).	 The	perceptual	 aspect	of	 skilled	
performance	in	chess:	Evidence	from	eye	movements.	Memory	&	Cognition,	29(8),	1146–1152.	
http://dx.doi.org/10.3758/BF03206384	

Chavez-Demoulin,	 V.,	 &	 Davison,	 A.	 C.	 (2012).	 Modelling	 time	 series	 extremes.	 REVSTAT:	 Statistical	
Journal,	10(1),	109–133.	

Cherubini,	M.,	&	Dillenbourg,	P.	 (2007).	The	effects	of	explicit	 referencing	 in	distance	problem	solving	
over	 shared	 maps.	 In	 Proceedings	 of	 the	 2007	 International	 ACM	 Conference	 on	 Supporting	
Group	Work	(GROUP	’07),	4–7	November	2007,	Sanibel	Island,	FL,	USA	(pp.	331–340).	New	York:	
ACM.	http://dx.doi.org/10.1145/1316624.1316674	

Coles,	 S.	 (2001).	 An	 introduction	 to	 statistical	 modeling	 of	 extreme	 values.	 London:	 Springer.	
http://dx.doi.org/10.1007/978-1-4471-3675-0	



	
(2017).	An	application	of	extreme	value	theory	to	learning	analytics:	Predicting	collaboration	outcome	from	eye-tracking	data.	Journal	of	
Learning	Analytics,	4(3),	140–164.	http://dx.doi.org/10.18608/jla.2017.43.8	

	
ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	

162	

Duchowski,	A.	T.,	Cournia,	N.,	Cumming,	B.,	McCallum,	D.,	Gramopadhye,	A.,	Greenstein,	J.,	…	Tyrrell,	R.	
A.	 (2004).	Visual	deictic	reference	 in	a	collaborative	virtual	environment.	 In	Proceedings	of	the	
2004	 Symposium	on	 Eye	 Tracking	Research	&	Applications	 (ETRA	 ’04)	 22–24	March	2004,	 San	
Antonio,	TX,	USA	(pp.	35–40).	New	York:	ACM.	http://dx.doi.org/10.1145/968363.968369	

Grant,	 E.	 R.,	 &	 Spivey,	 M.	 J.	 (2003).	 Eye	 movements	 and	 problem	 solving	 guiding	 attention	 guides	
thought.	Psychological	Science,	14(5),	462–466.	http://dx.doi.org/10.1111/1467-9280.02454	

Griffin,	Z.	M.,	&	Bock,	K.	 (2000).	What	the	eyes	say	about	speaking.	Psychological	Science,	11(4),	274–
279.	http://dx.doi.org/10.1111/1467-9280.00255	

Jermann,	P.,	Mullins,	D.,	Nüssli,	M.	A.,	&	Dillenbourg,	P.	(2011).	Collaborative	gaze	footprints:	Correlates	
of	 interaction	quality.	 In	Connecting	 Computer-Supported	Collaborative	 Learning	 to	 Policy	 and	
Practice:	Proceedings	of	 the	9th	 International	Conference	on	Computer-Supported	Collaborative	
Learning	(CSCL	2011),	4–8	July	2011,	Hong	Kong,	China	(Vol.	1,	No.	EPFL-CONF-170043,	pp.	184–
191).	International	Society	of	the	Learning	Sciences.	

Jermann,	 P.,	 &	 Nüssli,	 M.-A.	 (2012).	 Effects	 of	 sharing	 text	 selections	 on	 gaze	 cross-recurrence	 and	
interaction	quality	 in	a	pair	programming	task.	 In	Proceedings	of	the	2012	ACM	Conference	on	
Computer	 Supported	 Cooperative	 Work	 (CSCW	 ʼ12),	 11–15	 February,	 Seattle,	 WA,	 USA	 (pp.	
1125–1134).	New	York:	ACM.	http://dx.doi.org/10.1145/2145204.2145371	

Jermann,	P.,	Nüssli,	M.-A.,	&	Li,	W.	(2010).	Using	dual	eye-tracking	to	unveil	coordination	and	expertise	
in	 collaborative	 Tetris.	 In	Proceedings	 of	 the	 24th	BCS	 Interaction	 Specialist	Group	Conference	
(BCS	 ’10),	 6–10	 September	 2010,	 Dundee,	 UK	 (pp.	 36–44).	 Swindon,	 UK:	 BCS	 Learning	 &	
Development	Ltd.	

Kahrimanis,	G.,	Chounta,	I.	A.,	&	Avouris,	N.	(2010).	Study	of	correlations	between	logfile-based	metrics	
of	 interaction	 and	 the	 quality	 of	 synchronous	 collaboration.	 International	 Reports	 on	 Socio-
Informatics,	7(1),	24–31.	

McNeil,	A.,	 Frey,	R.,	&	Embrechts,	P.	 (2015).	Quantitative	 risk	management:	Concepts,	 techniques	and	
tools.	Princeton,	NJ:	Princeton	University	Press.	

Meier,	 A.,	 Spada,	 H.,	 &	 Rummel,	 N.	 (2007).	 A	 rating	 scheme	 for	 assessing	 the	 quality	 of	 computer-
supported	 collaboration	 processes.	 International	 Journal	 of	 Computer-Supported	 Collaborative	
Learning,	2(1),	63–86.	http://dx.doi.org/10.1007/s11412-006-9005-x	

Meyer,	 A.	 S.,	 Sleiderink,	 A.	M.,	 &	 Levelt,	W.	 J.	 (1998).	 Viewing	 and	 naming	 objects:	 Eye	movements	
during	 noun	 phrase	 production.	 Cognition,	 66(2),	 B25–B33.	 http://dx.doi.org/10.1016/S0010-
0277(98)00009-2	

Nüssli,	M.-A.	(2011).	Dual	eye-tracking	methods	for	the	study	of	remote	collaborative	problem	solving.	
PhD	Thesis,	École	Polytechnique	Fédérale	de	Lausanne.		

Reingold,	E.	M.,	Charness,	N.,	Pomplun,	M.,	&	Stampe,	D.	M.	(2001).	Visual	span	in	expert	chess	players:	
Evidence	 from	 eye	 movements.	 Psychological	 Science,	 12(1),	 48–55.	
http://dx.doi.org/10.1111/1467-9280.00309	

Richardson,	 D.	 C.,	 Dale,	 R.,	 &	 Kirkham,	N.	 Z.	 (2007).	 The	 art	 of	 conversation	 is	 coordination	 common	
ground	and	the	coupling	of	eye	movements	during	dialogue.	Psychological	Science,	18(5),	407–
413.	http://dx.doi.org/10.1111/j.1467-9280.2007.01914.x	



	
(2017).	An	application	of	extreme	value	theory	to	learning	analytics:	Predicting	collaboration	outcome	from	eye-tracking	data.	Journal	of	
Learning	Analytics,	4(3),	140–164.	http://dx.doi.org/10.18608/jla.2017.43.8	

	
ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	

163	

Richardson,	 D.	 C.,	 Dale,	 R.,	 &	 Tomlinson,	 T.	 M.	 (2009).	 Conversation,	 gaze	 coordination,	 and	 beliefs	
about	 visual	 context.	 Cognitive	 Science,	 33(8),	 1468–1482.	 http://dx.doi.org/10.1111/j.1551-
6709.2009.01057.x	

Ripoll,	 H.,	 Kerlirzin,	 Y.,	 Stein,	 J.-F.,	 &	 Reine,	 B.	 (1995).	 Analysis	 of	 information	 processing,	 decision	
making,	 and	 visual	 strategies	 in	 complex	 problem	 solving	 sport	 situations.	Human	Movement	
Science,	14(3),	325–349.	http://dx.doi.org/10.1016/0167-9457(95)00019-O	

Schneider,	B.,	&	Blikstein,	P.	(2015).	Comparing	the	benefits	of	a	tangible	user	interface	and	contrasting	
cases	as	a	preparation	for	future	learning.	In	Proceedings	of	the	11th	International	Conference	on	
Computer	 Supported	 Collaborative	 Learning	(CSCL	 2015),	 7–11	 June	 2015,	 Gothenburg,	
Sweden.	International	Society	of	the	Learning	Sciences.		

Sharma,	K.,	Caballero,	D.,	Verma,	H.,	 Jermann,	P.,	&	Dillenbourg,	P.	 (2015).	 Looking	AT	versus	 looking	
THROUGH:	 A	 dual	 eye-tracking	 study	 in	MOOC	 context.	 Proceedings	 of	 the	 11th	 International	
Conference	 on	 Computer	 Supported	 Collaborative	 Learning	(CSCL	 2015),	 7–11	 June	 2015,	
Gothenburg,	Sweden.	International	Society	of	the	Learning	Sciences.	

Sharma,	K.,	Chavez-Demoulin,	V.,	&	Dillenbourg,	P.	(2017).	Non-stationary	modeling	of	tail-dependence	
of	two	subjects’	concentration.	(To	appear)	Annals	of	Applied	Statistics.	

Sharma,	K.,	D’Angelo,	S.,	Gergle,	D.,	&	Dillenbourg,	P.	(2016).	Visual	augmentation	of	deictic	gestures	in	
MOOC	videos.	In	Proceedings	of	the	12th	International	Conference	of	the	Learning	Sciences	(ICLS	
’16),	20–24	June	2016,	Singapore.	ISLS.	http://dx.doi.org/10.22318/icls2016.28	

Sharma,	K.,	Jermann,	P.,	Nüssli,	M.-A.,	&	Dillenbourg,	P.	(2012).	Gaze	evidence	for	different	activities	in	
program	 understanding.	 In	 Proceedings	 of	 the	 24th	 Annual	 Conference	 of	 Psychology	 of	
Programming	 Interest	 Group.	 London,	 UK,	 November	 21–23,	 2012.	
https://infoscience.epfl.ch/record/184006	

Sharma,	 K.,	 Jermann,	 P.,	Nüssli,	M.-A.,	&	Dillenbourg,	 P.	 (2013).	Understanding	 collaborative	program	
comprehension:	 Interlacing	 gaze	 and	 dialogues.	 In	 Proceedings	 of	 the	 10th	 International	
Conference	 on	 Computer-Supported	 Collaborative	 Learning	 (CSCL	 2013),	 15–19	 June	 2013,	
Madison,	 WI,	 USA.	 International	 Society	 of	 the	 Learning	 Sciences.	
https://infoscience.epfl.ch/record/184007	

Stein,	R.,	&	Brennan,	S.	E.	(2004).	Another	person’s	eye	gaze	as	a	cue	in	solving	programming	problems.	
In	Proceedings	 of	 the	 6th	 International	 Conference	 on	Multimodal	 Interfaces	 (ICMI	 ’04)	 13–15	
October	 2004,	 State	 College,	 PA,	 USA	 (pp.	 9–15).	 New	 York:	 ACM.	
http://dx.doi.org/10.1145/1027933.1027936	

Thomas,	 L.	 E.,	 &	 Lleras,	 A.	 (2007).	 Moving	 eyes	 and	 moving	 thought:	 On	 the	 spatial	 compatibility	
between	 eye	 movements	 and	 cognition.	 Psychonomic	 Bulletin	 &	 Review,	 14(4),	 663–668.	
http://dx.doi.org/10.3758/BF03196818	

Van	Gog,	T.,	Jarodzka,	H.,	Scheiter,	K.,	Gerjets,	P.,	&	Paas,	F.	(2009).	Attention	guidance	during	example	
study	 via	 the	 model’s	 eye	 movements.	 Computers	 in	 Human	 Behavior,	 25(3),	 785–791.	
http://dx.doi.org/10.1016/j.chb.2009.02.007	

Van	Gog,	T.,	Kester,	L.,	Nievelstein,	F.,	Giesbers,	B.,	&	Paas,	F.	 (2009).	Uncovering	cognitive	processes:	
Different	techniques	that	can	contribute	to	cognitive	 load	research	and	instruction.	Computers	



	
(2017).	An	application	of	extreme	value	theory	to	learning	analytics:	Predicting	collaboration	outcome	from	eye-tracking	data.	Journal	of	
Learning	Analytics,	4(3),	140–164.	http://dx.doi.org/10.18608/jla.2017.43.8	

	
ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	

164	

in	Human	Behavior,	25,	325–331.	http://dx.doi.og/10.1016/j.chb.2008.12.021	
Van	Gog,	 T.,	 &	 Scheiter,	 K.	 (2010).	 Eye	 tracking	 as	 a	 tool	 to	 study	 and	 enhance	multimedia	 learning.	

Learning	and	Instruction,	20(2),	95–99.	http://dx.doi.org/10.1016/j.learninstruc.2009.02.009	
Wise,	A.,	&	Shaffer,	D.	W.	(2015).	Why	theory	matters	more	than	ever	in	the	age	of	big	data.	Journal	of	

Learning	Analytics,	2(2),	5–13.	http://dx.doi.org/10.18608/jla.2015.22.2	
Zelinsky,	G.	J.,	&	Murphy,	G.	L.	(2000).	Synchronizing	visual	and	language	processing:	An	effect	of	object	

name	 length	 on	 eye	 movements.	 Psychological	 Science,	 11(2),	 125–131.	
http://dx.doi.org/10.1111/1467-9280.00227	


